summaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-alias.c
blob: ab23cd0bab8aef216416ca06eff299dbe3c9b2db (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
/* Alias analysis for trees.
   Copyright (C) 2004, 2005 Free Software Foundation, Inc.
   Contributed by Diego Novillo <dnovillo@redhat.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "timevar.h"
#include "expr.h"
#include "ggc.h"
#include "langhooks.h"
#include "flags.h"
#include "function.h"
#include "diagnostic.h"
#include "tree-dump.h"
#include "tree-gimple.h"
#include "tree-flow.h"
#include "tree-inline.h"
#include "tree-pass.h"
#include "convert.h"
#include "params.h"
#include "vec.h"

/* 'true' after aliases have been computed (see compute_may_aliases).  */
bool aliases_computed_p;

/* Structure to map a variable to its alias set and keep track of the
   virtual operands that will be needed to represent it.  */
struct alias_map_d
{
  /* Variable and its alias set.  */
  tree var;
  HOST_WIDE_INT set;

  /* Total number of virtual operands that will be needed to represent
     all the aliases of VAR.  */
  long total_alias_vops;

  /* Nonzero if the aliases for this memory tag have been grouped
     already.  Used in group_aliases.  */
  unsigned int grouped_p : 1;

  /* Set of variables aliased with VAR.  This is the exact same
     information contained in VAR_ANN (VAR)->MAY_ALIASES, but in
     bitmap form to speed up alias grouping.  */
  sbitmap may_aliases;
};


/* Alias information used by compute_may_aliases and its helpers.  */
struct alias_info
{
  /* SSA names visited while collecting points-to information.  If bit I
     is set, it means that SSA variable with version I has already been
     visited.  */
  sbitmap ssa_names_visited;

  /* Array of SSA_NAME pointers processed by the points-to collector.  */
  varray_type processed_ptrs;

  /* Variables whose address is still needed.  */
  bitmap addresses_needed;

  /* ADDRESSABLE_VARS contains all the global variables and locals that
     have had their address taken.  */
  struct alias_map_d **addressable_vars;
  size_t num_addressable_vars;

  /* POINTERS contains all the _DECL pointers with unique memory tags
     that have been referenced in the program.  */
  struct alias_map_d **pointers;
  size_t num_pointers;

  /* Number of function calls found in the program.  */
  size_t num_calls_found;

  /* Number of const/pure function calls found in the program.  */
  size_t num_pure_const_calls_found;

  /* Array of counters to keep track of how many times each pointer has
     been dereferenced in the program.  This is used by the alias grouping
     heuristic in compute_flow_insensitive_aliasing.  */
  varray_type num_references;

  /* Total number of virtual operands that will be needed to represent
     all the aliases of all the pointers found in the program.  */
  long total_alias_vops;

  /* Variables that have been written to.  */
  bitmap written_vars;

  /* Pointers that have been used in an indirect store operation.  */
  bitmap dereferenced_ptrs_store;

  /* Pointers that have been used in an indirect load operation.  */
  bitmap dereferenced_ptrs_load;
};


/* Counters used to display statistics on alias analysis.  */
struct alias_stats_d
{
  unsigned int alias_queries;
  unsigned int alias_mayalias;
  unsigned int alias_noalias;
  unsigned int simple_queries;
  unsigned int simple_resolved;
  unsigned int tbaa_queries;
  unsigned int tbaa_resolved;
};


/* Local variables.  */
static struct alias_stats_d alias_stats;

/* Local functions.  */
static void compute_flow_insensitive_aliasing (struct alias_info *);
static void dump_alias_stats (FILE *);
static bool may_alias_p (tree, HOST_WIDE_INT, tree, HOST_WIDE_INT);
static tree create_memory_tag (tree type, bool is_type_tag);
static tree get_tmt_for (tree, struct alias_info *);
static tree get_nmt_for (tree);
static void add_may_alias (tree, tree);
static void replace_may_alias (tree, size_t, tree);
static struct alias_info *init_alias_info (void);
static void delete_alias_info (struct alias_info *);
static void compute_points_to_and_addr_escape (struct alias_info *);
static void compute_flow_sensitive_aliasing (struct alias_info *);
static void setup_pointers_and_addressables (struct alias_info *);
static bool collect_points_to_info_r (tree, tree, void *);
static bool is_escape_site (tree, struct alias_info *);
static void add_pointed_to_var (struct alias_info *, tree, tree);
static void create_global_var (void);
static void collect_points_to_info_for (struct alias_info *, tree);
static void maybe_create_global_var (struct alias_info *ai);
static void group_aliases (struct alias_info *);
static void set_pt_anything (tree ptr);
static void set_pt_malloc (tree ptr);

/* Global declarations.  */

/* Call clobbered variables in the function.  If bit I is set, then
   REFERENCED_VARS (I) is call-clobbered.  */
bitmap call_clobbered_vars;

/* Addressable variables in the function.  If bit I is set, then
   REFERENCED_VARS (I) has had its address taken.  Note that
   CALL_CLOBBERED_VARS and ADDRESSABLE_VARS are not related.  An
   addressable variable is not necessarily call-clobbered (e.g., a
   local addressable whose address does not escape) and not all
   call-clobbered variables are addressable (e.g., a local static
   variable).  */
bitmap addressable_vars;

/* When the program has too many call-clobbered variables and call-sites,
   this variable is used to represent the clobbering effects of function
   calls.  In these cases, all the call clobbered variables in the program
   are forced to alias this variable.  This reduces compile times by not
   having to keep track of too many V_MAY_DEF expressions at call sites.  */
tree global_var;


/* Compute may-alias information for every variable referenced in function
   FNDECL.

   Alias analysis proceeds in 3 main phases:

   1- Points-to and escape analysis.

   This phase walks the use-def chains in the SSA web looking for three
   things:

	* Assignments of the form P_i = &VAR
	* Assignments of the form P_i = malloc()
	* Pointers and ADDR_EXPR that escape the current function.

   The concept of 'escaping' is the same one used in the Java world.  When
   a pointer or an ADDR_EXPR escapes, it means that it has been exposed
   outside of the current function.  So, assignment to global variables,
   function arguments and returning a pointer are all escape sites, as are
   conversions between pointers and integers.

   This is where we are currently limited.  Since not everything is renamed
   into SSA, we lose track of escape properties when a pointer is stashed
   inside a field in a structure, for instance.  In those cases, we are
   assuming that the pointer does escape.

   We use escape analysis to determine whether a variable is
   call-clobbered.  Simply put, if an ADDR_EXPR escapes, then the variable
   is call-clobbered.  If a pointer P_i escapes, then all the variables
   pointed-to by P_i (and its memory tag) also escape.

   2- Compute flow-sensitive aliases

   We have two classes of memory tags.  Memory tags associated with the
   pointed-to data type of the pointers in the program.  These tags are
   called "type memory tag" (TMT).  The other class are those associated
   with SSA_NAMEs, called "name memory tag" (NMT). The basic idea is that
   when adding operands for an INDIRECT_REF *P_i, we will first check
   whether P_i has a name tag, if it does we use it, because that will have
   more precise aliasing information.  Otherwise, we use the standard type
   tag.

   In this phase, we go through all the pointers we found in points-to
   analysis and create alias sets for the name memory tags associated with
   each pointer P_i.  If P_i escapes, we mark call-clobbered the variables
   it points to and its tag.


   3- Compute flow-insensitive aliases

   This pass will compare the alias set of every type memory tag and every
   addressable variable found in the program.  Given a type memory tag TMT
   and an addressable variable V.  If the alias sets of TMT and V conflict
   (as computed by may_alias_p), then V is marked as an alias tag and added
   to the alias set of TMT.

   For instance, consider the following function:

	    foo (int i)
	    {
	      int *p, a, b;
	    
	      if (i > 10)
	        p = &a;
	      else
	        p = &b;
	    
	      *p = 3;
	      a = b + 2;
	      return *p;
	    }

   After aliasing analysis has finished, the type memory tag for pointer
   'p' will have two aliases, namely variables 'a' and 'b'.  Every time
   pointer 'p' is dereferenced, we want to mark the operation as a
   potential reference to 'a' and 'b'.

	    foo (int i)
	    {
	      int *p, a, b;

	      if (i_2 > 10)
		p_4 = &a;
	      else
		p_6 = &b;
	      # p_1 = PHI <p_4(1), p_6(2)>;

	      # a_7 = V_MAY_DEF <a_3>;
	      # b_8 = V_MAY_DEF <b_5>;
	      *p_1 = 3;

	      # a_9 = V_MAY_DEF <a_7>
	      # VUSE <b_8>
	      a_9 = b_8 + 2;

	      # VUSE <a_9>;
	      # VUSE <b_8>;
	      return *p_1;
	    }

   In certain cases, the list of may aliases for a pointer may grow too
   large.  This may cause an explosion in the number of virtual operands
   inserted in the code.  Resulting in increased memory consumption and
   compilation time.

   When the number of virtual operands needed to represent aliased
   loads and stores grows too large (configurable with @option{--param
   max-aliased-vops}), alias sets are grouped to avoid severe
   compile-time slow downs and memory consumption.  See group_aliases.  */

static void
compute_may_aliases (void)
{
  struct alias_info *ai;
  
  memset (&alias_stats, 0, sizeof (alias_stats));

  /* Initialize aliasing information.  */
  ai = init_alias_info ();

  /* For each pointer P_i, determine the sets of variables that P_i may
     point-to.  For every addressable variable V, determine whether the
     address of V escapes the current function, making V call-clobbered
     (i.e., whether &V is stored in a global variable or if its passed as a
     function call argument).  */
  compute_points_to_and_addr_escape (ai);

  /* Collect all pointers and addressable variables, compute alias sets,
     create memory tags for pointers and promote variables whose address is
     not needed anymore.  */
  setup_pointers_and_addressables (ai);

  /* Compute flow-sensitive, points-to based aliasing for all the name
     memory tags.  Note that this pass needs to be done before flow
     insensitive analysis because it uses the points-to information
     gathered before to mark call-clobbered type tags.  */
  compute_flow_sensitive_aliasing (ai);

  /* Compute type-based flow-insensitive aliasing for all the type
     memory tags.  */
  compute_flow_insensitive_aliasing (ai);

  /* If the program has too many call-clobbered variables and/or function
     calls, create .GLOBAL_VAR and use it to model call-clobbering
     semantics at call sites.  This reduces the number of virtual operands
     considerably, improving compile times at the expense of lost
     aliasing precision.  */
  maybe_create_global_var (ai);

  /* Debugging dumps.  */
  if (dump_file)
    {
      dump_referenced_vars (dump_file);
      if (dump_flags & TDF_STATS)
	dump_alias_stats (dump_file);
      dump_points_to_info (dump_file);
      dump_alias_info (dump_file);
    }

  /* Deallocate memory used by aliasing data structures.  */
  delete_alias_info (ai);

  {
    block_stmt_iterator bsi;
    basic_block bb;
    FOR_EACH_BB (bb)
      {
        for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
          {
            update_stmt_if_modified (bsi_stmt (bsi));
          }
      }
  }

}

struct tree_opt_pass pass_may_alias = 
{
  "alias",				/* name */
  NULL,					/* gate */
  compute_may_aliases,			/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  TV_TREE_MAY_ALIAS,			/* tv_id */
  PROP_cfg | PROP_ssa,			/* properties_required */
  PROP_alias,				/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  TODO_dump_func | TODO_update_ssa
    | TODO_ggc_collect | TODO_verify_ssa
    | TODO_verify_stmts, 		/* todo_flags_finish */
  0					/* letter */
};


/* Data structure used to count the number of dereferences to PTR
   inside an expression.  */
struct count_ptr_d
{
  tree ptr;
  unsigned count;
};


/* Helper for count_uses_and_derefs.  Called by walk_tree to look for
   (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA.  */

static tree
count_ptr_derefs (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED, void *data)
{
  struct count_ptr_d *count_p = (struct count_ptr_d *) data;

  if (INDIRECT_REF_P (*tp) && TREE_OPERAND (*tp, 0) == count_p->ptr)
    count_p->count++;

  return NULL_TREE;
}


/* Count the number of direct and indirect uses for pointer PTR in
   statement STMT.  The two counts are stored in *NUM_USES_P and
   *NUM_DEREFS_P respectively.  *IS_STORE_P is set to 'true' if at
   least one of those dereferences is a store operation.  */

void
count_uses_and_derefs (tree ptr, tree stmt, unsigned *num_uses_p,
		       unsigned *num_derefs_p, bool *is_store)
{
  ssa_op_iter i;
  tree use;

  *num_uses_p = 0;
  *num_derefs_p = 0;
  *is_store = false;

  /* Find out the total number of uses of PTR in STMT.  */
  FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
    if (use == ptr)
      (*num_uses_p)++;

  /* Now count the number of indirect references to PTR.  This is
     truly awful, but we don't have much choice.  There are no parent
     pointers inside INDIRECT_REFs, so an expression like
     '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
     find all the indirect and direct uses of x_1 inside.  The only
     shortcut we can take is the fact that GIMPLE only allows
     INDIRECT_REFs inside the expressions below.  */
  if (TREE_CODE (stmt) == MODIFY_EXPR
      || (TREE_CODE (stmt) == RETURN_EXPR
	  && TREE_CODE (TREE_OPERAND (stmt, 0)) == MODIFY_EXPR)
      || TREE_CODE (stmt) == ASM_EXPR
      || TREE_CODE (stmt) == CALL_EXPR)
    {
      tree lhs, rhs;

      if (TREE_CODE (stmt) == MODIFY_EXPR)
	{
	  lhs = TREE_OPERAND (stmt, 0);
	  rhs = TREE_OPERAND (stmt, 1);
	}
      else if (TREE_CODE (stmt) == RETURN_EXPR)
	{
	  tree e = TREE_OPERAND (stmt, 0);
	  lhs = TREE_OPERAND (e, 0);
	  rhs = TREE_OPERAND (e, 1);
	}
      else if (TREE_CODE (stmt) == ASM_EXPR)
	{
	  lhs = ASM_OUTPUTS (stmt);
	  rhs = ASM_INPUTS (stmt);
	}
      else
	{
	  lhs = NULL_TREE;
	  rhs = stmt;
	}

      if (lhs && (TREE_CODE (lhs) == TREE_LIST || EXPR_P (lhs)))
	{
	  struct count_ptr_d count;
	  count.ptr = ptr;
	  count.count = 0;
	  walk_tree (&lhs, count_ptr_derefs, &count, NULL);
	  *is_store = true;
	  *num_derefs_p = count.count;
	}

      if (rhs && (TREE_CODE (rhs) == TREE_LIST || EXPR_P (rhs)))
	{
	  struct count_ptr_d count;
	  count.ptr = ptr;
	  count.count = 0;
	  walk_tree (&rhs, count_ptr_derefs, &count, NULL);
	  *num_derefs_p += count.count;
	}
    }

  gcc_assert (*num_uses_p >= *num_derefs_p);
}


/* Initialize the data structures used for alias analysis.  */

static struct alias_info *
init_alias_info (void)
{
  struct alias_info *ai;

  ai = xcalloc (1, sizeof (struct alias_info));
  ai->ssa_names_visited = sbitmap_alloc (num_ssa_names);
  sbitmap_zero (ai->ssa_names_visited);
  VARRAY_TREE_INIT (ai->processed_ptrs, 50, "processed_ptrs");
  ai->addresses_needed = BITMAP_ALLOC (NULL);
  VARRAY_UINT_INIT (ai->num_references, num_referenced_vars, "num_references");
  ai->written_vars = BITMAP_ALLOC (NULL);
  ai->dereferenced_ptrs_store = BITMAP_ALLOC (NULL);
  ai->dereferenced_ptrs_load = BITMAP_ALLOC (NULL);

  /* If aliases have been computed before, clear existing information.  */
  if (aliases_computed_p)
    {
      unsigned i;
  
      /* Similarly, clear the set of addressable variables.  In this
	 case, we can just clear the set because addressability is
	 only computed here.  */
      bitmap_clear (addressable_vars);

      /* Clear flow-insensitive alias information from each symbol.  */
      for (i = 0; i < num_referenced_vars; i++)
	{
	  tree var = referenced_var (i);
	  var_ann_t ann = var_ann (var);

	  ann->is_alias_tag = 0;
	  ann->may_aliases = NULL;

	  /* Since we are about to re-discover call-clobbered
	     variables, clear the call-clobbered flag.  Variables that
	     are intrinsically call-clobbered (globals, local statics,
	     etc) will not be marked by the aliasing code, so we can't
	     remove them from CALL_CLOBBERED_VARS.  

	     NB: STRUCT_FIELDS are still call clobbered if they are for
	     a global variable, so we *don't* clear their call clobberedness
	     just because they are tags, though we will clear it if they
	     aren't for global variables.  */
	  if (ann->mem_tag_kind == NAME_TAG 
	      || ann->mem_tag_kind == TYPE_TAG 
	      || !is_global_var (var))
	    clear_call_clobbered (var);
	}

      /* Clear flow-sensitive points-to information from each SSA name.  */
      for (i = 1; i < num_ssa_names; i++)
	{
	  tree name = ssa_name (i);

	  if (!name || !POINTER_TYPE_P (TREE_TYPE (name)))
	    continue;

	  if (SSA_NAME_PTR_INFO (name))
	    {
	      struct ptr_info_def *pi = SSA_NAME_PTR_INFO (name);

	      /* Clear all the flags but keep the name tag to
		 avoid creating new temporaries unnecessarily.  If
		 this pointer is found to point to a subset or
		 superset of its former points-to set, then a new
		 tag will need to be created in create_name_tags.  */
	      pi->pt_anything = 0;
	      pi->pt_malloc = 0;
	      pi->pt_null = 0;
	      pi->value_escapes_p = 0;
	      pi->is_dereferenced = 0;
	      if (pi->pt_vars)
		bitmap_clear (pi->pt_vars);
	    }
	}
    }

  /* Next time, we will need to reset alias information.  */
  aliases_computed_p = true;

  return ai;
}


/* Deallocate memory used by alias analysis.  */

static void
delete_alias_info (struct alias_info *ai)
{
  size_t i;

  sbitmap_free (ai->ssa_names_visited);
  ai->processed_ptrs = NULL;
  BITMAP_FREE (ai->addresses_needed);

  for (i = 0; i < ai->num_addressable_vars; i++)
    {
      sbitmap_free (ai->addressable_vars[i]->may_aliases);
      free (ai->addressable_vars[i]);
    }
  free (ai->addressable_vars);

  for (i = 0; i < ai->num_pointers; i++)
    {
      sbitmap_free (ai->pointers[i]->may_aliases);
      free (ai->pointers[i]);
    }
  free (ai->pointers);

  ai->num_references = NULL;
  BITMAP_FREE (ai->written_vars);
  BITMAP_FREE (ai->dereferenced_ptrs_store);
  BITMAP_FREE (ai->dereferenced_ptrs_load);

  free (ai);
}


/* Walk use-def chains for pointer PTR to determine what variables is PTR
   pointing to.  */

static void
collect_points_to_info_for (struct alias_info *ai, tree ptr)
{
  gcc_assert (POINTER_TYPE_P (TREE_TYPE (ptr)));

  if (!TEST_BIT (ai->ssa_names_visited, SSA_NAME_VERSION (ptr)))
    {
      SET_BIT (ai->ssa_names_visited, SSA_NAME_VERSION (ptr));
      walk_use_def_chains (ptr, collect_points_to_info_r, ai, true);
      VARRAY_PUSH_TREE (ai->processed_ptrs, ptr);
    }
}


/* Traverse use-def links for all the pointers in the program to collect
   address escape and points-to information.
   
   This is loosely based on the same idea described in R. Hasti and S.
   Horwitz, ``Using static single assignment form to improve
   flow-insensitive pointer analysis,'' in SIGPLAN Conference on
   Programming Language Design and Implementation, pp. 97-105, 1998.  */

static void
compute_points_to_and_addr_escape (struct alias_info *ai)
{
  basic_block bb;
  unsigned i;
  tree op;
  ssa_op_iter iter;

  timevar_push (TV_TREE_PTA);

  FOR_EACH_BB (bb)
    {
      block_stmt_iterator si;

      for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
	{
	  bitmap addr_taken;
	  tree stmt = bsi_stmt (si);
	  bool stmt_escapes_p = is_escape_site (stmt, ai);
	  bitmap_iterator bi;

	  /* Mark all the variables whose address are taken by the
	     statement.  Note that this will miss all the addresses taken
	     in PHI nodes (those are discovered while following the use-def
	     chains).  */
	  addr_taken = addresses_taken (stmt);
	  if (addr_taken)
	    EXECUTE_IF_SET_IN_BITMAP (addr_taken, 0, i, bi)
	      {
		tree var = referenced_var (i);
		bitmap_set_bit (ai->addresses_needed, var_ann (var)->uid);
		if (stmt_escapes_p)
		  mark_call_clobbered (var);
	      }

	  FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE)
	    {
	      var_ann_t v_ann = var_ann (SSA_NAME_VAR (op));
	      struct ptr_info_def *pi;
	      bool is_store;
	      unsigned num_uses, num_derefs;

	      /* If the operand's variable may be aliased, keep track
		 of how many times we've referenced it.  This is used
		 for alias grouping in compute_flow_sensitive_aliasing.
		 Note that we don't need to grow AI->NUM_REFERENCES
		 because we are processing regular variables, not
		 memory tags (the array's initial size is set to
		 NUM_REFERENCED_VARS).  */
	      if (may_be_aliased (SSA_NAME_VAR (op)))
		(VARRAY_UINT (ai->num_references, v_ann->uid))++;

	      if (!POINTER_TYPE_P (TREE_TYPE (op)))
		continue;

	      collect_points_to_info_for (ai, op);

	      pi = SSA_NAME_PTR_INFO (op);
	      count_uses_and_derefs (op, stmt, &num_uses, &num_derefs,
				     &is_store);

	      if (num_derefs > 0)
		{
		  /* Mark OP as dereferenced.  In a subsequent pass,
		     dereferenced pointers that point to a set of
		     variables will be assigned a name tag to alias
		     all the variables OP points to.  */
		  pi->is_dereferenced = 1;

		  /* Keep track of how many time we've dereferenced each
		     pointer.  Again, we don't need to grow
		     AI->NUM_REFERENCES because we're processing
		     existing program variables.  */
		  (VARRAY_UINT (ai->num_references, v_ann->uid))++;

		  /* If this is a store operation, mark OP as being
		     dereferenced to store, otherwise mark it as being
		     dereferenced to load.  */
		  if (is_store)
		    bitmap_set_bit (ai->dereferenced_ptrs_store, v_ann->uid);
		  else
		    bitmap_set_bit (ai->dereferenced_ptrs_load, v_ann->uid);
		}

	      if (stmt_escapes_p && num_derefs < num_uses)
		{
		  /* If STMT is an escape point and STMT contains at
		     least one direct use of OP, then the value of OP
		     escapes and so the pointed-to variables need to
		     be marked call-clobbered.  */
		  pi->value_escapes_p = 1;

		  /* If the statement makes a function call, assume
		     that pointer OP will be dereferenced in a store
		     operation inside the called function.  */
		  if (get_call_expr_in (stmt))
		    {
		      bitmap_set_bit (ai->dereferenced_ptrs_store, v_ann->uid);
		      pi->is_dereferenced = 1;
		    }
		}
	    }

	  /* Update reference counter for definitions to any
	     potentially aliased variable.  This is used in the alias
	     grouping heuristics.  */
	  FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_DEF)
	    {
	      tree var = SSA_NAME_VAR (op);
	      var_ann_t ann = var_ann (var);
	      bitmap_set_bit (ai->written_vars, ann->uid);
	      if (may_be_aliased (var))
		(VARRAY_UINT (ai->num_references, ann->uid))++;

	      if (POINTER_TYPE_P (TREE_TYPE (op)))
		collect_points_to_info_for (ai, op);
	    }

	  /* Mark variables in V_MAY_DEF operands as being written to.  */
	  FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_VIRTUAL_DEFS)
	    {
	      tree var = DECL_P (op) ? op : SSA_NAME_VAR (op);
	      var_ann_t ann = var_ann (var);
	      bitmap_set_bit (ai->written_vars, ann->uid);
	    }
	    
	  /* After promoting variables and computing aliasing we will
	     need to re-scan most statements.  FIXME: Try to minimize the
	     number of statements re-scanned.  It's not really necessary to
	     re-scan *all* statements.  */
	  mark_stmt_modified (stmt);
	}
    }

  timevar_pop (TV_TREE_PTA);
}


/* Create name tags for all the pointers that have been dereferenced.
   We only create a name tag for a pointer P if P is found to point to
   a set of variables (so that we can alias them to *P) or if it is
   the result of a call to malloc (which means that P cannot point to
   anything else nor alias any other variable).

   If two pointers P and Q point to the same set of variables, they
   are assigned the same name tag.  */

static void
create_name_tags (struct alias_info *ai)
{
  size_t i;

  for (i = 0; i < VARRAY_ACTIVE_SIZE (ai->processed_ptrs); i++)
    {
      tree ptr = VARRAY_TREE (ai->processed_ptrs, i);
      struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);

      if (pi->pt_anything || !pi->is_dereferenced)
	{
	  /* No name tags for pointers that have not been
	     dereferenced or point to an arbitrary location.  */
	  pi->name_mem_tag = NULL_TREE;
	  continue;
	}

      if (pi->pt_vars && !bitmap_empty_p (pi->pt_vars))
	{
	  size_t j;
	  tree old_name_tag = pi->name_mem_tag;

	  /* If PTR points to a set of variables, check if we don't
	     have another pointer Q with the same points-to set before
	     creating a tag.  If so, use Q's tag instead of creating a
	     new one.

	     This is important for not creating unnecessary symbols
	     and also for copy propagation.  If we ever need to
	     propagate PTR into Q or vice-versa, we would run into
	     problems if they both had different name tags because
	     they would have different SSA version numbers (which
	     would force us to take the name tags in and out of SSA).  */
	  for (j = 0; j < i; j++)
	    {
	      tree q = VARRAY_TREE (ai->processed_ptrs, j);
	      struct ptr_info_def *qi = SSA_NAME_PTR_INFO (q);

	      if (qi
		  && qi->pt_vars
		  && qi->name_mem_tag
		  && bitmap_equal_p (pi->pt_vars, qi->pt_vars))
		{
		  pi->name_mem_tag = qi->name_mem_tag;
		  break;
		}
	    }

	  /* If we didn't find a pointer with the same points-to set
	     as PTR, create a new name tag if needed.  */
	  if (pi->name_mem_tag == NULL_TREE)
	    pi->name_mem_tag = get_nmt_for (ptr);

	  /* If the new name tag computed for PTR is different than
	     the old name tag that it used to have, then the old tag
	     needs to be removed from the IL, so we mark it for
	     renaming.  */
	  if (old_name_tag && old_name_tag != pi->name_mem_tag)
	    mark_sym_for_renaming (old_name_tag);
	}
      else if (pi->pt_malloc)
	{
	  /* Otherwise, create a unique name tag for this pointer.  */
	  pi->name_mem_tag = get_nmt_for (ptr);
	}
      else
	{
	  /* Only pointers that may point to malloc or other variables
	     may receive a name tag.  If the pointer does not point to
	     a known spot, we should use type tags.  */
	  set_pt_anything (ptr);
	  continue;
	}

      TREE_THIS_VOLATILE (pi->name_mem_tag)
	  |= TREE_THIS_VOLATILE (TREE_TYPE (TREE_TYPE (ptr)));

      /* Mark the new name tag for renaming.  */
      mark_sym_for_renaming (pi->name_mem_tag);
    }
}



/* For every pointer P_i in AI->PROCESSED_PTRS, create may-alias sets for
   the name memory tag (NMT) associated with P_i.  If P_i escapes, then its
   name tag and the variables it points-to are call-clobbered.  Finally, if
   P_i escapes and we could not determine where it points to, then all the
   variables in the same alias set as *P_i are marked call-clobbered.  This
   is necessary because we must assume that P_i may take the address of any
   variable in the same alias set.  */

static void
compute_flow_sensitive_aliasing (struct alias_info *ai)
{
  size_t i;

  create_name_tags (ai);

  for (i = 0; i < VARRAY_ACTIVE_SIZE (ai->processed_ptrs); i++)
    {
      unsigned j;
      tree ptr = VARRAY_TREE (ai->processed_ptrs, i);
      struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
      var_ann_t v_ann = var_ann (SSA_NAME_VAR (ptr));
      bitmap_iterator bi;

      if (pi->value_escapes_p || pi->pt_anything)
	{
	  /* If PTR escapes or may point to anything, then its associated
	     memory tags and pointed-to variables are call-clobbered.  */
	  if (pi->name_mem_tag)
	    mark_call_clobbered (pi->name_mem_tag);

	  if (v_ann->type_mem_tag)
	    mark_call_clobbered (v_ann->type_mem_tag);

	  if (pi->pt_vars)
	    EXECUTE_IF_SET_IN_BITMAP (pi->pt_vars, 0, j, bi)
	      {
		mark_call_clobbered (referenced_var (j));
	      }
	}

      /* Set up aliasing information for PTR's name memory tag (if it has
	 one).  Note that only pointers that have been dereferenced will
	 have a name memory tag.  */
      if (pi->name_mem_tag && pi->pt_vars)
	EXECUTE_IF_SET_IN_BITMAP (pi->pt_vars, 0, j, bi)
	  {
	    add_may_alias (pi->name_mem_tag, referenced_var (j));
	    add_may_alias (v_ann->type_mem_tag, referenced_var (j));
	  }

      /* If the name tag is call clobbered, so is the type tag
	 associated with the base VAR_DECL.  */
      if (pi->name_mem_tag
	  && v_ann->type_mem_tag
	  && is_call_clobbered (pi->name_mem_tag))
	mark_call_clobbered (v_ann->type_mem_tag);
    }
}


/* Compute type-based alias sets.  Traverse all the pointers and
   addressable variables found in setup_pointers_and_addressables.
   
   For every pointer P in AI->POINTERS and addressable variable V in
   AI->ADDRESSABLE_VARS, add V to the may-alias sets of P's type
   memory tag (TMT) if their alias sets conflict.  V is then marked as
   an alias tag so that the operand scanner knows that statements
   containing V have aliased operands.  */

static void
compute_flow_insensitive_aliasing (struct alias_info *ai)
{
  size_t i;

  /* Initialize counter for the total number of virtual operands that
     aliasing will introduce.  When AI->TOTAL_ALIAS_VOPS goes beyond the
     threshold set by --params max-alias-vops, we enable alias
     grouping.  */
  ai->total_alias_vops = 0;

  /* For every pointer P, determine which addressable variables may alias
     with P's type memory tag.  */
  for (i = 0; i < ai->num_pointers; i++)
    {
      size_t j;
      struct alias_map_d *p_map = ai->pointers[i];
      tree tag = var_ann (p_map->var)->type_mem_tag;
      var_ann_t tag_ann = var_ann (tag);

      p_map->total_alias_vops = 0;
      p_map->may_aliases = sbitmap_alloc (num_referenced_vars);
      sbitmap_zero (p_map->may_aliases);

      for (j = 0; j < ai->num_addressable_vars; j++)
	{
	  struct alias_map_d *v_map;
	  var_ann_t v_ann;
	  tree var;
	  bool tag_stored_p, var_stored_p;
	  
	  v_map = ai->addressable_vars[j];
	  var = v_map->var;
	  v_ann = var_ann (var);

	  /* Skip memory tags and variables that have never been
	     written to.  We also need to check if the variables are
	     call-clobbered because they may be overwritten by
	     function calls.

	     Note this is effectively random accessing elements in
	     the sparse bitset, which can be highly inefficient.
	     So we first check the call_clobbered status of the
	     tag and variable before querying the bitmap.  */
	  tag_stored_p = is_call_clobbered (tag)
			 || bitmap_bit_p (ai->written_vars, tag_ann->uid);
	  var_stored_p = is_call_clobbered (var)
			 || bitmap_bit_p (ai->written_vars, v_ann->uid);
	  if (!tag_stored_p && !var_stored_p)
	    continue;

	  if (may_alias_p (p_map->var, p_map->set, var, v_map->set))
	    {
	      subvar_t svars;
	      size_t num_tag_refs, num_var_refs;

	      num_tag_refs = VARRAY_UINT (ai->num_references, tag_ann->uid);
	      num_var_refs = VARRAY_UINT (ai->num_references, v_ann->uid);

	      /* Add VAR to TAG's may-aliases set.  */

	      /* If this is an aggregate, we may have subvariables for it
		 that need to be pointed to.  */
	      if (var_can_have_subvars (var)
		  && (svars = get_subvars_for_var (var)))
		{
		  subvar_t sv;

		  for (sv = svars; sv; sv = sv->next)
		    {
		      add_may_alias (tag, sv->var);
		      /* Update the bitmap used to represent TAG's alias set
			 in case we need to group aliases.  */
		      SET_BIT (p_map->may_aliases, var_ann (sv->var)->uid);
		    }
		}
	      else
		{
		  add_may_alias (tag, var);
		  /* Update the bitmap used to represent TAG's alias set
		     in case we need to group aliases.  */
		  SET_BIT (p_map->may_aliases, var_ann (var)->uid);
		}

	      /* Update the total number of virtual operands due to
		 aliasing.  Since we are adding one more alias to TAG's
		 may-aliases set, the total number of virtual operands due
		 to aliasing will be increased by the number of references
		 made to VAR and TAG (every reference to TAG will also
		 count as a reference to VAR).  */
	      ai->total_alias_vops += (num_var_refs + num_tag_refs);
	      p_map->total_alias_vops += (num_var_refs + num_tag_refs);


	    }
	}
    }

  /* Since this analysis is based exclusively on symbols, it fails to
     handle cases where two pointers P and Q have different memory
     tags with conflicting alias set numbers but no aliased symbols in
     common.

     For example, suppose that we have two memory tags TMT.1 and TMT.2
     such that
     
     		may-aliases (TMT.1) = { a }
		may-aliases (TMT.2) = { b }

     and the alias set number of TMT.1 conflicts with that of TMT.2.
     Since they don't have symbols in common, loads and stores from
     TMT.1 and TMT.2 will seem independent of each other, which will
     lead to the optimizers making invalid transformations (see
     testsuite/gcc.c-torture/execute/pr15262-[12].c).

     To avoid this problem, we do a final traversal of AI->POINTERS
     looking for pairs of pointers that have no aliased symbols in
     common and yet have conflicting alias set numbers.  */
  for (i = 0; i < ai->num_pointers; i++)
    {
      size_t j;
      struct alias_map_d *p_map1 = ai->pointers[i];
      tree tag1 = var_ann (p_map1->var)->type_mem_tag;
      sbitmap may_aliases1 = p_map1->may_aliases;

      for (j = i + 1; j < ai->num_pointers; j++)
	{
	  struct alias_map_d *p_map2 = ai->pointers[j];
	  tree tag2 = var_ann (p_map2->var)->type_mem_tag;
	  sbitmap may_aliases2 = p_map2->may_aliases;

	  /* If the pointers may not point to each other, do nothing.  */
	  if (!may_alias_p (p_map1->var, p_map1->set, tag2, p_map2->set))
	    continue;

	  /* The two pointers may alias each other.  If they already have
	     symbols in common, do nothing.  */
	  if (sbitmap_any_common_bits (may_aliases1, may_aliases2))
	    continue;

	  if (sbitmap_first_set_bit (may_aliases2) >= 0)
	    {
	      unsigned int k;
	      sbitmap_iterator sbi;

	      /* Add all the aliases for TAG2 into TAG1's alias set.
		 FIXME, update grouping heuristic counters.  */
	      EXECUTE_IF_SET_IN_SBITMAP (may_aliases2, 0, k, sbi)
		add_may_alias (tag1, referenced_var (k));
	      sbitmap_a_or_b (may_aliases1, may_aliases1, may_aliases2);
	    }
	  else
	    {
	      /* Since TAG2 does not have any aliases of its own, add
		 TAG2 itself to the alias set of TAG1.  */
	      add_may_alias (tag1, tag2);
	      SET_BIT (may_aliases1, var_ann (tag2)->uid);
	    }
	}
    }

  if (dump_file)
    fprintf (dump_file, "%s: Total number of aliased vops: %ld\n",
	     get_name (current_function_decl),
	     ai->total_alias_vops);

  /* Determine if we need to enable alias grouping.  */
  if (ai->total_alias_vops >= MAX_ALIASED_VOPS)
    group_aliases (ai);
}


/* Comparison function for qsort used in group_aliases.  */

static int
total_alias_vops_cmp (const void *p, const void *q)
{
  const struct alias_map_d **p1 = (const struct alias_map_d **)p;
  const struct alias_map_d **p2 = (const struct alias_map_d **)q;
  long n1 = (*p1)->total_alias_vops;
  long n2 = (*p2)->total_alias_vops;

  /* We want to sort in descending order.  */
  return (n1 > n2 ? -1 : (n1 == n2) ? 0 : 1);
}

/* Group all the aliases for TAG to make TAG represent all the
   variables in its alias set.  Update the total number
   of virtual operands due to aliasing (AI->TOTAL_ALIAS_VOPS).  This
   function will make TAG be the unique alias tag for all the
   variables in its may-aliases.  So, given:

   	may-aliases(TAG) = { V1, V2, V3 }

   This function will group the variables into:

   	may-aliases(V1) = { TAG }
	may-aliases(V2) = { TAG }
	may-aliases(V2) = { TAG }  */

static void
group_aliases_into (tree tag, sbitmap tag_aliases, struct alias_info *ai)
{
  unsigned int i;
  var_ann_t tag_ann = var_ann (tag);
  size_t num_tag_refs = VARRAY_UINT (ai->num_references, tag_ann->uid);
  sbitmap_iterator sbi;

  EXECUTE_IF_SET_IN_SBITMAP (tag_aliases, 0, i, sbi)
    {
      tree var = referenced_var (i);
      var_ann_t ann = var_ann (var);

      /* Make TAG the unique alias of VAR.  */
      ann->is_alias_tag = 0;
      ann->may_aliases = NULL;

      /* Note that VAR and TAG may be the same if the function has no
	 addressable variables (see the discussion at the end of
	 setup_pointers_and_addressables).  */
      if (var != tag)
	add_may_alias (var, tag);

      /* Reduce total number of virtual operands contributed
	 by TAG on behalf of VAR.  Notice that the references to VAR
	 itself won't be removed.  We will merely replace them with
	 references to TAG.  */
      ai->total_alias_vops -= num_tag_refs;
    }

  /* We have reduced the number of virtual operands that TAG makes on
     behalf of all the variables formerly aliased with it.  However,
     we have also "removed" all the virtual operands for TAG itself,
     so we add them back.  */
  ai->total_alias_vops += num_tag_refs;

  /* TAG no longer has any aliases.  */
  tag_ann->may_aliases = NULL;
}


/* Group may-aliases sets to reduce the number of virtual operands due
   to aliasing.

     1- Sort the list of pointers in decreasing number of contributed
	virtual operands.

     2- Take the first entry in AI->POINTERS and revert the role of
	the memory tag and its aliases.  Usually, whenever an aliased
	variable Vi is found to alias with a memory tag T, we add Vi
	to the may-aliases set for T.  Meaning that after alias
	analysis, we will have:

		may-aliases(T) = { V1, V2, V3, ..., Vn }

	This means that every statement that references T, will get 'n'
	virtual operands for each of the Vi tags.  But, when alias
	grouping is enabled, we make T an alias tag and add it to the
	alias set of all the Vi variables:

		may-aliases(V1) = { T }
		may-aliases(V2) = { T }
		...
		may-aliases(Vn) = { T }

	This has two effects: (a) statements referencing T will only get
	a single virtual operand, and, (b) all the variables Vi will now
	appear to alias each other.  So, we lose alias precision to
	improve compile time.  But, in theory, a program with such a high
	level of aliasing should not be very optimizable in the first
	place.

     3- Since variables may be in the alias set of more than one
	memory tag, the grouping done in step (2) needs to be extended
	to all the memory tags that have a non-empty intersection with
	the may-aliases set of tag T.  For instance, if we originally
	had these may-aliases sets:

		may-aliases(T) = { V1, V2, V3 }
		may-aliases(R) = { V2, V4 }

	In step (2) we would have reverted the aliases for T as:

		may-aliases(V1) = { T }
		may-aliases(V2) = { T }
		may-aliases(V3) = { T }

	But note that now V2 is no longer aliased with R.  We could
	add R to may-aliases(V2), but we are in the process of
	grouping aliases to reduce virtual operands so what we do is
	add V4 to the grouping to obtain:

		may-aliases(V1) = { T }
		may-aliases(V2) = { T }
		may-aliases(V3) = { T }
		may-aliases(V4) = { T }

     4- If the total number of virtual operands due to aliasing is
	still above the threshold set by max-alias-vops, go back to (2).  */

static void
group_aliases (struct alias_info *ai)
{
  size_t i;

  /* Sort the POINTERS array in descending order of contributed
     virtual operands.  */
  qsort (ai->pointers, ai->num_pointers, sizeof (struct alias_map_d *),
         total_alias_vops_cmp);

  /* For every pointer in AI->POINTERS, reverse the roles of its tag
     and the tag's may-aliases set.  */
  for (i = 0; i < ai->num_pointers; i++)
    {
      size_t j;
      tree tag1 = var_ann (ai->pointers[i]->var)->type_mem_tag;
      sbitmap tag1_aliases = ai->pointers[i]->may_aliases;

      /* Skip tags that have been grouped already.  */
      if (ai->pointers[i]->grouped_p)
	continue;

      /* See if TAG1 had any aliases in common with other type tags.
	 If we find a TAG2 with common aliases with TAG1, add TAG2's
	 aliases into TAG1.  */
      for (j = i + 1; j < ai->num_pointers; j++)
	{
	  sbitmap tag2_aliases = ai->pointers[j]->may_aliases;

          if (sbitmap_any_common_bits (tag1_aliases, tag2_aliases))
	    {
	      tree tag2 = var_ann (ai->pointers[j]->var)->type_mem_tag;

	      sbitmap_a_or_b (tag1_aliases, tag1_aliases, tag2_aliases);

	      /* TAG2 does not need its aliases anymore.  */
	      sbitmap_zero (tag2_aliases);
	      var_ann (tag2)->may_aliases = NULL;

	      /* TAG1 is the unique alias of TAG2.  */
	      add_may_alias (tag2, tag1);

	      ai->pointers[j]->grouped_p = true;
	    }
	}

      /* Now group all the aliases we collected into TAG1.  */
      group_aliases_into (tag1, tag1_aliases, ai);

      /* If we've reduced total number of virtual operands below the
	 threshold, stop.  */
      if (ai->total_alias_vops < MAX_ALIASED_VOPS)
	break;
    }

  /* Finally, all the variables that have been grouped cannot be in
     the may-alias set of name memory tags.  Suppose that we have
     grouped the aliases in this code so that may-aliases(a) = TMT.20

     	p_5 = &a;
	...
	# a_9 = V_MAY_DEF <a_8>
	p_5->field = 0
	... Several modifications to TMT.20 ... 
	# VUSE <a_9>
	x_30 = p_5->field

     Since p_5 points to 'a', the optimizers will try to propagate 0
     into p_5->field, but that is wrong because there have been
     modifications to 'TMT.20' in between.  To prevent this we have to
     replace 'a' with 'TMT.20' in the name tag of p_5.  */
  for (i = 0; i < VARRAY_ACTIVE_SIZE (ai->processed_ptrs); i++)
    {
      size_t j;
      tree ptr = VARRAY_TREE (ai->processed_ptrs, i);
      tree name_tag = SSA_NAME_PTR_INFO (ptr)->name_mem_tag;
      varray_type aliases;
      
      if (name_tag == NULL_TREE)
	continue;

      aliases = var_ann (name_tag)->may_aliases;
      for (j = 0; aliases && j < VARRAY_ACTIVE_SIZE (aliases); j++)
	{
	  tree alias = VARRAY_TREE (aliases, j);
	  var_ann_t ann = var_ann (alias);

	  if ((ann->mem_tag_kind == NOT_A_TAG 
	       || ann->mem_tag_kind == STRUCT_FIELD)
	      && ann->may_aliases)
	    {
	      tree new_alias;

	      gcc_assert (VARRAY_ACTIVE_SIZE (ann->may_aliases) == 1);

	      new_alias = VARRAY_TREE (ann->may_aliases, 0);
	      replace_may_alias (name_tag, j, new_alias);
	    }
	}
    }

  if (dump_file)
    fprintf (dump_file,
	     "%s: Total number of aliased vops after grouping: %ld%s\n",
	     get_name (current_function_decl),
	     ai->total_alias_vops,
	     (ai->total_alias_vops < 0) ? " (negative values are OK)" : "");
}


/* Create a new alias set entry for VAR in AI->ADDRESSABLE_VARS.  */

static void
create_alias_map_for (tree var, struct alias_info *ai)
{
  struct alias_map_d *alias_map;
  alias_map = xcalloc (1, sizeof (*alias_map));
  alias_map->var = var;
  alias_map->set = get_alias_set (var);
  ai->addressable_vars[ai->num_addressable_vars++] = alias_map;
}


/* Create memory tags for all the dereferenced pointers and build the
   ADDRESSABLE_VARS and POINTERS arrays used for building the may-alias
   sets.  Based on the address escape and points-to information collected
   earlier, this pass will also clear the TREE_ADDRESSABLE flag from those
   variables whose address is not needed anymore.  */

static void
setup_pointers_and_addressables (struct alias_info *ai)
{
  size_t i, n_vars, num_addressable_vars, num_pointers;

  /* Size up the arrays ADDRESSABLE_VARS and POINTERS.  */
  num_addressable_vars = num_pointers = 0;
  for (i = 0; i < num_referenced_vars; i++)
    {
      tree var = referenced_var (i);

      if (may_be_aliased (var))
	num_addressable_vars++;

      if (POINTER_TYPE_P (TREE_TYPE (var)))
	{
	  /* Since we don't keep track of volatile variables, assume that
	     these pointers are used in indirect store operations.  */
	  if (TREE_THIS_VOLATILE (var))
	    bitmap_set_bit (ai->dereferenced_ptrs_store, var_ann (var)->uid);

	  num_pointers++;
	}
    }

  /* Create ADDRESSABLE_VARS and POINTERS.  Note that these arrays are
     always going to be slightly bigger than we actually need them
     because some TREE_ADDRESSABLE variables will be marked
     non-addressable below and only pointers with unique type tags are
     going to be added to POINTERS.  */
  ai->addressable_vars = xcalloc (num_addressable_vars,
				  sizeof (struct alias_map_d *));
  ai->pointers = xcalloc (num_pointers, sizeof (struct alias_map_d *));
  ai->num_addressable_vars = 0;
  ai->num_pointers = 0;

  /* Since we will be creating type memory tags within this loop, cache the
     value of NUM_REFERENCED_VARS to avoid processing the additional tags
     unnecessarily.  */
  n_vars = num_referenced_vars;

  for (i = 0; i < n_vars; i++)
    {
      tree var = referenced_var (i);
      var_ann_t v_ann = var_ann (var);
      subvar_t svars;

      /* Name memory tags already have flow-sensitive aliasing
	 information, so they need not be processed by
	 compute_flow_insensitive_aliasing.  Similarly, type memory
	 tags are already accounted for when we process their
	 associated pointer. 
      
         Structure fields, on the other hand, have to have some of this
         information processed for them, but it's pointless to mark them
         non-addressable (since they are fake variables anyway).  */
      if (v_ann->mem_tag_kind != NOT_A_TAG
	  && v_ann->mem_tag_kind != STRUCT_FIELD) 
	continue;

      /* Remove the ADDRESSABLE flag from every addressable variable whose
         address is not needed anymore.  This is caused by the propagation
         of ADDR_EXPR constants into INDIRECT_REF expressions and the
         removal of dead pointer assignments done by the early scalar
         cleanup passes.  */
      if (TREE_ADDRESSABLE (var) && v_ann->mem_tag_kind != STRUCT_FIELD)
	{
	  if (!bitmap_bit_p (ai->addresses_needed, v_ann->uid)
	      && TREE_CODE (var) != RESULT_DECL
	      && !is_global_var (var))
	    {
	      bool okay_to_mark = true;

	      /* Since VAR is now a regular GIMPLE register, we will need
		 to rename VAR into SSA afterwards.  */
	      mark_sym_for_renaming (var);

	      if (var_can_have_subvars (var)
		  && (svars = get_subvars_for_var (var)))
		{
		  subvar_t sv;

		  for (sv = svars; sv; sv = sv->next)
		    {	      
		      var_ann_t svann = var_ann (sv->var);
		      if (bitmap_bit_p (ai->addresses_needed, svann->uid))
			okay_to_mark = false;
		      mark_sym_for_renaming (sv->var);
		    }
		}

	      /* The address of VAR is not needed, remove the
		 addressable bit, so that it can be optimized as a
		 regular variable.  */
	      if (okay_to_mark)
		mark_non_addressable (var);
	    }
	  else
	    {
	      /* Add the variable to the set of addressables.  Mostly
		 used when scanning operands for ASM_EXPRs that
		 clobber memory.  In those cases, we need to clobber
		 all call-clobbered variables and all addressables.  */
	      bitmap_set_bit (addressable_vars, v_ann->uid);
	      if (var_can_have_subvars (var)
		  && (svars = get_subvars_for_var (var)))
		{
		  subvar_t sv;
		  for (sv = svars; sv; sv = sv->next)
		    bitmap_set_bit (addressable_vars, var_ann (sv->var)->uid);
		}

	    }
	}

      /* Global variables and addressable locals may be aliased.  Create an
         entry in ADDRESSABLE_VARS for VAR.  */
      if (may_be_aliased (var))
	{
	  create_alias_map_for (var, ai);
	  mark_sym_for_renaming (var);
	}

      /* Add pointer variables that have been dereferenced to the POINTERS
         array and create a type memory tag for them.  */
      if (POINTER_TYPE_P (TREE_TYPE (var)))
	{
	  if ((bitmap_bit_p (ai->dereferenced_ptrs_store, v_ann->uid)
		|| bitmap_bit_p (ai->dereferenced_ptrs_load, v_ann->uid)))
	    {
	      tree tag;
	      var_ann_t t_ann;

	      /* If pointer VAR still doesn't have a memory tag
		 associated with it, create it now or re-use an
		 existing one.  */
	      tag = get_tmt_for (var, ai);
	      t_ann = var_ann (tag);

	      /* The type tag will need to be renamed into SSA
		 afterwards. Note that we cannot do this inside
		 get_tmt_for because aliasing may run multiple times
		 and we only create type tags the first time.  */
	      mark_sym_for_renaming (tag);

	      /* Similarly, if pointer VAR used to have another type
		 tag, we will need to process it in the renamer to
		 remove the stale virtual operands.  */
	      if (v_ann->type_mem_tag)
		mark_sym_for_renaming (v_ann->type_mem_tag);

	      /* Associate the tag with pointer VAR.  */
	      v_ann->type_mem_tag = tag;

	      /* If pointer VAR has been used in a store operation,
		 then its memory tag must be marked as written-to.  */
	      if (bitmap_bit_p (ai->dereferenced_ptrs_store, v_ann->uid))
		bitmap_set_bit (ai->written_vars, t_ann->uid);

	      /* If pointer VAR is a global variable or a PARM_DECL,
		 then its memory tag should be considered a global
		 variable.  */
	      if (TREE_CODE (var) == PARM_DECL || is_global_var (var))
		mark_call_clobbered (tag);

	      /* All the dereferences of pointer VAR count as
		 references of TAG.  Since TAG can be associated with
		 several pointers, add the dereferences of VAR to the
		 TAG.  We may need to grow AI->NUM_REFERENCES because
		 we have been adding name and type tags.  */
	      if (t_ann->uid >= VARRAY_SIZE (ai->num_references))
		VARRAY_GROW (ai->num_references, t_ann->uid + 10);

	      VARRAY_UINT (ai->num_references, t_ann->uid)
		+= VARRAY_UINT (ai->num_references, v_ann->uid);
	    }
	  else
	    {
	      /* The pointer has not been dereferenced.  If it had a
		 type memory tag, remove it and mark the old tag for
		 renaming to remove it out of the IL.  */
	      var_ann_t ann = var_ann (var);
	      tree tag = ann->type_mem_tag;
	      if (tag)
		{
		  mark_sym_for_renaming (tag);
		  ann->type_mem_tag = NULL_TREE;
		}
	    }
	}
    }
}


/* Determine whether to use .GLOBAL_VAR to model call clobbering semantics. At
   every call site, we need to emit V_MAY_DEF expressions to represent the
   clobbering effects of the call for variables whose address escapes the
   current function.

   One approach is to group all call-clobbered variables into a single
   representative that is used as an alias of every call-clobbered variable
   (.GLOBAL_VAR).  This works well, but it ties the optimizer hands because
   references to any call clobbered variable is a reference to .GLOBAL_VAR.

   The second approach is to emit a clobbering V_MAY_DEF for every 
   call-clobbered variable at call sites.  This is the preferred way in terms 
   of optimization opportunities but it may create too many V_MAY_DEF operands
   if there are many call clobbered variables and function calls in the 
   function.

   To decide whether or not to use .GLOBAL_VAR we multiply the number of
   function calls found by the number of call-clobbered variables.  If that
   product is beyond a certain threshold, as determined by the parameterized
   values shown below, we use .GLOBAL_VAR.

   FIXME.  This heuristic should be improved.  One idea is to use several
   .GLOBAL_VARs of different types instead of a single one.  The thresholds
   have been derived from a typical bootstrap cycle, including all target
   libraries. Compile times were found increase by ~1% compared to using
   .GLOBAL_VAR.  */

static void
maybe_create_global_var (struct alias_info *ai)
{
  unsigned i, n_clobbered;
  bitmap_iterator bi;
  
  /* No need to create it, if we have one already.  */
  if (global_var == NULL_TREE)
    {
      /* Count all the call-clobbered variables.  */
      n_clobbered = 0;
      EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
	{
	  n_clobbered++;
	}

      /* If the number of virtual operands that would be needed to
	 model all the call-clobbered variables is larger than
	 GLOBAL_VAR_THRESHOLD, create .GLOBAL_VAR.

	 Also create .GLOBAL_VAR if there are no call-clobbered
	 variables and the program contains a mixture of pure/const
	 and regular function calls.  This is to avoid the problem
	 described in PR 20115:

	      int X;
	      int func_pure (void) { return X; }
	      int func_non_pure (int a) { X += a; }
	      int foo ()
	      {
	 	int a = func_pure ();
		func_non_pure (a);
		a = func_pure ();
		return a;
	      }

	 Since foo() has no call-clobbered variables, there is
	 no relationship between the calls to func_pure and
	 func_non_pure.  Since func_pure has no side-effects, value
	 numbering optimizations elide the second call to func_pure.
	 So, if we have some pure/const and some regular calls in the
	 program we create .GLOBAL_VAR to avoid missing these
	 relations.  */
      if (ai->num_calls_found * n_clobbered >= (size_t) GLOBAL_VAR_THRESHOLD
	  || (n_clobbered == 0
	      && ai->num_calls_found > 0
	      && ai->num_pure_const_calls_found > 0
	      && ai->num_calls_found > ai->num_pure_const_calls_found))
	create_global_var ();
    }

  /* Mark all call-clobbered symbols for renaming.  Since the initial
     rewrite into SSA ignored all call sites, we may need to rename
     .GLOBAL_VAR and the call-clobbered variables.  */
  EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
    {
      tree var = referenced_var (i);

      /* If the function has calls to clobbering functions and
	 .GLOBAL_VAR has been created, make it an alias for all
	 call-clobbered variables.  */
      if (global_var && var != global_var)
	{
	  subvar_t svars;
	  add_may_alias (var, global_var);
	  if (var_can_have_subvars (var)
	      && (svars = get_subvars_for_var (var)))
	    {
	      subvar_t sv;
	      for (sv = svars; sv; sv = sv->next)
		mark_sym_for_renaming (sv->var);
	    }
	}
      
      mark_sym_for_renaming (var);
    }
}


/* Return TRUE if pointer PTR may point to variable VAR.
   
   MEM_ALIAS_SET is the alias set for the memory location pointed-to by PTR
	This is needed because when checking for type conflicts we are
	interested in the alias set of the memory location pointed-to by
	PTR.  The alias set of PTR itself is irrelevant.
   
   VAR_ALIAS_SET is the alias set for VAR.  */

static bool
may_alias_p (tree ptr, HOST_WIDE_INT mem_alias_set,
	     tree var, HOST_WIDE_INT var_alias_set)
{
  tree mem;
  var_ann_t m_ann;

  alias_stats.alias_queries++;
  alias_stats.simple_queries++;

  /* By convention, a variable cannot alias itself.  */
  mem = var_ann (ptr)->type_mem_tag;
  if (mem == var)
    {
      alias_stats.alias_noalias++;
      alias_stats.simple_resolved++;
      return false;
    }
  
  /* If -fargument-noalias-global is >1, pointer arguments may
     not point to global variables.  */
  if (flag_argument_noalias > 1 && is_global_var (var)
      && TREE_CODE (ptr) == PARM_DECL)
    {
      alias_stats.alias_noalias++;
      alias_stats.simple_resolved++;
      return false;
    }

  /* If either MEM or VAR is a read-only global and the other one
     isn't, then PTR cannot point to VAR.  */
  if ((unmodifiable_var_p (mem) && !unmodifiable_var_p (var))
      || (unmodifiable_var_p (var) && !unmodifiable_var_p (mem)))
    {
      alias_stats.alias_noalias++;
      alias_stats.simple_resolved++;
      return false;
    }

  m_ann = var_ann (mem);

  gcc_assert (m_ann->mem_tag_kind == TYPE_TAG);

  alias_stats.tbaa_queries++;

  /* If VAR is a pointer with the same alias set as PTR, then dereferencing
     PTR can't possibly affect VAR.  Note, that we are specifically testing
     for PTR's alias set here, not its pointed-to type.  We also can't
     do this check with relaxed aliasing enabled.  */
  if (POINTER_TYPE_P (TREE_TYPE (var))
      && var_alias_set != 0
      && mem_alias_set != 0)
    {
      HOST_WIDE_INT ptr_alias_set = get_alias_set (ptr);
      if (ptr_alias_set == var_alias_set)
	{
	  alias_stats.alias_noalias++;
	  alias_stats.tbaa_resolved++;
	  return false;
	}
    }

  /* If the alias sets don't conflict then MEM cannot alias VAR.  */
  if (!alias_sets_conflict_p (mem_alias_set, var_alias_set))
    {
      alias_stats.alias_noalias++;
      alias_stats.tbaa_resolved++;
      return false;
    }
  alias_stats.alias_mayalias++;
  return true;
}


/* Add ALIAS to the set of variables that may alias VAR.  */

static void
add_may_alias (tree var, tree alias)
{
  size_t i;
  var_ann_t v_ann = get_var_ann (var);
  var_ann_t a_ann = get_var_ann (alias);

  gcc_assert (var != alias);

  if (v_ann->may_aliases == NULL)
    VARRAY_TREE_INIT (v_ann->may_aliases, 2, "aliases");

  /* Avoid adding duplicates.  */
  for (i = 0; i < VARRAY_ACTIVE_SIZE (v_ann->may_aliases); i++)
    if (alias == VARRAY_TREE (v_ann->may_aliases, i))
      return;

  /* If VAR is a call-clobbered variable, so is its new ALIAS.
     FIXME, call-clobbering should only depend on whether an address
     escapes.  It should be independent of aliasing.  */
  if (is_call_clobbered (var))
    mark_call_clobbered (alias);

  /* Likewise.  If ALIAS is call-clobbered, so is VAR.  */
  else if (is_call_clobbered (alias))
    mark_call_clobbered (var);

  VARRAY_PUSH_TREE (v_ann->may_aliases, alias);
  a_ann->is_alias_tag = 1;
}


/* Replace alias I in the alias sets of VAR with NEW_ALIAS.  */

static void
replace_may_alias (tree var, size_t i, tree new_alias)
{
  var_ann_t v_ann = var_ann (var);
  VARRAY_TREE (v_ann->may_aliases, i) = new_alias;

  /* If VAR is a call-clobbered variable, so is NEW_ALIAS.
     FIXME, call-clobbering should only depend on whether an address
     escapes.  It should be independent of aliasing.  */
  if (is_call_clobbered (var))
    mark_call_clobbered (new_alias);

  /* Likewise.  If NEW_ALIAS is call-clobbered, so is VAR.  */
  else if (is_call_clobbered (new_alias))
    mark_call_clobbered (var);
}


/* Mark pointer PTR as pointing to an arbitrary memory location.  */

static void
set_pt_anything (tree ptr)
{
  struct ptr_info_def *pi = get_ptr_info (ptr);

  pi->pt_anything = 1;
  pi->pt_malloc = 0;

  /* The pointer used to have a name tag, but we now found it pointing
     to an arbitrary location.  The name tag needs to be renamed and
     disassociated from PTR.  */
  if (pi->name_mem_tag)
    {
      mark_sym_for_renaming (pi->name_mem_tag);
      pi->name_mem_tag = NULL_TREE;
    }
}


/* Mark pointer PTR as pointing to a malloc'd memory area.  */

static void
set_pt_malloc (tree ptr)
{
  struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);

  /* If the pointer has already been found to point to arbitrary
     memory locations, it is unsafe to mark it as pointing to malloc.  */
  if (pi->pt_anything)
    return;

  pi->pt_malloc = 1;
}


/* Given two different pointers DEST and ORIG.  Merge the points-to
   information in ORIG into DEST.  AI contains all the alias
   information collected up to this point.  */

static void
merge_pointed_to_info (struct alias_info *ai, tree dest, tree orig)
{
  struct ptr_info_def *dest_pi, *orig_pi;

  gcc_assert (dest != orig);

  /* Make sure we have points-to information for ORIG.  */
  collect_points_to_info_for (ai, orig);

  dest_pi = get_ptr_info (dest);
  orig_pi = SSA_NAME_PTR_INFO (orig);

  if (orig_pi)
    {
      gcc_assert (orig_pi != dest_pi);

      /* Notice that we never merge PT_MALLOC.  This attribute is only
	 true if the pointer is the result of a malloc() call.
	 Otherwise, we can end up in this situation:

	 P_i = malloc ();
	 ...
	 P_j = P_i + X;

	 P_j would be marked as PT_MALLOC, however we currently do not
	 handle cases of more than one pointer pointing to the same
	 malloc'd area.

	 FIXME: If the merging comes from an expression that preserves
	 the PT_MALLOC attribute (copy assignment, address
	 arithmetic), we ought to merge PT_MALLOC, but then both
	 pointers would end up getting different name tags because
	 create_name_tags is not smart enough to determine that the
	 two come from the same malloc call.  Copy propagation before
	 aliasing should cure this.  */
      dest_pi->pt_malloc = 0;
      if (orig_pi->pt_malloc || orig_pi->pt_anything)
	set_pt_anything (dest);

      dest_pi->pt_null |= orig_pi->pt_null;

      if (!dest_pi->pt_anything
	  && orig_pi->pt_vars
	  && !bitmap_empty_p (orig_pi->pt_vars))
	{
	  if (dest_pi->pt_vars == NULL)
	    {
	      dest_pi->pt_vars = BITMAP_GGC_ALLOC ();
	      bitmap_copy (dest_pi->pt_vars, orig_pi->pt_vars);
	    }
	  else
	    bitmap_ior_into (dest_pi->pt_vars, orig_pi->pt_vars);
	}
    }
  else
    set_pt_anything (dest);
}


/* Add EXPR to the list of expressions pointed-to by PTR.  */

static void
add_pointed_to_expr (struct alias_info *ai, tree ptr, tree expr)
{
  if (TREE_CODE (expr) == WITH_SIZE_EXPR)
    expr = TREE_OPERAND (expr, 0);

  get_ptr_info (ptr);

  if (TREE_CODE (expr) == CALL_EXPR
      && (call_expr_flags (expr) & (ECF_MALLOC | ECF_MAY_BE_ALLOCA)))
    {
      /* If EXPR is a malloc-like call, then the area pointed to PTR
	 is guaranteed to not alias with anything else.  */
      set_pt_malloc (ptr);
    }
  else if (TREE_CODE (expr) == ADDR_EXPR)
    {
      /* Found P_i = ADDR_EXPR  */
      add_pointed_to_var (ai, ptr, expr);
    }
  else if (TREE_CODE (expr) == SSA_NAME && POINTER_TYPE_P (TREE_TYPE (expr)))
    {
      /* Found P_i = Q_j.  */
      merge_pointed_to_info (ai, ptr, expr);
    }
  else if (TREE_CODE (expr) == PLUS_EXPR || TREE_CODE (expr) == MINUS_EXPR)
    {
      /* Found P_i = PLUS_EXPR or P_i = MINUS_EXPR  */
      tree op0 = TREE_OPERAND (expr, 0);
      tree op1 = TREE_OPERAND (expr, 1);

      /* Both operands may be of pointer type.  FIXME: Shouldn't
	 we just expect PTR + OFFSET always?  */
      if (POINTER_TYPE_P (TREE_TYPE (op0))
	  && TREE_CODE (op0) != INTEGER_CST)
	{
	  if (TREE_CODE (op0) == SSA_NAME)
	    merge_pointed_to_info (ai, ptr, op0);
	  else if (TREE_CODE (op0) == ADDR_EXPR)
	    add_pointed_to_var (ai, ptr, op0);
	  else
	    set_pt_anything (ptr);
	}

      if (POINTER_TYPE_P (TREE_TYPE (op1))
	  && TREE_CODE (op1) != INTEGER_CST)
	{
	  if (TREE_CODE (op1) == SSA_NAME)
	    merge_pointed_to_info (ai, ptr, op1);
	  else if (TREE_CODE (op1) == ADDR_EXPR)
	    add_pointed_to_var (ai, ptr, op1);
	  else
	    set_pt_anything (ptr);
	}

      /* Neither operand is a pointer?  VAR can be pointing anywhere.
	 FIXME: Shouldn't we asserting here?  If we get here, we found
	 PTR = INT_CST + INT_CST, which should not be a valid pointer
	 expression.  */
      if (!(POINTER_TYPE_P (TREE_TYPE (op0))
	    && TREE_CODE (op0) != INTEGER_CST)
	  && !(POINTER_TYPE_P (TREE_TYPE (op1))
	       && TREE_CODE (op1) != INTEGER_CST))
	set_pt_anything (ptr);
    }
  else if (integer_zerop (expr))
    {
      /* EXPR is the NULL pointer.  Mark PTR as pointing to NULL.  */
      SSA_NAME_PTR_INFO (ptr)->pt_null = 1;
    }
  else
    {
      /* If we can't recognize the expression, assume that PTR may
	 point anywhere.  */
      set_pt_anything (ptr);
    }
}


/* If VALUE is of the form &DECL, add DECL to the set of variables
   pointed-to by PTR.  Otherwise, add VALUE as a pointed-to expression by
   PTR.  AI points to the collected alias information.  */

static void
add_pointed_to_var (struct alias_info *ai, tree ptr, tree value)
{
  struct ptr_info_def *pi = get_ptr_info (ptr);
  tree pt_var = NULL_TREE;
  HOST_WIDE_INT offset, size;
  tree addrop;
  size_t uid;
  tree ref;
  subvar_t svars;

  gcc_assert (TREE_CODE (value) == ADDR_EXPR);

  addrop = TREE_OPERAND (value, 0);
  if (REFERENCE_CLASS_P (addrop))
    pt_var = get_base_address (addrop);
  else 
    pt_var = addrop;

  /* If this is a component_ref, see if we can get a smaller number of
     variables to take the address of.  */
  if (TREE_CODE (addrop) == COMPONENT_REF
      && (ref = okay_component_ref_for_subvars (addrop, &offset ,&size)))
    {    
      subvar_t sv;
      svars = get_subvars_for_var (ref);

      uid = var_ann (pt_var)->uid;
      
      if (pi->pt_vars == NULL)
	pi->pt_vars = BITMAP_GGC_ALLOC ();
       /* If the variable is a global, mark the pointer as pointing to
	 global memory (which will make its tag a global variable).  */
      if (is_global_var (pt_var))
	pi->pt_global_mem = 1;     

      for (sv = svars; sv; sv = sv->next)
	{
	  if (overlap_subvar (offset, size, sv, NULL))
	    {
	      bitmap_set_bit (pi->pt_vars, var_ann (sv->var)->uid);
	      bitmap_set_bit (ai->addresses_needed, var_ann (sv->var)->uid);
	    }
	}
    }
  else if (pt_var && SSA_VAR_P (pt_var))
    {
    
      uid = var_ann (pt_var)->uid;
      
      if (pi->pt_vars == NULL)
	pi->pt_vars = BITMAP_GGC_ALLOC ();

      /* If this is an aggregate, we may have subvariables for it that need
	 to be pointed to.  */
      if (var_can_have_subvars (pt_var)
	  && (svars = get_subvars_for_var (pt_var)))
	{
	  subvar_t sv;
	  for (sv = svars; sv; sv = sv->next)
	    {
	      uid = var_ann (sv->var)->uid;
	      bitmap_set_bit (ai->addresses_needed, uid);	      
	      bitmap_set_bit (pi->pt_vars, uid);
	    }
	}
      else	
	{
	  bitmap_set_bit (ai->addresses_needed, uid);
	  bitmap_set_bit (pi->pt_vars, uid);	  
	}

      /* If the variable is a global, mark the pointer as pointing to
	 global memory (which will make its tag a global variable).  */
      if (is_global_var (pt_var))
	pi->pt_global_mem = 1;
    }
}


/* Callback for walk_use_def_chains to gather points-to information from the
   SSA web.
   
   VAR is an SSA variable or a GIMPLE expression.
   
   STMT is the statement that generates the SSA variable or, if STMT is a
      PHI_NODE, VAR is one of the PHI arguments.

   DATA is a pointer to a structure of type ALIAS_INFO.  */

static bool
collect_points_to_info_r (tree var, tree stmt, void *data)
{
  struct alias_info *ai = (struct alias_info *) data;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Visiting use-def links for ");
      print_generic_expr (dump_file, var, dump_flags);
      fprintf (dump_file, "\n");
    }

  switch (TREE_CODE (stmt))
    {
    case RETURN_EXPR:
      gcc_assert (TREE_CODE (TREE_OPERAND (stmt, 0)) == MODIFY_EXPR);
      stmt = TREE_OPERAND (stmt, 0);
      /* FALLTHRU  */

    case MODIFY_EXPR:
      {
	tree rhs = TREE_OPERAND (stmt, 1);
	STRIP_NOPS (rhs);
	add_pointed_to_expr (ai, var, rhs);
	break;
      }

    case ASM_EXPR:
      /* Pointers defined by __asm__ statements can point anywhere.  */
      set_pt_anything (var);
      break;

    case NOP_EXPR:
      if (IS_EMPTY_STMT (stmt))
	{
	  tree decl = SSA_NAME_VAR (var);
	  
	  if (TREE_CODE (decl) == PARM_DECL)
	    add_pointed_to_expr (ai, var, decl);
	  else if (DECL_INITIAL (decl))
	    add_pointed_to_expr (ai, var, DECL_INITIAL (decl));
	  else
	    add_pointed_to_expr (ai, var, decl);
	}
      break;

    case PHI_NODE:
      {
        /* It STMT is a PHI node, then VAR is one of its arguments.  The
	   variable that we are analyzing is the LHS of the PHI node.  */
	tree lhs = PHI_RESULT (stmt);

	switch (TREE_CODE (var))
	  {
	  case ADDR_EXPR:
	    add_pointed_to_var (ai, lhs, var);
	    break;
	    
	  case SSA_NAME:
	    /* Avoid unnecessary merges.  */
	    if (lhs != var)
	      merge_pointed_to_info (ai, lhs, var);
	    break;
	    
	  default:
	    gcc_assert (is_gimple_min_invariant (var));
	    add_pointed_to_expr (ai, lhs, var);
	    break;
	  }
	break;
      }

    default:
      gcc_unreachable ();
    }
  
  return false;
}


/* Return true if STMT is an "escape" site from the current function.  Escape
   sites those statements which might expose the address of a variable
   outside the current function.  STMT is an escape site iff:

   	1- STMT is a function call, or
	2- STMT is an __asm__ expression, or
	3- STMT is an assignment to a non-local variable, or
	4- STMT is a return statement.

   AI points to the alias information collected so far.  */

static bool
is_escape_site (tree stmt, struct alias_info *ai)
{
  tree call = get_call_expr_in (stmt);
  if (call != NULL_TREE)
    {
      ai->num_calls_found++;

      if (!TREE_SIDE_EFFECTS (call))
	ai->num_pure_const_calls_found++;

      return true;
    }
  else if (TREE_CODE (stmt) == ASM_EXPR)
    return true;
  else if (TREE_CODE (stmt) == MODIFY_EXPR)
    {
      tree lhs = TREE_OPERAND (stmt, 0);

      /* Get to the base of _REF nodes.  */
      if (TREE_CODE (lhs) != SSA_NAME)
	lhs = get_base_address (lhs);

      /* If we couldn't recognize the LHS of the assignment, assume that it
	 is a non-local store.  */
      if (lhs == NULL_TREE)
	return true;

      /* If the RHS is a conversion between a pointer and an integer, the
	 pointer escapes since we can't track the integer.  */
      if ((TREE_CODE (TREE_OPERAND (stmt, 1)) == NOP_EXPR
	   || TREE_CODE (TREE_OPERAND (stmt, 1)) == CONVERT_EXPR
	   || TREE_CODE (TREE_OPERAND (stmt, 1)) == VIEW_CONVERT_EXPR)
	  && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND
					(TREE_OPERAND (stmt, 1), 0)))
	  && !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (stmt, 1))))
	return true;

      /* If the LHS is an SSA name, it can't possibly represent a non-local
	 memory store.  */
      if (TREE_CODE (lhs) == SSA_NAME)
	return false;

      /* FIXME: LHS is not an SSA_NAME.  Even if it's an assignment to a
	 local variables we cannot be sure if it will escape, because we
	 don't have information about objects not in SSA form.  Need to
	 implement something along the lines of

	 J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S. P.
	 Midkiff, ``Escape analysis for java,'' in Proceedings of the
	 Conference on Object-Oriented Programming Systems, Languages, and
	 Applications (OOPSLA), pp. 1-19, 1999.  */
      return true;
    }
  else if (TREE_CODE (stmt) == RETURN_EXPR)
    return true;

  return false;
}


/* Create a new memory tag of type TYPE.  If IS_TYPE_TAG is true, the tag
   is considered to represent all the pointers whose pointed-to types are
   in the same alias set class.  Otherwise, the tag represents a single
   SSA_NAME pointer variable.  */

static tree
create_memory_tag (tree type, bool is_type_tag)
{
  var_ann_t ann;
  tree tag = create_tmp_var_raw (type, (is_type_tag) ? "TMT" : "NMT");

  /* By default, memory tags are local variables.  Alias analysis will
     determine whether they should be considered globals.  */
  DECL_CONTEXT (tag) = current_function_decl;

  /* Memory tags are by definition addressable.  This also prevents
     is_gimple_ref frome confusing memory tags with optimizable
     variables.  */
  TREE_ADDRESSABLE (tag) = 1;

  ann = get_var_ann (tag);
  ann->mem_tag_kind = (is_type_tag) ? TYPE_TAG : NAME_TAG;
  ann->type_mem_tag = NULL_TREE;

  /* Add the tag to the symbol table.  */
  add_referenced_tmp_var (tag);

  return tag;
}


/* Create a name memory tag to represent a specific SSA_NAME pointer P_i.
   This is used if P_i has been found to point to a specific set of
   variables or to a non-aliased memory location like the address returned
   by malloc functions.  */

static tree
get_nmt_for (tree ptr)
{
  struct ptr_info_def *pi = get_ptr_info (ptr);
  tree tag = pi->name_mem_tag;

  if (tag == NULL_TREE)
    tag = create_memory_tag (TREE_TYPE (TREE_TYPE (ptr)), false);

  /* If PTR is a PARM_DECL, it points to a global variable or malloc,
     then its name tag should be considered a global variable.  */
  if (TREE_CODE (SSA_NAME_VAR (ptr)) == PARM_DECL
      || pi->pt_malloc
      || pi->pt_global_mem)
    mark_call_clobbered (tag);

  return tag;
}


/* Return the type memory tag associated to pointer PTR.  A memory tag is an
   artificial variable that represents the memory location pointed-to by
   PTR.  It is used to model the effects of pointer de-references on
   addressable variables.
   
   AI points to the data gathered during alias analysis.  This function
   populates the array AI->POINTERS.  */

static tree
get_tmt_for (tree ptr, struct alias_info *ai)
{
  size_t i;
  tree tag;
  tree tag_type = TREE_TYPE (TREE_TYPE (ptr));
  HOST_WIDE_INT tag_set = get_alias_set (tag_type);

  /* To avoid creating unnecessary memory tags, only create one memory tag
     per alias set class.  Note that it may be tempting to group
     memory tags based on conflicting alias sets instead of
     equivalence.  That would be wrong because alias sets are not
     necessarily transitive (as demonstrated by the libstdc++ test
     23_containers/vector/cons/4.cc).  Given three alias sets A, B, C
     such that conflicts (A, B) == true and conflicts (A, C) == true,
     it does not necessarily follow that conflicts (B, C) == true.  */
  for (i = 0, tag = NULL_TREE; i < ai->num_pointers; i++)
    {
      struct alias_map_d *curr = ai->pointers[i];
      tree curr_tag = var_ann (curr->var)->type_mem_tag;
      if (tag_set == curr->set
	  && TYPE_READONLY (tag_type) == TYPE_READONLY (TREE_TYPE (curr_tag)))
	{
	  tag = curr_tag;
	  break;
	}
    }

  /* If VAR cannot alias with any of the existing memory tags, create a new
     tag for PTR and add it to the POINTERS array.  */
  if (tag == NULL_TREE)
    {
      struct alias_map_d *alias_map;

      /* If PTR did not have a type tag already, create a new TMT.*
	 artificial variable representing the memory location
	 pointed-to by PTR.  */
      if (var_ann (ptr)->type_mem_tag == NULL_TREE)
	tag = create_memory_tag (tag_type, true);
      else
	tag = var_ann (ptr)->type_mem_tag;

      /* Add PTR to the POINTERS array.  Note that we are not interested in
	 PTR's alias set.  Instead, we cache the alias set for the memory that
	 PTR points to.  */
      alias_map = xcalloc (1, sizeof (*alias_map));
      alias_map->var = ptr;
      alias_map->set = tag_set;
      ai->pointers[ai->num_pointers++] = alias_map;
    }

  /* If the pointed-to type is volatile, so is the tag.  */
  TREE_THIS_VOLATILE (tag) |= TREE_THIS_VOLATILE (tag_type);

  /* Make sure that the type tag has the same alias set as the
     pointed-to type.  */
  gcc_assert (tag_set == get_alias_set (tag));

  /* If PTR's pointed-to type is read-only, then TAG's type must also
     be read-only.  */
  gcc_assert (TYPE_READONLY (tag_type) == TYPE_READONLY (TREE_TYPE (tag)));

  return tag;
}


/* Create GLOBAL_VAR, an artificial global variable to act as a
   representative of all the variables that may be clobbered by function
   calls.  */

static void
create_global_var (void)
{
  global_var = build_decl (VAR_DECL, get_identifier (".GLOBAL_VAR"),
                           void_type_node);
  DECL_ARTIFICIAL (global_var) = 1;
  TREE_READONLY (global_var) = 0;
  DECL_EXTERNAL (global_var) = 1;
  TREE_STATIC (global_var) = 1;
  TREE_USED (global_var) = 1;
  DECL_CONTEXT (global_var) = NULL_TREE;
  TREE_THIS_VOLATILE (global_var) = 0;
  TREE_ADDRESSABLE (global_var) = 0;

  add_referenced_tmp_var (global_var);
  mark_sym_for_renaming (global_var);
}


/* Dump alias statistics on FILE.  */

static void 
dump_alias_stats (FILE *file)
{
  const char *funcname
    = lang_hooks.decl_printable_name (current_function_decl, 2);
  fprintf (file, "\nAlias statistics for %s\n\n", funcname);
  fprintf (file, "Total alias queries:\t%u\n", alias_stats.alias_queries);
  fprintf (file, "Total alias mayalias results:\t%u\n", 
	   alias_stats.alias_mayalias);
  fprintf (file, "Total alias noalias results:\t%u\n",
	   alias_stats.alias_noalias);
  fprintf (file, "Total simple queries:\t%u\n",
	   alias_stats.simple_queries);
  fprintf (file, "Total simple resolved:\t%u\n",
	   alias_stats.simple_resolved);
  fprintf (file, "Total TBAA queries:\t%u\n",
	   alias_stats.tbaa_queries);
  fprintf (file, "Total TBAA resolved:\t%u\n",
	   alias_stats.tbaa_resolved);
}
  

/* Dump alias information on FILE.  */

void
dump_alias_info (FILE *file)
{
  size_t i;
  const char *funcname
    = lang_hooks.decl_printable_name (current_function_decl, 2);

  fprintf (file, "\nFlow-insensitive alias information for %s\n\n", funcname);

  fprintf (file, "Aliased symbols\n\n");
  for (i = 0; i < num_referenced_vars; i++)
    {
      tree var = referenced_var (i);
      if (may_be_aliased (var))
	dump_variable (file, var);
    }

  fprintf (file, "\nDereferenced pointers\n\n");
  for (i = 0; i < num_referenced_vars; i++)
    {
      tree var = referenced_var (i);
      var_ann_t ann = var_ann (var);
      if (ann->type_mem_tag)
	dump_variable (file, var);
    }

  fprintf (file, "\nType memory tags\n\n");
  for (i = 0; i < num_referenced_vars; i++)
    {
      tree var = referenced_var (i);
      var_ann_t ann = var_ann (var);
      if (ann->mem_tag_kind == TYPE_TAG)
	dump_variable (file, var);
    }

  fprintf (file, "\n\nFlow-sensitive alias information for %s\n\n", funcname);

  fprintf (file, "SSA_NAME pointers\n\n");
  for (i = 1; i < num_ssa_names; i++)
    {
      tree ptr = ssa_name (i);
      struct ptr_info_def *pi;
      
      if (ptr == NULL_TREE)
	continue;

      pi = SSA_NAME_PTR_INFO (ptr);
      if (!SSA_NAME_IN_FREE_LIST (ptr)
	  && pi
	  && pi->name_mem_tag)
	dump_points_to_info_for (file, ptr);
    }

  fprintf (file, "\nName memory tags\n\n");
  for (i = 0; i < num_referenced_vars; i++)
    {
      tree var = referenced_var (i);
      var_ann_t ann = var_ann (var);
      if (ann->mem_tag_kind == NAME_TAG)
	dump_variable (file, var);
    }

  fprintf (file, "\n");
}


/* Dump alias information on stderr.  */

void
debug_alias_info (void)
{
  dump_alias_info (stderr);
}


/* Return the alias information associated with pointer T.  It creates a
   new instance if none existed.  */

struct ptr_info_def *
get_ptr_info (tree t)
{
  struct ptr_info_def *pi;

  gcc_assert (POINTER_TYPE_P (TREE_TYPE (t)));

  pi = SSA_NAME_PTR_INFO (t);
  if (pi == NULL)
    {
      pi = ggc_alloc (sizeof (*pi));
      memset ((void *)pi, 0, sizeof (*pi));
      SSA_NAME_PTR_INFO (t) = pi;
    }

  return pi;
}


/* Dump points-to information for SSA_NAME PTR into FILE.  */

void
dump_points_to_info_for (FILE *file, tree ptr)
{
  struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);

  print_generic_expr (file, ptr, dump_flags);

  if (pi)
    {
      if (pi->name_mem_tag)
	{
	  fprintf (file, ", name memory tag: ");
	  print_generic_expr (file, pi->name_mem_tag, dump_flags);
	}

      if (pi->is_dereferenced)
	fprintf (file, ", is dereferenced");

      if (pi->value_escapes_p)
	fprintf (file, ", its value escapes");

      if (pi->pt_anything)
	fprintf (file, ", points-to anything");

      if (pi->pt_malloc)
	fprintf (file, ", points-to malloc");

      if (pi->pt_null)
	fprintf (file, ", points-to NULL");

      if (pi->pt_vars)
	{
	  unsigned ix;
	  bitmap_iterator bi;

	  fprintf (file, ", points-to vars: { ");
	  EXECUTE_IF_SET_IN_BITMAP (pi->pt_vars, 0, ix, bi)
	    {
	      print_generic_expr (file, referenced_var (ix), dump_flags);
	      fprintf (file, " ");
	    }
	  fprintf (file, "}");
	}
    }

  fprintf (file, "\n");
}


/* Dump points-to information for VAR into stderr.  */

void
debug_points_to_info_for (tree var)
{
  dump_points_to_info_for (stderr, var);
}


/* Dump points-to information into FILE.  NOTE: This function is slow, as
   it needs to traverse the whole CFG looking for pointer SSA_NAMEs.  */

void
dump_points_to_info (FILE *file)
{
  basic_block bb;
  block_stmt_iterator si;
  size_t i;
  ssa_op_iter iter;
  const char *fname =
    lang_hooks.decl_printable_name (current_function_decl, 2);

  fprintf (file, "\n\nPointed-to sets for pointers in %s\n\n", fname);

  /* First dump points-to information for the default definitions of
     pointer variables.  This is necessary because default definitions are
     not part of the code.  */
  for (i = 0; i < num_referenced_vars; i++)
    {
      tree var = referenced_var (i);
      if (POINTER_TYPE_P (TREE_TYPE (var)))
	{
	  var_ann_t ann = var_ann (var);
	  if (ann->default_def)
	    dump_points_to_info_for (file, ann->default_def);
	}
    }

  /* Dump points-to information for every pointer defined in the program.  */
  FOR_EACH_BB (bb)
    {
      tree phi;

      for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
	{
	  tree ptr = PHI_RESULT (phi);
	  if (POINTER_TYPE_P (TREE_TYPE (ptr)))
	    dump_points_to_info_for (file, ptr);
	}

	for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
	  {
	    tree stmt = bsi_stmt (si);
	    tree def;
	    FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
	      if (POINTER_TYPE_P (TREE_TYPE (def)))
		dump_points_to_info_for (file, def);
	  }
    }

  fprintf (file, "\n");
}


/* Dump points-to info pointed by PTO into STDERR.  */

void
debug_points_to_info (void)
{
  dump_points_to_info (stderr);
}

/* Dump to FILE the list of variables that may be aliasing VAR.  */

void
dump_may_aliases_for (FILE *file, tree var)
{
  varray_type aliases;
  
  if (TREE_CODE (var) == SSA_NAME)
    var = SSA_NAME_VAR (var);

  aliases = var_ann (var)->may_aliases;
  if (aliases)
    {
      size_t i;
      fprintf (file, "{ ");
      for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
	{
	  print_generic_expr (file, VARRAY_TREE (aliases, i), dump_flags);
	  fprintf (file, " ");
	}
      fprintf (file, "}");
    }
}


/* Dump to stderr the list of variables that may be aliasing VAR.  */

void
debug_may_aliases_for (tree var)
{
  dump_may_aliases_for (stderr, var);
}

/* Return true if VAR may be aliased.  */

bool
may_be_aliased (tree var)
{
  /* Obviously.  */
  if (TREE_ADDRESSABLE (var))
    return true;

  /* Globally visible variables can have their addresses taken by other
     translation units.  */
  if (DECL_EXTERNAL (var) || TREE_PUBLIC (var))
    return true;

  /* Automatic variables can't have their addresses escape any other way.
     This must be after the check for global variables, as extern declarations
     do not have TREE_STATIC set.  */
  if (!TREE_STATIC (var))
    return false;

  /* If we're in unit-at-a-time mode, then we must have seen all occurrences
     of address-of operators, and so we can trust TREE_ADDRESSABLE.  Otherwise
     we can only be sure the variable isn't addressable if it's local to the
     current function.  */
  if (flag_unit_at_a_time)
    return false;
  if (decl_function_context (var) == current_function_decl)
    return false;

  return true;
}


/* Add VAR to the list of may-aliases of PTR's type tag.  If PTR
   doesn't already have a type tag, create one.  */

void
add_type_alias (tree ptr, tree var)
{
  varray_type aliases;
  tree tag;
  var_ann_t ann = var_ann (ptr);
  subvar_t svars;

  if (ann->type_mem_tag == NULL_TREE)
    {
      size_t i;
      tree q = NULL_TREE;
      tree tag_type = TREE_TYPE (TREE_TYPE (ptr));
      HOST_WIDE_INT tag_set = get_alias_set (tag_type);

      /* PTR doesn't have a type tag, create a new one and add VAR to
	 the new tag's alias set.

	 FIXME, This is slower than necessary.  We need to determine
	 whether there is another pointer Q with the same alias set as
	 PTR.  This could be sped up by having type tags associated
	 with types.  */
      for (i = 0; i < num_referenced_vars; i++)
	{
	  q = referenced_var (i);

	  if (POINTER_TYPE_P (TREE_TYPE (q))
	      && tag_set == get_alias_set (TREE_TYPE (TREE_TYPE (q))))
	    {
	      /* Found another pointer Q with the same alias set as
		 the PTR's pointed-to type.  If Q has a type tag, use
		 it.  Otherwise, create a new memory tag for PTR.  */
	      var_ann_t ann1 = var_ann (q);
	      if (ann1->type_mem_tag)
		ann->type_mem_tag = ann1->type_mem_tag;
	      else
		ann->type_mem_tag = create_memory_tag (tag_type, true);
	      goto found_tag;
	    }
	}

      /* Couldn't find any other pointer with a type tag we could use.
	 Create a new memory tag for PTR.  */
      ann->type_mem_tag = create_memory_tag (tag_type, true);
    }

found_tag:
  /* If VAR is not already PTR's type tag, add it to the may-alias set
     for PTR's type tag.  */
  gcc_assert (var_ann (var)->type_mem_tag == NOT_A_TAG);
  tag = ann->type_mem_tag;

  /* If VAR has subvars, add the subvars to the tag instead of the
     actual var.  */
  if (var_can_have_subvars (var)
      && (svars = get_subvars_for_var (var)))
    {
      subvar_t sv;      
      for (sv = svars; sv; sv = sv->next)
	add_may_alias (tag, sv->var);
    }
  else
    add_may_alias (tag, var);

  /* TAG and its set of aliases need to be marked for renaming.  */
  mark_sym_for_renaming (tag);
  if ((aliases = var_ann (tag)->may_aliases) != NULL)
    {
      size_t i;
      for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
	mark_sym_for_renaming (VARRAY_TREE (aliases, i));
    }

  /* If we had grouped aliases, VAR may have aliases of its own.  Mark
     them for renaming as well.  Other statements referencing the
     aliases of VAR will need to be updated.  */
  if ((aliases = var_ann (var)->may_aliases) != NULL)
    {
      size_t i;
      for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
	mark_sym_for_renaming (VARRAY_TREE (aliases, i));
    }
}


/* Create a type tag for PTR.  Construct the may-alias list of this type tag
   so that it has the aliasing of VAR.  */

void
new_type_alias (tree ptr, tree var)
{
  var_ann_t p_ann = var_ann (ptr);
  tree tag_type = TREE_TYPE (TREE_TYPE (ptr));
  var_ann_t v_ann = var_ann (var);
  tree tag;
  subvar_t svars;

  gcc_assert (p_ann->type_mem_tag == NULL_TREE);
  gcc_assert (v_ann->mem_tag_kind == NOT_A_TAG);
  tag = create_memory_tag (tag_type, true);
  p_ann->type_mem_tag = tag;

  /* Add VAR to the may-alias set of PTR's new type tag.  If VAR has
     subvars, add the subvars to the tag instead of the actual var.  */
  if (var_can_have_subvars (var)
      && (svars = get_subvars_for_var (var)))
    {
      subvar_t sv;      
      for (sv = svars; sv; sv = sv->next)
        add_may_alias (tag, sv->var);
    }
  else
    add_may_alias (tag, var);

  /* Note, TAG and its set of aliases are not marked for renaming.  */
}


/* This structure is simply used during pushing fields onto the fieldstack
   to track the offset of the field, since bitpos_of_field gives it relative
   to its immediate containing type, and we want it relative to the ultimate
   containing object.  */

typedef struct fieldoff
{
  tree field;
  HOST_WIDE_INT offset;  
} fieldoff_s;

DEF_VEC_O (fieldoff_s);
DEF_VEC_ALLOC_O(fieldoff_s,heap);

/* Return the position, in bits, of FIELD_DECL from the beginning of its
   structure. 
   Return -1 if the position is conditional or otherwise non-constant
   integer.  */

static HOST_WIDE_INT
bitpos_of_field (const tree fdecl)
{

  if (TREE_CODE (DECL_FIELD_OFFSET (fdecl)) != INTEGER_CST
      || TREE_CODE (DECL_FIELD_BIT_OFFSET (fdecl)) != INTEGER_CST)
    return -1;

  return (tree_low_cst (DECL_FIELD_OFFSET (fdecl), 1) * 8) 
    + tree_low_cst (DECL_FIELD_BIT_OFFSET (fdecl), 1);
}

/* Given a TYPE, and a vector of field offsets FIELDSTACK, push all the fields
   of TYPE onto fieldstack, recording their offsets along the way.
   OFFSET is used to keep track of the offset in this entire structure, rather
   than just the immediately containing structure.  Returns the number
   of fields pushed. */

static int
push_fields_onto_fieldstack (tree type, VEC(fieldoff_s,heap) **fieldstack, 
			     HOST_WIDE_INT offset)
{
  tree field;
  int count = 0;

  for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
    if (TREE_CODE (field) == FIELD_DECL)
      {
	bool push = false;
      
	if (!var_can_have_subvars (field))
	  push = true;
	else if (!(push_fields_onto_fieldstack
		   (TREE_TYPE (field), fieldstack,
		    offset + bitpos_of_field (field)))
		 && DECL_SIZE (field)
		 && !integer_zerop (DECL_SIZE (field)))
	  /* Empty structures may have actual size, like in C++. So
	     see if we didn't push any subfields and the size is
	     nonzero, push the field onto the stack */
	  push = true;
	
	if (push)
	  {
	    fieldoff_s *pair;

	    pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
	    pair->field = field;
	    pair->offset = offset + bitpos_of_field (field);
	    count++;
	  }
      }
  return count;
}


/* This represents the used range of a variable.  */

typedef struct used_part
{
  HOST_WIDE_INT minused;
  HOST_WIDE_INT maxused;
  /* True if we have an explicit use/def of some portion of this variable,
     even if it is all of it. i.e. a.b = 5 or temp = a.b.  */
  bool explicit_uses;
  /* True if we have an implicit use/def of some portion of this
     variable.  Implicit uses occur when we can't tell what part we
     are referencing, and have to make conservative assumptions.  */
  bool implicit_uses;
} *used_part_t;

/* An array of used_part structures, indexed by variable uid.  */

static used_part_t *used_portions;

/* Given a variable uid, UID, get or create the entry in the used portions
   table for the variable.  */

static used_part_t
get_or_create_used_part_for (size_t uid)
{
  used_part_t up;
  if (used_portions[uid] == NULL)
    {
      up = xcalloc (1, sizeof (struct used_part));
      up->minused = INT_MAX;
      up->maxused = 0;
      up->explicit_uses = false;
      up->implicit_uses = false;
    }
  else
    up = used_portions[uid];
  return up;
}

/* qsort comparison function for two fieldoff's PA and PB */

static int 
fieldoff_compare (const void *pa, const void *pb)
{
  const fieldoff_s *foa = (const fieldoff_s *)pa;
  const fieldoff_s *fob = (const fieldoff_s *)pb;
  HOST_WIDE_INT foasize, fobsize;
  
  if (foa->offset != fob->offset)
    return foa->offset - fob->offset;

  foasize = TREE_INT_CST_LOW (DECL_SIZE (foa->field));
  fobsize = TREE_INT_CST_LOW (DECL_SIZE (fob->field));
  return foasize - fobsize;
}

/* Given an aggregate VAR, create the subvariables that represent its
   fields.  */

static void
create_overlap_variables_for (tree var)
{
  VEC(fieldoff_s,heap) *fieldstack = NULL;
  used_part_t up;
  size_t uid = var_ann (var)->uid;

  if (used_portions[uid] == NULL)
    return;

  up = used_portions[uid];
  push_fields_onto_fieldstack (TREE_TYPE (var), &fieldstack, 0);
  if (VEC_length (fieldoff_s, fieldstack) != 0)
    {
      subvar_t *subvars;
      fieldoff_s *fo;
      bool notokay = false;
      int fieldcount = 0;
      int i;
      HOST_WIDE_INT lastfooffset = -1;
      HOST_WIDE_INT lastfosize = -1;
      tree lastfotype = NULL_TREE;

      /* Not all fields have DECL_SIZE set, and those that don't, we don't
	 know their size, and thus, can't handle.
	 The same is true of fields with DECL_SIZE that is not an integer
	 constant (such as variable sized fields).
	 Fields with offsets which are not constant will have an offset < 0 
	 We *could* handle fields that are constant sized arrays, but
	 currently don't.  Doing so would require some extra changes to
	 tree-ssa-operands.c.  */

      for (i = 0; VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
	{
	  if (!DECL_SIZE (fo->field) 
	      || TREE_CODE (DECL_SIZE (fo->field)) != INTEGER_CST
	      || TREE_CODE (TREE_TYPE (fo->field)) == ARRAY_TYPE
	      || fo->offset < 0)
	    {
	      notokay = true;
	      break;
	    }
          fieldcount++;
	}

      /* The current heuristic we use is as follows:
	 If the variable has no used portions in this function, no
	 structure vars are created for it.
	 Otherwise,
         If the variable has less than SALIAS_MAX_IMPLICIT_FIELDS,
	 we always create structure vars for them.
	 If the variable has more than SALIAS_MAX_IMPLICIT_FIELDS, and
	 some explicit uses, we create structure vars for them.
	 If the variable has more than SALIAS_MAX_IMPLICIT_FIELDS, and
	 no explicit uses, we do not create structure vars for them.
      */
      
      if (fieldcount >= SALIAS_MAX_IMPLICIT_FIELDS
	  && !up->explicit_uses)
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "Variable ");
	      print_generic_expr (dump_file, var, 0);
	      fprintf (dump_file, " has no explicit uses in this function, and is > SALIAS_MAX_IMPLICIT_FIELDS, so skipping\n");
	    }
	  notokay = true;
	}
      
      /* Bail out, if we can't create overlap variables.  */
      if (notokay)
	{
	  VEC_free (fieldoff_s, heap, fieldstack);
	  return;
	}
      
      /* Otherwise, create the variables.  */
      subvars = lookup_subvars_for_var (var);
      
      qsort (VEC_address (fieldoff_s, fieldstack), 
	     VEC_length (fieldoff_s, fieldstack), 
	     sizeof (fieldoff_s),
	     fieldoff_compare);

      for (i = VEC_length (fieldoff_s, fieldstack);
	   VEC_iterate (fieldoff_s, fieldstack, --i, fo);)
	{
	  subvar_t sv;
	  HOST_WIDE_INT fosize;
	  var_ann_t ann;
	  tree currfotype;

	  fosize = TREE_INT_CST_LOW (DECL_SIZE (fo->field));
	  currfotype = TREE_TYPE (fo->field);

	  /* If this field isn't in the used portion,
	     or it has the exact same offset and size as the last
	     field, skip it.  */

	  if (((fo->offset <= up->minused
		&& fo->offset + fosize <= up->minused)
	       || fo->offset >= up->maxused)
	      || (fo->offset == lastfooffset
		  && fosize == lastfosize
		  && currfotype == lastfotype))
	    continue;
	  sv = ggc_alloc (sizeof (struct subvar));
	  sv->offset = fo->offset;
	  sv->size = fosize;
	  sv->next = *subvars;
	  sv->var = create_tmp_var_raw (TREE_TYPE (fo->field), "SFT");
	  if (dump_file)
	    {
	      fprintf (dump_file, "structure field tag %s created for var %s",
		       get_name (sv->var), get_name (var));
	      fprintf (dump_file, " offset " HOST_WIDE_INT_PRINT_DEC,
		       sv->offset);
	      fprintf (dump_file, " size " HOST_WIDE_INT_PRINT_DEC,
		       sv->size);
	      fprintf (dump_file, "\n");
	    }
	  
	  /* We need to copy the various flags from var to sv->var, so that
	     they are is_global_var iff the original variable was.  */

	  DECL_EXTERNAL (sv->var) = DECL_EXTERNAL (var);
	  TREE_PUBLIC  (sv->var) = TREE_PUBLIC (var);
	  TREE_STATIC (sv->var) = TREE_STATIC (var);
	  TREE_READONLY (sv->var) = TREE_READONLY (var);

	  /* Like other memory tags, these need to be marked addressable to
	     keep is_gimple_reg from thinking they are real.  */
	  TREE_ADDRESSABLE (sv->var) = 1;

	  DECL_CONTEXT (sv->var) = DECL_CONTEXT (var);

	  ann = get_var_ann (sv->var);
	  ann->mem_tag_kind = STRUCT_FIELD; 
	  ann->type_mem_tag = NULL;  	
	  add_referenced_tmp_var (sv->var);
	  
	  lastfotype = currfotype;
	  lastfooffset = fo->offset;
	  lastfosize = fosize;
	  *subvars = sv;
	}

      /* Once we have created subvars, the original is no longer call
	 clobbered on its own.  Its call clobbered status depends
	 completely on the call clobbered status of the subvars.

	 add_referenced_var in the above loop will take care of
	 marking subvars of global variables as call clobbered for us
	 to start, since they are global as well.  */
      clear_call_clobbered (var);
    }

  VEC_free (fieldoff_s, heap, fieldstack);
}


/* Find the conservative answer to the question of what portions of what 
   structures are used by this statement.  We assume that if we have a
   component ref with a known size + offset, that we only need that part
   of the structure.  For unknown cases, or cases where we do something
   to the whole structure, we assume we need to create fields for the 
   entire structure.  */

static tree
find_used_portions (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
{
  switch (TREE_CODE (*tp))
    {
    case COMPONENT_REF:
      {
	HOST_WIDE_INT bitsize;
	HOST_WIDE_INT bitpos;
	tree offset;
	enum machine_mode mode;
	int unsignedp;
	int volatilep;	
	tree ref;
	ref = get_inner_reference (*tp, &bitsize, &bitpos, &offset, &mode,
				   &unsignedp, &volatilep, false);
	if (DECL_P (ref) && offset == NULL && bitsize != -1)
	  {	    
	    size_t uid = var_ann (ref)->uid;
	    used_part_t up;

	    up = get_or_create_used_part_for (uid);	    

	    if (bitpos <= up->minused)
	      up->minused = bitpos;
	    if ((bitpos + bitsize >= up->maxused))
	      up->maxused = bitpos + bitsize;	    

	    up->explicit_uses = true;
	    used_portions[uid] = up;

	    *walk_subtrees = 0;
	    return NULL_TREE;
	  }
	else if (DECL_P (ref))
	  {
	    if (DECL_SIZE (ref)
		&& var_can_have_subvars (ref)
		&& TREE_CODE (DECL_SIZE (ref)) == INTEGER_CST)
	      {
		used_part_t up;
		size_t uid = var_ann (ref)->uid;

		up = get_or_create_used_part_for (uid);

		up->minused = 0;
		up->maxused = TREE_INT_CST_LOW (DECL_SIZE (ref));

		up->implicit_uses = true;

		used_portions[uid] = up;

		*walk_subtrees = 0;
		return NULL_TREE;
	      }
	  }
      }
      break;
    case VAR_DECL:
    case PARM_DECL:
      {
	tree var = *tp;
	if (DECL_SIZE (var)
	    && var_can_have_subvars (var)
	    && TREE_CODE (DECL_SIZE (var)) == INTEGER_CST)
	  {
	    used_part_t up;
	    size_t uid = var_ann (var)->uid;	    
	    
	    up = get_or_create_used_part_for (uid);
 
	    up->minused = 0;
	    up->maxused = TREE_INT_CST_LOW (DECL_SIZE (var));
	    up->implicit_uses = true;

	    used_portions[uid] = up;
	    *walk_subtrees = 0;
	    return NULL_TREE;
	  }
      }
      break;
      
    default:
      break;
      
    }
  return NULL_TREE;
}

/* We are about to create some new referenced variables, and we need the
   before size.  */

static size_t old_referenced_vars;


/* Create structure field variables for structures used in this function.  */

static void
create_structure_vars (void)
{
  basic_block bb;
  size_t i;

  old_referenced_vars = num_referenced_vars;
  used_portions = xcalloc (num_referenced_vars, sizeof (used_part_t));
  
  FOR_EACH_BB (bb)
    {
      block_stmt_iterator bsi;
      for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
	{
	  walk_tree_without_duplicates (bsi_stmt_ptr (bsi), 
					find_used_portions,
					NULL);
	}
    }
  for (i = 0; i < old_referenced_vars; i++)
    {
      tree var = referenced_var (i);
      /* The C++ FE creates vars without DECL_SIZE set, for some reason.  */
      if (var 	  
	  && DECL_SIZE (var)
	  && var_can_have_subvars (var)
	  && var_ann (var)->mem_tag_kind == NOT_A_TAG
	  && TREE_CODE (DECL_SIZE (var)) == INTEGER_CST)
	create_overlap_variables_for (var);
    }
  for (i = 0; i < old_referenced_vars; i++)
    free (used_portions[i]);

  free (used_portions);
}

static bool
gate_structure_vars (void)
{
  return flag_tree_salias != 0;
}

struct tree_opt_pass pass_create_structure_vars = 
{
  "salias",		 /* name */
  gate_structure_vars,	 /* gate */
  create_structure_vars, /* execute */
  NULL,			 /* sub */
  NULL,			 /* next */
  0,			 /* static_pass_number */
  0,			 /* tv_id */
  PROP_cfg,		 /* properties_required */
  0,			 /* properties_provided */
  0,			 /* properties_destroyed */
  0,			 /* todo_flags_start */
  TODO_dump_func,	 /* todo_flags_finish */
  0			 /* letter */
};