summaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-ccp.c
blob: 49a4c6fbe28318f715bc4117c61f87c1f6ab7f7f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
/* Conditional constant propagation pass for the GNU compiler.
   Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
   2010, 2011, 2012 Free Software Foundation, Inc.
   Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
   Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.

GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* Conditional constant propagation (CCP) is based on the SSA
   propagation engine (tree-ssa-propagate.c).  Constant assignments of
   the form VAR = CST are propagated from the assignments into uses of
   VAR, which in turn may generate new constants.  The simulation uses
   a four level lattice to keep track of constant values associated
   with SSA names.  Given an SSA name V_i, it may take one of the
   following values:

	UNINITIALIZED   ->  the initial state of the value.  This value
			    is replaced with a correct initial value
			    the first time the value is used, so the
			    rest of the pass does not need to care about
			    it.  Using this value simplifies initialization
			    of the pass, and prevents us from needlessly
			    scanning statements that are never reached.

	UNDEFINED	->  V_i is a local variable whose definition
			    has not been processed yet.  Therefore we
			    don't yet know if its value is a constant
			    or not.

	CONSTANT	->  V_i has been found to hold a constant
			    value C.

	VARYING		->  V_i cannot take a constant value, or if it
			    does, it is not possible to determine it
			    at compile time.

   The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:

   1- In ccp_visit_stmt, we are interested in assignments whose RHS
      evaluates into a constant and conditional jumps whose predicate
      evaluates into a boolean true or false.  When an assignment of
      the form V_i = CONST is found, V_i's lattice value is set to
      CONSTANT and CONST is associated with it.  This causes the
      propagation engine to add all the SSA edges coming out the
      assignment into the worklists, so that statements that use V_i
      can be visited.

      If the statement is a conditional with a constant predicate, we
      mark the outgoing edges as executable or not executable
      depending on the predicate's value.  This is then used when
      visiting PHI nodes to know when a PHI argument can be ignored.


   2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
      same constant C, then the LHS of the PHI is set to C.  This
      evaluation is known as the "meet operation".  Since one of the
      goals of this evaluation is to optimistically return constant
      values as often as possible, it uses two main short cuts:

      - If an argument is flowing in through a non-executable edge, it
	is ignored.  This is useful in cases like this:

			if (PRED)
			  a_9 = 3;
			else
			  a_10 = 100;
			a_11 = PHI (a_9, a_10)

	If PRED is known to always evaluate to false, then we can
	assume that a_11 will always take its value from a_10, meaning
	that instead of consider it VARYING (a_9 and a_10 have
	different values), we can consider it CONSTANT 100.

      - If an argument has an UNDEFINED value, then it does not affect
	the outcome of the meet operation.  If a variable V_i has an
	UNDEFINED value, it means that either its defining statement
	hasn't been visited yet or V_i has no defining statement, in
	which case the original symbol 'V' is being used
	uninitialized.  Since 'V' is a local variable, the compiler
	may assume any initial value for it.


   After propagation, every variable V_i that ends up with a lattice
   value of CONSTANT will have the associated constant value in the
   array CONST_VAL[i].VALUE.  That is fed into substitute_and_fold for
   final substitution and folding.

   References:

     Constant propagation with conditional branches,
     Wegman and Zadeck, ACM TOPLAS 13(2):181-210.

     Building an Optimizing Compiler,
     Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.

     Advanced Compiler Design and Implementation,
     Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "flags.h"
#include "tm_p.h"
#include "basic-block.h"
#include "function.h"
#include "gimple-pretty-print.h"
#include "tree-flow.h"
#include "tree-pass.h"
#include "tree-ssa-propagate.h"
#include "value-prof.h"
#include "langhooks.h"
#include "target.h"
#include "diagnostic-core.h"
#include "dbgcnt.h"
#include "gimple-fold.h"
#include "params.h"
#include "hash-table.h"


/* Possible lattice values.  */
typedef enum
{
  UNINITIALIZED,
  UNDEFINED,
  CONSTANT,
  VARYING
} ccp_lattice_t;

struct prop_value_d {
    /* Lattice value.  */
    ccp_lattice_t lattice_val;

    /* Propagated value.  */
    tree value;

    /* Mask that applies to the propagated value during CCP.  For
       X with a CONSTANT lattice value X & ~mask == value & ~mask.  */
    double_int mask;
};

typedef struct prop_value_d prop_value_t;

/* Array of propagated constant values.  After propagation,
   CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I).  If
   the constant is held in an SSA name representing a memory store
   (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
   memory reference used to store (i.e., the LHS of the assignment
   doing the store).  */
static prop_value_t *const_val;

static void canonicalize_float_value (prop_value_t *);
static bool ccp_fold_stmt (gimple_stmt_iterator *);

/* Dump constant propagation value VAL to file OUTF prefixed by PREFIX.  */

static void
dump_lattice_value (FILE *outf, const char *prefix, prop_value_t val)
{
  switch (val.lattice_val)
    {
    case UNINITIALIZED:
      fprintf (outf, "%sUNINITIALIZED", prefix);
      break;
    case UNDEFINED:
      fprintf (outf, "%sUNDEFINED", prefix);
      break;
    case VARYING:
      fprintf (outf, "%sVARYING", prefix);
      break;
    case CONSTANT:
      fprintf (outf, "%sCONSTANT ", prefix);
      if (TREE_CODE (val.value) != INTEGER_CST
	  || val.mask.is_zero ())
	print_generic_expr (outf, val.value, dump_flags);
      else
	{
	  double_int cval = tree_to_double_int (val.value).and_not (val.mask);
	  fprintf (outf, "%sCONSTANT " HOST_WIDE_INT_PRINT_DOUBLE_HEX,
		   prefix, cval.high, cval.low);
	  fprintf (outf, " (" HOST_WIDE_INT_PRINT_DOUBLE_HEX ")",
		   val.mask.high, val.mask.low);
	}
      break;
    default:
      gcc_unreachable ();
    }
}


/* Print lattice value VAL to stderr.  */

void debug_lattice_value (prop_value_t val);

DEBUG_FUNCTION void
debug_lattice_value (prop_value_t val)
{
  dump_lattice_value (stderr, "", val);
  fprintf (stderr, "\n");
}


/* Compute a default value for variable VAR and store it in the
   CONST_VAL array.  The following rules are used to get default
   values:

   1- Global and static variables that are declared constant are
      considered CONSTANT.

   2- Any other value is considered UNDEFINED.  This is useful when
      considering PHI nodes.  PHI arguments that are undefined do not
      change the constant value of the PHI node, which allows for more
      constants to be propagated.

   3- Variables defined by statements other than assignments and PHI
      nodes are considered VARYING.

   4- Initial values of variables that are not GIMPLE registers are
      considered VARYING.  */

static prop_value_t
get_default_value (tree var)
{
  prop_value_t val = { UNINITIALIZED, NULL_TREE, { 0, 0 } };
  gimple stmt;

  stmt = SSA_NAME_DEF_STMT (var);

  if (gimple_nop_p (stmt))
    {
      /* Variables defined by an empty statement are those used
	 before being initialized.  If VAR is a local variable, we
	 can assume initially that it is UNDEFINED, otherwise we must
	 consider it VARYING.  */
      if (!virtual_operand_p (var)
	  && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
	val.lattice_val = UNDEFINED;
      else
	{
	  val.lattice_val = VARYING;
	  val.mask = double_int_minus_one;
	}
    }
  else if (is_gimple_assign (stmt)
	   /* Value-returning GIMPLE_CALL statements assign to
	      a variable, and are treated similarly to GIMPLE_ASSIGN.  */
	   || (is_gimple_call (stmt)
	       && gimple_call_lhs (stmt) != NULL_TREE)
	   || gimple_code (stmt) == GIMPLE_PHI)
    {
      tree cst;
      if (gimple_assign_single_p (stmt)
	  && DECL_P (gimple_assign_rhs1 (stmt))
	  && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
	{
	  val.lattice_val = CONSTANT;
	  val.value = cst;
	}
      else
	/* Any other variable defined by an assignment or a PHI node
	   is considered UNDEFINED.  */
	val.lattice_val = UNDEFINED;
    }
  else
    {
      /* Otherwise, VAR will never take on a constant value.  */
      val.lattice_val = VARYING;
      val.mask = double_int_minus_one;
    }

  return val;
}


/* Get the constant value associated with variable VAR.  */

static inline prop_value_t *
get_value (tree var)
{
  prop_value_t *val;

  if (const_val == NULL)
    return NULL;

  val = &const_val[SSA_NAME_VERSION (var)];
  if (val->lattice_val == UNINITIALIZED)
    *val = get_default_value (var);

  canonicalize_float_value (val);

  return val;
}

/* Return the constant tree value associated with VAR.  */

static inline tree
get_constant_value (tree var)
{
  prop_value_t *val;
  if (TREE_CODE (var) != SSA_NAME)
    {
      if (is_gimple_min_invariant (var))
        return var;
      return NULL_TREE;
    }
  val = get_value (var);
  if (val
      && val->lattice_val == CONSTANT
      && (TREE_CODE (val->value) != INTEGER_CST
	  || val->mask.is_zero ()))
    return val->value;
  return NULL_TREE;
}

/* Sets the value associated with VAR to VARYING.  */

static inline void
set_value_varying (tree var)
{
  prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];

  val->lattice_val = VARYING;
  val->value = NULL_TREE;
  val->mask = double_int_minus_one;
}

/* For float types, modify the value of VAL to make ccp work correctly
   for non-standard values (-0, NaN):

   If HONOR_SIGNED_ZEROS is false, and VAL = -0, we canonicalize it to 0.
   If HONOR_NANS is false, and VAL is NaN, we canonicalize it to UNDEFINED.
     This is to fix the following problem (see PR 29921): Suppose we have

     x = 0.0 * y

     and we set value of y to NaN.  This causes value of x to be set to NaN.
     When we later determine that y is in fact VARYING, fold uses the fact
     that HONOR_NANS is false, and we try to change the value of x to 0,
     causing an ICE.  With HONOR_NANS being false, the real appearance of
     NaN would cause undefined behavior, though, so claiming that y (and x)
     are UNDEFINED initially is correct.  */

static void
canonicalize_float_value (prop_value_t *val)
{
  enum machine_mode mode;
  tree type;
  REAL_VALUE_TYPE d;

  if (val->lattice_val != CONSTANT
      || TREE_CODE (val->value) != REAL_CST)
    return;

  d = TREE_REAL_CST (val->value);
  type = TREE_TYPE (val->value);
  mode = TYPE_MODE (type);

  if (!HONOR_SIGNED_ZEROS (mode)
      && REAL_VALUE_MINUS_ZERO (d))
    {
      val->value = build_real (type, dconst0);
      return;
    }

  if (!HONOR_NANS (mode)
      && REAL_VALUE_ISNAN (d))
    {
      val->lattice_val = UNDEFINED;
      val->value = NULL;
      return;
    }
}

/* Return whether the lattice transition is valid.  */

static bool
valid_lattice_transition (prop_value_t old_val, prop_value_t new_val)
{
  /* Lattice transitions must always be monotonically increasing in
     value.  */
  if (old_val.lattice_val < new_val.lattice_val)
    return true;

  if (old_val.lattice_val != new_val.lattice_val)
    return false;

  if (!old_val.value && !new_val.value)
    return true;

  /* Now both lattice values are CONSTANT.  */

  /* Allow transitioning from PHI <&x, not executable> == &x
     to PHI <&x, &y> == common alignment.  */
  if (TREE_CODE (old_val.value) != INTEGER_CST
      && TREE_CODE (new_val.value) == INTEGER_CST)
    return true;

  /* Bit-lattices have to agree in the still valid bits.  */
  if (TREE_CODE (old_val.value) == INTEGER_CST
      && TREE_CODE (new_val.value) == INTEGER_CST)
    return tree_to_double_int (old_val.value).and_not (new_val.mask)
	   == tree_to_double_int (new_val.value).and_not (new_val.mask);

  /* Otherwise constant values have to agree.  */
  return operand_equal_p (old_val.value, new_val.value, 0);
}

/* Set the value for variable VAR to NEW_VAL.  Return true if the new
   value is different from VAR's previous value.  */

static bool
set_lattice_value (tree var, prop_value_t new_val)
{
  /* We can deal with old UNINITIALIZED values just fine here.  */
  prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];

  canonicalize_float_value (&new_val);

  /* We have to be careful to not go up the bitwise lattice
     represented by the mask.
     ???  This doesn't seem to be the best place to enforce this.  */
  if (new_val.lattice_val == CONSTANT
      && old_val->lattice_val == CONSTANT
      && TREE_CODE (new_val.value) == INTEGER_CST
      && TREE_CODE (old_val->value) == INTEGER_CST)
    {
      double_int diff;
      diff = tree_to_double_int (new_val.value)
	     ^ tree_to_double_int (old_val->value);
      new_val.mask = new_val.mask | old_val->mask | diff;
    }

  gcc_assert (valid_lattice_transition (*old_val, new_val));

  /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
     caller that this was a non-transition.  */
  if (old_val->lattice_val != new_val.lattice_val
      || (new_val.lattice_val == CONSTANT
	  && TREE_CODE (new_val.value) == INTEGER_CST
	  && (TREE_CODE (old_val->value) != INTEGER_CST
	      || new_val.mask != old_val->mask)))
    {
      /* ???  We would like to delay creation of INTEGER_CSTs from
	 partially constants here.  */

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  dump_lattice_value (dump_file, "Lattice value changed to ", new_val);
	  fprintf (dump_file, ".  Adding SSA edges to worklist.\n");
	}

      *old_val = new_val;

      gcc_assert (new_val.lattice_val != UNINITIALIZED);
      return true;
    }

  return false;
}

static prop_value_t get_value_for_expr (tree, bool);
static prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
static void bit_value_binop_1 (enum tree_code, tree, double_int *, double_int *,
			       tree, double_int, double_int,
			       tree, double_int, double_int);

/* Return a double_int that can be used for bitwise simplifications
   from VAL.  */

static double_int
value_to_double_int (prop_value_t val)
{
  if (val.value
      && TREE_CODE (val.value) == INTEGER_CST)
    return tree_to_double_int (val.value);
  else
    return double_int_zero;
}

/* Return the value for the address expression EXPR based on alignment
   information.  */

static prop_value_t
get_value_from_alignment (tree expr)
{
  tree type = TREE_TYPE (expr);
  prop_value_t val;
  unsigned HOST_WIDE_INT bitpos;
  unsigned int align;

  gcc_assert (TREE_CODE (expr) == ADDR_EXPR);

  get_pointer_alignment_1 (expr, &align, &bitpos);
  val.mask = (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
	      ? double_int::mask (TYPE_PRECISION (type))
	      : double_int_minus_one)
	     .and_not (double_int::from_uhwi (align / BITS_PER_UNIT - 1));
  val.lattice_val = val.mask.is_minus_one () ? VARYING : CONSTANT;
  if (val.lattice_val == CONSTANT)
    val.value
      = double_int_to_tree (type,
			    double_int::from_uhwi (bitpos / BITS_PER_UNIT));
  else
    val.value = NULL_TREE;

  return val;
}

/* Return the value for the tree operand EXPR.  If FOR_BITS_P is true
   return constant bits extracted from alignment information for
   invariant addresses.  */

static prop_value_t
get_value_for_expr (tree expr, bool for_bits_p)
{
  prop_value_t val;

  if (TREE_CODE (expr) == SSA_NAME)
    {
      val = *get_value (expr);
      if (for_bits_p
	  && val.lattice_val == CONSTANT
	  && TREE_CODE (val.value) == ADDR_EXPR)
	val = get_value_from_alignment (val.value);
    }
  else if (is_gimple_min_invariant (expr)
	   && (!for_bits_p || TREE_CODE (expr) != ADDR_EXPR))
    {
      val.lattice_val = CONSTANT;
      val.value = expr;
      val.mask = double_int_zero;
      canonicalize_float_value (&val);
    }
  else if (TREE_CODE (expr) == ADDR_EXPR)
    val = get_value_from_alignment (expr);
  else
    {
      val.lattice_val = VARYING;
      val.mask = double_int_minus_one;
      val.value = NULL_TREE;
    }
  return val;
}

/* Return the likely CCP lattice value for STMT.

   If STMT has no operands, then return CONSTANT.

   Else if undefinedness of operands of STMT cause its value to be
   undefined, then return UNDEFINED.

   Else if any operands of STMT are constants, then return CONSTANT.

   Else return VARYING.  */

static ccp_lattice_t
likely_value (gimple stmt)
{
  bool has_constant_operand, has_undefined_operand, all_undefined_operands;
  tree use;
  ssa_op_iter iter;
  unsigned i;

  enum gimple_code code = gimple_code (stmt);

  /* This function appears to be called only for assignments, calls,
     conditionals, and switches, due to the logic in visit_stmt.  */
  gcc_assert (code == GIMPLE_ASSIGN
              || code == GIMPLE_CALL
              || code == GIMPLE_COND
              || code == GIMPLE_SWITCH);

  /* If the statement has volatile operands, it won't fold to a
     constant value.  */
  if (gimple_has_volatile_ops (stmt))
    return VARYING;

  /* Arrive here for more complex cases.  */
  has_constant_operand = false;
  has_undefined_operand = false;
  all_undefined_operands = true;
  FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
    {
      prop_value_t *val = get_value (use);

      if (val->lattice_val == UNDEFINED)
	has_undefined_operand = true;
      else
	all_undefined_operands = false;

      if (val->lattice_val == CONSTANT)
	has_constant_operand = true;
    }

  /* There may be constants in regular rhs operands.  For calls we
     have to ignore lhs, fndecl and static chain, otherwise only
     the lhs.  */
  for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
       i < gimple_num_ops (stmt); ++i)
    {
      tree op = gimple_op (stmt, i);
      if (!op || TREE_CODE (op) == SSA_NAME)
	continue;
      if (is_gimple_min_invariant (op))
	has_constant_operand = true;
    }

  if (has_constant_operand)
    all_undefined_operands = false;

  /* If the operation combines operands like COMPLEX_EXPR make sure to
     not mark the result UNDEFINED if only one part of the result is
     undefined.  */
  if (has_undefined_operand && all_undefined_operands)
    return UNDEFINED;
  else if (code == GIMPLE_ASSIGN && has_undefined_operand)
    {
      switch (gimple_assign_rhs_code (stmt))
	{
	/* Unary operators are handled with all_undefined_operands.  */
	case PLUS_EXPR:
	case MINUS_EXPR:
	case POINTER_PLUS_EXPR:
	  /* Not MIN_EXPR, MAX_EXPR.  One VARYING operand may be selected.
	     Not bitwise operators, one VARYING operand may specify the
	     result completely.  Not logical operators for the same reason.
	     Not COMPLEX_EXPR as one VARYING operand makes the result partly
	     not UNDEFINED.  Not *DIV_EXPR, comparisons and shifts because
	     the undefined operand may be promoted.  */
	  return UNDEFINED;

	case ADDR_EXPR:
	  /* If any part of an address is UNDEFINED, like the index
	     of an ARRAY_EXPR, then treat the result as UNDEFINED.  */
	  return UNDEFINED;

	default:
	  ;
	}
    }
  /* If there was an UNDEFINED operand but the result may be not UNDEFINED
     fall back to CONSTANT.  During iteration UNDEFINED may still drop
     to CONSTANT.  */
  if (has_undefined_operand)
    return CONSTANT;

  /* We do not consider virtual operands here -- load from read-only
     memory may have only VARYING virtual operands, but still be
     constant.  */
  if (has_constant_operand
      || gimple_references_memory_p (stmt))
    return CONSTANT;

  return VARYING;
}

/* Returns true if STMT cannot be constant.  */

static bool
surely_varying_stmt_p (gimple stmt)
{
  /* If the statement has operands that we cannot handle, it cannot be
     constant.  */
  if (gimple_has_volatile_ops (stmt))
    return true;

  /* If it is a call and does not return a value or is not a
     builtin and not an indirect call, it is varying.  */
  if (is_gimple_call (stmt))
    {
      tree fndecl;
      if (!gimple_call_lhs (stmt)
	  || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
	      && !DECL_BUILT_IN (fndecl)))
	return true;
    }

  /* Any other store operation is not interesting.  */
  else if (gimple_vdef (stmt))
    return true;

  /* Anything other than assignments and conditional jumps are not
     interesting for CCP.  */
  if (gimple_code (stmt) != GIMPLE_ASSIGN
      && gimple_code (stmt) != GIMPLE_COND
      && gimple_code (stmt) != GIMPLE_SWITCH
      && gimple_code (stmt) != GIMPLE_CALL)
    return true;

  return false;
}

/* Initialize local data structures for CCP.  */

static void
ccp_initialize (void)
{
  basic_block bb;

  const_val = XCNEWVEC (prop_value_t, num_ssa_names);

  /* Initialize simulation flags for PHI nodes and statements.  */
  FOR_EACH_BB (bb)
    {
      gimple_stmt_iterator i;

      for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
        {
	  gimple stmt = gsi_stmt (i);
	  bool is_varying;

	  /* If the statement is a control insn, then we do not
	     want to avoid simulating the statement once.  Failure
	     to do so means that those edges will never get added.  */
	  if (stmt_ends_bb_p (stmt))
	    is_varying = false;
	  else
	    is_varying = surely_varying_stmt_p (stmt);

	  if (is_varying)
	    {
	      tree def;
	      ssa_op_iter iter;

	      /* If the statement will not produce a constant, mark
		 all its outputs VARYING.  */
	      FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
		set_value_varying (def);
	    }
          prop_set_simulate_again (stmt, !is_varying);
	}
    }

  /* Now process PHI nodes.  We never clear the simulate_again flag on
     phi nodes, since we do not know which edges are executable yet,
     except for phi nodes for virtual operands when we do not do store ccp.  */
  FOR_EACH_BB (bb)
    {
      gimple_stmt_iterator i;

      for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
        {
          gimple phi = gsi_stmt (i);

	  if (virtual_operand_p (gimple_phi_result (phi)))
            prop_set_simulate_again (phi, false);
	  else
            prop_set_simulate_again (phi, true);
	}
    }
}

/* Debug count support. Reset the values of ssa names
   VARYING when the total number ssa names analyzed is
   beyond the debug count specified.  */

static void
do_dbg_cnt (void)
{
  unsigned i;
  for (i = 0; i < num_ssa_names; i++)
    {
      if (!dbg_cnt (ccp))
        {
          const_val[i].lattice_val = VARYING;
	  const_val[i].mask = double_int_minus_one;
          const_val[i].value = NULL_TREE;
        }
    }
}


/* Do final substitution of propagated values, cleanup the flowgraph and
   free allocated storage.

   Return TRUE when something was optimized.  */

static bool
ccp_finalize (void)
{
  bool something_changed;
  unsigned i;

  do_dbg_cnt ();

  /* Derive alignment and misalignment information from partially
     constant pointers in the lattice.  */
  for (i = 1; i < num_ssa_names; ++i)
    {
      tree name = ssa_name (i);
      prop_value_t *val;
      unsigned int tem, align;

      if (!name
	  || !POINTER_TYPE_P (TREE_TYPE (name)))
	continue;

      val = get_value (name);
      if (val->lattice_val != CONSTANT
	  || TREE_CODE (val->value) != INTEGER_CST)
	continue;

      /* Trailing constant bits specify the alignment, trailing value
	 bits the misalignment.  */
      tem = val->mask.low;
      align = (tem & -tem);
      if (align > 1)
	set_ptr_info_alignment (get_ptr_info (name), align,
				TREE_INT_CST_LOW (val->value) & (align - 1));
    }

  /* Perform substitutions based on the known constant values.  */
  something_changed = substitute_and_fold (get_constant_value,
					   ccp_fold_stmt, true);

  free (const_val);
  const_val = NULL;
  return something_changed;;
}


/* Compute the meet operator between *VAL1 and *VAL2.  Store the result
   in VAL1.

   		any  M UNDEFINED   = any
		any  M VARYING     = VARYING
		Ci   M Cj	   = Ci		if (i == j)
		Ci   M Cj	   = VARYING	if (i != j)
   */

static void
ccp_lattice_meet (prop_value_t *val1, prop_value_t *val2)
{
  if (val1->lattice_val == UNDEFINED)
    {
      /* UNDEFINED M any = any   */
      *val1 = *val2;
    }
  else if (val2->lattice_val == UNDEFINED)
    {
      /* any M UNDEFINED = any
         Nothing to do.  VAL1 already contains the value we want.  */
      ;
    }
  else if (val1->lattice_val == VARYING
           || val2->lattice_val == VARYING)
    {
      /* any M VARYING = VARYING.  */
      val1->lattice_val = VARYING;
      val1->mask = double_int_minus_one;
      val1->value = NULL_TREE;
    }
  else if (val1->lattice_val == CONSTANT
	   && val2->lattice_val == CONSTANT
	   && TREE_CODE (val1->value) == INTEGER_CST
	   && TREE_CODE (val2->value) == INTEGER_CST)
    {
      /* Ci M Cj = Ci		if (i == j)
	 Ci M Cj = VARYING	if (i != j)

         For INTEGER_CSTs mask unequal bits.  If no equal bits remain,
	 drop to varying.  */
      val1->mask = val1->mask | val2->mask
		   | (tree_to_double_int (val1->value)
		      ^ tree_to_double_int (val2->value));
      if (val1->mask.is_minus_one ())
	{
	  val1->lattice_val = VARYING;
	  val1->value = NULL_TREE;
	}
    }
  else if (val1->lattice_val == CONSTANT
	   && val2->lattice_val == CONSTANT
	   && simple_cst_equal (val1->value, val2->value) == 1)
    {
      /* Ci M Cj = Ci		if (i == j)
	 Ci M Cj = VARYING	if (i != j)

         VAL1 already contains the value we want for equivalent values.  */
    }
  else if (val1->lattice_val == CONSTANT
	   && val2->lattice_val == CONSTANT
	   && (TREE_CODE (val1->value) == ADDR_EXPR
	       || TREE_CODE (val2->value) == ADDR_EXPR))
    {
      /* When not equal addresses are involved try meeting for
	 alignment.  */
      prop_value_t tem = *val2;
      if (TREE_CODE (val1->value) == ADDR_EXPR)
	*val1 = get_value_for_expr (val1->value, true);
      if (TREE_CODE (val2->value) == ADDR_EXPR)
	tem = get_value_for_expr (val2->value, true);
      ccp_lattice_meet (val1, &tem);
    }
  else
    {
      /* Any other combination is VARYING.  */
      val1->lattice_val = VARYING;
      val1->mask = double_int_minus_one;
      val1->value = NULL_TREE;
    }
}


/* Loop through the PHI_NODE's parameters for BLOCK and compare their
   lattice values to determine PHI_NODE's lattice value.  The value of a
   PHI node is determined calling ccp_lattice_meet with all the arguments
   of the PHI node that are incoming via executable edges.  */

static enum ssa_prop_result
ccp_visit_phi_node (gimple phi)
{
  unsigned i;
  prop_value_t *old_val, new_val;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "\nVisiting PHI node: ");
      print_gimple_stmt (dump_file, phi, 0, dump_flags);
    }

  old_val = get_value (gimple_phi_result (phi));
  switch (old_val->lattice_val)
    {
    case VARYING:
      return SSA_PROP_VARYING;

    case CONSTANT:
      new_val = *old_val;
      break;

    case UNDEFINED:
      new_val.lattice_val = UNDEFINED;
      new_val.value = NULL_TREE;
      break;

    default:
      gcc_unreachable ();
    }

  for (i = 0; i < gimple_phi_num_args (phi); i++)
    {
      /* Compute the meet operator over all the PHI arguments flowing
	 through executable edges.  */
      edge e = gimple_phi_arg_edge (phi, i);

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file,
	      "\n    Argument #%d (%d -> %d %sexecutable)\n",
	      i, e->src->index, e->dest->index,
	      (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
	}

      /* If the incoming edge is executable, Compute the meet operator for
	 the existing value of the PHI node and the current PHI argument.  */
      if (e->flags & EDGE_EXECUTABLE)
	{
	  tree arg = gimple_phi_arg (phi, i)->def;
	  prop_value_t arg_val = get_value_for_expr (arg, false);

	  ccp_lattice_meet (&new_val, &arg_val);

	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "\t");
	      print_generic_expr (dump_file, arg, dump_flags);
	      dump_lattice_value (dump_file, "\tValue: ", arg_val);
	      fprintf (dump_file, "\n");
	    }

	  if (new_val.lattice_val == VARYING)
	    break;
	}
    }

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      dump_lattice_value (dump_file, "\n    PHI node value: ", new_val);
      fprintf (dump_file, "\n\n");
    }

  /* Make the transition to the new value.  */
  if (set_lattice_value (gimple_phi_result (phi), new_val))
    {
      if (new_val.lattice_val == VARYING)
	return SSA_PROP_VARYING;
      else
	return SSA_PROP_INTERESTING;
    }
  else
    return SSA_PROP_NOT_INTERESTING;
}

/* Return the constant value for OP or OP otherwise.  */

static tree
valueize_op (tree op)
{
  if (TREE_CODE (op) == SSA_NAME)
    {
      tree tem = get_constant_value (op);
      if (tem)
	return tem;
    }
  return op;
}

/* CCP specific front-end to the non-destructive constant folding
   routines.

   Attempt to simplify the RHS of STMT knowing that one or more
   operands are constants.

   If simplification is possible, return the simplified RHS,
   otherwise return the original RHS or NULL_TREE.  */

static tree
ccp_fold (gimple stmt)
{
  location_t loc = gimple_location (stmt);
  switch (gimple_code (stmt))
    {
    case GIMPLE_COND:
      {
        /* Handle comparison operators that can appear in GIMPLE form.  */
        tree op0 = valueize_op (gimple_cond_lhs (stmt));
        tree op1 = valueize_op (gimple_cond_rhs (stmt));
        enum tree_code code = gimple_cond_code (stmt);
        return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
      }

    case GIMPLE_SWITCH:
      {
	/* Return the constant switch index.  */
        return valueize_op (gimple_switch_index (stmt));
      }

    case GIMPLE_ASSIGN:
    case GIMPLE_CALL:
      return gimple_fold_stmt_to_constant_1 (stmt, valueize_op);

    default:
      gcc_unreachable ();
    }
}

/* Apply the operation CODE in type TYPE to the value, mask pair
   RVAL and RMASK representing a value of type RTYPE and set
   the value, mask pair *VAL and *MASK to the result.  */

static void
bit_value_unop_1 (enum tree_code code, tree type,
		  double_int *val, double_int *mask,
		  tree rtype, double_int rval, double_int rmask)
{
  switch (code)
    {
    case BIT_NOT_EXPR:
      *mask = rmask;
      *val = ~rval;
      break;

    case NEGATE_EXPR:
      {
	double_int temv, temm;
	/* Return ~rval + 1.  */
	bit_value_unop_1 (BIT_NOT_EXPR, type, &temv, &temm, type, rval, rmask);
	bit_value_binop_1 (PLUS_EXPR, type, val, mask,
			 type, temv, temm,
			 type, double_int_one, double_int_zero);
	break;
      }

    CASE_CONVERT:
      {
	bool uns;

	/* First extend mask and value according to the original type.  */
	uns = TYPE_UNSIGNED (rtype);
	*mask = rmask.ext (TYPE_PRECISION (rtype), uns);
	*val = rval.ext (TYPE_PRECISION (rtype), uns);

	/* Then extend mask and value according to the target type.  */
	uns = TYPE_UNSIGNED (type);
	*mask = (*mask).ext (TYPE_PRECISION (type), uns);
	*val = (*val).ext (TYPE_PRECISION (type), uns);
	break;
      }

    default:
      *mask = double_int_minus_one;
      break;
    }
}

/* Apply the operation CODE in type TYPE to the value, mask pairs
   R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
   and R2TYPE and set the value, mask pair *VAL and *MASK to the result.  */

static void
bit_value_binop_1 (enum tree_code code, tree type,
		   double_int *val, double_int *mask,
		   tree r1type, double_int r1val, double_int r1mask,
		   tree r2type, double_int r2val, double_int r2mask)
{
  bool uns = TYPE_UNSIGNED (type);
  /* Assume we'll get a constant result.  Use an initial varying value,
     we fall back to varying in the end if necessary.  */
  *mask = double_int_minus_one;
  switch (code)
    {
    case BIT_AND_EXPR:
      /* The mask is constant where there is a known not
	 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
      *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
      *val = r1val & r2val;
      break;

    case BIT_IOR_EXPR:
      /* The mask is constant where there is a known
	 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)).  */
      *mask = (r1mask | r2mask)
	      .and_not (r1val.and_not (r1mask) | r2val.and_not (r2mask));
      *val = r1val | r2val;
      break;

    case BIT_XOR_EXPR:
      /* m1 | m2  */
      *mask = r1mask | r2mask;
      *val = r1val ^ r2val;
      break;

    case LROTATE_EXPR:
    case RROTATE_EXPR:
      if (r2mask.is_zero ())
	{
	  HOST_WIDE_INT shift = r2val.low;
	  if (code == RROTATE_EXPR)
	    shift = -shift;
	  *mask = r1mask.lrotate (shift, TYPE_PRECISION (type));
	  *val = r1val.lrotate (shift, TYPE_PRECISION (type));
	}
      break;

    case LSHIFT_EXPR:
    case RSHIFT_EXPR:
      /* ???  We can handle partially known shift counts if we know
	 its sign.  That way we can tell that (x << (y | 8)) & 255
	 is zero.  */
      if (r2mask.is_zero ())
	{
	  HOST_WIDE_INT shift = r2val.low;
	  if (code == RSHIFT_EXPR)
	    shift = -shift;
	  /* We need to know if we are doing a left or a right shift
	     to properly shift in zeros for left shift and unsigned
	     right shifts and the sign bit for signed right shifts.
	     For signed right shifts we shift in varying in case
	     the sign bit was varying.  */
	  if (shift > 0)
	    {
	      *mask = r1mask.llshift (shift, TYPE_PRECISION (type));
	      *val = r1val.llshift (shift, TYPE_PRECISION (type));
	    }
	  else if (shift < 0)
	    {
	      shift = -shift;
	      *mask = r1mask.rshift (shift, TYPE_PRECISION (type), !uns);
	      *val = r1val.rshift (shift, TYPE_PRECISION (type), !uns);
	    }
	  else
	    {
	      *mask = r1mask;
	      *val = r1val;
	    }
	}
      break;

    case PLUS_EXPR:
    case POINTER_PLUS_EXPR:
      {
	double_int lo, hi;
	/* Do the addition with unknown bits set to zero, to give carry-ins of
	   zero wherever possible.  */
	lo = r1val.and_not (r1mask) + r2val.and_not (r2mask);
	lo = lo.ext (TYPE_PRECISION (type), uns);
	/* Do the addition with unknown bits set to one, to give carry-ins of
	   one wherever possible.  */
	hi = (r1val | r1mask) + (r2val | r2mask);
	hi = hi.ext (TYPE_PRECISION (type), uns);
	/* Each bit in the result is known if (a) the corresponding bits in
	   both inputs are known, and (b) the carry-in to that bit position
	   is known.  We can check condition (b) by seeing if we got the same
	   result with minimised carries as with maximised carries.  */
	*mask = r1mask | r2mask | (lo ^ hi);
	*mask = (*mask).ext (TYPE_PRECISION (type), uns);
	/* It shouldn't matter whether we choose lo or hi here.  */
	*val = lo;
	break;
      }

    case MINUS_EXPR:
      {
	double_int temv, temm;
	bit_value_unop_1 (NEGATE_EXPR, r2type, &temv, &temm,
			  r2type, r2val, r2mask);
	bit_value_binop_1 (PLUS_EXPR, type, val, mask,
			   r1type, r1val, r1mask,
			   r2type, temv, temm);
	break;
      }

    case MULT_EXPR:
      {
	/* Just track trailing zeros in both operands and transfer
	   them to the other.  */
	int r1tz = (r1val | r1mask).trailing_zeros ();
	int r2tz = (r2val | r2mask).trailing_zeros ();
	if (r1tz + r2tz >= HOST_BITS_PER_DOUBLE_INT)
	  {
	    *mask = double_int_zero;
	    *val = double_int_zero;
	  }
	else if (r1tz + r2tz > 0)
	  {
	    *mask = ~double_int::mask (r1tz + r2tz);
	    *mask = (*mask).ext (TYPE_PRECISION (type), uns);
	    *val = double_int_zero;
	  }
	break;
      }

    case EQ_EXPR:
    case NE_EXPR:
      {
	double_int m = r1mask | r2mask;
	if (r1val.and_not (m) != r2val.and_not (m))
	  {
	    *mask = double_int_zero;
	    *val = ((code == EQ_EXPR) ? double_int_zero : double_int_one);
	  }
	else
	  {
	    /* We know the result of a comparison is always one or zero.  */
	    *mask = double_int_one;
	    *val = double_int_zero;
	  }
	break;
      }

    case GE_EXPR:
    case GT_EXPR:
      {
	double_int tem = r1val;
	r1val = r2val;
	r2val = tem;
	tem = r1mask;
	r1mask = r2mask;
	r2mask = tem;
	code = swap_tree_comparison (code);
      }
      /* Fallthru.  */
    case LT_EXPR:
    case LE_EXPR:
      {
	int minmax, maxmin;
	/* If the most significant bits are not known we know nothing.  */
	if (r1mask.is_negative () || r2mask.is_negative ())
	  break;

	/* For comparisons the signedness is in the comparison operands.  */
	uns = TYPE_UNSIGNED (r1type);

	/* If we know the most significant bits we know the values
	   value ranges by means of treating varying bits as zero
	   or one.  Do a cross comparison of the max/min pairs.  */
	maxmin = (r1val | r1mask).cmp (r2val.and_not (r2mask), uns);
	minmax = r1val.and_not (r1mask).cmp (r2val | r2mask, uns);
	if (maxmin < 0)  /* r1 is less than r2.  */
	  {
	    *mask = double_int_zero;
	    *val = double_int_one;
	  }
	else if (minmax > 0)  /* r1 is not less or equal to r2.  */
	  {
	    *mask = double_int_zero;
	    *val = double_int_zero;
	  }
	else if (maxmin == minmax)  /* r1 and r2 are equal.  */
	  {
	    /* This probably should never happen as we'd have
	       folded the thing during fully constant value folding.  */
	    *mask = double_int_zero;
	    *val = (code == LE_EXPR ? double_int_one :  double_int_zero);
	  }
	else
	  {
	    /* We know the result of a comparison is always one or zero.  */
	    *mask = double_int_one;
	    *val = double_int_zero;
	  }
	break;
      }

    default:;
    }
}

/* Return the propagation value when applying the operation CODE to
   the value RHS yielding type TYPE.  */

static prop_value_t
bit_value_unop (enum tree_code code, tree type, tree rhs)
{
  prop_value_t rval = get_value_for_expr (rhs, true);
  double_int value, mask;
  prop_value_t val;

  if (rval.lattice_val == UNDEFINED)
    return rval;

  gcc_assert ((rval.lattice_val == CONSTANT
	       && TREE_CODE (rval.value) == INTEGER_CST)
	      || rval.mask.is_minus_one ());
  bit_value_unop_1 (code, type, &value, &mask,
		    TREE_TYPE (rhs), value_to_double_int (rval), rval.mask);
  if (!mask.is_minus_one ())
    {
      val.lattice_val = CONSTANT;
      val.mask = mask;
      /* ???  Delay building trees here.  */
      val.value = double_int_to_tree (type, value);
    }
  else
    {
      val.lattice_val = VARYING;
      val.value = NULL_TREE;
      val.mask = double_int_minus_one;
    }
  return val;
}

/* Return the propagation value when applying the operation CODE to
   the values RHS1 and RHS2 yielding type TYPE.  */

static prop_value_t
bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
{
  prop_value_t r1val = get_value_for_expr (rhs1, true);
  prop_value_t r2val = get_value_for_expr (rhs2, true);
  double_int value, mask;
  prop_value_t val;

  if (r1val.lattice_val == UNDEFINED
      || r2val.lattice_val == UNDEFINED)
    {
      val.lattice_val = VARYING;
      val.value = NULL_TREE;
      val.mask = double_int_minus_one;
      return val;
    }

  gcc_assert ((r1val.lattice_val == CONSTANT
	       && TREE_CODE (r1val.value) == INTEGER_CST)
	      || r1val.mask.is_minus_one ());
  gcc_assert ((r2val.lattice_val == CONSTANT
	       && TREE_CODE (r2val.value) == INTEGER_CST)
	      || r2val.mask.is_minus_one ());
  bit_value_binop_1 (code, type, &value, &mask,
		     TREE_TYPE (rhs1), value_to_double_int (r1val), r1val.mask,
		     TREE_TYPE (rhs2), value_to_double_int (r2val), r2val.mask);
  if (!mask.is_minus_one ())
    {
      val.lattice_val = CONSTANT;
      val.mask = mask;
      /* ???  Delay building trees here.  */
      val.value = double_int_to_tree (type, value);
    }
  else
    {
      val.lattice_val = VARYING;
      val.value = NULL_TREE;
      val.mask = double_int_minus_one;
    }
  return val;
}

/* Return the propagation value when applying __builtin_assume_aligned to
   its arguments.  */

static prop_value_t
bit_value_assume_aligned (gimple stmt)
{
  tree ptr = gimple_call_arg (stmt, 0), align, misalign = NULL_TREE;
  tree type = TREE_TYPE (ptr);
  unsigned HOST_WIDE_INT aligni, misaligni = 0;
  prop_value_t ptrval = get_value_for_expr (ptr, true);
  prop_value_t alignval;
  double_int value, mask;
  prop_value_t val;
  if (ptrval.lattice_val == UNDEFINED)
    return ptrval;
  gcc_assert ((ptrval.lattice_val == CONSTANT
	       && TREE_CODE (ptrval.value) == INTEGER_CST)
	      || ptrval.mask.is_minus_one ());
  align = gimple_call_arg (stmt, 1);
  if (!host_integerp (align, 1))
    return ptrval;
  aligni = tree_low_cst (align, 1);
  if (aligni <= 1
      || (aligni & (aligni - 1)) != 0)
    return ptrval;
  if (gimple_call_num_args (stmt) > 2)
    {
      misalign = gimple_call_arg (stmt, 2);
      if (!host_integerp (misalign, 1))
	return ptrval;
      misaligni = tree_low_cst (misalign, 1);
      if (misaligni >= aligni)
	return ptrval;
    }
  align = build_int_cst_type (type, -aligni);
  alignval = get_value_for_expr (align, true);
  bit_value_binop_1 (BIT_AND_EXPR, type, &value, &mask,
		     type, value_to_double_int (ptrval), ptrval.mask,
		     type, value_to_double_int (alignval), alignval.mask);
  if (!mask.is_minus_one ())
    {
      val.lattice_val = CONSTANT;
      val.mask = mask;
      gcc_assert ((mask.low & (aligni - 1)) == 0);
      gcc_assert ((value.low & (aligni - 1)) == 0);
      value.low |= misaligni;
      /* ???  Delay building trees here.  */
      val.value = double_int_to_tree (type, value);
    }
  else
    {
      val.lattice_val = VARYING;
      val.value = NULL_TREE;
      val.mask = double_int_minus_one;
    }
  return val;
}

/* Evaluate statement STMT.
   Valid only for assignments, calls, conditionals, and switches. */

static prop_value_t
evaluate_stmt (gimple stmt)
{
  prop_value_t val;
  tree simplified = NULL_TREE;
  ccp_lattice_t likelyvalue = likely_value (stmt);
  bool is_constant = false;
  unsigned int align;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "which is likely ");
      switch (likelyvalue)
	{
	case CONSTANT:
	  fprintf (dump_file, "CONSTANT");
	  break;
	case UNDEFINED:
	  fprintf (dump_file, "UNDEFINED");
	  break;
	case VARYING:
	  fprintf (dump_file, "VARYING");
	  break;
	default:;
	}
      fprintf (dump_file, "\n");
    }

  /* If the statement is likely to have a CONSTANT result, then try
     to fold the statement to determine the constant value.  */
  /* FIXME.  This is the only place that we call ccp_fold.
     Since likely_value never returns CONSTANT for calls, we will
     not attempt to fold them, including builtins that may profit.  */
  if (likelyvalue == CONSTANT)
    {
      fold_defer_overflow_warnings ();
      simplified = ccp_fold (stmt);
      is_constant = simplified && is_gimple_min_invariant (simplified);
      fold_undefer_overflow_warnings (is_constant, stmt, 0);
      if (is_constant)
	{
	  /* The statement produced a constant value.  */
	  val.lattice_val = CONSTANT;
	  val.value = simplified;
	  val.mask = double_int_zero;
	}
    }
  /* If the statement is likely to have a VARYING result, then do not
     bother folding the statement.  */
  else if (likelyvalue == VARYING)
    {
      enum gimple_code code = gimple_code (stmt);
      if (code == GIMPLE_ASSIGN)
        {
          enum tree_code subcode = gimple_assign_rhs_code (stmt);

          /* Other cases cannot satisfy is_gimple_min_invariant
             without folding.  */
          if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
            simplified = gimple_assign_rhs1 (stmt);
        }
      else if (code == GIMPLE_SWITCH)
        simplified = gimple_switch_index (stmt);
      else
	/* These cannot satisfy is_gimple_min_invariant without folding.  */
	gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
      is_constant = simplified && is_gimple_min_invariant (simplified);
      if (is_constant)
	{
	  /* The statement produced a constant value.  */
	  val.lattice_val = CONSTANT;
	  val.value = simplified;
	  val.mask = double_int_zero;
	}
    }

  /* Resort to simplification for bitwise tracking.  */
  if (flag_tree_bit_ccp
      && (likelyvalue == CONSTANT || is_gimple_call (stmt))
      && !is_constant)
    {
      enum gimple_code code = gimple_code (stmt);
      tree fndecl;
      val.lattice_val = VARYING;
      val.value = NULL_TREE;
      val.mask = double_int_minus_one;
      if (code == GIMPLE_ASSIGN)
	{
	  enum tree_code subcode = gimple_assign_rhs_code (stmt);
	  tree rhs1 = gimple_assign_rhs1 (stmt);
	  switch (get_gimple_rhs_class (subcode))
	    {
	    case GIMPLE_SINGLE_RHS:
	      if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
		  || POINTER_TYPE_P (TREE_TYPE (rhs1)))
		val = get_value_for_expr (rhs1, true);
	      break;

	    case GIMPLE_UNARY_RHS:
	      if ((INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
		   || POINTER_TYPE_P (TREE_TYPE (rhs1)))
		  && (INTEGRAL_TYPE_P (gimple_expr_type (stmt))
		      || POINTER_TYPE_P (gimple_expr_type (stmt))))
		val = bit_value_unop (subcode, gimple_expr_type (stmt), rhs1);
	      break;

	    case GIMPLE_BINARY_RHS:
	      if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
		  || POINTER_TYPE_P (TREE_TYPE (rhs1)))
		{
		  tree lhs = gimple_assign_lhs (stmt);
		  tree rhs2 = gimple_assign_rhs2 (stmt);
		  val = bit_value_binop (subcode,
					 TREE_TYPE (lhs), rhs1, rhs2);
		}
	      break;

	    default:;
	    }
	}
      else if (code == GIMPLE_COND)
	{
	  enum tree_code code = gimple_cond_code (stmt);
	  tree rhs1 = gimple_cond_lhs (stmt);
	  tree rhs2 = gimple_cond_rhs (stmt);
	  if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
	      || POINTER_TYPE_P (TREE_TYPE (rhs1)))
	    val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
	}
      else if (code == GIMPLE_CALL
	       && (fndecl = gimple_call_fndecl (stmt))
	       && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
	{
	  switch (DECL_FUNCTION_CODE (fndecl))
	    {
	    case BUILT_IN_MALLOC:
	    case BUILT_IN_REALLOC:
	    case BUILT_IN_CALLOC:
	    case BUILT_IN_STRDUP:
	    case BUILT_IN_STRNDUP:
	      val.lattice_val = CONSTANT;
	      val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
	      val.mask = double_int::from_shwi
		  	   (~(((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT)
			      / BITS_PER_UNIT - 1));
	      break;

	    case BUILT_IN_ALLOCA:
	    case BUILT_IN_ALLOCA_WITH_ALIGN:
	      align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN
		       ? TREE_INT_CST_LOW (gimple_call_arg (stmt, 1))
		       : BIGGEST_ALIGNMENT);
	      val.lattice_val = CONSTANT;
	      val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
	      val.mask = double_int::from_shwi (~(((HOST_WIDE_INT) align)
						  / BITS_PER_UNIT - 1));
	      break;

	    /* These builtins return their first argument, unmodified.  */
	    case BUILT_IN_MEMCPY:
	    case BUILT_IN_MEMMOVE:
	    case BUILT_IN_MEMSET:
	    case BUILT_IN_STRCPY:
	    case BUILT_IN_STRNCPY:
	    case BUILT_IN_MEMCPY_CHK:
	    case BUILT_IN_MEMMOVE_CHK:
	    case BUILT_IN_MEMSET_CHK:
	    case BUILT_IN_STRCPY_CHK:
	    case BUILT_IN_STRNCPY_CHK:
	      val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
	      break;

	    case BUILT_IN_ASSUME_ALIGNED:
	      val = bit_value_assume_aligned (stmt);
	      break;

	    default:;
	    }
	}
      is_constant = (val.lattice_val == CONSTANT);
    }

  if (!is_constant)
    {
      /* The statement produced a nonconstant value.  If the statement
	 had UNDEFINED operands, then the result of the statement
	 should be UNDEFINED.  Otherwise, the statement is VARYING.  */
      if (likelyvalue == UNDEFINED)
	{
	  val.lattice_val = likelyvalue;
	  val.mask = double_int_zero;
	}
      else
	{
	  val.lattice_val = VARYING;
	  val.mask = double_int_minus_one;
	}

      val.value = NULL_TREE;
    }

  return val;
}

typedef hash_table <pointer_hash <gimple_statement_d> > gimple_htab;

/* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
   each matching BUILT_IN_STACK_RESTORE.  Mark visited phis in VISITED.  */

static void
insert_clobber_before_stack_restore (tree saved_val, tree var,
				     gimple_htab *visited)
{
  gimple stmt, clobber_stmt;
  tree clobber;
  imm_use_iterator iter;
  gimple_stmt_iterator i;
  gimple *slot;

  FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
    if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
      {
	clobber = build_constructor (TREE_TYPE (var), NULL);
	TREE_THIS_VOLATILE (clobber) = 1;
	clobber_stmt = gimple_build_assign (var, clobber);

	i = gsi_for_stmt (stmt);
	gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
      }
    else if (gimple_code (stmt) == GIMPLE_PHI)
      {
	if (!visited->is_created ())
	  visited->create (10);

	slot = visited->find_slot (stmt, INSERT);
	if (*slot != NULL)
	  continue;

	*slot = stmt;
	insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
					     visited);
      }
    else
      gcc_assert (is_gimple_debug (stmt));
}

/* Advance the iterator to the previous non-debug gimple statement in the same
   or dominating basic block.  */

static inline void
gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
{
  basic_block dom;

  gsi_prev_nondebug (i);
  while (gsi_end_p (*i))
    {
      dom = get_immediate_dominator (CDI_DOMINATORS, i->bb);
      if (dom == NULL || dom == ENTRY_BLOCK_PTR)
	return;

      *i = gsi_last_bb (dom);
    }
}

/* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
   a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.

   It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
   previous pass (such as DOM) duplicated it along multiple paths to a BB.  In
   that case the function gives up without inserting the clobbers.  */

static void
insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
{
  gimple stmt;
  tree saved_val;
  gimple_htab visited;

  for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
    {
      stmt = gsi_stmt (i);

      if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
	continue;

      saved_val = gimple_call_lhs (stmt);
      if (saved_val == NULL_TREE)
	continue;

      insert_clobber_before_stack_restore (saved_val, var, &visited);
      break;
    }

  if (visited.is_created ())
    visited.dispose ();
}

/* Detects a __builtin_alloca_with_align with constant size argument.  Declares
   fixed-size array and returns the address, if found, otherwise returns
   NULL_TREE.  */

static tree
fold_builtin_alloca_with_align (gimple stmt)
{
  unsigned HOST_WIDE_INT size, threshold, n_elem;
  tree lhs, arg, block, var, elem_type, array_type;

  /* Get lhs.  */
  lhs = gimple_call_lhs (stmt);
  if (lhs == NULL_TREE)
    return NULL_TREE;

  /* Detect constant argument.  */
  arg = get_constant_value (gimple_call_arg (stmt, 0));
  if (arg == NULL_TREE
      || TREE_CODE (arg) != INTEGER_CST
      || !host_integerp (arg, 1))
    return NULL_TREE;

  size = TREE_INT_CST_LOW (arg);

  /* Heuristic: don't fold large allocas.  */
  threshold = (unsigned HOST_WIDE_INT)PARAM_VALUE (PARAM_LARGE_STACK_FRAME);
  /* In case the alloca is located at function entry, it has the same lifetime
     as a declared array, so we allow a larger size.  */
  block = gimple_block (stmt);
  if (!(cfun->after_inlining
        && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
    threshold /= 10;
  if (size > threshold)
    return NULL_TREE;

  /* Declare array.  */
  elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
  n_elem = size * 8 / BITS_PER_UNIT;
  array_type = build_array_type_nelts (elem_type, n_elem);
  var = create_tmp_var (array_type, NULL);
  DECL_ALIGN (var) = TREE_INT_CST_LOW (gimple_call_arg (stmt, 1));
  {
    struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
    if (pi != NULL && !pi->pt.anything)
      {
	bool singleton_p;
	unsigned uid;
	singleton_p = pt_solution_singleton_p (&pi->pt, &uid);
	gcc_assert (singleton_p);
	SET_DECL_PT_UID (var, uid);
      }
  }

  /* Fold alloca to the address of the array.  */
  return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
}

/* Fold the stmt at *GSI with CCP specific information that propagating
   and regular folding does not catch.  */

static bool
ccp_fold_stmt (gimple_stmt_iterator *gsi)
{
  gimple stmt = gsi_stmt (*gsi);

  switch (gimple_code (stmt))
    {
    case GIMPLE_COND:
      {
	prop_value_t val;
	/* Statement evaluation will handle type mismatches in constants
	   more gracefully than the final propagation.  This allows us to
	   fold more conditionals here.  */
	val = evaluate_stmt (stmt);
	if (val.lattice_val != CONSTANT
	    || !val.mask.is_zero ())
	  return false;

	if (dump_file)
	  {
	    fprintf (dump_file, "Folding predicate ");
	    print_gimple_expr (dump_file, stmt, 0, 0);
	    fprintf (dump_file, " to ");
	    print_generic_expr (dump_file, val.value, 0);
	    fprintf (dump_file, "\n");
	  }

	if (integer_zerop (val.value))
	  gimple_cond_make_false (stmt);
	else
	  gimple_cond_make_true (stmt);

	return true;
      }

    case GIMPLE_CALL:
      {
	tree lhs = gimple_call_lhs (stmt);
	int flags = gimple_call_flags (stmt);
	tree val;
	tree argt;
	bool changed = false;
	unsigned i;

	/* If the call was folded into a constant make sure it goes
	   away even if we cannot propagate into all uses because of
	   type issues.  */
	if (lhs
	    && TREE_CODE (lhs) == SSA_NAME
	    && (val = get_constant_value (lhs))
	    /* Don't optimize away calls that have side-effects.  */
	    && (flags & (ECF_CONST|ECF_PURE)) != 0
	    && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
	  {
	    tree new_rhs = unshare_expr (val);
	    bool res;
	    if (!useless_type_conversion_p (TREE_TYPE (lhs),
					    TREE_TYPE (new_rhs)))
	      new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
	    res = update_call_from_tree (gsi, new_rhs);
	    gcc_assert (res);
	    return true;
	  }

	/* Internal calls provide no argument types, so the extra laxity
	   for normal calls does not apply.  */
	if (gimple_call_internal_p (stmt))
	  return false;

        /* The heuristic of fold_builtin_alloca_with_align differs before and
	   after inlining, so we don't require the arg to be changed into a
	   constant for folding, but just to be constant.  */
        if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN))
          {
            tree new_rhs = fold_builtin_alloca_with_align (stmt);
            if (new_rhs)
	      {
		bool res = update_call_from_tree (gsi, new_rhs);
		tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
		gcc_assert (res);
		insert_clobbers_for_var (*gsi, var);
		return true;
	      }
          }

	/* Propagate into the call arguments.  Compared to replace_uses_in
	   this can use the argument slot types for type verification
	   instead of the current argument type.  We also can safely
	   drop qualifiers here as we are dealing with constants anyway.  */
	argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
	for (i = 0; i < gimple_call_num_args (stmt) && argt;
	     ++i, argt = TREE_CHAIN (argt))
	  {
	    tree arg = gimple_call_arg (stmt, i);
	    if (TREE_CODE (arg) == SSA_NAME
		&& (val = get_constant_value (arg))
		&& useless_type_conversion_p
		     (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
		      TYPE_MAIN_VARIANT (TREE_TYPE (val))))
	      {
		gimple_call_set_arg (stmt, i, unshare_expr (val));
		changed = true;
	      }
	  }

	return changed;
      }

    case GIMPLE_ASSIGN:
      {
	tree lhs = gimple_assign_lhs (stmt);
	tree val;

	/* If we have a load that turned out to be constant replace it
	   as we cannot propagate into all uses in all cases.  */
	if (gimple_assign_single_p (stmt)
	    && TREE_CODE (lhs) == SSA_NAME
	    && (val = get_constant_value (lhs)))
	  {
	    tree rhs = unshare_expr (val);
	    if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
	      rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
	    gimple_assign_set_rhs_from_tree (gsi, rhs);
	    return true;
	  }

	return false;
      }

    default:
      return false;
    }
}

/* Visit the assignment statement STMT.  Set the value of its LHS to the
   value computed by the RHS and store LHS in *OUTPUT_P.  If STMT
   creates virtual definitions, set the value of each new name to that
   of the RHS (if we can derive a constant out of the RHS).
   Value-returning call statements also perform an assignment, and
   are handled here.  */

static enum ssa_prop_result
visit_assignment (gimple stmt, tree *output_p)
{
  prop_value_t val;
  enum ssa_prop_result retval;

  tree lhs = gimple_get_lhs (stmt);

  gcc_assert (gimple_code (stmt) != GIMPLE_CALL
              || gimple_call_lhs (stmt) != NULL_TREE);

  if (gimple_assign_single_p (stmt)
      && gimple_assign_rhs_code (stmt) == SSA_NAME)
    /* For a simple copy operation, we copy the lattice values.  */
    val = *get_value (gimple_assign_rhs1 (stmt));
  else
    /* Evaluate the statement, which could be
       either a GIMPLE_ASSIGN or a GIMPLE_CALL.  */
    val = evaluate_stmt (stmt);

  retval = SSA_PROP_NOT_INTERESTING;

  /* Set the lattice value of the statement's output.  */
  if (TREE_CODE (lhs) == SSA_NAME)
    {
      /* If STMT is an assignment to an SSA_NAME, we only have one
	 value to set.  */
      if (set_lattice_value (lhs, val))
	{
	  *output_p = lhs;
	  if (val.lattice_val == VARYING)
	    retval = SSA_PROP_VARYING;
	  else
	    retval = SSA_PROP_INTERESTING;
	}
    }

  return retval;
}


/* Visit the conditional statement STMT.  Return SSA_PROP_INTERESTING
   if it can determine which edge will be taken.  Otherwise, return
   SSA_PROP_VARYING.  */

static enum ssa_prop_result
visit_cond_stmt (gimple stmt, edge *taken_edge_p)
{
  prop_value_t val;
  basic_block block;

  block = gimple_bb (stmt);
  val = evaluate_stmt (stmt);
  if (val.lattice_val != CONSTANT
      || !val.mask.is_zero ())
    return SSA_PROP_VARYING;

  /* Find which edge out of the conditional block will be taken and add it
     to the worklist.  If no single edge can be determined statically,
     return SSA_PROP_VARYING to feed all the outgoing edges to the
     propagation engine.  */
  *taken_edge_p = find_taken_edge (block, val.value);
  if (*taken_edge_p)
    return SSA_PROP_INTERESTING;
  else
    return SSA_PROP_VARYING;
}


/* Evaluate statement STMT.  If the statement produces an output value and
   its evaluation changes the lattice value of its output, return
   SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
   output value.

   If STMT is a conditional branch and we can determine its truth
   value, set *TAKEN_EDGE_P accordingly.  If STMT produces a varying
   value, return SSA_PROP_VARYING.  */

static enum ssa_prop_result
ccp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
{
  tree def;
  ssa_op_iter iter;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "\nVisiting statement:\n");
      print_gimple_stmt (dump_file, stmt, 0, dump_flags);
    }

  switch (gimple_code (stmt))
    {
      case GIMPLE_ASSIGN:
        /* If the statement is an assignment that produces a single
           output value, evaluate its RHS to see if the lattice value of
           its output has changed.  */
        return visit_assignment (stmt, output_p);

      case GIMPLE_CALL:
        /* A value-returning call also performs an assignment.  */
        if (gimple_call_lhs (stmt) != NULL_TREE)
          return visit_assignment (stmt, output_p);
        break;

      case GIMPLE_COND:
      case GIMPLE_SWITCH:
        /* If STMT is a conditional branch, see if we can determine
           which branch will be taken.   */
        /* FIXME.  It appears that we should be able to optimize
           computed GOTOs here as well.  */
        return visit_cond_stmt (stmt, taken_edge_p);

      default:
        break;
    }

  /* Any other kind of statement is not interesting for constant
     propagation and, therefore, not worth simulating.  */
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "No interesting values produced.  Marked VARYING.\n");

  /* Definitions made by statements other than assignments to
     SSA_NAMEs represent unknown modifications to their outputs.
     Mark them VARYING.  */
  FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
    {
      prop_value_t v = { VARYING, NULL_TREE, { -1, (HOST_WIDE_INT) -1 } };
      set_lattice_value (def, v);
    }

  return SSA_PROP_VARYING;
}


/* Main entry point for SSA Conditional Constant Propagation.  */

static unsigned int
do_ssa_ccp (void)
{
  unsigned int todo = 0;
  calculate_dominance_info (CDI_DOMINATORS);
  ccp_initialize ();
  ssa_propagate (ccp_visit_stmt, ccp_visit_phi_node);
  if (ccp_finalize ())
    todo = (TODO_cleanup_cfg | TODO_update_ssa | TODO_remove_unused_locals);
  free_dominance_info (CDI_DOMINATORS);
  return todo;
}


static bool
gate_ccp (void)
{
  return flag_tree_ccp != 0;
}


struct gimple_opt_pass pass_ccp =
{
 {
  GIMPLE_PASS,
  "ccp",				/* name */
  gate_ccp,				/* gate */
  do_ssa_ccp,				/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  TV_TREE_CCP,				/* tv_id */
  PROP_cfg | PROP_ssa,			/* properties_required */
  0,					/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  TODO_verify_ssa
  | TODO_update_address_taken
  | TODO_verify_stmts | TODO_ggc_collect/* todo_flags_finish */
 }
};



/* Try to optimize out __builtin_stack_restore.  Optimize it out
   if there is another __builtin_stack_restore in the same basic
   block and no calls or ASM_EXPRs are in between, or if this block's
   only outgoing edge is to EXIT_BLOCK and there are no calls or
   ASM_EXPRs after this __builtin_stack_restore.  */

static tree
optimize_stack_restore (gimple_stmt_iterator i)
{
  tree callee;
  gimple stmt;

  basic_block bb = gsi_bb (i);
  gimple call = gsi_stmt (i);

  if (gimple_code (call) != GIMPLE_CALL
      || gimple_call_num_args (call) != 1
      || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
      || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
    return NULL_TREE;

  for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
    {
      stmt = gsi_stmt (i);
      if (gimple_code (stmt) == GIMPLE_ASM)
	return NULL_TREE;
      if (gimple_code (stmt) != GIMPLE_CALL)
	continue;

      callee = gimple_call_fndecl (stmt);
      if (!callee
	  || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
	  /* All regular builtins are ok, just obviously not alloca.  */
	  || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
	  || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA_WITH_ALIGN)
	return NULL_TREE;

      if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE)
	goto second_stack_restore;
    }

  if (!gsi_end_p (i))
    return NULL_TREE;

  /* Allow one successor of the exit block, or zero successors.  */
  switch (EDGE_COUNT (bb->succs))
    {
    case 0:
      break;
    case 1:
      if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR)
	return NULL_TREE;
      break;
    default:
      return NULL_TREE;
    }
 second_stack_restore:

  /* If there's exactly one use, then zap the call to __builtin_stack_save.
     If there are multiple uses, then the last one should remove the call.
     In any case, whether the call to __builtin_stack_save can be removed
     or not is irrelevant to removing the call to __builtin_stack_restore.  */
  if (has_single_use (gimple_call_arg (call, 0)))
    {
      gimple stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
      if (is_gimple_call (stack_save))
	{
	  callee = gimple_call_fndecl (stack_save);
	  if (callee
	      && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
	      && DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE)
	    {
	      gimple_stmt_iterator stack_save_gsi;
	      tree rhs;

	      stack_save_gsi = gsi_for_stmt (stack_save);
	      rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
	      update_call_from_tree (&stack_save_gsi, rhs);
	    }
	}
    }

  /* No effect, so the statement will be deleted.  */
  return integer_zero_node;
}

/* If va_list type is a simple pointer and nothing special is needed,
   optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
   __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
   pointer assignment.  */

static tree
optimize_stdarg_builtin (gimple call)
{
  tree callee, lhs, rhs, cfun_va_list;
  bool va_list_simple_ptr;
  location_t loc = gimple_location (call);

  if (gimple_code (call) != GIMPLE_CALL)
    return NULL_TREE;

  callee = gimple_call_fndecl (call);

  cfun_va_list = targetm.fn_abi_va_list (callee);
  va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
		       && (TREE_TYPE (cfun_va_list) == void_type_node
			   || TREE_TYPE (cfun_va_list) == char_type_node);

  switch (DECL_FUNCTION_CODE (callee))
    {
    case BUILT_IN_VA_START:
      if (!va_list_simple_ptr
	  || targetm.expand_builtin_va_start != NULL
	  || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
	return NULL_TREE;

      if (gimple_call_num_args (call) != 2)
	return NULL_TREE;

      lhs = gimple_call_arg (call, 0);
      if (!POINTER_TYPE_P (TREE_TYPE (lhs))
	  || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
	     != TYPE_MAIN_VARIANT (cfun_va_list))
	return NULL_TREE;

      lhs = build_fold_indirect_ref_loc (loc, lhs);
      rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
                             1, integer_zero_node);
      rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
      return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);

    case BUILT_IN_VA_COPY:
      if (!va_list_simple_ptr)
	return NULL_TREE;

      if (gimple_call_num_args (call) != 2)
	return NULL_TREE;

      lhs = gimple_call_arg (call, 0);
      if (!POINTER_TYPE_P (TREE_TYPE (lhs))
	  || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
	     != TYPE_MAIN_VARIANT (cfun_va_list))
	return NULL_TREE;

      lhs = build_fold_indirect_ref_loc (loc, lhs);
      rhs = gimple_call_arg (call, 1);
      if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
	  != TYPE_MAIN_VARIANT (cfun_va_list))
	return NULL_TREE;

      rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
      return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);

    case BUILT_IN_VA_END:
      /* No effect, so the statement will be deleted.  */
      return integer_zero_node;

    default:
      gcc_unreachable ();
    }
}

/* Attemp to make the block of __builtin_unreachable I unreachable by changing
   the incoming jumps.  Return true if at least one jump was changed.  */

static bool
optimize_unreachable (gimple_stmt_iterator i)
{
  basic_block bb = gsi_bb (i);
  gimple_stmt_iterator gsi;
  gimple stmt;
  edge_iterator ei;
  edge e;
  bool ret;

  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      stmt = gsi_stmt (gsi);

      if (is_gimple_debug (stmt))
       continue;

      if (gimple_code (stmt) == GIMPLE_LABEL)
	{
	  /* Verify we do not need to preserve the label.  */
	  if (FORCED_LABEL (gimple_label_label (stmt)))
	    return false;

	  continue;
	}

      /* Only handle the case that __builtin_unreachable is the first statement
	 in the block.  We rely on DCE to remove stmts without side-effects
	 before __builtin_unreachable.  */
      if (gsi_stmt (gsi) != gsi_stmt (i))
        return false;
    }

  ret = false;
  FOR_EACH_EDGE (e, ei, bb->preds)
    {
      gsi = gsi_last_bb (e->src);
      if (gsi_end_p (gsi))
	continue;

      stmt = gsi_stmt (gsi);
      if (gimple_code (stmt) == GIMPLE_COND)
	{
	  if (e->flags & EDGE_TRUE_VALUE)
	    gimple_cond_make_false (stmt);
	  else if (e->flags & EDGE_FALSE_VALUE)
	    gimple_cond_make_true (stmt);
	  else
	    gcc_unreachable ();
	  update_stmt (stmt);
	}
      else
	{
	  /* Todo: handle other cases, f.i. switch statement.  */
	  continue;
	}

      ret = true;
    }

  return ret;
}

/* A simple pass that attempts to fold all builtin functions.  This pass
   is run after we've propagated as many constants as we can.  */

static unsigned int
execute_fold_all_builtins (void)
{
  bool cfg_changed = false;
  basic_block bb;
  unsigned int todoflags = 0;

  FOR_EACH_BB (bb)
    {
      gimple_stmt_iterator i;
      for (i = gsi_start_bb (bb); !gsi_end_p (i); )
	{
          gimple stmt, old_stmt;
	  tree callee, result;
	  enum built_in_function fcode;

	  stmt = gsi_stmt (i);

          if (gimple_code (stmt) != GIMPLE_CALL)
	    {
	      gsi_next (&i);
	      continue;
	    }
	  callee = gimple_call_fndecl (stmt);
	  if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL)
	    {
	      gsi_next (&i);
	      continue;
	    }
	  fcode = DECL_FUNCTION_CODE (callee);

	  result = gimple_fold_builtin (stmt);

	  if (result)
	    gimple_remove_stmt_histograms (cfun, stmt);

	  if (!result)
	    switch (DECL_FUNCTION_CODE (callee))
	      {
	      case BUILT_IN_CONSTANT_P:
		/* Resolve __builtin_constant_p.  If it hasn't been
		   folded to integer_one_node by now, it's fairly
		   certain that the value simply isn't constant.  */
                result = integer_zero_node;
		break;

	      case BUILT_IN_ASSUME_ALIGNED:
		/* Remove __builtin_assume_aligned.  */
		result = gimple_call_arg (stmt, 0);
		break;

	      case BUILT_IN_STACK_RESTORE:
		result = optimize_stack_restore (i);
		if (result)
		  break;
		gsi_next (&i);
		continue;

	      case BUILT_IN_UNREACHABLE:
		if (optimize_unreachable (i))
		  cfg_changed = true;
		break;

	      case BUILT_IN_VA_START:
	      case BUILT_IN_VA_END:
	      case BUILT_IN_VA_COPY:
		/* These shouldn't be folded before pass_stdarg.  */
		result = optimize_stdarg_builtin (stmt);
		if (result)
		  break;
		/* FALLTHRU */

	      default:
		gsi_next (&i);
		continue;
	      }

	  if (result == NULL_TREE)
	    break;

	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "Simplified\n  ");
	      print_gimple_stmt (dump_file, stmt, 0, dump_flags);
	    }

          old_stmt = stmt;
          if (!update_call_from_tree (&i, result))
	    {
	      gimplify_and_update_call_from_tree (&i, result);
	      todoflags |= TODO_update_address_taken;
	    }

	  stmt = gsi_stmt (i);
	  update_stmt (stmt);

	  if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
	      && gimple_purge_dead_eh_edges (bb))
	    cfg_changed = true;

	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "to\n  ");
	      print_gimple_stmt (dump_file, stmt, 0, dump_flags);
	      fprintf (dump_file, "\n");
	    }

	  /* Retry the same statement if it changed into another
	     builtin, there might be new opportunities now.  */
          if (gimple_code (stmt) != GIMPLE_CALL)
	    {
	      gsi_next (&i);
	      continue;
	    }
	  callee = gimple_call_fndecl (stmt);
	  if (!callee
              || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
	      || DECL_FUNCTION_CODE (callee) == fcode)
	    gsi_next (&i);
	}
    }

  /* Delete unreachable blocks.  */
  if (cfg_changed)
    todoflags |= TODO_cleanup_cfg;

  return todoflags;
}


struct gimple_opt_pass pass_fold_builtins =
{
 {
  GIMPLE_PASS,
  "fab",				/* name */
  NULL,					/* gate */
  execute_fold_all_builtins,		/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  TV_NONE,				/* tv_id */
  PROP_cfg | PROP_ssa,			/* properties_required */
  0,					/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  TODO_verify_ssa
    | TODO_update_ssa			/* todo_flags_finish */
 }
};