1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
|
/* Scalar Replacement of Aggregates (SRA) converts some structure
references into scalar references, exposing them to the scalar
optimizers.
Copyright (C) 2008, 2009 Free Software Foundation, Inc.
Contributed by Martin Jambor <mjambor@suse.cz>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* This file implements Scalar Reduction of Aggregates (SRA). SRA is run
twice, once in the early stages of compilation (early SRA) and once in the
late stages (late SRA). The aim of both is to turn references to scalar
parts of aggregates into uses of independent scalar variables.
The two passes are nearly identical, the only difference is that early SRA
does not scalarize unions which are used as the result in a GIMPLE_RETURN
statement because together with inlining this can lead to weird type
conversions.
Both passes operate in four stages:
1. The declarations that have properties which make them candidates for
scalarization are identified in function find_var_candidates(). The
candidates are stored in candidate_bitmap.
2. The function body is scanned. In the process, declarations which are
used in a manner that prevent their scalarization are removed from the
candidate bitmap. More importantly, for every access into an aggregate,
an access structure (struct access) is created by create_access() and
stored in a vector associated with the aggregate. Among other
information, the aggregate declaration, the offset and size of the access
and its type are stored in the structure.
On a related note, assign_link structures are created for every assign
statement between candidate aggregates and attached to the related
accesses.
3. The vectors of accesses are analyzed. They are first sorted according to
their offset and size and then scanned for partially overlapping accesses
(i.e. those which overlap but one is not entirely within another). Such
an access disqualifies the whole aggregate from being scalarized.
If there is no such inhibiting overlap, a representative access structure
is chosen for every unique combination of offset and size. Afterwards,
the pass builds a set of trees from these structures, in which children
of an access are within their parent (in terms of offset and size).
Then accesses are propagated whenever possible (i.e. in cases when it
does not create a partially overlapping access) across assign_links from
the right hand side to the left hand side.
Then the set of trees for each declaration is traversed again and those
accesses which should be replaced by a scalar are identified.
4. The function is traversed again, and for every reference into an
aggregate that has some component which is about to be scalarized,
statements are amended and new statements are created as necessary.
Finally, if a parameter got scalarized, the scalar replacements are
initialized with values from respective parameter aggregates. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "alloc-pool.h"
#include "tm.h"
#include "tree.h"
#include "gimple.h"
#include "tree-flow.h"
#include "ipa-prop.h"
#include "diagnostic.h"
#include "statistics.h"
#include "tree-dump.h"
#include "timevar.h"
#include "params.h"
#include "target.h"
#include "flags.h"
/* Enumeration of all aggregate reductions we can do. */
enum sra_mode { SRA_MODE_EARLY_INTRA, /* early intraprocedural SRA */
SRA_MODE_INTRA }; /* late intraprocedural SRA */
/* Global variable describing which aggregate reduction we are performing at
the moment. */
static enum sra_mode sra_mode;
struct assign_link;
/* ACCESS represents each access to an aggregate variable (as a whole or a
part). It can also represent a group of accesses that refer to exactly the
same fragment of an aggregate (i.e. those that have exactly the same offset
and size). Such representatives for a single aggregate, once determined,
are linked in a linked list and have the group fields set.
Moreover, when doing intraprocedural SRA, a tree is built from those
representatives (by the means of first_child and next_sibling pointers), in
which all items in a subtree are "within" the root, i.e. their offset is
greater or equal to offset of the root and offset+size is smaller or equal
to offset+size of the root. Children of an access are sorted by offset.
Note that accesses to parts of vector and complex number types always
represented by an access to the whole complex number or a vector. It is a
duty of the modifying functions to replace them appropriately. */
struct access
{
/* Values returned by `get_ref_base_and_extent' for each component reference
If EXPR isn't a component reference just set `BASE = EXPR', `OFFSET = 0',
`SIZE = TREE_SIZE (TREE_TYPE (expr))'. */
HOST_WIDE_INT offset;
HOST_WIDE_INT size;
tree base;
/* Expression. */
tree expr;
/* Type. */
tree type;
/* Next group representative for this aggregate. */
struct access *next_grp;
/* Pointer to the group representative. Pointer to itself if the struct is
the representative. */
struct access *group_representative;
/* If this access has any children (in terms of the definition above), this
points to the first one. */
struct access *first_child;
/* Pointer to the next sibling in the access tree as described above. */
struct access *next_sibling;
/* Pointers to the first and last element in the linked list of assign
links. */
struct assign_link *first_link, *last_link;
/* Pointer to the next access in the work queue. */
struct access *next_queued;
/* Replacement variable for this access "region." Never to be accessed
directly, always only by the means of get_access_replacement() and only
when grp_to_be_replaced flag is set. */
tree replacement_decl;
/* Is this particular access write access? */
unsigned write : 1;
/* Is this access currently in the work queue? */
unsigned grp_queued : 1;
/* Does this group contain a write access? This flag is propagated down the
access tree. */
unsigned grp_write : 1;
/* Does this group contain a read access? This flag is propagated down the
access tree. */
unsigned grp_read : 1;
/* Other passes of the analysis use this bit to make function
analyze_access_subtree create scalar replacements for this group if
possible. */
unsigned grp_hint : 1;
/* Is the subtree rooted in this access fully covered by scalar
replacements? */
unsigned grp_covered : 1;
/* If set to true, this access and all below it in an access tree must not be
scalarized. */
unsigned grp_unscalarizable_region : 1;
/* Whether data have been written to parts of the aggregate covered by this
access which is not to be scalarized. This flag is propagated up in the
access tree. */
unsigned grp_unscalarized_data : 1;
/* Does this access and/or group contain a write access through a
BIT_FIELD_REF? */
unsigned grp_partial_lhs : 1;
/* Set when a scalar replacement should be created for this variable. We do
the decision and creation at different places because create_tmp_var
cannot be called from within FOR_EACH_REFERENCED_VAR. */
unsigned grp_to_be_replaced : 1;
};
typedef struct access *access_p;
DEF_VEC_P (access_p);
DEF_VEC_ALLOC_P (access_p, heap);
/* Alloc pool for allocating access structures. */
static alloc_pool access_pool;
/* A structure linking lhs and rhs accesses from an aggregate assignment. They
are used to propagate subaccesses from rhs to lhs as long as they don't
conflict with what is already there. */
struct assign_link
{
struct access *lacc, *racc;
struct assign_link *next;
};
/* Alloc pool for allocating assign link structures. */
static alloc_pool link_pool;
/* Base (tree) -> Vector (VEC(access_p,heap) *) map. */
static struct pointer_map_t *base_access_vec;
/* Bitmap of bases (candidates). */
static bitmap candidate_bitmap;
/* Obstack for creation of fancy names. */
static struct obstack name_obstack;
/* Head of a linked list of accesses that need to have its subaccesses
propagated to their assignment counterparts. */
static struct access *work_queue_head;
/* Dump contents of ACCESS to file F in a human friendly way. If GRP is true,
representative fields are dumped, otherwise those which only describe the
individual access are. */
static struct
{
/* Number of created scalar replacements. */
int replacements;
/* Number of times sra_modify_expr or sra_modify_assign themselves changed an
expression. */
int exprs;
/* Number of statements created by generate_subtree_copies. */
int subtree_copies;
/* Number of statements created by load_assign_lhs_subreplacements. */
int subreplacements;
/* Number of times sra_modify_assign has deleted a statement. */
int deleted;
/* Number of times sra_modify_assign has to deal with subaccesses of LHS and
RHS reparately due to type conversions or nonexistent matching
references. */
int separate_lhs_rhs_handling;
/* Number of processed aggregates is readily available in
analyze_all_variable_accesses and so is not stored here. */
} sra_stats;
static void
dump_access (FILE *f, struct access *access, bool grp)
{
fprintf (f, "access { ");
fprintf (f, "base = (%d)'", DECL_UID (access->base));
print_generic_expr (f, access->base, 0);
fprintf (f, "', offset = " HOST_WIDE_INT_PRINT_DEC, access->offset);
fprintf (f, ", size = " HOST_WIDE_INT_PRINT_DEC, access->size);
fprintf (f, ", expr = ");
print_generic_expr (f, access->expr, 0);
fprintf (f, ", type = ");
print_generic_expr (f, access->type, 0);
if (grp)
fprintf (f, ", grp_write = %d, grp_read = %d, grp_hint = %d, "
"grp_covered = %d, grp_unscalarizable_region = %d, "
"grp_unscalarized_data = %d, grp_partial_lhs = %d, "
"grp_to_be_replaced = %d\n",
access->grp_write, access->grp_read, access->grp_hint,
access->grp_covered, access->grp_unscalarizable_region,
access->grp_unscalarized_data, access->grp_partial_lhs,
access->grp_to_be_replaced);
else
fprintf (f, ", write = %d, grp_partial_lhs = %d\n", access->write,
access->grp_partial_lhs);
}
/* Dump a subtree rooted in ACCESS to file F, indent by LEVEL. */
static void
dump_access_tree_1 (FILE *f, struct access *access, int level)
{
do
{
int i;
for (i = 0; i < level; i++)
fputs ("* ", dump_file);
dump_access (f, access, true);
if (access->first_child)
dump_access_tree_1 (f, access->first_child, level + 1);
access = access->next_sibling;
}
while (access);
}
/* Dump all access trees for a variable, given the pointer to the first root in
ACCESS. */
static void
dump_access_tree (FILE *f, struct access *access)
{
for (; access; access = access->next_grp)
dump_access_tree_1 (f, access, 0);
}
/* Return true iff ACC is non-NULL and has subaccesses. */
static inline bool
access_has_children_p (struct access *acc)
{
return acc && acc->first_child;
}
/* Return a vector of pointers to accesses for the variable given in BASE or
NULL if there is none. */
static VEC (access_p, heap) *
get_base_access_vector (tree base)
{
void **slot;
slot = pointer_map_contains (base_access_vec, base);
if (!slot)
return NULL;
else
return *(VEC (access_p, heap) **) slot;
}
/* Find an access with required OFFSET and SIZE in a subtree of accesses rooted
in ACCESS. Return NULL if it cannot be found. */
static struct access *
find_access_in_subtree (struct access *access, HOST_WIDE_INT offset,
HOST_WIDE_INT size)
{
while (access && (access->offset != offset || access->size != size))
{
struct access *child = access->first_child;
while (child && (child->offset + child->size <= offset))
child = child->next_sibling;
access = child;
}
return access;
}
/* Return the first group representative for DECL or NULL if none exists. */
static struct access *
get_first_repr_for_decl (tree base)
{
VEC (access_p, heap) *access_vec;
access_vec = get_base_access_vector (base);
if (!access_vec)
return NULL;
return VEC_index (access_p, access_vec, 0);
}
/* Find an access representative for the variable BASE and given OFFSET and
SIZE. Requires that access trees have already been built. Return NULL if
it cannot be found. */
static struct access *
get_var_base_offset_size_access (tree base, HOST_WIDE_INT offset,
HOST_WIDE_INT size)
{
struct access *access;
access = get_first_repr_for_decl (base);
while (access && (access->offset + access->size <= offset))
access = access->next_grp;
if (!access)
return NULL;
return find_access_in_subtree (access, offset, size);
}
/* Add LINK to the linked list of assign links of RACC. */
static void
add_link_to_rhs (struct access *racc, struct assign_link *link)
{
gcc_assert (link->racc == racc);
if (!racc->first_link)
{
gcc_assert (!racc->last_link);
racc->first_link = link;
}
else
racc->last_link->next = link;
racc->last_link = link;
link->next = NULL;
}
/* Move all link structures in their linked list in OLD_RACC to the linked list
in NEW_RACC. */
static void
relink_to_new_repr (struct access *new_racc, struct access *old_racc)
{
if (!old_racc->first_link)
{
gcc_assert (!old_racc->last_link);
return;
}
if (new_racc->first_link)
{
gcc_assert (!new_racc->last_link->next);
gcc_assert (!old_racc->last_link || !old_racc->last_link->next);
new_racc->last_link->next = old_racc->first_link;
new_racc->last_link = old_racc->last_link;
}
else
{
gcc_assert (!new_racc->last_link);
new_racc->first_link = old_racc->first_link;
new_racc->last_link = old_racc->last_link;
}
old_racc->first_link = old_racc->last_link = NULL;
}
/* Add ACCESS to the work queue (which is actually a stack). */
static void
add_access_to_work_queue (struct access *access)
{
if (!access->grp_queued)
{
gcc_assert (!access->next_queued);
access->next_queued = work_queue_head;
access->grp_queued = 1;
work_queue_head = access;
}
}
/* Pop an access from the work queue, and return it, assuming there is one. */
static struct access *
pop_access_from_work_queue (void)
{
struct access *access = work_queue_head;
work_queue_head = access->next_queued;
access->next_queued = NULL;
access->grp_queued = 0;
return access;
}
/* Allocate necessary structures. */
static void
sra_initialize (void)
{
candidate_bitmap = BITMAP_ALLOC (NULL);
gcc_obstack_init (&name_obstack);
access_pool = create_alloc_pool ("SRA accesses", sizeof (struct access), 16);
link_pool = create_alloc_pool ("SRA links", sizeof (struct assign_link), 16);
base_access_vec = pointer_map_create ();
memset (&sra_stats, 0, sizeof (sra_stats));
}
/* Hook fed to pointer_map_traverse, deallocate stored vectors. */
static bool
delete_base_accesses (const void *key ATTRIBUTE_UNUSED, void **value,
void *data ATTRIBUTE_UNUSED)
{
VEC (access_p, heap) *access_vec;
access_vec = (VEC (access_p, heap) *) *value;
VEC_free (access_p, heap, access_vec);
return true;
}
/* Deallocate all general structures. */
static void
sra_deinitialize (void)
{
BITMAP_FREE (candidate_bitmap);
free_alloc_pool (access_pool);
free_alloc_pool (link_pool);
obstack_free (&name_obstack, NULL);
pointer_map_traverse (base_access_vec, delete_base_accesses, NULL);
pointer_map_destroy (base_access_vec);
}
/* Remove DECL from candidates for SRA and write REASON to the dump file if
there is one. */
static void
disqualify_candidate (tree decl, const char *reason)
{
bitmap_clear_bit (candidate_bitmap, DECL_UID (decl));
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "! Disqualifying ");
print_generic_expr (dump_file, decl, 0);
fprintf (dump_file, " - %s\n", reason);
}
}
/* Return true iff the type contains a field or an element which does not allow
scalarization. */
static bool
type_internals_preclude_sra_p (tree type)
{
tree fld;
tree et;
switch (TREE_CODE (type))
{
case RECORD_TYPE:
case UNION_TYPE:
case QUAL_UNION_TYPE:
for (fld = TYPE_FIELDS (type); fld; fld = TREE_CHAIN (fld))
if (TREE_CODE (fld) == FIELD_DECL)
{
tree ft = TREE_TYPE (fld);
if (TREE_THIS_VOLATILE (fld)
|| !DECL_FIELD_OFFSET (fld) || !DECL_SIZE (fld)
|| !host_integerp (DECL_FIELD_OFFSET (fld), 1)
|| !host_integerp (DECL_SIZE (fld), 1))
return true;
if (AGGREGATE_TYPE_P (ft)
&& type_internals_preclude_sra_p (ft))
return true;
}
return false;
case ARRAY_TYPE:
et = TREE_TYPE (type);
if (AGGREGATE_TYPE_P (et))
return type_internals_preclude_sra_p (et);
else
return false;
default:
return false;
}
}
/* Create and insert access for EXPR. Return created access, or NULL if it is
not possible. */
static struct access *
create_access (tree expr, bool write)
{
struct access *access;
void **slot;
VEC (access_p,heap) *vec;
HOST_WIDE_INT offset, size, max_size;
tree base = expr;
bool unscalarizable_region = false;
base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
if (!DECL_P (base) || !bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
return NULL;
if (size != max_size)
{
size = max_size;
unscalarizable_region = true;
}
if (size < 0)
{
disqualify_candidate (base, "Encountered an unconstrained access.");
return NULL;
}
access = (struct access *) pool_alloc (access_pool);
memset (access, 0, sizeof (struct access));
access->base = base;
access->offset = offset;
access->size = size;
access->expr = expr;
access->type = TREE_TYPE (expr);
access->write = write;
access->grp_unscalarizable_region = unscalarizable_region;
slot = pointer_map_contains (base_access_vec, base);
if (slot)
vec = (VEC (access_p, heap) *) *slot;
else
vec = VEC_alloc (access_p, heap, 32);
VEC_safe_push (access_p, heap, vec, access);
*((struct VEC (access_p,heap) **)
pointer_map_insert (base_access_vec, base)) = vec;
return access;
}
/* Search the given tree for a declaration by skipping handled components and
exclude it from the candidates. */
static void
disqualify_base_of_expr (tree t, const char *reason)
{
while (handled_component_p (t))
t = TREE_OPERAND (t, 0);
if (DECL_P (t))
disqualify_candidate (t, reason);
}
/* Scan expression EXPR and create access structures for all accesses to
candidates for scalarization. Return the created access or NULL if none is
created. */
static struct access *
build_access_from_expr_1 (tree *expr_ptr, bool write)
{
struct access *ret = NULL;
tree expr = *expr_ptr;
bool partial_ref;
if (TREE_CODE (expr) == BIT_FIELD_REF
|| TREE_CODE (expr) == IMAGPART_EXPR
|| TREE_CODE (expr) == REALPART_EXPR)
{
expr = TREE_OPERAND (expr, 0);
partial_ref = true;
}
else
partial_ref = false;
/* We need to dive through V_C_Es in order to get the size of its parameter
and not the result type. Ada produces such statements. We are also
capable of handling the topmost V_C_E but not any of those buried in other
handled components. */
if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
expr = TREE_OPERAND (expr, 0);
if (contains_view_convert_expr_p (expr))
{
disqualify_base_of_expr (expr, "V_C_E under a different handled "
"component.");
return NULL;
}
switch (TREE_CODE (expr))
{
case VAR_DECL:
case PARM_DECL:
case RESULT_DECL:
case COMPONENT_REF:
case ARRAY_REF:
case ARRAY_RANGE_REF:
ret = create_access (expr, write);
break;
default:
break;
}
if (write && partial_ref && ret)
ret->grp_partial_lhs = 1;
return ret;
}
/* Callback of scan_function. Scan expression EXPR and create access
structures for all accesses to candidates for scalarization. Return true if
any access has been inserted. */
static bool
build_access_from_expr (tree *expr_ptr,
gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED, bool write,
void *data ATTRIBUTE_UNUSED)
{
return build_access_from_expr_1 (expr_ptr, write) != NULL;
}
/* Disqualify LHS and RHS for scalarization if STMT must end its basic block in
modes in which it matters, return true iff they have been disqualified. RHS
may be NULL, in that case ignore it. If we scalarize an aggregate in
intra-SRA we may need to add statements after each statement. This is not
possible if a statement unconditionally has to end the basic block. */
static bool
disqualify_ops_if_throwing_stmt (gimple stmt, tree lhs, tree rhs)
{
if (stmt_can_throw_internal (stmt) || stmt_ends_bb_p (stmt))
{
disqualify_base_of_expr (lhs, "LHS of a throwing stmt.");
if (rhs)
disqualify_base_of_expr (rhs, "RHS of a throwing stmt.");
return true;
}
return false;
}
/* Result code for scan_assign callback for scan_function. */
enum scan_assign_result { SRA_SA_NONE, /* nothing done for the stmt */
SRA_SA_PROCESSED, /* stmt analyzed/changed */
SRA_SA_REMOVED }; /* stmt redundant and eliminated */
/* Callback of scan_function. Scan expressions occuring in the statement
pointed to by STMT_EXPR, create access structures for all accesses to
candidates for scalarization and remove those candidates which occur in
statements or expressions that prevent them from being split apart. Return
true if any access has been inserted. */
static enum scan_assign_result
build_accesses_from_assign (gimple *stmt_ptr,
gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
void *data ATTRIBUTE_UNUSED)
{
gimple stmt = *stmt_ptr;
tree *lhs_ptr, *rhs_ptr;
struct access *lacc, *racc;
if (!gimple_assign_single_p (stmt))
return SRA_SA_NONE;
lhs_ptr = gimple_assign_lhs_ptr (stmt);
rhs_ptr = gimple_assign_rhs1_ptr (stmt);
if (disqualify_ops_if_throwing_stmt (stmt, *lhs_ptr, *rhs_ptr))
return SRA_SA_NONE;
racc = build_access_from_expr_1 (rhs_ptr, false);
lacc = build_access_from_expr_1 (lhs_ptr, true);
if (lacc && racc
&& !lacc->grp_unscalarizable_region
&& !racc->grp_unscalarizable_region
&& AGGREGATE_TYPE_P (TREE_TYPE (*lhs_ptr))
/* FIXME: Turn the following line into an assert after PR 40058 is
fixed. */
&& lacc->size == racc->size
&& useless_type_conversion_p (lacc->type, racc->type))
{
struct assign_link *link;
link = (struct assign_link *) pool_alloc (link_pool);
memset (link, 0, sizeof (struct assign_link));
link->lacc = lacc;
link->racc = racc;
add_link_to_rhs (racc, link);
}
return (lacc || racc) ? SRA_SA_PROCESSED : SRA_SA_NONE;
}
/* Callback of walk_stmt_load_store_addr_ops visit_addr used to determine
GIMPLE_ASM operands with memory constrains which cannot be scalarized. */
static bool
asm_visit_addr (gimple stmt ATTRIBUTE_UNUSED, tree op,
void *data ATTRIBUTE_UNUSED)
{
if (DECL_P (op))
disqualify_candidate (op, "Non-scalarizable GIMPLE_ASM operand.");
return false;
}
/* Scan function and look for interesting statements. Return true if any has
been found or processed, as indicated by callbacks. SCAN_EXPR is a callback
called on all expressions within statements except assign statements and
those deemed entirely unsuitable for some reason (all operands in such
statements and expression are removed from candidate_bitmap). SCAN_ASSIGN
is a callback called on all assign statements, HANDLE_SSA_DEFS is a callback
called on assign statements and those call statements which have a lhs and
it is the only callback which can be NULL. ANALYSIS_STAGE is true when
running in the analysis stage of a pass and thus no statement is being
modified. DATA is a pointer passed to all callbacks. If any single
callback returns true, this function also returns true, otherwise it returns
false. */
static bool
scan_function (bool (*scan_expr) (tree *, gimple_stmt_iterator *, bool, void *),
enum scan_assign_result (*scan_assign) (gimple *,
gimple_stmt_iterator *,
void *),
bool (*handle_ssa_defs)(gimple, void *),
bool analysis_stage, void *data)
{
gimple_stmt_iterator gsi;
basic_block bb;
unsigned i;
tree *t;
bool ret = false;
FOR_EACH_BB (bb)
{
bool bb_changed = false;
gsi = gsi_start_bb (bb);
while (!gsi_end_p (gsi))
{
gimple stmt = gsi_stmt (gsi);
enum scan_assign_result assign_result;
bool any = false, deleted = false;
switch (gimple_code (stmt))
{
case GIMPLE_RETURN:
t = gimple_return_retval_ptr (stmt);
if (*t != NULL_TREE)
any |= scan_expr (t, &gsi, false, data);
break;
case GIMPLE_ASSIGN:
assign_result = scan_assign (&stmt, &gsi, data);
any |= assign_result == SRA_SA_PROCESSED;
deleted = assign_result == SRA_SA_REMOVED;
if (handle_ssa_defs && assign_result != SRA_SA_REMOVED)
any |= handle_ssa_defs (stmt, data);
break;
case GIMPLE_CALL:
/* Operands must be processed before the lhs. */
for (i = 0; i < gimple_call_num_args (stmt); i++)
{
tree *argp = gimple_call_arg_ptr (stmt, i);
any |= scan_expr (argp, &gsi, false, data);
}
if (gimple_call_lhs (stmt))
{
tree *lhs_ptr = gimple_call_lhs_ptr (stmt);
if (!analysis_stage
|| !disqualify_ops_if_throwing_stmt (stmt,
*lhs_ptr, NULL))
{
any |= scan_expr (lhs_ptr, &gsi, true, data);
if (handle_ssa_defs)
any |= handle_ssa_defs (stmt, data);
}
}
break;
case GIMPLE_ASM:
if (analysis_stage)
walk_stmt_load_store_addr_ops (stmt, NULL, NULL, NULL,
asm_visit_addr);
for (i = 0; i < gimple_asm_ninputs (stmt); i++)
{
tree *op = &TREE_VALUE (gimple_asm_input_op (stmt, i));
any |= scan_expr (op, &gsi, false, data);
}
for (i = 0; i < gimple_asm_noutputs (stmt); i++)
{
tree *op = &TREE_VALUE (gimple_asm_output_op (stmt, i));
any |= scan_expr (op, &gsi, true, data);
}
default:
break;
}
if (any)
{
ret = true;
bb_changed = true;
if (!analysis_stage)
{
update_stmt (stmt);
if (!stmt_could_throw_p (stmt))
remove_stmt_from_eh_region (stmt);
}
}
if (deleted)
bb_changed = true;
else
{
gsi_next (&gsi);
ret = true;
}
}
if (!analysis_stage && bb_changed)
gimple_purge_dead_eh_edges (bb);
}
return ret;
}
/* Helper of QSORT function. There are pointers to accesses in the array. An
access is considered smaller than another if it has smaller offset or if the
offsets are the same but is size is bigger. */
static int
compare_access_positions (const void *a, const void *b)
{
const access_p *fp1 = (const access_p *) a;
const access_p *fp2 = (const access_p *) b;
const access_p f1 = *fp1;
const access_p f2 = *fp2;
if (f1->offset != f2->offset)
return f1->offset < f2->offset ? -1 : 1;
if (f1->size == f2->size)
{
/* Put any non-aggregate type before any aggregate type. */
if (!is_gimple_reg_type (f1->type)
&& is_gimple_reg_type (f2->type))
return 1;
else if (is_gimple_reg_type (f1->type)
&& !is_gimple_reg_type (f2->type))
return -1;
/* Put the integral type with the bigger precision first. */
else if (INTEGRAL_TYPE_P (f1->type)
&& INTEGRAL_TYPE_P (f2->type))
return TYPE_PRECISION (f1->type) > TYPE_PRECISION (f2->type) ? -1 : 1;
/* Put any integral type with non-full precision last. */
else if (INTEGRAL_TYPE_P (f1->type)
&& (TREE_INT_CST_LOW (TYPE_SIZE (f1->type))
!= TYPE_PRECISION (f1->type)))
return 1;
else if (INTEGRAL_TYPE_P (f2->type)
&& (TREE_INT_CST_LOW (TYPE_SIZE (f2->type))
!= TYPE_PRECISION (f2->type)))
return -1;
/* Stabilize the sort. */
return TYPE_UID (f1->type) - TYPE_UID (f2->type);
}
/* We want the bigger accesses first, thus the opposite operator in the next
line: */
return f1->size > f2->size ? -1 : 1;
}
/* Append a name of the declaration to the name obstack. A helper function for
make_fancy_name. */
static void
make_fancy_decl_name (tree decl)
{
char buffer[32];
tree name = DECL_NAME (decl);
if (name)
obstack_grow (&name_obstack, IDENTIFIER_POINTER (name),
IDENTIFIER_LENGTH (name));
else
{
sprintf (buffer, "D%u", DECL_UID (decl));
obstack_grow (&name_obstack, buffer, strlen (buffer));
}
}
/* Helper for make_fancy_name. */
static void
make_fancy_name_1 (tree expr)
{
char buffer[32];
tree index;
if (DECL_P (expr))
{
make_fancy_decl_name (expr);
return;
}
switch (TREE_CODE (expr))
{
case COMPONENT_REF:
make_fancy_name_1 (TREE_OPERAND (expr, 0));
obstack_1grow (&name_obstack, '$');
make_fancy_decl_name (TREE_OPERAND (expr, 1));
break;
case ARRAY_REF:
make_fancy_name_1 (TREE_OPERAND (expr, 0));
obstack_1grow (&name_obstack, '$');
/* Arrays with only one element may not have a constant as their
index. */
index = TREE_OPERAND (expr, 1);
if (TREE_CODE (index) != INTEGER_CST)
break;
sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (index));
obstack_grow (&name_obstack, buffer, strlen (buffer));
break;
case BIT_FIELD_REF:
case REALPART_EXPR:
case IMAGPART_EXPR:
gcc_unreachable (); /* we treat these as scalars. */
break;
default:
break;
}
}
/* Create a human readable name for replacement variable of ACCESS. */
static char *
make_fancy_name (tree expr)
{
make_fancy_name_1 (expr);
obstack_1grow (&name_obstack, '\0');
return XOBFINISH (&name_obstack, char *);
}
/* Helper function for build_ref_for_offset. */
static bool
build_ref_for_offset_1 (tree *res, tree type, HOST_WIDE_INT offset,
tree exp_type)
{
while (1)
{
tree fld;
tree tr_size, index, minidx;
HOST_WIDE_INT el_size;
if (offset == 0 && exp_type
&& types_compatible_p (exp_type, type))
return true;
switch (TREE_CODE (type))
{
case UNION_TYPE:
case QUAL_UNION_TYPE:
case RECORD_TYPE:
/* Some ADA records are half-unions, treat all of them the same. */
for (fld = TYPE_FIELDS (type); fld; fld = TREE_CHAIN (fld))
{
HOST_WIDE_INT pos, size;
tree expr, *expr_ptr;
if (TREE_CODE (fld) != FIELD_DECL)
continue;
pos = int_bit_position (fld);
gcc_assert (TREE_CODE (type) == RECORD_TYPE || pos == 0);
size = tree_low_cst (DECL_SIZE (fld), 1);
if (pos > offset || (pos + size) <= offset)
continue;
if (res)
{
expr = build3 (COMPONENT_REF, TREE_TYPE (fld), *res, fld,
NULL_TREE);
expr_ptr = &expr;
}
else
expr_ptr = NULL;
if (build_ref_for_offset_1 (expr_ptr, TREE_TYPE (fld),
offset - pos, exp_type))
{
if (res)
*res = expr;
return true;
}
}
return false;
case ARRAY_TYPE:
tr_size = TYPE_SIZE (TREE_TYPE (type));
if (!tr_size || !host_integerp (tr_size, 1))
return false;
el_size = tree_low_cst (tr_size, 1);
minidx = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
if (TREE_CODE (minidx) != INTEGER_CST)
return false;
if (res)
{
index = build_int_cst (TYPE_DOMAIN (type), offset / el_size);
if (!integer_zerop (minidx))
index = int_const_binop (PLUS_EXPR, index, minidx, 0);
*res = build4 (ARRAY_REF, TREE_TYPE (type), *res, index,
NULL_TREE, NULL_TREE);
}
offset = offset % el_size;
type = TREE_TYPE (type);
break;
default:
if (offset != 0)
return false;
if (exp_type)
return false;
else
return true;
}
}
}
/* Construct an expression that would reference a part of aggregate *EXPR of
type TYPE at the given OFFSET of the type EXP_TYPE. If EXPR is NULL, the
function only determines whether it can build such a reference without
actually doing it.
FIXME: Eventually this should be replaced with
maybe_fold_offset_to_reference() from tree-ssa-ccp.c but that requires a
minor rewrite of fold_stmt.
*/
bool
build_ref_for_offset (tree *expr, tree type, HOST_WIDE_INT offset,
tree exp_type, bool allow_ptr)
{
location_t loc = expr ? EXPR_LOCATION (*expr) : UNKNOWN_LOCATION;
if (allow_ptr && POINTER_TYPE_P (type))
{
type = TREE_TYPE (type);
if (expr)
*expr = fold_build1_loc (loc, INDIRECT_REF, type, *expr);
}
return build_ref_for_offset_1 (expr, type, offset, exp_type);
}
/* The very first phase of intraprocedural SRA. It marks in candidate_bitmap
those with type which is suitable for scalarization. */
static bool
find_var_candidates (void)
{
tree var, type;
referenced_var_iterator rvi;
bool ret = false;
FOR_EACH_REFERENCED_VAR (var, rvi)
{
if (TREE_CODE (var) != VAR_DECL && TREE_CODE (var) != PARM_DECL)
continue;
type = TREE_TYPE (var);
if (!AGGREGATE_TYPE_P (type)
|| needs_to_live_in_memory (var)
|| TREE_THIS_VOLATILE (var)
|| !COMPLETE_TYPE_P (type)
|| !host_integerp (TYPE_SIZE (type), 1)
|| tree_low_cst (TYPE_SIZE (type), 1) == 0
|| type_internals_preclude_sra_p (type)
/* Fix for PR 41089. tree-stdarg.c needs to have va_lists intact but
we also want to schedule it rather late. Thus we ignore it in
the early pass. */
|| (sra_mode == SRA_MODE_EARLY_INTRA
&& (TYPE_MAIN_VARIANT (TREE_TYPE (var))
== TYPE_MAIN_VARIANT (va_list_type_node))))
continue;
bitmap_set_bit (candidate_bitmap, DECL_UID (var));
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Candidate (%d): ", DECL_UID (var));
print_generic_expr (dump_file, var, 0);
fprintf (dump_file, "\n");
}
ret = true;
}
return ret;
}
/* Sort all accesses for the given variable, check for partial overlaps and
return NULL if there are any. If there are none, pick a representative for
each combination of offset and size and create a linked list out of them.
Return the pointer to the first representative and make sure it is the first
one in the vector of accesses. */
static struct access *
sort_and_splice_var_accesses (tree var)
{
int i, j, access_count;
struct access *res, **prev_acc_ptr = &res;
VEC (access_p, heap) *access_vec;
bool first = true;
HOST_WIDE_INT low = -1, high = 0;
access_vec = get_base_access_vector (var);
if (!access_vec)
return NULL;
access_count = VEC_length (access_p, access_vec);
/* Sort by <OFFSET, SIZE>. */
qsort (VEC_address (access_p, access_vec), access_count, sizeof (access_p),
compare_access_positions);
i = 0;
while (i < access_count)
{
struct access *access = VEC_index (access_p, access_vec, i);
bool grp_write = access->write;
bool grp_read = !access->write;
bool multiple_reads = false;
bool grp_partial_lhs = access->grp_partial_lhs;
bool first_scalar = is_gimple_reg_type (access->type);
bool unscalarizable_region = access->grp_unscalarizable_region;
if (first || access->offset >= high)
{
first = false;
low = access->offset;
high = access->offset + access->size;
}
else if (access->offset > low && access->offset + access->size > high)
return NULL;
else
gcc_assert (access->offset >= low
&& access->offset + access->size <= high);
j = i + 1;
while (j < access_count)
{
struct access *ac2 = VEC_index (access_p, access_vec, j);
if (ac2->offset != access->offset || ac2->size != access->size)
break;
if (ac2->write)
grp_write = true;
else
{
if (grp_read)
multiple_reads = true;
else
grp_read = true;
}
grp_partial_lhs |= ac2->grp_partial_lhs;
unscalarizable_region |= ac2->grp_unscalarizable_region;
relink_to_new_repr (access, ac2);
/* If there are both aggregate-type and scalar-type accesses with
this combination of size and offset, the comparison function
should have put the scalars first. */
gcc_assert (first_scalar || !is_gimple_reg_type (ac2->type));
ac2->group_representative = access;
j++;
}
i = j;
access->group_representative = access;
access->grp_write = grp_write;
access->grp_read = grp_read;
access->grp_hint = multiple_reads;
access->grp_partial_lhs = grp_partial_lhs;
access->grp_unscalarizable_region = unscalarizable_region;
if (access->first_link)
add_access_to_work_queue (access);
*prev_acc_ptr = access;
prev_acc_ptr = &access->next_grp;
}
gcc_assert (res == VEC_index (access_p, access_vec, 0));
return res;
}
/* Create a variable for the given ACCESS which determines the type, name and a
few other properties. Return the variable declaration and store it also to
ACCESS->replacement. */
static tree
create_access_replacement (struct access *access)
{
tree repl;
repl = create_tmp_var (access->type, "SR");
get_var_ann (repl);
add_referenced_var (repl);
mark_sym_for_renaming (repl);
if (!access->grp_partial_lhs
&& (TREE_CODE (access->type) == COMPLEX_TYPE
|| TREE_CODE (access->type) == VECTOR_TYPE))
DECL_GIMPLE_REG_P (repl) = 1;
DECL_SOURCE_LOCATION (repl) = DECL_SOURCE_LOCATION (access->base);
DECL_ARTIFICIAL (repl) = 1;
if (DECL_NAME (access->base)
&& !DECL_IGNORED_P (access->base)
&& !DECL_ARTIFICIAL (access->base))
{
char *pretty_name = make_fancy_name (access->expr);
DECL_NAME (repl) = get_identifier (pretty_name);
obstack_free (&name_obstack, pretty_name);
SET_DECL_DEBUG_EXPR (repl, access->expr);
DECL_DEBUG_EXPR_IS_FROM (repl) = 1;
DECL_IGNORED_P (repl) = 0;
}
DECL_IGNORED_P (repl) = DECL_IGNORED_P (access->base);
TREE_NO_WARNING (repl) = TREE_NO_WARNING (access->base);
if (dump_file)
{
fprintf (dump_file, "Created a replacement for ");
print_generic_expr (dump_file, access->base, 0);
fprintf (dump_file, " offset: %u, size: %u: ",
(unsigned) access->offset, (unsigned) access->size);
print_generic_expr (dump_file, repl, 0);
fprintf (dump_file, "\n");
}
sra_stats.replacements++;
return repl;
}
/* Return ACCESS scalar replacement, create it if it does not exist yet. */
static inline tree
get_access_replacement (struct access *access)
{
gcc_assert (access->grp_to_be_replaced);
if (!access->replacement_decl)
access->replacement_decl = create_access_replacement (access);
return access->replacement_decl;
}
/* Build a subtree of accesses rooted in *ACCESS, and move the pointer in the
linked list along the way. Stop when *ACCESS is NULL or the access pointed
to it is not "within" the root. */
static void
build_access_subtree (struct access **access)
{
struct access *root = *access, *last_child = NULL;
HOST_WIDE_INT limit = root->offset + root->size;
*access = (*access)->next_grp;
while (*access && (*access)->offset + (*access)->size <= limit)
{
if (!last_child)
root->first_child = *access;
else
last_child->next_sibling = *access;
last_child = *access;
build_access_subtree (access);
}
}
/* Build a tree of access representatives, ACCESS is the pointer to the first
one, others are linked in a list by the next_grp field. Decide about scalar
replacements on the way, return true iff any are to be created. */
static void
build_access_trees (struct access *access)
{
while (access)
{
struct access *root = access;
build_access_subtree (&access);
root->next_grp = access;
}
}
/* Return true if expr contains some ARRAY_REFs into a variable bounded
array. */
static bool
expr_with_var_bounded_array_refs_p (tree expr)
{
while (handled_component_p (expr))
{
if (TREE_CODE (expr) == ARRAY_REF
&& !host_integerp (array_ref_low_bound (expr), 0))
return true;
expr = TREE_OPERAND (expr, 0);
}
return false;
}
/* Analyze the subtree of accesses rooted in ROOT, scheduling replacements when
both seeming beneficial and when ALLOW_REPLACEMENTS allows it. Also set
all sorts of access flags appropriately along the way, notably always ser
grp_read when MARK_READ is true and grp_write when MARK_WRITE is true. */
static bool
analyze_access_subtree (struct access *root, bool allow_replacements,
bool mark_read, bool mark_write)
{
struct access *child;
HOST_WIDE_INT limit = root->offset + root->size;
HOST_WIDE_INT covered_to = root->offset;
bool scalar = is_gimple_reg_type (root->type);
bool hole = false, sth_created = false;
bool direct_read = root->grp_read;
if (mark_read)
root->grp_read = true;
else if (root->grp_read)
mark_read = true;
if (mark_write)
root->grp_write = true;
else if (root->grp_write)
mark_write = true;
if (root->grp_unscalarizable_region)
allow_replacements = false;
if (allow_replacements && expr_with_var_bounded_array_refs_p (root->expr))
allow_replacements = false;
for (child = root->first_child; child; child = child->next_sibling)
{
if (!hole && child->offset < covered_to)
hole = true;
else
covered_to += child->size;
sth_created |= analyze_access_subtree (child, allow_replacements,
mark_read, mark_write);
root->grp_unscalarized_data |= child->grp_unscalarized_data;
hole |= !child->grp_covered;
}
if (allow_replacements && scalar && !root->first_child
&& (root->grp_hint
|| (direct_read && root->grp_write)))
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Marking ");
print_generic_expr (dump_file, root->base, 0);
fprintf (dump_file, " offset: %u, size: %u: ",
(unsigned) root->offset, (unsigned) root->size);
fprintf (dump_file, " to be replaced.\n");
}
root->grp_to_be_replaced = 1;
sth_created = true;
hole = false;
}
else if (covered_to < limit)
hole = true;
if (sth_created && !hole)
{
root->grp_covered = 1;
return true;
}
if (root->grp_write || TREE_CODE (root->base) == PARM_DECL)
root->grp_unscalarized_data = 1; /* not covered and written to */
if (sth_created)
return true;
return false;
}
/* Analyze all access trees linked by next_grp by the means of
analyze_access_subtree. */
static bool
analyze_access_trees (struct access *access)
{
bool ret = false;
while (access)
{
if (analyze_access_subtree (access, true, false, false))
ret = true;
access = access->next_grp;
}
return ret;
}
/* Return true iff a potential new child of LACC at offset OFFSET and with size
SIZE would conflict with an already existing one. If exactly such a child
already exists in LACC, store a pointer to it in EXACT_MATCH. */
static bool
child_would_conflict_in_lacc (struct access *lacc, HOST_WIDE_INT norm_offset,
HOST_WIDE_INT size, struct access **exact_match)
{
struct access *child;
for (child = lacc->first_child; child; child = child->next_sibling)
{
if (child->offset == norm_offset && child->size == size)
{
*exact_match = child;
return true;
}
if (child->offset < norm_offset + size
&& child->offset + child->size > norm_offset)
return true;
}
return false;
}
/* Create a new child access of PARENT, with all properties just like MODEL
except for its offset and with its grp_write false and grp_read true.
Return the new access or NULL if it cannot be created. Note that this access
is created long after all splicing and sorting, it's not located in any
access vector and is automatically a representative of its group. */
static struct access *
create_artificial_child_access (struct access *parent, struct access *model,
HOST_WIDE_INT new_offset)
{
struct access *access;
struct access **child;
tree expr = parent->base;;
gcc_assert (!model->grp_unscalarizable_region);
if (!build_ref_for_offset (&expr, TREE_TYPE (expr), new_offset,
model->type, false))
return NULL;
access = (struct access *) pool_alloc (access_pool);
memset (access, 0, sizeof (struct access));
access->base = parent->base;
access->expr = expr;
access->offset = new_offset;
access->size = model->size;
access->type = model->type;
access->grp_write = true;
access->grp_read = false;
child = &parent->first_child;
while (*child && (*child)->offset < new_offset)
child = &(*child)->next_sibling;
access->next_sibling = *child;
*child = access;
return access;
}
/* Propagate all subaccesses of RACC across an assignment link to LACC. Return
true if any new subaccess was created. Additionally, if RACC is a scalar
access but LACC is not, change the type of the latter, if possible. */
static bool
propagate_subacesses_accross_link (struct access *lacc, struct access *racc)
{
struct access *rchild;
HOST_WIDE_INT norm_delta = lacc->offset - racc->offset;
bool ret = false;
if (is_gimple_reg_type (lacc->type)
|| lacc->grp_unscalarizable_region
|| racc->grp_unscalarizable_region)
return false;
if (!lacc->first_child && !racc->first_child
&& is_gimple_reg_type (racc->type))
{
tree t = lacc->base;
if (build_ref_for_offset (&t, TREE_TYPE (t), lacc->offset, racc->type,
false))
{
lacc->expr = t;
lacc->type = racc->type;
}
return false;
}
for (rchild = racc->first_child; rchild; rchild = rchild->next_sibling)
{
struct access *new_acc = NULL;
HOST_WIDE_INT norm_offset = rchild->offset + norm_delta;
if (rchild->grp_unscalarizable_region)
continue;
if (child_would_conflict_in_lacc (lacc, norm_offset, rchild->size,
&new_acc))
{
if (new_acc)
{
rchild->grp_hint = 1;
new_acc->grp_hint |= new_acc->grp_read;
if (rchild->first_child)
ret |= propagate_subacesses_accross_link (new_acc, rchild);
}
continue;
}
/* If a (part of) a union field is on the RHS of an assignment, it can
have sub-accesses which do not make sense on the LHS (PR 40351).
Check that this is not the case. */
if (!build_ref_for_offset (NULL, TREE_TYPE (lacc->base), norm_offset,
rchild->type, false))
continue;
rchild->grp_hint = 1;
new_acc = create_artificial_child_access (lacc, rchild, norm_offset);
if (new_acc)
{
ret = true;
if (racc->first_child)
propagate_subacesses_accross_link (new_acc, rchild);
}
}
return ret;
}
/* Propagate all subaccesses across assignment links. */
static void
propagate_all_subaccesses (void)
{
while (work_queue_head)
{
struct access *racc = pop_access_from_work_queue ();
struct assign_link *link;
gcc_assert (racc->first_link);
for (link = racc->first_link; link; link = link->next)
{
struct access *lacc = link->lacc;
if (!bitmap_bit_p (candidate_bitmap, DECL_UID (lacc->base)))
continue;
lacc = lacc->group_representative;
if (propagate_subacesses_accross_link (lacc, racc)
&& lacc->first_link)
add_access_to_work_queue (lacc);
}
}
}
/* Go through all accesses collected throughout the (intraprocedural) analysis
stage, exclude overlapping ones, identify representatives and build trees
out of them, making decisions about scalarization on the way. Return true
iff there are any to-be-scalarized variables after this stage. */
static bool
analyze_all_variable_accesses (void)
{
tree var;
referenced_var_iterator rvi;
int res = 0;
FOR_EACH_REFERENCED_VAR (var, rvi)
if (bitmap_bit_p (candidate_bitmap, DECL_UID (var)))
{
struct access *access;
access = sort_and_splice_var_accesses (var);
if (access)
build_access_trees (access);
else
disqualify_candidate (var,
"No or inhibitingly overlapping accesses.");
}
propagate_all_subaccesses ();
FOR_EACH_REFERENCED_VAR (var, rvi)
if (bitmap_bit_p (candidate_bitmap, DECL_UID (var)))
{
struct access *access = get_first_repr_for_decl (var);
if (analyze_access_trees (access))
{
res++;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\nAccess trees for ");
print_generic_expr (dump_file, var, 0);
fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
dump_access_tree (dump_file, access);
fprintf (dump_file, "\n");
}
}
else
disqualify_candidate (var, "No scalar replacements to be created.");
}
if (res)
{
statistics_counter_event (cfun, "Scalarized aggregates", res);
return true;
}
else
return false;
}
/* Return true iff a reference statement into aggregate AGG can be built for
every single to-be-replaced accesses that is a child of ACCESS, its sibling
or a child of its sibling. TOP_OFFSET is the offset from the processed
access subtree that has to be subtracted from offset of each access. */
static bool
ref_expr_for_all_replacements_p (struct access *access, tree agg,
HOST_WIDE_INT top_offset)
{
do
{
if (access->grp_to_be_replaced
&& !build_ref_for_offset (NULL, TREE_TYPE (agg),
access->offset - top_offset,
access->type, false))
return false;
if (access->first_child
&& !ref_expr_for_all_replacements_p (access->first_child, agg,
top_offset))
return false;
access = access->next_sibling;
}
while (access);
return true;
}
/* Generate statements copying scalar replacements of accesses within a subtree
into or out of AGG. ACCESS is the first child of the root of the subtree to
be processed. AGG is an aggregate type expression (can be a declaration but
does not have to be, it can for example also be an indirect_ref).
TOP_OFFSET is the offset of the processed subtree which has to be subtracted
from offsets of individual accesses to get corresponding offsets for AGG.
If CHUNK_SIZE is non-null, copy only replacements in the interval
<start_offset, start_offset + chunk_size>, otherwise copy all. GSI is a
statement iterator used to place the new statements. WRITE should be true
when the statements should write from AGG to the replacement and false if
vice versa. if INSERT_AFTER is true, new statements will be added after the
current statement in GSI, they will be added before the statement
otherwise. */
static void
generate_subtree_copies (struct access *access, tree agg,
HOST_WIDE_INT top_offset,
HOST_WIDE_INT start_offset, HOST_WIDE_INT chunk_size,
gimple_stmt_iterator *gsi, bool write,
bool insert_after)
{
do
{
tree expr = unshare_expr (agg);
if (chunk_size && access->offset >= start_offset + chunk_size)
return;
if (access->grp_to_be_replaced
&& (chunk_size == 0
|| access->offset + access->size > start_offset))
{
tree repl = get_access_replacement (access);
bool ref_found;
gimple stmt;
ref_found = build_ref_for_offset (&expr, TREE_TYPE (agg),
access->offset - top_offset,
access->type, false);
gcc_assert (ref_found);
if (write)
{
if (access->grp_partial_lhs)
expr = force_gimple_operand_gsi (gsi, expr, true, NULL_TREE,
!insert_after,
insert_after ? GSI_NEW_STMT
: GSI_SAME_STMT);
stmt = gimple_build_assign (repl, expr);
}
else
{
TREE_NO_WARNING (repl) = 1;
if (access->grp_partial_lhs)
repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
!insert_after,
insert_after ? GSI_NEW_STMT
: GSI_SAME_STMT);
stmt = gimple_build_assign (expr, repl);
}
if (insert_after)
gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
else
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
update_stmt (stmt);
sra_stats.subtree_copies++;
}
if (access->first_child)
generate_subtree_copies (access->first_child, agg, top_offset,
start_offset, chunk_size, gsi,
write, insert_after);
access = access->next_sibling;
}
while (access);
}
/* Assign zero to all scalar replacements in an access subtree. ACCESS is the
the root of the subtree to be processed. GSI is the statement iterator used
for inserting statements which are added after the current statement if
INSERT_AFTER is true or before it otherwise. */
static void
init_subtree_with_zero (struct access *access, gimple_stmt_iterator *gsi,
bool insert_after)
{
struct access *child;
if (access->grp_to_be_replaced)
{
gimple stmt;
stmt = gimple_build_assign (get_access_replacement (access),
fold_convert (access->type,
integer_zero_node));
if (insert_after)
gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
else
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
update_stmt (stmt);
}
for (child = access->first_child; child; child = child->next_sibling)
init_subtree_with_zero (child, gsi, insert_after);
}
/* Search for an access representative for the given expression EXPR and
return it or NULL if it cannot be found. */
static struct access *
get_access_for_expr (tree expr)
{
HOST_WIDE_INT offset, size, max_size;
tree base;
/* FIXME: This should not be necessary but Ada produces V_C_Es with a type of
a different size than the size of its argument and we need the latter
one. */
if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
expr = TREE_OPERAND (expr, 0);
base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
if (max_size == -1 || !DECL_P (base))
return NULL;
if (!bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
return NULL;
return get_var_base_offset_size_access (base, offset, max_size);
}
/* Callback for scan_function. Replace the expression EXPR with a scalar
replacement if there is one and generate other statements to do type
conversion or subtree copying if necessary. GSI is used to place newly
created statements, WRITE is true if the expression is being written to (it
is on a LHS of a statement or output in an assembly statement). */
static bool
sra_modify_expr (tree *expr, gimple_stmt_iterator *gsi, bool write,
void *data ATTRIBUTE_UNUSED)
{
struct access *access;
tree type, bfr;
if (TREE_CODE (*expr) == BIT_FIELD_REF)
{
bfr = *expr;
expr = &TREE_OPERAND (*expr, 0);
}
else
bfr = NULL_TREE;
if (TREE_CODE (*expr) == REALPART_EXPR || TREE_CODE (*expr) == IMAGPART_EXPR)
expr = &TREE_OPERAND (*expr, 0);
access = get_access_for_expr (*expr);
if (!access)
return false;
type = TREE_TYPE (*expr);
if (access->grp_to_be_replaced)
{
tree repl = get_access_replacement (access);
/* If we replace a non-register typed access simply use the original
access expression to extract the scalar component afterwards.
This happens if scalarizing a function return value or parameter
like in gcc.c-torture/execute/20041124-1.c, 20050316-1.c and
gcc.c-torture/compile/20011217-1.c. */
if (!is_gimple_reg_type (type))
{
gimple stmt;
if (write)
{
tree ref = unshare_expr (access->expr);
if (access->grp_partial_lhs)
ref = force_gimple_operand_gsi (gsi, ref, true, NULL_TREE,
false, GSI_NEW_STMT);
stmt = gimple_build_assign (repl, ref);
gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
}
else
{
if (access->grp_partial_lhs)
repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
true, GSI_SAME_STMT);
stmt = gimple_build_assign (unshare_expr (access->expr), repl);
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
}
}
else
{
gcc_assert (useless_type_conversion_p (type, access->type));
*expr = repl;
}
sra_stats.exprs++;
}
if (access->first_child)
{
HOST_WIDE_INT start_offset, chunk_size;
if (bfr
&& host_integerp (TREE_OPERAND (bfr, 1), 1)
&& host_integerp (TREE_OPERAND (bfr, 2), 1))
{
chunk_size = tree_low_cst (TREE_OPERAND (bfr, 1), 1);
start_offset = access->offset
+ tree_low_cst (TREE_OPERAND (bfr, 2), 1);
}
else
start_offset = chunk_size = 0;
generate_subtree_copies (access->first_child, access->base, 0,
start_offset, chunk_size, gsi, write, write);
}
return true;
}
/* Where scalar replacements of the RHS have been written to when a replacement
of a LHS of an assigments cannot be direclty loaded from a replacement of
the RHS. */
enum unscalarized_data_handling { SRA_UDH_NONE, /* Nothing done so far. */
SRA_UDH_RIGHT, /* Data flushed to the RHS. */
SRA_UDH_LEFT }; /* Data flushed to the LHS. */
/* Store all replacements in the access tree rooted in TOP_RACC either to their
base aggregate if there are unscalarized data or directly to LHS
otherwise. */
static enum unscalarized_data_handling
handle_unscalarized_data_in_subtree (struct access *top_racc, tree lhs,
gimple_stmt_iterator *gsi)
{
if (top_racc->grp_unscalarized_data)
{
generate_subtree_copies (top_racc->first_child, top_racc->base, 0, 0, 0,
gsi, false, false);
return SRA_UDH_RIGHT;
}
else
{
generate_subtree_copies (top_racc->first_child, lhs, top_racc->offset,
0, 0, gsi, false, false);
return SRA_UDH_LEFT;
}
}
/* Try to generate statements to load all sub-replacements in an access
(sub)tree (LACC is the first child) from scalar replacements in the TOP_RACC
(sub)tree. If that is not possible, refresh the TOP_RACC base aggregate and
load the accesses from it. LEFT_OFFSET is the offset of the left whole
subtree being copied, RIGHT_OFFSET is the same thing for the right subtree.
GSI is stmt iterator used for statement insertions. *REFRESHED is true iff
the rhs top aggregate has already been refreshed by contents of its scalar
reductions and is set to true if this function has to do it. */
static void
load_assign_lhs_subreplacements (struct access *lacc, struct access *top_racc,
HOST_WIDE_INT left_offset,
HOST_WIDE_INT right_offset,
gimple_stmt_iterator *old_gsi,
gimple_stmt_iterator *new_gsi,
enum unscalarized_data_handling *refreshed,
tree lhs)
{
location_t loc = EXPR_LOCATION (lacc->expr);
do
{
if (lacc->grp_to_be_replaced)
{
struct access *racc;
HOST_WIDE_INT offset = lacc->offset - left_offset + right_offset;
gimple stmt;
tree rhs;
racc = find_access_in_subtree (top_racc, offset, lacc->size);
if (racc && racc->grp_to_be_replaced)
{
rhs = get_access_replacement (racc);
if (!useless_type_conversion_p (lacc->type, racc->type))
rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, lacc->type, rhs);
}
else
{
bool repl_found;
/* No suitable access on the right hand side, need to load from
the aggregate. See if we have to update it first... */
if (*refreshed == SRA_UDH_NONE)
*refreshed = handle_unscalarized_data_in_subtree (top_racc,
lhs, old_gsi);
if (*refreshed == SRA_UDH_LEFT)
rhs = unshare_expr (lacc->expr);
else
{
rhs = unshare_expr (top_racc->base);
repl_found = build_ref_for_offset (&rhs,
TREE_TYPE (top_racc->base),
offset, lacc->type, false);
gcc_assert (repl_found);
}
}
stmt = gimple_build_assign (get_access_replacement (lacc), rhs);
gsi_insert_after (new_gsi, stmt, GSI_NEW_STMT);
update_stmt (stmt);
sra_stats.subreplacements++;
}
else if (*refreshed == SRA_UDH_NONE
&& lacc->grp_read && !lacc->grp_covered)
*refreshed = handle_unscalarized_data_in_subtree (top_racc, lhs,
old_gsi);
if (lacc->first_child)
load_assign_lhs_subreplacements (lacc->first_child, top_racc,
left_offset, right_offset,
old_gsi, new_gsi, refreshed, lhs);
lacc = lacc->next_sibling;
}
while (lacc);
}
/* Modify assignments with a CONSTRUCTOR on their RHS. STMT contains a pointer
to the assignment and GSI is the statement iterator pointing at it. Returns
the same values as sra_modify_assign. */
static enum scan_assign_result
sra_modify_constructor_assign (gimple *stmt, gimple_stmt_iterator *gsi)
{
tree lhs = gimple_assign_lhs (*stmt);
struct access *acc;
acc = get_access_for_expr (lhs);
if (!acc)
return SRA_SA_NONE;
if (VEC_length (constructor_elt,
CONSTRUCTOR_ELTS (gimple_assign_rhs1 (*stmt))) > 0)
{
/* I have never seen this code path trigger but if it can happen the
following should handle it gracefully. */
if (access_has_children_p (acc))
generate_subtree_copies (acc->first_child, acc->base, 0, 0, 0, gsi,
true, true);
return SRA_SA_PROCESSED;
}
if (acc->grp_covered)
{
init_subtree_with_zero (acc, gsi, false);
unlink_stmt_vdef (*stmt);
gsi_remove (gsi, true);
return SRA_SA_REMOVED;
}
else
{
init_subtree_with_zero (acc, gsi, true);
return SRA_SA_PROCESSED;
}
}
/* Callback of scan_function to process assign statements. It examines both
sides of the statement, replaces them with a scalare replacement if there is
one and generating copying of replacements if scalarized aggregates have been
used in the assignment. STMT is a pointer to the assign statement, GSI is
used to hold generated statements for type conversions and subtree
copying. */
static enum scan_assign_result
sra_modify_assign (gimple *stmt, gimple_stmt_iterator *gsi,
void *data ATTRIBUTE_UNUSED)
{
struct access *lacc, *racc;
tree lhs, rhs;
bool modify_this_stmt = false;
bool force_gimple_rhs = false;
location_t loc = gimple_location (*stmt);
if (!gimple_assign_single_p (*stmt))
return SRA_SA_NONE;
lhs = gimple_assign_lhs (*stmt);
rhs = gimple_assign_rhs1 (*stmt);
if (TREE_CODE (rhs) == CONSTRUCTOR)
return sra_modify_constructor_assign (stmt, gsi);
if (TREE_CODE (rhs) == REALPART_EXPR || TREE_CODE (lhs) == REALPART_EXPR
|| TREE_CODE (rhs) == IMAGPART_EXPR || TREE_CODE (lhs) == IMAGPART_EXPR
|| TREE_CODE (rhs) == BIT_FIELD_REF || TREE_CODE (lhs) == BIT_FIELD_REF)
{
modify_this_stmt = sra_modify_expr (gimple_assign_rhs1_ptr (*stmt),
gsi, false, data);
modify_this_stmt |= sra_modify_expr (gimple_assign_lhs_ptr (*stmt),
gsi, true, data);
return modify_this_stmt ? SRA_SA_PROCESSED : SRA_SA_NONE;
}
lacc = get_access_for_expr (lhs);
racc = get_access_for_expr (rhs);
if (!lacc && !racc)
return SRA_SA_NONE;
if (lacc && lacc->grp_to_be_replaced)
{
lhs = get_access_replacement (lacc);
gimple_assign_set_lhs (*stmt, lhs);
modify_this_stmt = true;
if (lacc->grp_partial_lhs)
force_gimple_rhs = true;
sra_stats.exprs++;
}
if (racc && racc->grp_to_be_replaced)
{
rhs = get_access_replacement (racc);
modify_this_stmt = true;
if (racc->grp_partial_lhs)
force_gimple_rhs = true;
sra_stats.exprs++;
}
if (modify_this_stmt)
{
if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
{
/* If we can avoid creating a VIEW_CONVERT_EXPR do so.
??? This should move to fold_stmt which we simply should
call after building a VIEW_CONVERT_EXPR here. */
if (AGGREGATE_TYPE_P (TREE_TYPE (lhs))
&& !access_has_children_p (lacc))
{
tree expr = unshare_expr (lhs);
if (build_ref_for_offset (&expr, TREE_TYPE (lhs), 0,
TREE_TYPE (rhs), false))
{
lhs = expr;
gimple_assign_set_lhs (*stmt, expr);
}
}
else if (AGGREGATE_TYPE_P (TREE_TYPE (rhs))
&& !access_has_children_p (racc))
{
tree expr = unshare_expr (rhs);
if (build_ref_for_offset (&expr, TREE_TYPE (rhs), 0,
TREE_TYPE (lhs), false))
rhs = expr;
}
if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
{
rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
if (!is_gimple_reg (lhs))
force_gimple_rhs = true;
}
}
if (force_gimple_rhs)
rhs = force_gimple_operand_gsi (gsi, rhs, true, NULL_TREE,
true, GSI_SAME_STMT);
if (gimple_assign_rhs1 (*stmt) != rhs)
{
gimple_assign_set_rhs_from_tree (gsi, rhs);
gcc_assert (*stmt == gsi_stmt (*gsi));
}
}
/* From this point on, the function deals with assignments in between
aggregates when at least one has scalar reductions of some of its
components. There are three possible scenarios: Both the LHS and RHS have
to-be-scalarized components, 2) only the RHS has or 3) only the LHS has.
In the first case, we would like to load the LHS components from RHS
components whenever possible. If that is not possible, we would like to
read it directly from the RHS (after updating it by storing in it its own
components). If there are some necessary unscalarized data in the LHS,
those will be loaded by the original assignment too. If neither of these
cases happen, the original statement can be removed. Most of this is done
by load_assign_lhs_subreplacements.
In the second case, we would like to store all RHS scalarized components
directly into LHS and if they cover the aggregate completely, remove the
statement too. In the third case, we want the LHS components to be loaded
directly from the RHS (DSE will remove the original statement if it
becomes redundant).
This is a bit complex but manageable when types match and when unions do
not cause confusion in a way that we cannot really load a component of LHS
from the RHS or vice versa (the access representing this level can have
subaccesses that are accessible only through a different union field at a
higher level - different from the one used in the examined expression).
Unions are fun.
Therefore, I specially handle a fourth case, happening when there is a
specific type cast or it is impossible to locate a scalarized subaccess on
the other side of the expression. If that happens, I simply "refresh" the
RHS by storing in it is scalarized components leave the original statement
there to do the copying and then load the scalar replacements of the LHS.
This is what the first branch does. */
if (contains_view_convert_expr_p (rhs) || contains_view_convert_expr_p (lhs)
|| (access_has_children_p (racc)
&& !ref_expr_for_all_replacements_p (racc, lhs, racc->offset))
|| (access_has_children_p (lacc)
&& !ref_expr_for_all_replacements_p (lacc, rhs, lacc->offset)))
{
if (access_has_children_p (racc))
generate_subtree_copies (racc->first_child, racc->base, 0, 0, 0,
gsi, false, false);
if (access_has_children_p (lacc))
generate_subtree_copies (lacc->first_child, lacc->base, 0, 0, 0,
gsi, true, true);
sra_stats.separate_lhs_rhs_handling++;
}
else
{
if (access_has_children_p (lacc) && access_has_children_p (racc))
{
gimple_stmt_iterator orig_gsi = *gsi;
enum unscalarized_data_handling refreshed;
if (lacc->grp_read && !lacc->grp_covered)
refreshed = handle_unscalarized_data_in_subtree (racc, lhs, gsi);
else
refreshed = SRA_UDH_NONE;
load_assign_lhs_subreplacements (lacc->first_child, racc,
lacc->offset, racc->offset,
&orig_gsi, gsi, &refreshed, lhs);
if (refreshed != SRA_UDH_RIGHT)
{
if (*stmt == gsi_stmt (*gsi))
gsi_next (gsi);
unlink_stmt_vdef (*stmt);
gsi_remove (&orig_gsi, true);
sra_stats.deleted++;
return SRA_SA_REMOVED;
}
}
else
{
if (access_has_children_p (racc))
{
if (!racc->grp_unscalarized_data)
{
generate_subtree_copies (racc->first_child, lhs,
racc->offset, 0, 0, gsi,
false, false);
gcc_assert (*stmt == gsi_stmt (*gsi));
unlink_stmt_vdef (*stmt);
gsi_remove (gsi, true);
sra_stats.deleted++;
return SRA_SA_REMOVED;
}
else
generate_subtree_copies (racc->first_child, lhs,
racc->offset, 0, 0, gsi, false, true);
}
else if (access_has_children_p (lacc))
generate_subtree_copies (lacc->first_child, rhs, lacc->offset,
0, 0, gsi, true, true);
}
}
return modify_this_stmt ? SRA_SA_PROCESSED : SRA_SA_NONE;
}
/* Generate statements initializing scalar replacements of parts of function
parameters. */
static void
initialize_parameter_reductions (void)
{
gimple_stmt_iterator gsi;
gimple_seq seq = NULL;
tree parm;
for (parm = DECL_ARGUMENTS (current_function_decl);
parm;
parm = TREE_CHAIN (parm))
{
VEC (access_p, heap) *access_vec;
struct access *access;
if (!bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
continue;
access_vec = get_base_access_vector (parm);
if (!access_vec)
continue;
if (!seq)
{
seq = gimple_seq_alloc ();
gsi = gsi_start (seq);
}
for (access = VEC_index (access_p, access_vec, 0);
access;
access = access->next_grp)
generate_subtree_copies (access, parm, 0, 0, 0, &gsi, true, true);
}
if (seq)
gsi_insert_seq_on_edge_immediate (single_succ_edge (ENTRY_BLOCK_PTR), seq);
}
/* The "main" function of intraprocedural SRA passes. Runs the analysis and if
it reveals there are components of some aggregates to be scalarized, it runs
the required transformations. */
static unsigned int
perform_intra_sra (void)
{
int ret = 0;
sra_initialize ();
if (!find_var_candidates ())
goto out;
if (!scan_function (build_access_from_expr, build_accesses_from_assign, NULL,
true, NULL))
goto out;
if (!analyze_all_variable_accesses ())
goto out;
scan_function (sra_modify_expr, sra_modify_assign, NULL,
false, NULL);
initialize_parameter_reductions ();
statistics_counter_event (cfun, "Scalar replacements created",
sra_stats.replacements);
statistics_counter_event (cfun, "Modified expressions", sra_stats.exprs);
statistics_counter_event (cfun, "Subtree copy stmts",
sra_stats.subtree_copies);
statistics_counter_event (cfun, "Subreplacement stmts",
sra_stats.subreplacements);
statistics_counter_event (cfun, "Deleted stmts", sra_stats.deleted);
statistics_counter_event (cfun, "Separate LHS and RHS handling",
sra_stats.separate_lhs_rhs_handling);
ret = TODO_update_ssa;
out:
sra_deinitialize ();
return ret;
}
/* Perform early intraprocedural SRA. */
static unsigned int
early_intra_sra (void)
{
sra_mode = SRA_MODE_EARLY_INTRA;
return perform_intra_sra ();
}
/* Perform "late" intraprocedural SRA. */
static unsigned int
late_intra_sra (void)
{
sra_mode = SRA_MODE_INTRA;
return perform_intra_sra ();
}
static bool
gate_intra_sra (void)
{
return flag_tree_sra != 0;
}
struct gimple_opt_pass pass_sra_early =
{
{
GIMPLE_PASS,
"esra", /* name */
gate_intra_sra, /* gate */
early_intra_sra, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_TREE_SRA, /* tv_id */
PROP_cfg | PROP_ssa, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_func
| TODO_update_ssa
| TODO_ggc_collect
| TODO_verify_ssa /* todo_flags_finish */
}
};
struct gimple_opt_pass pass_sra =
{
{
GIMPLE_PASS,
"sra", /* name */
gate_intra_sra, /* gate */
late_intra_sra, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_TREE_SRA, /* tv_id */
PROP_cfg | PROP_ssa, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
TODO_update_address_taken, /* todo_flags_start */
TODO_dump_func
| TODO_update_ssa
| TODO_ggc_collect
| TODO_verify_ssa /* todo_flags_finish */
}
};
|