1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
|
/* Convert a program in SSA form into Normal form.
Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
Free Software Foundation, Inc.
Contributed by Andrew Macleod <amacleod@redhat.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "ggc.h"
#include "basic-block.h"
#include "tree-pretty-print.h"
#include "gimple-pretty-print.h"
#include "bitmap.h"
#include "tree-flow.h"
#include "timevar.h"
#include "tree-dump.h"
#include "tree-pass.h"
#include "toplev.h"
#include "ssaexpand.h"
/* FIXME: A lot of code here deals with expanding to RTL. All that code
should be in cfgexpand.c. */
#include "expr.h"
DEF_VEC_I(source_location);
DEF_VEC_ALLOC_I(source_location,heap);
/* Used to hold all the components required to do SSA PHI elimination.
The node and pred/succ list is a simple linear list of nodes and
edges represented as pairs of nodes.
The predecessor and successor list: Nodes are entered in pairs, where
[0] ->PRED, [1]->SUCC. All the even indexes in the array represent
predecessors, all the odd elements are successors.
Rationale:
When implemented as bitmaps, very large programs SSA->Normal times were
being dominated by clearing the interference graph.
Typically this list of edges is extremely small since it only includes
PHI results and uses from a single edge which have not coalesced with
each other. This means that no virtual PHI nodes are included, and
empirical evidence suggests that the number of edges rarely exceed
3, and in a bootstrap of GCC, the maximum size encountered was 7.
This also limits the number of possible nodes that are involved to
rarely more than 6, and in the bootstrap of gcc, the maximum number
of nodes encountered was 12. */
typedef struct _elim_graph {
/* Size of the elimination vectors. */
int size;
/* List of nodes in the elimination graph. */
VEC(int,heap) *nodes;
/* The predecessor and successor edge list. */
VEC(int,heap) *edge_list;
/* Source locus on each edge */
VEC(source_location,heap) *edge_locus;
/* Visited vector. */
sbitmap visited;
/* Stack for visited nodes. */
VEC(int,heap) *stack;
/* The variable partition map. */
var_map map;
/* Edge being eliminated by this graph. */
edge e;
/* List of constant copies to emit. These are pushed on in pairs. */
VEC(int,heap) *const_dests;
VEC(tree,heap) *const_copies;
/* Source locations for any constant copies. */
VEC(source_location,heap) *copy_locus;
} *elim_graph;
/* For an edge E find out a good source location to associate with
instructions inserted on edge E. If E has an implicit goto set,
use its location. Otherwise search instructions in predecessors
of E for a location, and use that one. That makes sense because
we insert on edges for PHI nodes, and effects of PHIs happen on
the end of the predecessor conceptually. */
static void
set_location_for_edge (edge e)
{
if (e->goto_locus)
{
set_curr_insn_source_location (e->goto_locus);
set_curr_insn_block (e->goto_block);
}
else
{
basic_block bb = e->src;
gimple_stmt_iterator gsi;
do
{
for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
{
gimple stmt = gsi_stmt (gsi);
if (is_gimple_debug (stmt))
continue;
if (gimple_has_location (stmt) || gimple_block (stmt))
{
set_curr_insn_source_location (gimple_location (stmt));
set_curr_insn_block (gimple_block (stmt));
return;
}
}
/* Nothing found in this basic block. Make a half-assed attempt
to continue with another block. */
if (single_pred_p (bb))
bb = single_pred (bb);
else
bb = e->src;
}
while (bb != e->src);
}
}
/* Emit insns to copy SRC into DEST converting SRC if necessary. As
SRC/DEST might be BLKmode memory locations SIZEEXP is a tree from
which we deduce the size to copy in that case. */
static inline rtx
emit_partition_copy (rtx dest, rtx src, int unsignedsrcp, tree sizeexp)
{
rtx seq;
start_sequence ();
if (GET_MODE (src) != VOIDmode && GET_MODE (src) != GET_MODE (dest))
src = convert_to_mode (GET_MODE (dest), src, unsignedsrcp);
if (GET_MODE (src) == BLKmode)
{
gcc_assert (GET_MODE (dest) == BLKmode);
emit_block_move (dest, src, expr_size (sizeexp), BLOCK_OP_NORMAL);
}
else
emit_move_insn (dest, src);
seq = get_insns ();
end_sequence ();
return seq;
}
/* Insert a copy instruction from partition SRC to DEST onto edge E. */
static void
insert_partition_copy_on_edge (edge e, int dest, int src, source_location locus)
{
tree var;
rtx seq;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file,
"Inserting a partition copy on edge BB%d->BB%d :"
"PART.%d = PART.%d",
e->src->index,
e->dest->index, dest, src);
fprintf (dump_file, "\n");
}
gcc_assert (SA.partition_to_pseudo[dest]);
gcc_assert (SA.partition_to_pseudo[src]);
set_location_for_edge (e);
/* If a locus is provided, override the default. */
if (locus)
set_curr_insn_source_location (locus);
var = partition_to_var (SA.map, src);
seq = emit_partition_copy (SA.partition_to_pseudo[dest],
SA.partition_to_pseudo[src],
TYPE_UNSIGNED (TREE_TYPE (var)),
var);
insert_insn_on_edge (seq, e);
}
/* Insert a copy instruction from expression SRC to partition DEST
onto edge E. */
static void
insert_value_copy_on_edge (edge e, int dest, tree src, source_location locus)
{
rtx seq, x;
enum machine_mode dest_mode, src_mode;
int unsignedp;
tree var;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file,
"Inserting a value copy on edge BB%d->BB%d : PART.%d = ",
e->src->index,
e->dest->index, dest);
print_generic_expr (dump_file, src, TDF_SLIM);
fprintf (dump_file, "\n");
}
gcc_assert (SA.partition_to_pseudo[dest]);
set_location_for_edge (e);
/* If a locus is provided, override the default. */
if (locus)
set_curr_insn_source_location (locus);
start_sequence ();
var = SSA_NAME_VAR (partition_to_var (SA.map, dest));
src_mode = TYPE_MODE (TREE_TYPE (src));
dest_mode = promote_decl_mode (var, &unsignedp);
gcc_assert (src_mode == TYPE_MODE (TREE_TYPE (var)));
gcc_assert (dest_mode == GET_MODE (SA.partition_to_pseudo[dest]));
if (src_mode != dest_mode)
{
x = expand_expr (src, NULL, src_mode, EXPAND_NORMAL);
x = convert_modes (dest_mode, src_mode, x, unsignedp);
}
else if (src_mode == BLKmode)
{
x = SA.partition_to_pseudo[dest];
store_expr (src, x, 0, false);
}
else
x = expand_expr (src, SA.partition_to_pseudo[dest],
dest_mode, EXPAND_NORMAL);
if (x != SA.partition_to_pseudo[dest])
emit_move_insn (SA.partition_to_pseudo[dest], x);
seq = get_insns ();
end_sequence ();
insert_insn_on_edge (seq, e);
}
/* Insert a copy instruction from RTL expression SRC to partition DEST
onto edge E. */
static void
insert_rtx_to_part_on_edge (edge e, int dest, rtx src, int unsignedsrcp,
source_location locus)
{
rtx seq;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file,
"Inserting a temp copy on edge BB%d->BB%d : PART.%d = ",
e->src->index,
e->dest->index, dest);
print_simple_rtl (dump_file, src);
fprintf (dump_file, "\n");
}
gcc_assert (SA.partition_to_pseudo[dest]);
set_location_for_edge (e);
/* If a locus is provided, override the default. */
if (locus)
set_curr_insn_source_location (locus);
/* We give the destination as sizeexp in case src/dest are BLKmode
mems. Usually we give the source. As we result from SSA names
the left and right size should be the same (and no WITH_SIZE_EXPR
involved), so it doesn't matter. */
seq = emit_partition_copy (SA.partition_to_pseudo[dest],
src, unsignedsrcp,
partition_to_var (SA.map, dest));
insert_insn_on_edge (seq, e);
}
/* Insert a copy instruction from partition SRC to RTL lvalue DEST
onto edge E. */
static void
insert_part_to_rtx_on_edge (edge e, rtx dest, int src, source_location locus)
{
tree var;
rtx seq;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file,
"Inserting a temp copy on edge BB%d->BB%d : ",
e->src->index,
e->dest->index);
print_simple_rtl (dump_file, dest);
fprintf (dump_file, "= PART.%d\n", src);
}
gcc_assert (SA.partition_to_pseudo[src]);
set_location_for_edge (e);
/* If a locus is provided, override the default. */
if (locus)
set_curr_insn_source_location (locus);
var = partition_to_var (SA.map, src);
seq = emit_partition_copy (dest,
SA.partition_to_pseudo[src],
TYPE_UNSIGNED (TREE_TYPE (var)),
var);
insert_insn_on_edge (seq, e);
}
/* Create an elimination graph with SIZE nodes and associated data
structures. */
static elim_graph
new_elim_graph (int size)
{
elim_graph g = (elim_graph) xmalloc (sizeof (struct _elim_graph));
g->nodes = VEC_alloc (int, heap, 30);
g->const_dests = VEC_alloc (int, heap, 20);
g->const_copies = VEC_alloc (tree, heap, 20);
g->copy_locus = VEC_alloc (source_location, heap, 10);
g->edge_list = VEC_alloc (int, heap, 20);
g->edge_locus = VEC_alloc (source_location, heap, 10);
g->stack = VEC_alloc (int, heap, 30);
g->visited = sbitmap_alloc (size);
return g;
}
/* Empty elimination graph G. */
static inline void
clear_elim_graph (elim_graph g)
{
VEC_truncate (int, g->nodes, 0);
VEC_truncate (int, g->edge_list, 0);
VEC_truncate (source_location, g->edge_locus, 0);
}
/* Delete elimination graph G. */
static inline void
delete_elim_graph (elim_graph g)
{
sbitmap_free (g->visited);
VEC_free (int, heap, g->stack);
VEC_free (int, heap, g->edge_list);
VEC_free (tree, heap, g->const_copies);
VEC_free (int, heap, g->const_dests);
VEC_free (int, heap, g->nodes);
VEC_free (source_location, heap, g->copy_locus);
VEC_free (source_location, heap, g->edge_locus);
free (g);
}
/* Return the number of nodes in graph G. */
static inline int
elim_graph_size (elim_graph g)
{
return VEC_length (int, g->nodes);
}
/* Add NODE to graph G, if it doesn't exist already. */
static inline void
elim_graph_add_node (elim_graph g, int node)
{
int x;
int t;
for (x = 0; VEC_iterate (int, g->nodes, x, t); x++)
if (t == node)
return;
VEC_safe_push (int, heap, g->nodes, node);
}
/* Add the edge PRED->SUCC to graph G. */
static inline void
elim_graph_add_edge (elim_graph g, int pred, int succ, source_location locus)
{
VEC_safe_push (int, heap, g->edge_list, pred);
VEC_safe_push (int, heap, g->edge_list, succ);
VEC_safe_push (source_location, heap, g->edge_locus, locus);
}
/* Remove an edge from graph G for which NODE is the predecessor, and
return the successor node. -1 is returned if there is no such edge. */
static inline int
elim_graph_remove_succ_edge (elim_graph g, int node, source_location *locus)
{
int y;
unsigned x;
for (x = 0; x < VEC_length (int, g->edge_list); x += 2)
if (VEC_index (int, g->edge_list, x) == node)
{
VEC_replace (int, g->edge_list, x, -1);
y = VEC_index (int, g->edge_list, x + 1);
VEC_replace (int, g->edge_list, x + 1, -1);
*locus = VEC_index (source_location, g->edge_locus, x / 2);
VEC_replace (source_location, g->edge_locus, x / 2, UNKNOWN_LOCATION);
return y;
}
*locus = UNKNOWN_LOCATION;
return -1;
}
/* Find all the nodes in GRAPH which are successors to NODE in the
edge list. VAR will hold the partition number found. CODE is the
code fragment executed for every node found. */
#define FOR_EACH_ELIM_GRAPH_SUCC(GRAPH, NODE, VAR, LOCUS, CODE) \
do { \
unsigned x_; \
int y_; \
for (x_ = 0; x_ < VEC_length (int, (GRAPH)->edge_list); x_ += 2) \
{ \
y_ = VEC_index (int, (GRAPH)->edge_list, x_); \
if (y_ != (NODE)) \
continue; \
(void) ((VAR) = VEC_index (int, (GRAPH)->edge_list, x_ + 1)); \
(void) ((LOCUS) = VEC_index (source_location, \
(GRAPH)->edge_locus, x_ / 2)); \
CODE; \
} \
} while (0)
/* Find all the nodes which are predecessors of NODE in the edge list for
GRAPH. VAR will hold the partition number found. CODE is the
code fragment executed for every node found. */
#define FOR_EACH_ELIM_GRAPH_PRED(GRAPH, NODE, VAR, LOCUS, CODE) \
do { \
unsigned x_; \
int y_; \
for (x_ = 0; x_ < VEC_length (int, (GRAPH)->edge_list); x_ += 2) \
{ \
y_ = VEC_index (int, (GRAPH)->edge_list, x_ + 1); \
if (y_ != (NODE)) \
continue; \
(void) ((VAR) = VEC_index (int, (GRAPH)->edge_list, x_)); \
(void) ((LOCUS) = VEC_index (source_location, \
(GRAPH)->edge_locus, x_ / 2)); \
CODE; \
} \
} while (0)
/* Add T to elimination graph G. */
static inline void
eliminate_name (elim_graph g, int T)
{
elim_graph_add_node (g, T);
}
/* Build elimination graph G for basic block BB on incoming PHI edge
G->e. */
static void
eliminate_build (elim_graph g)
{
tree Ti;
int p0, pi;
gimple_stmt_iterator gsi;
clear_elim_graph (g);
for (gsi = gsi_start_phis (g->e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple phi = gsi_stmt (gsi);
source_location locus;
p0 = var_to_partition (g->map, gimple_phi_result (phi));
/* Ignore results which are not in partitions. */
if (p0 == NO_PARTITION)
continue;
Ti = PHI_ARG_DEF (phi, g->e->dest_idx);
locus = gimple_phi_arg_location_from_edge (phi, g->e);
/* If this argument is a constant, or a SSA_NAME which is being
left in SSA form, just queue a copy to be emitted on this
edge. */
if (!phi_ssa_name_p (Ti)
|| (TREE_CODE (Ti) == SSA_NAME
&& var_to_partition (g->map, Ti) == NO_PARTITION))
{
/* Save constant copies until all other copies have been emitted
on this edge. */
VEC_safe_push (int, heap, g->const_dests, p0);
VEC_safe_push (tree, heap, g->const_copies, Ti);
VEC_safe_push (source_location, heap, g->copy_locus, locus);
}
else
{
pi = var_to_partition (g->map, Ti);
if (p0 != pi)
{
eliminate_name (g, p0);
eliminate_name (g, pi);
elim_graph_add_edge (g, p0, pi, locus);
}
}
}
}
/* Push successors of T onto the elimination stack for G. */
static void
elim_forward (elim_graph g, int T)
{
int S;
source_location locus;
SET_BIT (g->visited, T);
FOR_EACH_ELIM_GRAPH_SUCC (g, T, S, locus,
{
if (!TEST_BIT (g->visited, S))
elim_forward (g, S);
});
VEC_safe_push (int, heap, g->stack, T);
}
/* Return 1 if there unvisited predecessors of T in graph G. */
static int
elim_unvisited_predecessor (elim_graph g, int T)
{
int P;
source_location locus;
FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
{
if (!TEST_BIT (g->visited, P))
return 1;
});
return 0;
}
/* Process predecessors first, and insert a copy. */
static void
elim_backward (elim_graph g, int T)
{
int P;
source_location locus;
SET_BIT (g->visited, T);
FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
{
if (!TEST_BIT (g->visited, P))
{
elim_backward (g, P);
insert_partition_copy_on_edge (g->e, P, T, locus);
}
});
}
/* Allocate a new pseudo register usable for storing values sitting
in NAME (a decl or SSA name), i.e. with matching mode and attributes. */
static rtx
get_temp_reg (tree name)
{
tree var = TREE_CODE (name) == SSA_NAME ? SSA_NAME_VAR (name) : name;
tree type = TREE_TYPE (var);
int unsignedp;
enum machine_mode reg_mode = promote_decl_mode (var, &unsignedp);
rtx x = gen_reg_rtx (reg_mode);
if (POINTER_TYPE_P (type))
mark_reg_pointer (x, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (var))));
return x;
}
/* Insert required copies for T in graph G. Check for a strongly connected
region, and create a temporary to break the cycle if one is found. */
static void
elim_create (elim_graph g, int T)
{
int P, S;
source_location locus;
if (elim_unvisited_predecessor (g, T))
{
tree var = partition_to_var (g->map, T);
rtx U = get_temp_reg (var);
int unsignedsrcp = TYPE_UNSIGNED (TREE_TYPE (var));
insert_part_to_rtx_on_edge (g->e, U, T, UNKNOWN_LOCATION);
FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
{
if (!TEST_BIT (g->visited, P))
{
elim_backward (g, P);
insert_rtx_to_part_on_edge (g->e, P, U, unsignedsrcp, locus);
}
});
}
else
{
S = elim_graph_remove_succ_edge (g, T, &locus);
if (S != -1)
{
SET_BIT (g->visited, T);
insert_partition_copy_on_edge (g->e, T, S, locus);
}
}
}
/* Eliminate all the phi nodes on edge E in graph G. */
static void
eliminate_phi (edge e, elim_graph g)
{
int x;
gcc_assert (VEC_length (tree, g->const_copies) == 0);
gcc_assert (VEC_length (source_location, g->copy_locus) == 0);
/* Abnormal edges already have everything coalesced. */
if (e->flags & EDGE_ABNORMAL)
return;
g->e = e;
eliminate_build (g);
if (elim_graph_size (g) != 0)
{
int part;
sbitmap_zero (g->visited);
VEC_truncate (int, g->stack, 0);
for (x = 0; VEC_iterate (int, g->nodes, x, part); x++)
{
if (!TEST_BIT (g->visited, part))
elim_forward (g, part);
}
sbitmap_zero (g->visited);
while (VEC_length (int, g->stack) > 0)
{
x = VEC_pop (int, g->stack);
if (!TEST_BIT (g->visited, x))
elim_create (g, x);
}
}
/* If there are any pending constant copies, issue them now. */
while (VEC_length (tree, g->const_copies) > 0)
{
int dest;
tree src;
source_location locus;
src = VEC_pop (tree, g->const_copies);
dest = VEC_pop (int, g->const_dests);
locus = VEC_pop (source_location, g->copy_locus);
insert_value_copy_on_edge (e, dest, src, locus);
}
}
/* Remove each argument from PHI. If an arg was the last use of an SSA_NAME,
check to see if this allows another PHI node to be removed. */
static void
remove_gimple_phi_args (gimple phi)
{
use_operand_p arg_p;
ssa_op_iter iter;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Removing Dead PHI definition: ");
print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
}
FOR_EACH_PHI_ARG (arg_p, phi, iter, SSA_OP_USE)
{
tree arg = USE_FROM_PTR (arg_p);
if (TREE_CODE (arg) == SSA_NAME)
{
/* Remove the reference to the existing argument. */
SET_USE (arg_p, NULL_TREE);
if (has_zero_uses (arg))
{
gimple stmt;
gimple_stmt_iterator gsi;
stmt = SSA_NAME_DEF_STMT (arg);
/* Also remove the def if it is a PHI node. */
if (gimple_code (stmt) == GIMPLE_PHI)
{
remove_gimple_phi_args (stmt);
gsi = gsi_for_stmt (stmt);
remove_phi_node (&gsi, true);
}
}
}
}
}
/* Remove any PHI node which is a virtual PHI, or a PHI with no uses. */
static void
eliminate_useless_phis (void)
{
basic_block bb;
gimple_stmt_iterator gsi;
tree result;
FOR_EACH_BB (bb)
{
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
{
gimple phi = gsi_stmt (gsi);
result = gimple_phi_result (phi);
if (!is_gimple_reg (SSA_NAME_VAR (result)))
{
#ifdef ENABLE_CHECKING
size_t i;
/* There should be no arguments which are not virtual, or the
results will be incorrect. */
for (i = 0; i < gimple_phi_num_args (phi); i++)
{
tree arg = PHI_ARG_DEF (phi, i);
if (TREE_CODE (arg) == SSA_NAME
&& is_gimple_reg (SSA_NAME_VAR (arg)))
{
fprintf (stderr, "Argument of PHI is not virtual (");
print_generic_expr (stderr, arg, TDF_SLIM);
fprintf (stderr, "), but the result is :");
print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
internal_error ("SSA corruption");
}
}
#endif
remove_phi_node (&gsi, true);
}
else
{
/* Also remove real PHIs with no uses. */
if (has_zero_uses (result))
{
remove_gimple_phi_args (phi);
remove_phi_node (&gsi, true);
}
else
gsi_next (&gsi);
}
}
}
}
/* This function will rewrite the current program using the variable mapping
found in MAP. If the replacement vector VALUES is provided, any
occurrences of partitions with non-null entries in the vector will be
replaced with the expression in the vector instead of its mapped
variable. */
static void
rewrite_trees (var_map map ATTRIBUTE_UNUSED)
{
#ifdef ENABLE_CHECKING
basic_block bb;
/* Search for PHIs where the destination has no partition, but one
or more arguments has a partition. This should not happen and can
create incorrect code. */
FOR_EACH_BB (bb)
{
gimple_stmt_iterator gsi;
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple phi = gsi_stmt (gsi);
tree T0 = var_to_partition_to_var (map, gimple_phi_result (phi));
if (T0 == NULL_TREE)
{
size_t i;
for (i = 0; i < gimple_phi_num_args (phi); i++)
{
tree arg = PHI_ARG_DEF (phi, i);
if (TREE_CODE (arg) == SSA_NAME
&& var_to_partition (map, arg) != NO_PARTITION)
{
fprintf (stderr, "Argument of PHI is in a partition :(");
print_generic_expr (stderr, arg, TDF_SLIM);
fprintf (stderr, "), but the result is not :");
print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
internal_error ("SSA corruption");
}
}
}
}
}
#endif
}
/* Given the out-of-ssa info object SA (with prepared partitions)
eliminate all phi nodes in all basic blocks. Afterwards no
basic block will have phi nodes anymore and there are possibly
some RTL instructions inserted on edges. */
void
expand_phi_nodes (struct ssaexpand *sa)
{
basic_block bb;
elim_graph g = new_elim_graph (sa->map->num_partitions);
g->map = sa->map;
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, EXIT_BLOCK_PTR, next_bb)
if (!gimple_seq_empty_p (phi_nodes (bb)))
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->preds)
eliminate_phi (e, g);
set_phi_nodes (bb, NULL);
/* We can't redirect EH edges in RTL land, so we need to do this
here. Redirection happens only when splitting is necessary,
which it is only for critical edges, normally. For EH edges
it might also be necessary when the successor has more than
one predecessor. In that case the edge is either required to
be fallthru (which EH edges aren't), or the predecessor needs
to end with a jump (which again, isn't the case with EH edges).
Hence, split all EH edges on which we inserted instructions
and whose successor has multiple predecessors. */
for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
{
if (e->insns.r && (e->flags & EDGE_EH)
&& !single_pred_p (e->dest))
{
rtx insns = e->insns.r;
basic_block bb;
e->insns.r = NULL_RTX;
bb = split_edge (e);
single_pred_edge (bb)->insns.r = insns;
}
else
ei_next (&ei);
}
}
delete_elim_graph (g);
}
/* Remove the ssa-names in the current function and translate them into normal
compiler variables. PERFORM_TER is true if Temporary Expression Replacement
should also be used. */
static void
remove_ssa_form (bool perform_ter, struct ssaexpand *sa)
{
bitmap values = NULL;
var_map map;
unsigned i;
map = coalesce_ssa_name ();
/* Return to viewing the variable list as just all reference variables after
coalescing has been performed. */
partition_view_normal (map, false);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "After Coalescing:\n");
dump_var_map (dump_file, map);
}
if (perform_ter)
{
values = find_replaceable_exprs (map);
if (values && dump_file && (dump_flags & TDF_DETAILS))
dump_replaceable_exprs (dump_file, values);
}
rewrite_trees (map);
sa->map = map;
sa->values = values;
sa->partition_has_default_def = BITMAP_ALLOC (NULL);
for (i = 1; i < num_ssa_names; i++)
{
tree t = ssa_name (i);
if (t && SSA_NAME_IS_DEFAULT_DEF (t))
{
int p = var_to_partition (map, t);
if (p != NO_PARTITION)
bitmap_set_bit (sa->partition_has_default_def, p);
}
}
}
/* If not already done so for basic block BB, assign increasing uids
to each of its instructions. */
static void
maybe_renumber_stmts_bb (basic_block bb)
{
unsigned i = 0;
gimple_stmt_iterator gsi;
if (!bb->aux)
return;
bb->aux = NULL;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple stmt = gsi_stmt (gsi);
gimple_set_uid (stmt, i);
i++;
}
}
/* Return true if we can determine that the SSA_NAMEs RESULT (a result
of a PHI node) and ARG (one of its arguments) conflict. Return false
otherwise, also when we simply aren't sure. */
static bool
trivially_conflicts_p (basic_block bb, tree result, tree arg)
{
use_operand_p use;
imm_use_iterator imm_iter;
gimple defa = SSA_NAME_DEF_STMT (arg);
/* If ARG isn't defined in the same block it's too complicated for
our little mind. */
if (gimple_bb (defa) != bb)
return false;
FOR_EACH_IMM_USE_FAST (use, imm_iter, result)
{
gimple use_stmt = USE_STMT (use);
if (is_gimple_debug (use_stmt))
continue;
/* Now, if there's a use of RESULT that lies outside this basic block,
then there surely is a conflict with ARG. */
if (gimple_bb (use_stmt) != bb)
return true;
if (gimple_code (use_stmt) == GIMPLE_PHI)
continue;
/* The use now is in a real stmt of BB, so if ARG was defined
in a PHI node (like RESULT) both conflict. */
if (gimple_code (defa) == GIMPLE_PHI)
return true;
maybe_renumber_stmts_bb (bb);
/* If the use of RESULT occurs after the definition of ARG,
the two conflict too. */
if (gimple_uid (defa) < gimple_uid (use_stmt))
return true;
}
return false;
}
/* Search every PHI node for arguments associated with backedges which
we can trivially determine will need a copy (the argument is either
not an SSA_NAME or the argument has a different underlying variable
than the PHI result).
Insert a copy from the PHI argument to a new destination at the
end of the block with the backedge to the top of the loop. Update
the PHI argument to reference this new destination. */
static void
insert_backedge_copies (void)
{
basic_block bb;
gimple_stmt_iterator gsi;
FOR_EACH_BB (bb)
{
/* Mark block as possibly needing calculation of UIDs. */
bb->aux = &bb->aux;
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple phi = gsi_stmt (gsi);
tree result = gimple_phi_result (phi);
tree result_var;
size_t i;
if (!is_gimple_reg (result))
continue;
result_var = SSA_NAME_VAR (result);
for (i = 0; i < gimple_phi_num_args (phi); i++)
{
tree arg = gimple_phi_arg_def (phi, i);
edge e = gimple_phi_arg_edge (phi, i);
/* If the argument is not an SSA_NAME, then we will need a
constant initialization. If the argument is an SSA_NAME with
a different underlying variable then a copy statement will be
needed. */
if ((e->flags & EDGE_DFS_BACK)
&& (TREE_CODE (arg) != SSA_NAME
|| SSA_NAME_VAR (arg) != result_var
|| trivially_conflicts_p (bb, result, arg)))
{
tree name;
gimple stmt, last = NULL;
gimple_stmt_iterator gsi2;
gsi2 = gsi_last_bb (gimple_phi_arg_edge (phi, i)->src);
if (!gsi_end_p (gsi2))
last = gsi_stmt (gsi2);
/* In theory the only way we ought to get back to the
start of a loop should be with a COND_EXPR or GOTO_EXPR.
However, better safe than sorry.
If the block ends with a control statement or
something that might throw, then we have to
insert this assignment before the last
statement. Else insert it after the last statement. */
if (last && stmt_ends_bb_p (last))
{
/* If the last statement in the block is the definition
site of the PHI argument, then we can't insert
anything after it. */
if (TREE_CODE (arg) == SSA_NAME
&& SSA_NAME_DEF_STMT (arg) == last)
continue;
}
/* Create a new instance of the underlying variable of the
PHI result. */
stmt = gimple_build_assign (result_var,
gimple_phi_arg_def (phi, i));
name = make_ssa_name (result_var, stmt);
gimple_assign_set_lhs (stmt, name);
/* copy location if present. */
if (gimple_phi_arg_has_location (phi, i))
gimple_set_location (stmt,
gimple_phi_arg_location (phi, i));
/* Insert the new statement into the block and update
the PHI node. */
if (last && stmt_ends_bb_p (last))
gsi_insert_before (&gsi2, stmt, GSI_NEW_STMT);
else
gsi_insert_after (&gsi2, stmt, GSI_NEW_STMT);
SET_PHI_ARG_DEF (phi, i, name);
}
}
}
/* Unmark this block again. */
bb->aux = NULL;
}
}
/* Free all memory associated with going out of SSA form. SA is
the outof-SSA info object. */
void
finish_out_of_ssa (struct ssaexpand *sa)
{
free (sa->partition_to_pseudo);
if (sa->values)
BITMAP_FREE (sa->values);
delete_var_map (sa->map);
BITMAP_FREE (sa->partition_has_default_def);
memset (sa, 0, sizeof *sa);
}
/* Take the current function out of SSA form, translating PHIs as described in
R. Morgan, ``Building an Optimizing Compiler'',
Butterworth-Heinemann, Boston, MA, 1998. pp 176-186. */
unsigned int
rewrite_out_of_ssa (struct ssaexpand *sa)
{
/* If elimination of a PHI requires inserting a copy on a backedge,
then we will have to split the backedge which has numerous
undesirable performance effects.
A significant number of such cases can be handled here by inserting
copies into the loop itself. */
insert_backedge_copies ();
/* Eliminate PHIs which are of no use, such as virtual or dead phis. */
eliminate_useless_phis ();
if (dump_file && (dump_flags & TDF_DETAILS))
gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);
remove_ssa_form (flag_tree_ter, sa);
if (dump_file && (dump_flags & TDF_DETAILS))
gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);
return 0;
}
|