summaryrefslogtreecommitdiff
path: root/gcc/tree-sra.c
blob: 6d1a1781c1cd9efdb34fe033a079a23e45f9f4c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
/* Scalar Replacement of Aggregates (SRA) converts some structure
   references into scalar references, exposing them to the scalar
   optimizers.
   Copyright (C) 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
   Contributed by Diego Novillo <dnovillo@redhat.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"

/* These RTL headers are needed for basic-block.h.  */
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "langhooks.h"
#include "tree-inline.h"
#include "tree-flow.h"
#include "tree-gimple.h"
#include "tree-dump.h"
#include "tree-pass.h"
#include "timevar.h"
#include "flags.h"
#include "bitmap.h"
#include "obstack.h"
#include "target.h"
/* expr.h is needed for MOVE_RATIO.  */
#include "expr.h"
#include "params.h"


/* This object of this pass is to replace a non-addressable aggregate with a
   set of independent variables.  Most of the time, all of these variables
   will be scalars.  But a secondary objective is to break up larger
   aggregates into smaller aggregates.  In the process we may find that some
   bits of the larger aggregate can be deleted as unreferenced.

   This substitution is done globally.  More localized substitutions would
   be the purvey of a load-store motion pass.

   The optimization proceeds in phases:

     (1) Identify variables that have types that are candidates for
	 decomposition.

     (2) Scan the function looking for the ways these variables are used.
	 In particular we're interested in the number of times a variable
	 (or member) is needed as a complete unit, and the number of times
	 a variable (or member) is copied.

     (3) Based on the usage profile, instantiate substitution variables.

     (4) Scan the function making replacements.
*/


/* The set of aggregate variables that are candidates for scalarization.  */
static bitmap sra_candidates;

/* Set of scalarizable PARM_DECLs that need copy-in operations at the
   beginning of the function.  */
static bitmap needs_copy_in;

/* Sets of bit pairs that cache type decomposition and instantiation.  */
static bitmap sra_type_decomp_cache;
static bitmap sra_type_inst_cache;

/* One of these structures is created for each candidate aggregate
   and each (accessed) member of such an aggregate.  */
struct sra_elt
{
  /* A tree of the elements.  Used when we want to traverse everything.  */
  struct sra_elt *parent;
  struct sra_elt *children;
  struct sra_elt *sibling;

  /* If this element is a root, then this is the VAR_DECL.  If this is
     a sub-element, this is some token used to identify the reference.
     In the case of COMPONENT_REF, this is the FIELD_DECL.  In the case
     of an ARRAY_REF, this is the (constant) index.  In the case of a
     complex number, this is a zero or one.  */
  tree element;

  /* The type of the element.  */
  tree type;

  /* A VAR_DECL, for any sub-element we've decided to replace.  */
  tree replacement;

  /* The number of times the element is referenced as a whole.  I.e.
     given "a.b.c", this would be incremented for C, but not for A or B.  */
  unsigned int n_uses;

  /* The number of times the element is copied to or from another
     scalarizable element.  */
  unsigned int n_copies;

  /* True if TYPE is scalar.  */
  bool is_scalar;

  /* True if we saw something about this element that prevents scalarization,
     such as non-constant indexing.  */
  bool cannot_scalarize;

  /* True if we've decided that structure-to-structure assignment
     should happen via memcpy and not per-element.  */
  bool use_block_copy;

  /* True if everything under this element has been marked TREE_NO_WARNING.  */
  bool all_no_warning;

  /* A flag for use with/after random access traversals.  */
  bool visited;
};

/* Random access to the child of a parent is performed by hashing.
   This prevents quadratic behavior, and allows SRA to function
   reasonably on larger records.  */
static htab_t sra_map;

/* All structures are allocated out of the following obstack.  */
static struct obstack sra_obstack;

/* Debugging functions.  */
static void dump_sra_elt_name (FILE *, struct sra_elt *);
extern void debug_sra_elt_name (struct sra_elt *);

/* Forward declarations.  */
static tree generate_element_ref (struct sra_elt *);

/* Return true if DECL is an SRA candidate.  */

static bool
is_sra_candidate_decl (tree decl)
{
  return DECL_P (decl) && bitmap_bit_p (sra_candidates, DECL_UID (decl));
}

/* Return true if TYPE is a scalar type.  */

static bool
is_sra_scalar_type (tree type)
{
  enum tree_code code = TREE_CODE (type);
  return (code == INTEGER_TYPE || code == REAL_TYPE || code == VECTOR_TYPE
	  || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE
	  || code == POINTER_TYPE || code == OFFSET_TYPE
	  || code == REFERENCE_TYPE);
}

/* Return true if TYPE can be decomposed into a set of independent variables.

   Note that this doesn't imply that all elements of TYPE can be
   instantiated, just that if we decide to break up the type into
   separate pieces that it can be done.  */

bool
sra_type_can_be_decomposed_p (tree type)
{
  unsigned int cache = TYPE_UID (TYPE_MAIN_VARIANT (type)) * 2;
  tree t;

  /* Avoid searching the same type twice.  */
  if (bitmap_bit_p (sra_type_decomp_cache, cache+0))
    return true;
  if (bitmap_bit_p (sra_type_decomp_cache, cache+1))
    return false;

  /* The type must have a definite nonzero size.  */
  if (TYPE_SIZE (type) == NULL || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
      || integer_zerop (TYPE_SIZE (type)))
    goto fail;

  /* The type must be a non-union aggregate.  */
  switch (TREE_CODE (type))
    {
    case RECORD_TYPE:
      {
	bool saw_one_field = false;

	for (t = TYPE_FIELDS (type); t ; t = TREE_CHAIN (t))
	  if (TREE_CODE (t) == FIELD_DECL)
	    {
	      /* Reject incorrectly represented bit fields.  */
	      if (DECL_BIT_FIELD (t)
		  && (tree_low_cst (DECL_SIZE (t), 1)
		      != TYPE_PRECISION (TREE_TYPE (t))))
		goto fail;

	      saw_one_field = true;
	    }

	/* Record types must have at least one field.  */
	if (!saw_one_field)
	  goto fail;
      }
      break;

    case ARRAY_TYPE:
      /* Array types must have a fixed lower and upper bound.  */
      t = TYPE_DOMAIN (type);
      if (t == NULL)
	goto fail;
      if (TYPE_MIN_VALUE (t) == NULL || !TREE_CONSTANT (TYPE_MIN_VALUE (t)))
	goto fail;
      if (TYPE_MAX_VALUE (t) == NULL || !TREE_CONSTANT (TYPE_MAX_VALUE (t)))
	goto fail;
      break;

    case COMPLEX_TYPE:
      break;

    default:
      goto fail;
    }

  bitmap_set_bit (sra_type_decomp_cache, cache+0);
  return true;

 fail:
  bitmap_set_bit (sra_type_decomp_cache, cache+1);
  return false;
}

/* Return true if DECL can be decomposed into a set of independent
   (though not necessarily scalar) variables.  */

static bool
decl_can_be_decomposed_p (tree var)
{
  /* Early out for scalars.  */
  if (is_sra_scalar_type (TREE_TYPE (var)))
    return false;

  /* The variable must not be aliased.  */
  if (!is_gimple_non_addressable (var))
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "Cannot scalarize variable ");
	  print_generic_expr (dump_file, var, dump_flags);
	  fprintf (dump_file, " because it must live in memory\n");
	}
      return false;
    }

  /* The variable must not be volatile.  */
  if (TREE_THIS_VOLATILE (var))
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "Cannot scalarize variable ");
	  print_generic_expr (dump_file, var, dump_flags);
	  fprintf (dump_file, " because it is declared volatile\n");
	}
      return false;
    }

  /* We must be able to decompose the variable's type.  */
  if (!sra_type_can_be_decomposed_p (TREE_TYPE (var)))
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "Cannot scalarize variable ");
	  print_generic_expr (dump_file, var, dump_flags);
	  fprintf (dump_file, " because its type cannot be decomposed\n");
	}
      return false;
    }

  return true;
}

/* Return true if TYPE can be *completely* decomposed into scalars.  */

static bool
type_can_instantiate_all_elements (tree type)
{
  if (is_sra_scalar_type (type))
    return true;
  if (!sra_type_can_be_decomposed_p (type))
    return false;

  switch (TREE_CODE (type))
    {
    case RECORD_TYPE:
      {
	unsigned int cache = TYPE_UID (TYPE_MAIN_VARIANT (type)) * 2;
	tree f;

	if (bitmap_bit_p (sra_type_inst_cache, cache+0))
	  return true;
	if (bitmap_bit_p (sra_type_inst_cache, cache+1))
	  return false;

	for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
	  if (TREE_CODE (f) == FIELD_DECL)
	    {
	      if (!type_can_instantiate_all_elements (TREE_TYPE (f)))
		{
		  bitmap_set_bit (sra_type_inst_cache, cache+1);
		  return false;
		}
	    }

	bitmap_set_bit (sra_type_inst_cache, cache+0);
	return true;
      }

    case ARRAY_TYPE:
      return type_can_instantiate_all_elements (TREE_TYPE (type));

    case COMPLEX_TYPE:
      return true;

    default:
      gcc_unreachable ();
    }
}

/* Test whether ELT or some sub-element cannot be scalarized.  */

static bool
can_completely_scalarize_p (struct sra_elt *elt)
{
  struct sra_elt *c;

  if (elt->cannot_scalarize)
    return false;

  for (c = elt->children; c ; c = c->sibling)
    if (!can_completely_scalarize_p (c))
      return false;

  return true;
}


/* A simplified tree hashing algorithm that only handles the types of
   trees we expect to find in sra_elt->element.  */

static hashval_t
sra_hash_tree (tree t)
{
  hashval_t h;

  switch (TREE_CODE (t))
    {
    case VAR_DECL:
    case PARM_DECL:
    case RESULT_DECL:
      h = DECL_UID (t);
      break;

    case INTEGER_CST:
      h = TREE_INT_CST_LOW (t) ^ TREE_INT_CST_HIGH (t);
      break;

    case FIELD_DECL:
      /* We can have types that are compatible, but have different member
	 lists, so we can't hash fields by ID.  Use offsets instead.  */
      h = iterative_hash_expr (DECL_FIELD_OFFSET (t), 0);
      h = iterative_hash_expr (DECL_FIELD_BIT_OFFSET (t), h);
      break;

    default:
      gcc_unreachable ();
    }

  return h;
}

/* Hash function for type SRA_PAIR.  */

static hashval_t
sra_elt_hash (const void *x)
{
  const struct sra_elt *e = x;
  const struct sra_elt *p;
  hashval_t h;

  h = sra_hash_tree (e->element);

  /* Take into account everything back up the chain.  Given that chain
     lengths are rarely very long, this should be acceptable.  If we
     truly identify this as a performance problem, it should work to
     hash the pointer value "e->parent".  */
  for (p = e->parent; p ; p = p->parent)
    h = (h * 65521) ^ sra_hash_tree (p->element);

  return h;
}

/* Equality function for type SRA_PAIR.  */

static int
sra_elt_eq (const void *x, const void *y)
{
  const struct sra_elt *a = x;
  const struct sra_elt *b = y;
  tree ae, be;

  if (a->parent != b->parent)
    return false;

  ae = a->element;
  be = b->element;

  if (ae == be)
    return true;
  if (TREE_CODE (ae) != TREE_CODE (be))
    return false;

  switch (TREE_CODE (ae))
    {
    case VAR_DECL:
    case PARM_DECL:
    case RESULT_DECL:
      /* These are all pointer unique.  */
      return false;

    case INTEGER_CST:
      /* Integers are not pointer unique, so compare their values.  */
      return tree_int_cst_equal (ae, be);

    case FIELD_DECL:
      /* Fields are unique within a record, but not between
	 compatible records.  */
      if (DECL_FIELD_CONTEXT (ae) == DECL_FIELD_CONTEXT (be))
	return false;
      return fields_compatible_p (ae, be);

    default:
      gcc_unreachable ();
    }
}

/* Create or return the SRA_ELT structure for CHILD in PARENT.  PARENT
   may be null, in which case CHILD must be a DECL.  */

static struct sra_elt *
lookup_element (struct sra_elt *parent, tree child, tree type,
		enum insert_option insert)
{
  struct sra_elt dummy;
  struct sra_elt **slot;
  struct sra_elt *elt;

  dummy.parent = parent;
  dummy.element = child;

  slot = (struct sra_elt **) htab_find_slot (sra_map, &dummy, insert);
  if (!slot && insert == NO_INSERT)
    return NULL;

  elt = *slot;
  if (!elt && insert == INSERT)
    {
      *slot = elt = obstack_alloc (&sra_obstack, sizeof (*elt));
      memset (elt, 0, sizeof (*elt));

      elt->parent = parent;
      elt->element = child;
      elt->type = type;
      elt->is_scalar = is_sra_scalar_type (type);

      if (parent)
	{
	  elt->sibling = parent->children;
	  parent->children = elt;
	}

      /* If this is a parameter, then if we want to scalarize, we have
	 one copy from the true function parameter.  Count it now.  */
      if (TREE_CODE (child) == PARM_DECL)
	{
	  elt->n_copies = 1;
	  bitmap_set_bit (needs_copy_in, DECL_UID (child));
	}
    }

  return elt;
}

/* Return true if the ARRAY_REF in EXPR is a constant, in bounds access.  */

static bool
is_valid_const_index (tree expr)
{
  tree dom, t, index = TREE_OPERAND (expr, 1);

  if (TREE_CODE (index) != INTEGER_CST)
    return false;

  /* Watch out for stupid user tricks, indexing outside the array.

     Careful, we're not called only on scalarizable types, so do not
     assume constant array bounds.  We needn't do anything with such
     cases, since they'll be referring to objects that we should have
     already rejected for scalarization, so returning false is fine.  */

  dom = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (expr, 0)));
  if (dom == NULL)
    return false;

  t = TYPE_MIN_VALUE (dom);
  if (!t || TREE_CODE (t) != INTEGER_CST)
    return false;
  if (tree_int_cst_lt (index, t))
    return false;

  t = TYPE_MAX_VALUE (dom);
  if (!t || TREE_CODE (t) != INTEGER_CST)
    return false;
  if (tree_int_cst_lt (t, index))
    return false;

  return true;
}

/* Create or return the SRA_ELT structure for EXPR if the expression
   refers to a scalarizable variable.  */

static struct sra_elt *
maybe_lookup_element_for_expr (tree expr)
{
  struct sra_elt *elt;
  tree child;

  switch (TREE_CODE (expr))
    {
    case VAR_DECL:
    case PARM_DECL:
    case RESULT_DECL:
      if (is_sra_candidate_decl (expr))
	return lookup_element (NULL, expr, TREE_TYPE (expr), INSERT);
      return NULL;

    case ARRAY_REF:
      /* We can't scalarize variable array indicies.  */
      if (is_valid_const_index (expr))
        child = TREE_OPERAND (expr, 1);
      else
	return NULL;
      break;

    case COMPONENT_REF:
      /* Don't look through unions.  */
      if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) != RECORD_TYPE)
	return NULL;
      child = TREE_OPERAND (expr, 1);
      break;

    case REALPART_EXPR:
      child = integer_zero_node;
      break;
    case IMAGPART_EXPR:
      child = integer_one_node;
      break;

    default:
      return NULL;
    }

  elt = maybe_lookup_element_for_expr (TREE_OPERAND (expr, 0));
  if (elt)
    return lookup_element (elt, child, TREE_TYPE (expr), INSERT);
  return NULL;
}


/* Functions to walk just enough of the tree to see all scalarizable
   references, and categorize them.  */

/* A set of callbacks for phases 2 and 4.  They'll be invoked for the
   various kinds of references seen.  In all cases, *BSI is an iterator
   pointing to the statement being processed.  */
struct sra_walk_fns
{
  /* Invoked when ELT is required as a unit.  Note that ELT might refer to
     a leaf node, in which case this is a simple scalar reference.  *EXPR_P
     points to the location of the expression.  IS_OUTPUT is true if this
     is a left-hand-side reference.  USE_ALL is true if we saw something we
     couldn't quite identify and had to force the use of the entire object.  */
  void (*use) (struct sra_elt *elt, tree *expr_p,
	       block_stmt_iterator *bsi, bool is_output, bool use_all);

  /* Invoked when we have a copy between two scalarizable references.  */
  void (*copy) (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
		block_stmt_iterator *bsi);

  /* Invoked when ELT is initialized from a constant.  VALUE may be NULL,
     in which case it should be treated as an empty CONSTRUCTOR.  */
  void (*init) (struct sra_elt *elt, tree value, block_stmt_iterator *bsi);

  /* Invoked when we have a copy between one scalarizable reference ELT
     and one non-scalarizable reference OTHER.  IS_OUTPUT is true if ELT
     is on the left-hand side.  */
  void (*ldst) (struct sra_elt *elt, tree other,
		block_stmt_iterator *bsi, bool is_output);

  /* True during phase 2, false during phase 4.  */
  /* ??? This is a hack.  */
  bool initial_scan;
};

#ifdef ENABLE_CHECKING
/* Invoked via walk_tree, if *TP contains a candidate decl, return it.  */

static tree
sra_find_candidate_decl (tree *tp, int *walk_subtrees,
			 void *data ATTRIBUTE_UNUSED)
{
  tree t = *tp;
  enum tree_code code = TREE_CODE (t);

  if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
    {
      *walk_subtrees = 0;
      if (is_sra_candidate_decl (t))
	return t;
    }
  else if (TYPE_P (t))
    *walk_subtrees = 0;

  return NULL;
}
#endif

/* Walk most expressions looking for a scalarizable aggregate.
   If we find one, invoke FNS->USE.  */

static void
sra_walk_expr (tree *expr_p, block_stmt_iterator *bsi, bool is_output,
	       const struct sra_walk_fns *fns)
{
  tree expr = *expr_p;
  tree inner = expr;
  bool disable_scalarization = false;
  bool use_all_p = false;

  /* We're looking to collect a reference expression between EXPR and INNER,
     such that INNER is a scalarizable decl and all other nodes through EXPR
     are references that we can scalarize.  If we come across something that
     we can't scalarize, we reset EXPR.  This has the effect of making it
     appear that we're referring to the larger expression as a whole.  */

  while (1)
    switch (TREE_CODE (inner))
      {
      case VAR_DECL:
      case PARM_DECL:
      case RESULT_DECL:
	/* If there is a scalarizable decl at the bottom, then process it.  */
	if (is_sra_candidate_decl (inner))
	  {
	    struct sra_elt *elt = maybe_lookup_element_for_expr (expr);
	    if (disable_scalarization)
	      elt->cannot_scalarize = true;
	    else
	      fns->use (elt, expr_p, bsi, is_output, use_all_p);
	  }
	return;

      case ARRAY_REF:
	/* Non-constant index means any member may be accessed.  Prevent the
	   expression from being scalarized.  If we were to treat this as a
	   reference to the whole array, we can wind up with a single dynamic
	   index reference inside a loop being overridden by several constant
	   index references during loop setup.  It's possible that this could
	   be avoided by using dynamic usage counts based on BB trip counts
	   (based on loop analysis or profiling), but that hardly seems worth
	   the effort.  */
	/* ??? Hack.  Figure out how to push this into the scan routines
	   without duplicating too much code.  */
	if (!is_valid_const_index (inner))
	  {
	    disable_scalarization = true;
	    goto use_all;
	  }
	/* ??? Are we assured that non-constant bounds and stride will have
	   the same value everywhere?  I don't think Fortran will...  */
	if (TREE_OPERAND (inner, 2) || TREE_OPERAND (inner, 3))
	  goto use_all;
	inner = TREE_OPERAND (inner, 0);
	break;

      case COMPONENT_REF:
	/* A reference to a union member constitutes a reference to the
	   entire union.  */
	if (TREE_CODE (TREE_TYPE (TREE_OPERAND (inner, 0))) != RECORD_TYPE)
	  goto use_all;
	/* ??? See above re non-constant stride.  */
	if (TREE_OPERAND (inner, 2))
	  goto use_all;
	inner = TREE_OPERAND (inner, 0);
	break;

      case REALPART_EXPR:
      case IMAGPART_EXPR:
	inner = TREE_OPERAND (inner, 0);
	break;

      case BIT_FIELD_REF:
	/* A bit field reference (access to *multiple* fields simultaneously)
	   is not currently scalarized.  Consider this an access to the
	   complete outer element, to which walk_tree will bring us next.  */
	goto use_all;

      case ARRAY_RANGE_REF:
	/* Similarly, a subrange reference is used to modify indexing.  Which
	   means that the canonical element names that we have won't work.  */
	goto use_all;

      case VIEW_CONVERT_EXPR:
      case NOP_EXPR:
	/* Similarly, a view/nop explicitly wants to look at an object in a
	   type other than the one we've scalarized.  */
	goto use_all;

      case WITH_SIZE_EXPR:
	/* This is a transparent wrapper.  The entire inner expression really
	   is being used.  */
	goto use_all;

      use_all:
        expr_p = &TREE_OPERAND (inner, 0);
	inner = expr = *expr_p;
	use_all_p = true;
	break;

      default:
#ifdef ENABLE_CHECKING
	/* Validate that we're not missing any references.  */
	gcc_assert (!walk_tree (&inner, sra_find_candidate_decl, NULL, NULL));
#endif
	return;
      }
}

/* Walk a TREE_LIST of values looking for scalarizable aggregates.
   If we find one, invoke FNS->USE.  */

static void
sra_walk_tree_list (tree list, block_stmt_iterator *bsi, bool is_output,
		    const struct sra_walk_fns *fns)
{
  tree op;
  for (op = list; op ; op = TREE_CHAIN (op))
    sra_walk_expr (&TREE_VALUE (op), bsi, is_output, fns);
}

/* Walk the arguments of a CALL_EXPR looking for scalarizable aggregates.
   If we find one, invoke FNS->USE.  */

static void
sra_walk_call_expr (tree expr, block_stmt_iterator *bsi,
		    const struct sra_walk_fns *fns)
{
  sra_walk_tree_list (TREE_OPERAND (expr, 1), bsi, false, fns);
}

/* Walk the inputs and outputs of an ASM_EXPR looking for scalarizable
   aggregates.  If we find one, invoke FNS->USE.  */

static void
sra_walk_asm_expr (tree expr, block_stmt_iterator *bsi,
		   const struct sra_walk_fns *fns)
{
  sra_walk_tree_list (ASM_INPUTS (expr), bsi, false, fns);
  sra_walk_tree_list (ASM_OUTPUTS (expr), bsi, true, fns);
}

/* Walk a MODIFY_EXPR and categorize the assignment appropriately.  */

static void
sra_walk_modify_expr (tree expr, block_stmt_iterator *bsi,
		      const struct sra_walk_fns *fns)
{
  struct sra_elt *lhs_elt, *rhs_elt;
  tree lhs, rhs;

  lhs = TREE_OPERAND (expr, 0);
  rhs = TREE_OPERAND (expr, 1);
  lhs_elt = maybe_lookup_element_for_expr (lhs);
  rhs_elt = maybe_lookup_element_for_expr (rhs);

  /* If both sides are scalarizable, this is a COPY operation.  */
  if (lhs_elt && rhs_elt)
    {
      fns->copy (lhs_elt, rhs_elt, bsi);
      return;
    }

  /* If the RHS is scalarizable, handle it.  There are only two cases.  */
  if (rhs_elt)
    {
      if (!rhs_elt->is_scalar)
	fns->ldst (rhs_elt, lhs, bsi, false);
      else
	fns->use (rhs_elt, &TREE_OPERAND (expr, 1), bsi, false, false);
    }

  /* If it isn't scalarizable, there may be scalarizable variables within, so
     check for a call or else walk the RHS to see if we need to do any
     copy-in operations.  We need to do it before the LHS is scalarized so
     that the statements get inserted in the proper place, before any
     copy-out operations.  */
  else
    {
      tree call = get_call_expr_in (rhs);
      if (call)
	sra_walk_call_expr (call, bsi, fns);
      else
	sra_walk_expr (&TREE_OPERAND (expr, 1), bsi, false, fns);
    }

  /* Likewise, handle the LHS being scalarizable.  We have cases similar
     to those above, but also want to handle RHS being constant.  */
  if (lhs_elt)
    {
      /* If this is an assignment from a constant, or constructor, then
	 we have access to all of the elements individually.  Invoke INIT.  */
      if (TREE_CODE (rhs) == COMPLEX_EXPR
	  || TREE_CODE (rhs) == COMPLEX_CST
	  || TREE_CODE (rhs) == CONSTRUCTOR)
	fns->init (lhs_elt, rhs, bsi);

      /* If this is an assignment from read-only memory, treat this as if
	 we'd been passed the constructor directly.  Invoke INIT.  */
      else if (TREE_CODE (rhs) == VAR_DECL
	       && TREE_STATIC (rhs)
	       && TREE_READONLY (rhs)
	       && targetm.binds_local_p (rhs))
	fns->init (lhs_elt, DECL_INITIAL (rhs), bsi);

      /* If this is a copy from a non-scalarizable lvalue, invoke LDST.
	 The lvalue requirement prevents us from trying to directly scalarize
	 the result of a function call.  Which would result in trying to call
	 the function multiple times, and other evil things.  */
      else if (!lhs_elt->is_scalar && is_gimple_addressable (rhs))
	fns->ldst (lhs_elt, rhs, bsi, true);

      /* Otherwise we're being used in some context that requires the
	 aggregate to be seen as a whole.  Invoke USE.  */
      else
	fns->use (lhs_elt, &TREE_OPERAND (expr, 0), bsi, true, false);
    }

  /* Similarly to above, LHS_ELT being null only means that the LHS as a
     whole is not a scalarizable reference.  There may be occurrences of
     scalarizable variables within, which implies a USE.  */
  else
    sra_walk_expr (&TREE_OPERAND (expr, 0), bsi, true, fns);
}

/* Entry point to the walk functions.  Search the entire function,
   invoking the callbacks in FNS on each of the references to
   scalarizable variables.  */

static void
sra_walk_function (const struct sra_walk_fns *fns)
{
  basic_block bb;
  block_stmt_iterator si, ni;

  /* ??? Phase 4 could derive some benefit to walking the function in
     dominator tree order.  */

  FOR_EACH_BB (bb)
    for (si = bsi_start (bb); !bsi_end_p (si); si = ni)
      {
	tree stmt, t;
	stmt_ann_t ann;

	stmt = bsi_stmt (si);
	ann = stmt_ann (stmt);

	ni = si;
	bsi_next (&ni);

	/* If the statement has no virtual operands, then it doesn't
	   make any structure references that we care about.  */
	if (ZERO_SSA_OPERANDS (stmt, (SSA_OP_VIRTUAL_DEFS | SSA_OP_VUSE)))
	  continue;

	switch (TREE_CODE (stmt))
	  {
	  case RETURN_EXPR:
	    /* If we have "return <retval>" then the return value is
	       already exposed for our pleasure.  Walk it as a USE to
	       force all the components back in place for the return.

	       If we have an embedded assignment, then <retval> is of
	       a type that gets returned in registers in this ABI, and
	       we do not wish to extend their lifetimes.  Treat this
	       as a USE of the variable on the RHS of this assignment.  */

	    t = TREE_OPERAND (stmt, 0);
	    if (TREE_CODE (t) == MODIFY_EXPR)
	      sra_walk_expr (&TREE_OPERAND (t, 1), &si, false, fns);
	    else
	      sra_walk_expr (&TREE_OPERAND (stmt, 0), &si, false, fns);
	    break;

	  case MODIFY_EXPR:
	    sra_walk_modify_expr (stmt, &si, fns);
	    break;
	  case CALL_EXPR:
	    sra_walk_call_expr (stmt, &si, fns);
	    break;
	  case ASM_EXPR:
	    sra_walk_asm_expr (stmt, &si, fns);
	    break;

	  default:
	    break;
	  }
      }
}

/* Phase One: Scan all referenced variables in the program looking for
   structures that could be decomposed.  */

static bool
find_candidates_for_sra (void)
{
  bool any_set = false;
  tree var;
  referenced_var_iterator rvi;

  FOR_EACH_REFERENCED_VAR (var, rvi)
    {
      if (decl_can_be_decomposed_p (var))
        {
          bitmap_set_bit (sra_candidates, DECL_UID (var));
          any_set = true;
        }
    }

  return any_set;
}


/* Phase Two: Scan all references to scalarizable variables.  Count the
   number of times they are used or copied respectively.  */

/* Callbacks to fill in SRA_WALK_FNS.  Everything but USE is
   considered a copy, because we can decompose the reference such that
   the sub-elements needn't be contiguous.  */

static void
scan_use (struct sra_elt *elt, tree *expr_p ATTRIBUTE_UNUSED,
	  block_stmt_iterator *bsi ATTRIBUTE_UNUSED,
	  bool is_output ATTRIBUTE_UNUSED, bool use_all ATTRIBUTE_UNUSED)
{
  elt->n_uses += 1;
}

static void
scan_copy (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
	   block_stmt_iterator *bsi ATTRIBUTE_UNUSED)
{
  lhs_elt->n_copies += 1;
  rhs_elt->n_copies += 1;
}

static void
scan_init (struct sra_elt *lhs_elt, tree rhs ATTRIBUTE_UNUSED,
	   block_stmt_iterator *bsi ATTRIBUTE_UNUSED)
{
  lhs_elt->n_copies += 1;
}

static void
scan_ldst (struct sra_elt *elt, tree other ATTRIBUTE_UNUSED,
	   block_stmt_iterator *bsi ATTRIBUTE_UNUSED,
	   bool is_output ATTRIBUTE_UNUSED)
{
  elt->n_copies += 1;
}

/* Dump the values we collected during the scanning phase.  */

static void
scan_dump (struct sra_elt *elt)
{
  struct sra_elt *c;

  dump_sra_elt_name (dump_file, elt);
  fprintf (dump_file, ": n_uses=%u n_copies=%u\n", elt->n_uses, elt->n_copies);

  for (c = elt->children; c ; c = c->sibling)
    scan_dump (c);
}

/* Entry point to phase 2.  Scan the entire function, building up
   scalarization data structures, recording copies and uses.  */

static void
scan_function (void)
{
  static const struct sra_walk_fns fns = {
    scan_use, scan_copy, scan_init, scan_ldst, true
  };
  bitmap_iterator bi;

  sra_walk_function (&fns);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      unsigned i;

      fputs ("\nScan results:\n", dump_file);
      EXECUTE_IF_SET_IN_BITMAP (sra_candidates, 0, i, bi)
	{
	  tree var = referenced_var (i);
	  struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
	  if (elt)
	    scan_dump (elt);
	}
      fputc ('\n', dump_file);
    }
}

/* Phase Three: Make decisions about which variables to scalarize, if any.
   All elements to be scalarized have replacement variables made for them.  */

/* A subroutine of build_element_name.  Recursively build the element
   name on the obstack.  */

static void
build_element_name_1 (struct sra_elt *elt)
{
  tree t;
  char buffer[32];

  if (elt->parent)
    {
      build_element_name_1 (elt->parent);
      obstack_1grow (&sra_obstack, '$');

      if (TREE_CODE (elt->parent->type) == COMPLEX_TYPE)
	{
	  if (elt->element == integer_zero_node)
	    obstack_grow (&sra_obstack, "real", 4);
	  else
	    obstack_grow (&sra_obstack, "imag", 4);
	  return;
	}
    }

  t = elt->element;
  if (TREE_CODE (t) == INTEGER_CST)
    {
      /* ??? Eh.  Don't bother doing double-wide printing.  */
      sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (t));
      obstack_grow (&sra_obstack, buffer, strlen (buffer));
    }
  else
    {
      tree name = DECL_NAME (t);
      if (name)
	obstack_grow (&sra_obstack, IDENTIFIER_POINTER (name),
		      IDENTIFIER_LENGTH (name));
      else
	{
	  sprintf (buffer, "D%u", DECL_UID (t));
	  obstack_grow (&sra_obstack, buffer, strlen (buffer));
	}
    }
}

/* Construct a pretty variable name for an element's replacement variable.
   The name is built on the obstack.  */

static char *
build_element_name (struct sra_elt *elt)
{
  build_element_name_1 (elt);
  obstack_1grow (&sra_obstack, '\0');
  return XOBFINISH (&sra_obstack, char *);
}

/* Instantiate an element as an independent variable.  */

static void
instantiate_element (struct sra_elt *elt)
{
  struct sra_elt *base_elt;
  tree var, base;

  for (base_elt = elt; base_elt->parent; base_elt = base_elt->parent)
    continue;
  base = base_elt->element;

  elt->replacement = var = make_rename_temp (elt->type, "SR");
  DECL_SOURCE_LOCATION (var) = DECL_SOURCE_LOCATION (base);
  DECL_ARTIFICIAL (var) = 1;

  if (TREE_THIS_VOLATILE (elt->type))
    {
      TREE_THIS_VOLATILE (var) = 1;
      TREE_SIDE_EFFECTS (var) = 1;
    }

  if (DECL_NAME (base) && !DECL_IGNORED_P (base))
    {
      char *pretty_name = build_element_name (elt);
      DECL_NAME (var) = get_identifier (pretty_name);
      obstack_free (&sra_obstack, pretty_name);

      SET_DECL_DEBUG_EXPR (var, generate_element_ref (elt));
      DECL_DEBUG_EXPR_IS_FROM (var) = 1;
      
      DECL_IGNORED_P (var) = 0;
      TREE_NO_WARNING (var) = TREE_NO_WARNING (base);
    }
  else
    {
      DECL_IGNORED_P (var) = 1;
      /* ??? We can't generate any warning that would be meaningful.  */
      TREE_NO_WARNING (var) = 1;
    }

  if (dump_file)
    {
      fputs ("  ", dump_file);
      dump_sra_elt_name (dump_file, elt);
      fputs (" -> ", dump_file);
      print_generic_expr (dump_file, var, dump_flags);
      fputc ('\n', dump_file);
    }
}

/* Make one pass across an element tree deciding whether or not it's
   profitable to instantiate individual leaf scalars.

   PARENT_USES and PARENT_COPIES are the sum of the N_USES and N_COPIES
   fields all the way up the tree.  */

static void
decide_instantiation_1 (struct sra_elt *elt, unsigned int parent_uses,
			unsigned int parent_copies)
{
  if (dump_file && !elt->parent)
    {
      fputs ("Initial instantiation for ", dump_file);
      dump_sra_elt_name (dump_file, elt);
      fputc ('\n', dump_file);
    }

  if (elt->cannot_scalarize)
    return;

  if (elt->is_scalar)
    {
      /* The decision is simple: instantiate if we're used more frequently
	 than the parent needs to be seen as a complete unit.  */
      if (elt->n_uses + elt->n_copies + parent_copies > parent_uses)
	instantiate_element (elt);
    }
  else
    {
      struct sra_elt *c;
      unsigned int this_uses = elt->n_uses + parent_uses;
      unsigned int this_copies = elt->n_copies + parent_copies;

      for (c = elt->children; c ; c = c->sibling)
	decide_instantiation_1 (c, this_uses, this_copies);
    }
}

/* Compute the size and number of all instantiated elements below ELT.
   We will only care about this if the size of the complete structure
   fits in a HOST_WIDE_INT, so we don't have to worry about overflow.  */

static unsigned int
sum_instantiated_sizes (struct sra_elt *elt, unsigned HOST_WIDE_INT *sizep)
{
  if (elt->replacement)
    {
      *sizep += TREE_INT_CST_LOW (TYPE_SIZE_UNIT (elt->type));
      return 1;
    }
  else
    {
      struct sra_elt *c;
      unsigned int count = 0;

      for (c = elt->children; c ; c = c->sibling)
	count += sum_instantiated_sizes (c, sizep);

      return count;
    }
}

/* Instantiate fields in ELT->TYPE that are not currently present as
   children of ELT.  */

static void instantiate_missing_elements (struct sra_elt *elt);

static void
instantiate_missing_elements_1 (struct sra_elt *elt, tree child, tree type)
{
  struct sra_elt *sub = lookup_element (elt, child, type, INSERT);
  if (sub->is_scalar)
    {
      if (sub->replacement == NULL)
	instantiate_element (sub);
    }
  else
    instantiate_missing_elements (sub);
}

static void
instantiate_missing_elements (struct sra_elt *elt)
{
  tree type = elt->type;

  switch (TREE_CODE (type))
    {
    case RECORD_TYPE:
      {
	tree f;
	for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
	  if (TREE_CODE (f) == FIELD_DECL)
	    instantiate_missing_elements_1 (elt, f, TREE_TYPE (f));
	break;
      }

    case ARRAY_TYPE:
      {
	tree i, max, subtype;

	i = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
	max = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
	subtype = TREE_TYPE (type);

	while (1)
	  {
	    instantiate_missing_elements_1 (elt, i, subtype);
	    if (tree_int_cst_equal (i, max))
	      break;
	    i = int_const_binop (PLUS_EXPR, i, integer_one_node, true);
	  }

	break;
      }

    case COMPLEX_TYPE:
      type = TREE_TYPE (type);
      instantiate_missing_elements_1 (elt, integer_zero_node, type);
      instantiate_missing_elements_1 (elt, integer_one_node, type);
      break;

    default:
      gcc_unreachable ();
    }
}

/* Make one pass across an element tree deciding whether to perform block
   or element copies.  If we decide on element copies, instantiate all
   elements.  Return true if there are any instantiated sub-elements.  */

static bool
decide_block_copy (struct sra_elt *elt)
{
  struct sra_elt *c;
  bool any_inst;

  /* If scalarization is disabled, respect it.  */
  if (elt->cannot_scalarize)
    {
      elt->use_block_copy = 1;

      if (dump_file)
	{
	  fputs ("Scalarization disabled for ", dump_file);
	  dump_sra_elt_name (dump_file, elt);
	  fputc ('\n', dump_file);
	}

      /* Disable scalarization of sub-elements */
      for (c = elt->children; c; c = c->sibling)
	{
	  c->cannot_scalarize = 1;
	  decide_block_copy (c);
	}
      return false;
    }

  /* Don't decide if we've no uses.  */
  if (elt->n_uses == 0 && elt->n_copies == 0)
    ;

  else if (!elt->is_scalar)
    {
      tree size_tree = TYPE_SIZE_UNIT (elt->type);
      bool use_block_copy = true;

      /* Tradeoffs for COMPLEX types pretty much always make it better
	 to go ahead and split the components.  */
      if (TREE_CODE (elt->type) == COMPLEX_TYPE)
	use_block_copy = false;

      /* Don't bother trying to figure out the rest if the structure is
	 so large we can't do easy arithmetic.  This also forces block
	 copies for variable sized structures.  */
      else if (host_integerp (size_tree, 1))
	{
	  unsigned HOST_WIDE_INT full_size, inst_size = 0;
	  unsigned int max_size, max_count, inst_count, full_count;

	  /* If the sra-max-structure-size parameter is 0, then the
	     user has not overridden the parameter and we can choose a
	     sensible default.  */
	  max_size = SRA_MAX_STRUCTURE_SIZE
	    ? SRA_MAX_STRUCTURE_SIZE
	    : MOVE_RATIO * UNITS_PER_WORD;
	  max_count = SRA_MAX_STRUCTURE_COUNT
	    ? SRA_MAX_STRUCTURE_COUNT
	    : MOVE_RATIO;

	  full_size = tree_low_cst (size_tree, 1);
	  full_count = count_type_elements (elt->type, false);
	  inst_count = sum_instantiated_sizes (elt, &inst_size);

	  /* ??? What to do here.  If there are two fields, and we've only
	     instantiated one, then instantiating the other is clearly a win.
	     If there are a large number of fields then the size of the copy
	     is much more of a factor.  */

	  /* If the structure is small, and we've made copies, go ahead
	     and instantiate, hoping that the copies will go away.  */
	  if (full_size <= max_size
	      && (full_count - inst_count) <= max_count
	      && elt->n_copies > elt->n_uses)
	    use_block_copy = false;
	  else if (inst_count * 100 >= full_count * SRA_FIELD_STRUCTURE_RATIO
		   && inst_size * 100 >= full_size * SRA_FIELD_STRUCTURE_RATIO)
	    use_block_copy = false;

	  /* In order to avoid block copy, we have to be able to instantiate
	     all elements of the type.  See if this is possible.  */
	  if (!use_block_copy
	      && (!can_completely_scalarize_p (elt)
		  || !type_can_instantiate_all_elements (elt->type)))
	    use_block_copy = true;
	}
      elt->use_block_copy = use_block_copy;

      if (dump_file)
	{
	  fprintf (dump_file, "Using %s for ",
		   use_block_copy ? "block-copy" : "element-copy");
	  dump_sra_elt_name (dump_file, elt);
	  fputc ('\n', dump_file);
	}

      if (!use_block_copy)
	{
	  instantiate_missing_elements (elt);
	  return true;
	}
    }

  any_inst = elt->replacement != NULL;

  for (c = elt->children; c ; c = c->sibling)
    any_inst |= decide_block_copy (c);

  return any_inst;
}

/* Entry point to phase 3.  Instantiate scalar replacement variables.  */

static void
decide_instantiations (void)
{
  unsigned int i;
  bool cleared_any;
  bitmap_head done_head;
  bitmap_iterator bi;

  /* We cannot clear bits from a bitmap we're iterating over,
     so save up all the bits to clear until the end.  */
  bitmap_initialize (&done_head, &bitmap_default_obstack);
  cleared_any = false;

  EXECUTE_IF_SET_IN_BITMAP (sra_candidates, 0, i, bi)
    {
      tree var = referenced_var (i);
      struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
      if (elt)
	{
	  decide_instantiation_1 (elt, 0, 0);
	  if (!decide_block_copy (elt))
	    elt = NULL;
	}
      if (!elt)
	{
	  bitmap_set_bit (&done_head, i);
	  cleared_any = true;
	}
    }

  if (cleared_any)
    {
      bitmap_and_compl_into (sra_candidates, &done_head);
      bitmap_and_compl_into (needs_copy_in, &done_head);
    }
  bitmap_clear (&done_head);

  mark_set_for_renaming (sra_candidates);

  if (dump_file)
    fputc ('\n', dump_file);
}


/* Phase Four: Update the function to match the replacements created.  */

/* Mark all the variables in V_MAY_DEF or V_MUST_DEF operands for STMT for
   renaming. This becomes necessary when we modify all of a non-scalar.  */

static void
mark_all_v_defs_1 (tree stmt)
{
  tree sym;
  ssa_op_iter iter;

  update_stmt_if_modified (stmt);

  FOR_EACH_SSA_TREE_OPERAND (sym, stmt, iter, SSA_OP_ALL_VIRTUALS)
    {
      if (TREE_CODE (sym) == SSA_NAME)
	sym = SSA_NAME_VAR (sym);
      mark_sym_for_renaming (sym);
    }
}


/* Mark all the variables in virtual operands in all the statements in
   LIST for renaming.  */

static void
mark_all_v_defs (tree list)
{
  if (TREE_CODE (list) != STATEMENT_LIST)
    mark_all_v_defs_1 (list);
  else
    {
      tree_stmt_iterator i;
      for (i = tsi_start (list); !tsi_end_p (i); tsi_next (&i))
	mark_all_v_defs_1 (tsi_stmt (i));
    }
}

/* Mark every replacement under ELT with TREE_NO_WARNING.  */

static void
mark_no_warning (struct sra_elt *elt)
{
  if (!elt->all_no_warning)
    {
      if (elt->replacement)
	TREE_NO_WARNING (elt->replacement) = 1;
      else
	{
	  struct sra_elt *c;
	  for (c = elt->children; c ; c = c->sibling)
	    mark_no_warning (c);
	}
    }
}

/* Build a single level component reference to ELT rooted at BASE.  */

static tree
generate_one_element_ref (struct sra_elt *elt, tree base)
{
  switch (TREE_CODE (TREE_TYPE (base)))
    {
    case RECORD_TYPE:
      {
	tree field = elt->element;

	/* Watch out for compatible records with differing field lists.  */
	if (DECL_FIELD_CONTEXT (field) != TYPE_MAIN_VARIANT (TREE_TYPE (base)))
	  field = find_compatible_field (TREE_TYPE (base), field);

        return build3 (COMPONENT_REF, elt->type, base, field, NULL);
      }

    case ARRAY_TYPE:
      return build4 (ARRAY_REF, elt->type, base, elt->element, NULL, NULL);

    case COMPLEX_TYPE:
      if (elt->element == integer_zero_node)
	return build1 (REALPART_EXPR, elt->type, base);
      else
	return build1 (IMAGPART_EXPR, elt->type, base);

    default:
      gcc_unreachable ();
    }
}

/* Build a full component reference to ELT rooted at its native variable.  */

static tree
generate_element_ref (struct sra_elt *elt)
{
  if (elt->parent)
    return generate_one_element_ref (elt, generate_element_ref (elt->parent));
  else
    return elt->element;
}

/* Generate a set of assignment statements in *LIST_P to copy all
   instantiated elements under ELT to or from the equivalent structure
   rooted at EXPR.  COPY_OUT controls the direction of the copy, with
   true meaning to copy out of EXPR into ELT.  */

static void
generate_copy_inout (struct sra_elt *elt, bool copy_out, tree expr,
		     tree *list_p)
{
  struct sra_elt *c;
  tree t;

  if (!copy_out && TREE_CODE (expr) == SSA_NAME
      && TREE_CODE (TREE_TYPE (expr)) == COMPLEX_TYPE)
    {
      tree r, i;

      c = lookup_element (elt, integer_zero_node, NULL, NO_INSERT);
      r = c->replacement;
      c = lookup_element (elt, integer_one_node, NULL, NO_INSERT);
      i = c->replacement;

      t = build2 (COMPLEX_EXPR, elt->type, r, i);
      t = build2 (MODIFY_EXPR, void_type_node, expr, t);
      SSA_NAME_DEF_STMT (expr) = t;
      append_to_statement_list (t, list_p);
    }
  else if (elt->replacement)
    {
      if (copy_out)
	t = build2 (MODIFY_EXPR, void_type_node, elt->replacement, expr);
      else
	t = build2 (MODIFY_EXPR, void_type_node, expr, elt->replacement);
      append_to_statement_list (t, list_p);
    }
  else
    {
      for (c = elt->children; c ; c = c->sibling)
	{
	  t = generate_one_element_ref (c, unshare_expr (expr));
	  generate_copy_inout (c, copy_out, t, list_p);
	}
    }
}

/* Generate a set of assignment statements in *LIST_P to copy all instantiated
   elements under SRC to their counterparts under DST.  There must be a 1-1
   correspondence of instantiated elements.  */

static void
generate_element_copy (struct sra_elt *dst, struct sra_elt *src, tree *list_p)
{
  struct sra_elt *dc, *sc;

  for (dc = dst->children; dc ; dc = dc->sibling)
    {
      sc = lookup_element (src, dc->element, NULL, NO_INSERT);
      gcc_assert (sc);
      generate_element_copy (dc, sc, list_p);
    }

  if (dst->replacement)
    {
      tree t;

      gcc_assert (src->replacement);

      t = build2 (MODIFY_EXPR, void_type_node, dst->replacement,
		  src->replacement);
      append_to_statement_list (t, list_p);
    }
}

/* Generate a set of assignment statements in *LIST_P to zero all instantiated
   elements under ELT.  In addition, do not assign to elements that have been
   marked VISITED but do reset the visited flag; this allows easy coordination
   with generate_element_init.  */

static void
generate_element_zero (struct sra_elt *elt, tree *list_p)
{
  struct sra_elt *c;

  if (elt->visited)
    {
      elt->visited = false;
      return;
    }

  for (c = elt->children; c ; c = c->sibling)
    generate_element_zero (c, list_p);

  if (elt->replacement)
    {
      tree t;

      gcc_assert (elt->is_scalar);
      t = fold_convert (elt->type, integer_zero_node);

      t = build2 (MODIFY_EXPR, void_type_node, elt->replacement, t);
      append_to_statement_list (t, list_p);
    }
}

/* Generate an assignment VAR = INIT, where INIT may need gimplification.
   Add the result to *LIST_P.  */

static void
generate_one_element_init (tree var, tree init, tree *list_p)
{
  /* The replacement can be almost arbitrarily complex.  Gimplify.  */
  tree stmt = build2 (MODIFY_EXPR, void_type_node, var, init);
  gimplify_and_add (stmt, list_p);
}

/* Generate a set of assignment statements in *LIST_P to set all instantiated
   elements under ELT with the contents of the initializer INIT.  In addition,
   mark all assigned elements VISITED; this allows easy coordination with
   generate_element_zero.  Return false if we found a case we couldn't
   handle.  */

static bool
generate_element_init_1 (struct sra_elt *elt, tree init, tree *list_p)
{
  bool result = true;
  enum tree_code init_code;
  struct sra_elt *sub;
  tree t;
  unsigned HOST_WIDE_INT idx;
  tree value, purpose;

  /* We can be passed DECL_INITIAL of a static variable.  It might have a
     conversion, which we strip off here.  */
  STRIP_USELESS_TYPE_CONVERSION (init);
  init_code = TREE_CODE (init);

  if (elt->is_scalar)
    {
      if (elt->replacement)
	{
	  generate_one_element_init (elt->replacement, init, list_p);
	  elt->visited = true;
	}
      return result;
    }

  switch (init_code)
    {
    case COMPLEX_CST:
    case COMPLEX_EXPR:
      for (sub = elt->children; sub ; sub = sub->sibling)
	{
	  if (sub->element == integer_zero_node)
	    t = (init_code == COMPLEX_EXPR
		 ? TREE_OPERAND (init, 0) : TREE_REALPART (init));
	  else
	    t = (init_code == COMPLEX_EXPR
		 ? TREE_OPERAND (init, 1) : TREE_IMAGPART (init));
	  result &= generate_element_init_1 (sub, t, list_p);
	}
      break;

    case CONSTRUCTOR:
      FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, purpose, value)
	{
	  if (TREE_CODE (purpose) == RANGE_EXPR)
	    {
	      tree lower = TREE_OPERAND (purpose, 0);
	      tree upper = TREE_OPERAND (purpose, 1);

	      while (1)
		{
	  	  sub = lookup_element (elt, lower, NULL, NO_INSERT);
		  if (sub != NULL)
		    result &= generate_element_init_1 (sub, value, list_p);
		  if (tree_int_cst_equal (lower, upper))
		    break;
		  lower = int_const_binop (PLUS_EXPR, lower,
					   integer_one_node, true);
		}
	    }
	  else
	    {
	      sub = lookup_element (elt, purpose, NULL, NO_INSERT);
	      if (sub != NULL)
		result &= generate_element_init_1 (sub, value, list_p);
	    }
	}
      break;

    default:
      elt->visited = true;
      result = false;
    }

  return result;
}

/* A wrapper function for generate_element_init_1 that handles cleanup after
   gimplification.  */

static bool
generate_element_init (struct sra_elt *elt, tree init, tree *list_p)
{
  bool ret;

  push_gimplify_context ();
  ret = generate_element_init_1 (elt, init, list_p);
  pop_gimplify_context (NULL);

  /* The replacement can expose previously unreferenced variables.  */
  if (ret && *list_p)
    {
      tree_stmt_iterator i;

      for (i = tsi_start (*list_p); !tsi_end_p (i); tsi_next (&i))
	find_new_referenced_vars (tsi_stmt_ptr (i));
    }

  return ret;
}

/* Insert STMT on all the outgoing edges out of BB.  Note that if BB
   has more than one edge, STMT will be replicated for each edge.  Also,
   abnormal edges will be ignored.  */

void
insert_edge_copies (tree stmt, basic_block bb)
{
  edge e;
  edge_iterator ei;
  bool first_copy;

  first_copy = true;
  FOR_EACH_EDGE (e, ei, bb->succs)
    {
      /* We don't need to insert copies on abnormal edges.  The
	 value of the scalar replacement is not guaranteed to
	 be valid through an abnormal edge.  */
      if (!(e->flags & EDGE_ABNORMAL))
	{
	  if (first_copy)
	    {
	      bsi_insert_on_edge (e, stmt);
	      first_copy = false;
	    }
	  else
	    bsi_insert_on_edge (e, unsave_expr_now (stmt));
	}
    }
}

/* Helper function to insert LIST before BSI, and set up line number info.  */

void
sra_insert_before (block_stmt_iterator *bsi, tree list)
{
  tree stmt = bsi_stmt (*bsi);

  if (EXPR_HAS_LOCATION (stmt))
    annotate_all_with_locus (&list, EXPR_LOCATION (stmt));
  bsi_insert_before (bsi, list, BSI_SAME_STMT);
}

/* Similarly, but insert after BSI.  Handles insertion onto edges as well.  */

void
sra_insert_after (block_stmt_iterator *bsi, tree list)
{
  tree stmt = bsi_stmt (*bsi);

  if (EXPR_HAS_LOCATION (stmt))
    annotate_all_with_locus (&list, EXPR_LOCATION (stmt));

  if (stmt_ends_bb_p (stmt))
    insert_edge_copies (list, bsi->bb);
  else
    bsi_insert_after (bsi, list, BSI_SAME_STMT);
}

/* Similarly, but replace the statement at BSI.  */

static void
sra_replace (block_stmt_iterator *bsi, tree list)
{
  sra_insert_before (bsi, list);
  bsi_remove (bsi, false);
  if (bsi_end_p (*bsi))
    *bsi = bsi_last (bsi->bb);
  else
    bsi_prev (bsi);
}

/* Scalarize a USE.  To recap, this is either a simple reference to ELT,
   if elt is scalar, or some occurrence of ELT that requires a complete
   aggregate.  IS_OUTPUT is true if ELT is being modified.  */

static void
scalarize_use (struct sra_elt *elt, tree *expr_p, block_stmt_iterator *bsi,
	       bool is_output, bool use_all)
{
  tree list = NULL, stmt = bsi_stmt (*bsi);

  if (elt->replacement)
    {
      /* If we have a replacement, then updating the reference is as
	 simple as modifying the existing statement in place.  */
      if (is_output)
	mark_all_v_defs (stmt);
      *expr_p = elt->replacement;
      update_stmt (stmt);
    }
  else
    {
      /* Otherwise we need some copies.  If ELT is being read, then we want
	 to store all (modified) sub-elements back into the structure before
	 the reference takes place.  If ELT is being written, then we want to
	 load the changed values back into our shadow variables.  */
      /* ??? We don't check modified for reads, we just always write all of
	 the values.  We should be able to record the SSA number of the VOP
	 for which the values were last read.  If that number matches the
	 SSA number of the VOP in the current statement, then we needn't
	 emit an assignment.  This would also eliminate double writes when
	 a structure is passed as more than one argument to a function call.
	 This optimization would be most effective if sra_walk_function
	 processed the blocks in dominator order.  */

      generate_copy_inout (elt, is_output, generate_element_ref (elt), &list);
      if (list == NULL)
	return;
      mark_all_v_defs (list);
      if (is_output)
	sra_insert_after (bsi, list);
      else
	{
	  sra_insert_before (bsi, list);
	  if (use_all)
	    mark_no_warning (elt);
	}
    }
}

/* Scalarize a COPY.  To recap, this is an assignment statement between
   two scalarizable references, LHS_ELT and RHS_ELT.  */

static void
scalarize_copy (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
		block_stmt_iterator *bsi)
{
  tree list, stmt;

  if (lhs_elt->replacement && rhs_elt->replacement)
    {
      /* If we have two scalar operands, modify the existing statement.  */
      stmt = bsi_stmt (*bsi);

      /* See the commentary in sra_walk_function concerning
	 RETURN_EXPR, and why we should never see one here.  */
      gcc_assert (TREE_CODE (stmt) == MODIFY_EXPR);

      TREE_OPERAND (stmt, 0) = lhs_elt->replacement;
      TREE_OPERAND (stmt, 1) = rhs_elt->replacement;
      update_stmt (stmt);
    }
  else if (lhs_elt->use_block_copy || rhs_elt->use_block_copy)
    {
      /* If either side requires a block copy, then sync the RHS back
	 to the original structure, leave the original assignment
	 statement (which will perform the block copy), then load the
	 LHS values out of its now-updated original structure.  */
      /* ??? Could perform a modified pair-wise element copy.  That
	 would at least allow those elements that are instantiated in
	 both structures to be optimized well.  */

      list = NULL;
      generate_copy_inout (rhs_elt, false,
			   generate_element_ref (rhs_elt), &list);
      if (list)
	{
	  mark_all_v_defs (list);
	  sra_insert_before (bsi, list);
	}

      list = NULL;
      generate_copy_inout (lhs_elt, true,
			   generate_element_ref (lhs_elt), &list);
      if (list)
	{
	  mark_all_v_defs (list);
	  sra_insert_after (bsi, list);
	}
    }
  else
    {
      /* Otherwise both sides must be fully instantiated.  In which
	 case perform pair-wise element assignments and replace the
	 original block copy statement.  */

      stmt = bsi_stmt (*bsi);
      mark_all_v_defs (stmt);

      list = NULL;
      generate_element_copy (lhs_elt, rhs_elt, &list);
      gcc_assert (list);
      mark_all_v_defs (list);
      sra_replace (bsi, list);
    }
}

/* Scalarize an INIT.  To recap, this is an assignment to a scalarizable
   reference from some form of constructor: CONSTRUCTOR, COMPLEX_CST or
   COMPLEX_EXPR.  If RHS is NULL, it should be treated as an empty
   CONSTRUCTOR.  */

static void
scalarize_init (struct sra_elt *lhs_elt, tree rhs, block_stmt_iterator *bsi)
{
  bool result = true;
  tree list = NULL;

  /* Generate initialization statements for all members extant in the RHS.  */
  if (rhs)
    {
      /* Unshare the expression just in case this is from a decl's initial.  */
      rhs = unshare_expr (rhs);
      result = generate_element_init (lhs_elt, rhs, &list);
    }

  /* CONSTRUCTOR is defined such that any member not mentioned is assigned
     a zero value.  Initialize the rest of the instantiated elements.  */
  generate_element_zero (lhs_elt, &list);

  if (!result)
    {
      /* If we failed to convert the entire initializer, then we must
	 leave the structure assignment in place and must load values
	 from the structure into the slots for which we did not find
	 constants.  The easiest way to do this is to generate a complete
	 copy-out, and then follow that with the constant assignments
	 that we were able to build.  DCE will clean things up.  */
      tree list0 = NULL;
      generate_copy_inout (lhs_elt, true, generate_element_ref (lhs_elt),
			   &list0);
      append_to_statement_list (list, &list0);
      list = list0;
    }

  if (lhs_elt->use_block_copy || !result)
    {
      /* Since LHS is not fully instantiated, we must leave the structure
	 assignment in place.  Treating this case differently from a USE
	 exposes constants to later optimizations.  */
      if (list)
	{
	  mark_all_v_defs (list);
	  sra_insert_after (bsi, list);
	}
    }
  else
    {
      /* The LHS is fully instantiated.  The list of initializations
	 replaces the original structure assignment.  */
      gcc_assert (list);
      mark_all_v_defs (bsi_stmt (*bsi));
      mark_all_v_defs (list);
      sra_replace (bsi, list);
    }
}

/* A subroutine of scalarize_ldst called via walk_tree.  Set TREE_NO_TRAP
   on all INDIRECT_REFs.  */

static tree
mark_notrap (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
{
  tree t = *tp;

  if (TREE_CODE (t) == INDIRECT_REF)
    {
      TREE_THIS_NOTRAP (t) = 1;
      *walk_subtrees = 0;
    }
  else if (IS_TYPE_OR_DECL_P (t))
    *walk_subtrees = 0;

  return NULL;
}

/* Scalarize a LDST.  To recap, this is an assignment between one scalarizable
   reference ELT and one non-scalarizable reference OTHER.  IS_OUTPUT is true
   if ELT is on the left-hand side.  */

static void
scalarize_ldst (struct sra_elt *elt, tree other,
		block_stmt_iterator *bsi, bool is_output)
{
  /* Shouldn't have gotten called for a scalar.  */
  gcc_assert (!elt->replacement);

  if (elt->use_block_copy)
    {
      /* Since ELT is not fully instantiated, we have to leave the
	 block copy in place.  Treat this as a USE.  */
      scalarize_use (elt, NULL, bsi, is_output, false);
    }
  else
    {
      /* The interesting case is when ELT is fully instantiated.  In this
	 case we can have each element stored/loaded directly to/from the
	 corresponding slot in OTHER.  This avoids a block copy.  */

      tree list = NULL, stmt = bsi_stmt (*bsi);

      mark_all_v_defs (stmt);
      generate_copy_inout (elt, is_output, other, &list);
      mark_all_v_defs (list);
      gcc_assert (list);

      /* Preserve EH semantics.  */
      if (stmt_ends_bb_p (stmt))
	{
	  tree_stmt_iterator tsi;
	  tree first;

	  /* Extract the first statement from LIST.  */
	  tsi = tsi_start (list);
	  first = tsi_stmt (tsi);
	  tsi_delink (&tsi);

	  /* Replace the old statement with this new representative.  */
	  bsi_replace (bsi, first, true);

	  if (!tsi_end_p (tsi))
	    {
	      /* If any reference would trap, then they all would.  And more
		 to the point, the first would.  Therefore none of the rest
		 will trap since the first didn't.  Indicate this by
		 iterating over the remaining statements and set
		 TREE_THIS_NOTRAP in all INDIRECT_REFs.  */
	      do
		{
		  walk_tree (tsi_stmt_ptr (tsi), mark_notrap, NULL, NULL);
		  tsi_next (&tsi);
		}
	      while (!tsi_end_p (tsi));

	      insert_edge_copies (list, bsi->bb);
	    }
	}
      else
	sra_replace (bsi, list);
    }
}

/* Generate initializations for all scalarizable parameters.  */

static void
scalarize_parms (void)
{
  tree list = NULL;
  unsigned i;
  bitmap_iterator bi;

  EXECUTE_IF_SET_IN_BITMAP (needs_copy_in, 0, i, bi)
    {
      tree var = referenced_var (i);
      struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
      generate_copy_inout (elt, true, var, &list);
    }

  if (list)
    {
      insert_edge_copies (list, ENTRY_BLOCK_PTR);
      mark_all_v_defs (list);
    }
}

/* Entry point to phase 4.  Update the function to match replacements.  */

static void
scalarize_function (void)
{
  static const struct sra_walk_fns fns = {
    scalarize_use, scalarize_copy, scalarize_init, scalarize_ldst, false
  };

  sra_walk_function (&fns);
  scalarize_parms ();
  bsi_commit_edge_inserts ();
}


/* Debug helper function.  Print ELT in a nice human-readable format.  */

static void
dump_sra_elt_name (FILE *f, struct sra_elt *elt)
{
  if (elt->parent && TREE_CODE (elt->parent->type) == COMPLEX_TYPE)
    {
      fputs (elt->element == integer_zero_node ? "__real__ " : "__imag__ ", f);
      dump_sra_elt_name (f, elt->parent);
    }
  else
    {
      if (elt->parent)
        dump_sra_elt_name (f, elt->parent);
      if (DECL_P (elt->element))
	{
	  if (TREE_CODE (elt->element) == FIELD_DECL)
	    fputc ('.', f);
	  print_generic_expr (f, elt->element, dump_flags);
	}
      else
	fprintf (f, "[" HOST_WIDE_INT_PRINT_DEC "]",
		 TREE_INT_CST_LOW (elt->element));
    }
}

/* Likewise, but callable from the debugger.  */

void
debug_sra_elt_name (struct sra_elt *elt)
{
  dump_sra_elt_name (stderr, elt);
  fputc ('\n', stderr);
}

void 
sra_init_cache (void)
{
  if (sra_type_decomp_cache) 
    return;

  sra_type_decomp_cache = BITMAP_ALLOC (NULL);
  sra_type_inst_cache = BITMAP_ALLOC (NULL);
}

/* Main entry point.  */

static void
tree_sra (void)
{
  /* Initialize local variables.  */
  gcc_obstack_init (&sra_obstack);
  sra_candidates = BITMAP_ALLOC (NULL);
  needs_copy_in = BITMAP_ALLOC (NULL);
  sra_init_cache ();
  sra_map = htab_create (101, sra_elt_hash, sra_elt_eq, NULL);

  /* Scan.  If we find anything, instantiate and scalarize.  */
  if (find_candidates_for_sra ())
    {
      scan_function ();
      decide_instantiations ();
      scalarize_function ();
    }

  /* Free allocated memory.  */
  htab_delete (sra_map);
  sra_map = NULL;
  BITMAP_FREE (sra_candidates);
  BITMAP_FREE (needs_copy_in);
  BITMAP_FREE (sra_type_decomp_cache);
  BITMAP_FREE (sra_type_inst_cache);
  obstack_free (&sra_obstack, NULL);
}

static bool
gate_sra (void)
{
  return flag_tree_sra != 0;
}

struct tree_opt_pass pass_sra =
{
  "sra",				/* name */
  gate_sra,				/* gate */
  tree_sra,				/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  TV_TREE_SRA,				/* tv_id */
  PROP_cfg | PROP_ssa | PROP_alias,	/* properties_required */
  0,					/* properties_provided */
  PROP_tmt_usage,		        /* properties_destroyed */
  0,					/* todo_flags_start */
  TODO_update_tmt_usage | TODO_dump_func /* todo_flags_finish */
  | TODO_update_ssa
  | TODO_ggc_collect | TODO_verify_ssa,
  0					/* letter */
};