1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
|
/* Loop distribution.
Copyright (C) 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
Contributed by Georges-Andre Silber <Georges-Andre.Silber@ensmp.fr>
and Sebastian Pop <sebastian.pop@amd.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* This pass performs loop distribution: for example, the loop
|DO I = 2, N
| A(I) = B(I) + C
| D(I) = A(I-1)*E
|ENDDO
is transformed to
|DOALL I = 2, N
| A(I) = B(I) + C
|ENDDO
|
|DOALL I = 2, N
| D(I) = A(I-1)*E
|ENDDO
This pass uses an RDG, Reduced Dependence Graph built on top of the
data dependence relations. The RDG is then topologically sorted to
obtain a map of information producers/consumers based on which it
generates the new loops. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "target.h"
#include "rtl.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "timevar.h"
#include "cfgloop.h"
#include "expr.h"
#include "optabs.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "tree-pass.h"
#include "lambda.h"
#include "langhooks.h"
#include "tree-vectorizer.h"
/* If bit I is not set, it means that this node represents an
operation that has already been performed, and that should not be
performed again. This is the subgraph of remaining important
computations that is passed to the DFS algorithm for avoiding to
include several times the same stores in different loops. */
static bitmap remaining_stmts;
/* A node of the RDG is marked in this bitmap when it has as a
predecessor a node that writes to memory. */
static bitmap upstream_mem_writes;
/* Update the PHI nodes of NEW_LOOP. NEW_LOOP is a duplicate of
ORIG_LOOP. */
static void
update_phis_for_loop_copy (struct loop *orig_loop, struct loop *new_loop)
{
tree new_ssa_name;
gimple_stmt_iterator si_new, si_orig;
edge orig_loop_latch = loop_latch_edge (orig_loop);
edge orig_entry_e = loop_preheader_edge (orig_loop);
edge new_loop_entry_e = loop_preheader_edge (new_loop);
/* Scan the phis in the headers of the old and new loops
(they are organized in exactly the same order). */
for (si_new = gsi_start_phis (new_loop->header),
si_orig = gsi_start_phis (orig_loop->header);
!gsi_end_p (si_new) && !gsi_end_p (si_orig);
gsi_next (&si_new), gsi_next (&si_orig))
{
tree def;
source_location locus;
gimple phi_new = gsi_stmt (si_new);
gimple phi_orig = gsi_stmt (si_orig);
/* Add the first phi argument for the phi in NEW_LOOP (the one
associated with the entry of NEW_LOOP) */
def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_entry_e);
locus = gimple_phi_arg_location_from_edge (phi_orig, orig_entry_e);
add_phi_arg (phi_new, def, new_loop_entry_e, locus);
/* Add the second phi argument for the phi in NEW_LOOP (the one
associated with the latch of NEW_LOOP) */
def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch);
locus = gimple_phi_arg_location_from_edge (phi_orig, orig_loop_latch);
if (TREE_CODE (def) == SSA_NAME)
{
new_ssa_name = get_current_def (def);
if (!new_ssa_name)
/* This only happens if there are no definitions inside the
loop. Use the phi_result in this case. */
new_ssa_name = PHI_RESULT (phi_new);
}
else
/* Could be an integer. */
new_ssa_name = def;
add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop), locus);
}
}
/* Return a copy of LOOP placed before LOOP. */
static struct loop *
copy_loop_before (struct loop *loop)
{
struct loop *res;
edge preheader = loop_preheader_edge (loop);
if (!single_exit (loop))
return NULL;
initialize_original_copy_tables ();
res = slpeel_tree_duplicate_loop_to_edge_cfg (loop, preheader);
free_original_copy_tables ();
if (!res)
return NULL;
update_phis_for_loop_copy (loop, res);
rename_variables_in_loop (res);
return res;
}
/* Creates an empty basic block after LOOP. */
static void
create_bb_after_loop (struct loop *loop)
{
edge exit = single_exit (loop);
if (!exit)
return;
split_edge (exit);
}
/* Generate code for PARTITION from the code in LOOP. The loop is
copied when COPY_P is true. All the statements not flagged in the
PARTITION bitmap are removed from the loop or from its copy. The
statements are indexed in sequence inside a basic block, and the
basic blocks of a loop are taken in dom order. Returns true when
the code gen succeeded. */
static bool
generate_loops_for_partition (struct loop *loop, bitmap partition, bool copy_p)
{
unsigned i, x;
gimple_stmt_iterator bsi;
basic_block *bbs;
if (copy_p)
{
loop = copy_loop_before (loop);
create_preheader (loop, CP_SIMPLE_PREHEADERS);
create_bb_after_loop (loop);
}
if (loop == NULL)
return false;
/* Remove stmts not in the PARTITION bitmap. The order in which we
visit the phi nodes and the statements is exactly as in
stmts_from_loop. */
bbs = get_loop_body_in_dom_order (loop);
for (x = 0, i = 0; i < loop->num_nodes; i++)
{
basic_block bb = bbs[i];
for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi);)
if (!bitmap_bit_p (partition, x++))
remove_phi_node (&bsi, true);
else
gsi_next (&bsi);
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi);)
if (gimple_code (gsi_stmt (bsi)) != GIMPLE_LABEL
&& !bitmap_bit_p (partition, x++))
gsi_remove (&bsi, false);
else
gsi_next (&bsi);
mark_virtual_ops_in_bb (bb);
}
free (bbs);
return true;
}
/* Build the size argument for a memset call. */
static inline tree
build_size_arg_loc (location_t loc, tree nb_iter, tree op, gimple_seq* stmt_list)
{
tree nb_bytes;
gimple_seq stmts = NULL;
nb_bytes = fold_build2_loc (loc, MULT_EXPR, size_type_node,
fold_convert_loc (loc, size_type_node, nb_iter),
fold_convert_loc (loc, size_type_node,
TYPE_SIZE_UNIT (TREE_TYPE (op))));
nb_bytes = force_gimple_operand (nb_bytes, &stmts, true, NULL);
gimple_seq_add_seq (stmt_list, stmts);
return nb_bytes;
}
/* Generate a call to memset. Return true when the operation succeeded. */
static bool
generate_memset_zero (gimple stmt, tree op0, tree nb_iter,
gimple_stmt_iterator bsi)
{
tree addr_base;
tree nb_bytes = NULL;
bool res = false;
gimple_seq stmts = NULL, stmt_list = NULL;
gimple fn_call;
tree mem, fndecl, fntype, fn;
gimple_stmt_iterator i;
struct data_reference *dr = XCNEW (struct data_reference);
location_t loc = gimple_location (stmt);
DR_STMT (dr) = stmt;
DR_REF (dr) = op0;
if (!dr_analyze_innermost (dr))
goto end;
/* Test for a positive stride, iterating over every element. */
if (integer_zerop (fold_build2_loc (loc,
MINUS_EXPR, integer_type_node, DR_STEP (dr),
TYPE_SIZE_UNIT (TREE_TYPE (op0)))))
{
tree offset = fold_convert_loc (loc, sizetype,
size_binop_loc (loc, PLUS_EXPR,
DR_OFFSET (dr),
DR_INIT (dr)));
addr_base = fold_build2_loc (loc, POINTER_PLUS_EXPR,
TREE_TYPE (DR_BASE_ADDRESS (dr)),
DR_BASE_ADDRESS (dr), offset);
}
/* Test for a negative stride, iterating over every element. */
else if (integer_zerop (fold_build2_loc (loc, PLUS_EXPR, integer_type_node,
TYPE_SIZE_UNIT (TREE_TYPE (op0)),
DR_STEP (dr))))
{
nb_bytes = build_size_arg_loc (loc, nb_iter, op0, &stmt_list);
addr_base = size_binop_loc (loc, PLUS_EXPR, DR_OFFSET (dr), DR_INIT (dr));
addr_base = fold_build2_loc (loc, MINUS_EXPR, sizetype, addr_base,
fold_convert_loc (loc, sizetype, nb_bytes));
addr_base = force_gimple_operand (addr_base, &stmts, true, NULL);
gimple_seq_add_seq (&stmt_list, stmts);
addr_base = fold_build2_loc (loc, POINTER_PLUS_EXPR,
TREE_TYPE (DR_BASE_ADDRESS (dr)),
DR_BASE_ADDRESS (dr), addr_base);
}
else
goto end;
mem = force_gimple_operand (addr_base, &stmts, true, NULL);
gimple_seq_add_seq (&stmt_list, stmts);
fndecl = implicit_built_in_decls [BUILT_IN_MEMSET];
fntype = TREE_TYPE (fndecl);
fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
if (!nb_bytes)
nb_bytes = build_size_arg_loc (loc, nb_iter, op0, &stmt_list);
fn_call = gimple_build_call (fn, 3, mem, integer_zero_node, nb_bytes);
gimple_seq_add_stmt (&stmt_list, fn_call);
for (i = gsi_start (stmt_list); !gsi_end_p (i); gsi_next (&i))
{
gimple s = gsi_stmt (i);
update_stmt_if_modified (s);
}
gsi_insert_seq_after (&bsi, stmt_list, GSI_CONTINUE_LINKING);
res = true;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "generated memset zero\n");
end:
free_data_ref (dr);
return res;
}
/* Propagate phis in BB b to their uses and remove them. */
static void
prop_phis (basic_block b)
{
gimple_stmt_iterator psi;
gimple_seq phis = phi_nodes (b);
for (psi = gsi_start (phis); !gsi_end_p (psi); )
{
gimple phi = gsi_stmt (psi);
tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
gcc_assert (gimple_phi_num_args (phi) == 1);
if (!is_gimple_reg (def))
{
imm_use_iterator iter;
use_operand_p use_p;
gimple stmt;
FOR_EACH_IMM_USE_STMT (stmt, iter, def)
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
SET_USE (use_p, use);
}
else
replace_uses_by (def, use);
remove_phi_node (&psi, true);
}
}
/* Tries to generate a builtin function for the instructions of LOOP
pointed to by the bits set in PARTITION. Returns true when the
operation succeeded. */
static bool
generate_builtin (struct loop *loop, bitmap partition, bool copy_p)
{
bool res = false;
unsigned i, x = 0;
basic_block *bbs;
gimple write = NULL;
tree op0, op1;
gimple_stmt_iterator bsi;
tree nb_iter = number_of_exit_cond_executions (loop);
if (!nb_iter || nb_iter == chrec_dont_know)
return false;
bbs = get_loop_body_in_dom_order (loop);
for (i = 0; i < loop->num_nodes; i++)
{
basic_block bb = bbs[i];
for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
x++;
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
{
gimple stmt = gsi_stmt (bsi);
if (bitmap_bit_p (partition, x++)
&& is_gimple_assign (stmt)
&& !is_gimple_reg (gimple_assign_lhs (stmt)))
{
/* Don't generate the builtins when there are more than
one memory write. */
if (write != NULL)
goto end;
write = stmt;
}
}
}
if (!write)
goto end;
op0 = gimple_assign_lhs (write);
op1 = gimple_assign_rhs1 (write);
if (!(TREE_CODE (op0) == ARRAY_REF
|| TREE_CODE (op0) == INDIRECT_REF))
goto end;
/* The new statements will be placed before LOOP. */
bsi = gsi_last_bb (loop_preheader_edge (loop)->src);
if (gimple_assign_rhs_code (write) == INTEGER_CST
&& (integer_zerop (op1) || real_zerop (op1)))
res = generate_memset_zero (write, op0, nb_iter, bsi);
/* If this is the last partition for which we generate code, we have
to destroy the loop. */
if (res && !copy_p)
{
unsigned nbbs = loop->num_nodes;
basic_block src = loop_preheader_edge (loop)->src;
basic_block dest = single_exit (loop)->dest;
prop_phis (dest);
make_edge (src, dest, EDGE_FALLTHRU);
cancel_loop_tree (loop);
for (i = 0; i < nbbs; i++)
delete_basic_block (bbs[i]);
set_immediate_dominator (CDI_DOMINATORS, dest,
recompute_dominator (CDI_DOMINATORS, dest));
}
end:
free (bbs);
return res;
}
/* Generates code for PARTITION. For simple loops, this function can
generate a built-in. */
static bool
generate_code_for_partition (struct loop *loop, bitmap partition, bool copy_p)
{
if (generate_builtin (loop, partition, copy_p))
return true;
return generate_loops_for_partition (loop, partition, copy_p);
}
/* Returns true if the node V of RDG cannot be recomputed. */
static bool
rdg_cannot_recompute_vertex_p (struct graph *rdg, int v)
{
if (RDG_MEM_WRITE_STMT (rdg, v))
return true;
return false;
}
/* Returns true when the vertex V has already been generated in the
current partition (V is in PROCESSED), or when V belongs to another
partition and cannot be recomputed (V is not in REMAINING_STMTS). */
static inline bool
already_processed_vertex_p (bitmap processed, int v)
{
return (bitmap_bit_p (processed, v)
|| !bitmap_bit_p (remaining_stmts, v));
}
/* Returns NULL when there is no anti-dependence among the successors
of vertex V, otherwise returns the edge with the anti-dep. */
static struct graph_edge *
has_anti_dependence (struct vertex *v)
{
struct graph_edge *e;
if (v->succ)
for (e = v->succ; e; e = e->succ_next)
if (RDGE_TYPE (e) == anti_dd)
return e;
return NULL;
}
/* Returns true when V has an anti-dependence edge among its successors. */
static bool
predecessor_has_mem_write (struct graph *rdg, struct vertex *v)
{
struct graph_edge *e;
if (v->pred)
for (e = v->pred; e; e = e->pred_next)
if (bitmap_bit_p (upstream_mem_writes, e->src)
/* Don't consider flow channels: a write to memory followed
by a read from memory. These channels allow the split of
the RDG in different partitions. */
&& !RDG_MEM_WRITE_STMT (rdg, e->src))
return true;
return false;
}
/* Initializes the upstream_mem_writes bitmap following the
information from RDG. */
static void
mark_nodes_having_upstream_mem_writes (struct graph *rdg)
{
int v, x;
bitmap seen = BITMAP_ALLOC (NULL);
for (v = rdg->n_vertices - 1; v >= 0; v--)
if (!bitmap_bit_p (seen, v))
{
unsigned i;
VEC (int, heap) *nodes = VEC_alloc (int, heap, 3);
bool has_upstream_mem_write_p = false;
graphds_dfs (rdg, &v, 1, &nodes, false, NULL);
for (i = 0; VEC_iterate (int, nodes, i, x); i++)
{
if (bitmap_bit_p (seen, x))
continue;
bitmap_set_bit (seen, x);
if (RDG_MEM_WRITE_STMT (rdg, x)
|| predecessor_has_mem_write (rdg, &(rdg->vertices[x]))
/* In anti dependences the read should occur before
the write, this is why both the read and the write
should be placed in the same partition. */
|| has_anti_dependence (&(rdg->vertices[x])))
{
has_upstream_mem_write_p = true;
bitmap_set_bit (upstream_mem_writes, x);
}
}
VEC_free (int, heap, nodes);
}
}
/* Returns true when vertex u has a memory write node as a predecessor
in RDG. */
static bool
has_upstream_mem_writes (int u)
{
return bitmap_bit_p (upstream_mem_writes, u);
}
static void rdg_flag_vertex_and_dependent (struct graph *, int, bitmap, bitmap,
bitmap, bool *);
/* Flag all the uses of U. */
static void
rdg_flag_all_uses (struct graph *rdg, int u, bitmap partition, bitmap loops,
bitmap processed, bool *part_has_writes)
{
struct graph_edge *e;
for (e = rdg->vertices[u].succ; e; e = e->succ_next)
if (!bitmap_bit_p (processed, e->dest))
{
rdg_flag_vertex_and_dependent (rdg, e->dest, partition, loops,
processed, part_has_writes);
rdg_flag_all_uses (rdg, e->dest, partition, loops, processed,
part_has_writes);
}
}
/* Flag the uses of U stopping following the information from
upstream_mem_writes. */
static void
rdg_flag_uses (struct graph *rdg, int u, bitmap partition, bitmap loops,
bitmap processed, bool *part_has_writes)
{
use_operand_p use_p;
struct vertex *x = &(rdg->vertices[u]);
gimple stmt = RDGV_STMT (x);
struct graph_edge *anti_dep = has_anti_dependence (x);
/* Keep in the same partition the destination of an antidependence,
because this is a store to the exact same location. Putting this
in another partition is bad for cache locality. */
if (anti_dep)
{
int v = anti_dep->dest;
if (!already_processed_vertex_p (processed, v))
rdg_flag_vertex_and_dependent (rdg, v, partition, loops,
processed, part_has_writes);
}
if (gimple_code (stmt) != GIMPLE_PHI)
{
if ((use_p = gimple_vuse_op (stmt)) != NULL_USE_OPERAND_P)
{
tree use = USE_FROM_PTR (use_p);
if (TREE_CODE (use) == SSA_NAME)
{
gimple def_stmt = SSA_NAME_DEF_STMT (use);
int v = rdg_vertex_for_stmt (rdg, def_stmt);
if (v >= 0
&& !already_processed_vertex_p (processed, v))
rdg_flag_vertex_and_dependent (rdg, v, partition, loops,
processed, part_has_writes);
}
}
}
if (is_gimple_assign (stmt) && has_upstream_mem_writes (u))
{
tree op0 = gimple_assign_lhs (stmt);
/* Scalar channels don't have enough space for transmitting data
between tasks, unless we add more storage by privatizing. */
if (is_gimple_reg (op0))
{
use_operand_p use_p;
imm_use_iterator iter;
FOR_EACH_IMM_USE_FAST (use_p, iter, op0)
{
int v = rdg_vertex_for_stmt (rdg, USE_STMT (use_p));
if (!already_processed_vertex_p (processed, v))
rdg_flag_vertex_and_dependent (rdg, v, partition, loops,
processed, part_has_writes);
}
}
}
}
/* Flag V from RDG as part of PARTITION, and also flag its loop number
in LOOPS. */
static void
rdg_flag_vertex (struct graph *rdg, int v, bitmap partition, bitmap loops,
bool *part_has_writes)
{
struct loop *loop;
if (bitmap_bit_p (partition, v))
return;
loop = loop_containing_stmt (RDG_STMT (rdg, v));
bitmap_set_bit (loops, loop->num);
bitmap_set_bit (partition, v);
if (rdg_cannot_recompute_vertex_p (rdg, v))
{
*part_has_writes = true;
bitmap_clear_bit (remaining_stmts, v);
}
}
/* Flag in the bitmap PARTITION the vertex V and all its predecessors.
Also flag their loop number in LOOPS. */
static void
rdg_flag_vertex_and_dependent (struct graph *rdg, int v, bitmap partition,
bitmap loops, bitmap processed,
bool *part_has_writes)
{
unsigned i;
VEC (int, heap) *nodes = VEC_alloc (int, heap, 3);
int x;
bitmap_set_bit (processed, v);
rdg_flag_uses (rdg, v, partition, loops, processed, part_has_writes);
graphds_dfs (rdg, &v, 1, &nodes, false, remaining_stmts);
rdg_flag_vertex (rdg, v, partition, loops, part_has_writes);
for (i = 0; VEC_iterate (int, nodes, i, x); i++)
if (!already_processed_vertex_p (processed, x))
rdg_flag_vertex_and_dependent (rdg, x, partition, loops, processed,
part_has_writes);
VEC_free (int, heap, nodes);
}
/* Initialize CONDS with all the condition statements from the basic
blocks of LOOP. */
static void
collect_condition_stmts (struct loop *loop, VEC (gimple, heap) **conds)
{
unsigned i;
edge e;
VEC (edge, heap) *exits = get_loop_exit_edges (loop);
for (i = 0; VEC_iterate (edge, exits, i, e); i++)
{
gimple cond = last_stmt (e->src);
if (cond)
VEC_safe_push (gimple, heap, *conds, cond);
}
VEC_free (edge, heap, exits);
}
/* Add to PARTITION all the exit condition statements for LOOPS
together with all their dependent statements determined from
RDG. */
static void
rdg_flag_loop_exits (struct graph *rdg, bitmap loops, bitmap partition,
bitmap processed, bool *part_has_writes)
{
unsigned i;
bitmap_iterator bi;
VEC (gimple, heap) *conds = VEC_alloc (gimple, heap, 3);
EXECUTE_IF_SET_IN_BITMAP (loops, 0, i, bi)
collect_condition_stmts (get_loop (i), &conds);
while (!VEC_empty (gimple, conds))
{
gimple cond = VEC_pop (gimple, conds);
int v = rdg_vertex_for_stmt (rdg, cond);
bitmap new_loops = BITMAP_ALLOC (NULL);
if (!already_processed_vertex_p (processed, v))
rdg_flag_vertex_and_dependent (rdg, v, partition, new_loops, processed,
part_has_writes);
EXECUTE_IF_SET_IN_BITMAP (new_loops, 0, i, bi)
if (!bitmap_bit_p (loops, i))
{
bitmap_set_bit (loops, i);
collect_condition_stmts (get_loop (i), &conds);
}
BITMAP_FREE (new_loops);
}
}
/* Flag all the nodes of RDG containing memory accesses that could
potentially belong to arrays already accessed in the current
PARTITION. */
static void
rdg_flag_similar_memory_accesses (struct graph *rdg, bitmap partition,
bitmap loops, bitmap processed,
VEC (int, heap) **other_stores)
{
bool foo;
unsigned i, n;
int j, k, kk;
bitmap_iterator ii;
struct graph_edge *e;
EXECUTE_IF_SET_IN_BITMAP (partition, 0, i, ii)
if (RDG_MEM_WRITE_STMT (rdg, i)
|| RDG_MEM_READS_STMT (rdg, i))
{
for (j = 0; j < rdg->n_vertices; j++)
if (!bitmap_bit_p (processed, j)
&& (RDG_MEM_WRITE_STMT (rdg, j)
|| RDG_MEM_READS_STMT (rdg, j))
&& rdg_has_similar_memory_accesses (rdg, i, j))
{
/* Flag first the node J itself, and all the nodes that
are needed to compute J. */
rdg_flag_vertex_and_dependent (rdg, j, partition, loops,
processed, &foo);
/* When J is a read, we want to coalesce in the same
PARTITION all the nodes that are using J: this is
needed for better cache locality. */
rdg_flag_all_uses (rdg, j, partition, loops, processed, &foo);
/* Remove from OTHER_STORES the vertex that we flagged. */
if (RDG_MEM_WRITE_STMT (rdg, j))
for (k = 0; VEC_iterate (int, *other_stores, k, kk); k++)
if (kk == j)
{
VEC_unordered_remove (int, *other_stores, k);
break;
}
}
/* If the node I has two uses, then keep these together in the
same PARTITION. */
for (n = 0, e = rdg->vertices[i].succ; e; e = e->succ_next, n++);
if (n > 1)
rdg_flag_all_uses (rdg, i, partition, loops, processed, &foo);
}
}
/* Returns a bitmap in which all the statements needed for computing
the strongly connected component C of the RDG are flagged, also
including the loop exit conditions. */
static bitmap
build_rdg_partition_for_component (struct graph *rdg, rdgc c,
bool *part_has_writes,
VEC (int, heap) **other_stores)
{
int i, v;
bitmap partition = BITMAP_ALLOC (NULL);
bitmap loops = BITMAP_ALLOC (NULL);
bitmap processed = BITMAP_ALLOC (NULL);
for (i = 0; VEC_iterate (int, c->vertices, i, v); i++)
if (!already_processed_vertex_p (processed, v))
rdg_flag_vertex_and_dependent (rdg, v, partition, loops, processed,
part_has_writes);
/* Also iterate on the array of stores not in the starting vertices,
and determine those vertices that have some memory affinity with
the current nodes in the component: these are stores to the same
arrays, i.e. we're taking care of cache locality. */
rdg_flag_similar_memory_accesses (rdg, partition, loops, processed,
other_stores);
rdg_flag_loop_exits (rdg, loops, partition, processed, part_has_writes);
BITMAP_FREE (processed);
BITMAP_FREE (loops);
return partition;
}
/* Free memory for COMPONENTS. */
static void
free_rdg_components (VEC (rdgc, heap) *components)
{
int i;
rdgc x;
for (i = 0; VEC_iterate (rdgc, components, i, x); i++)
{
VEC_free (int, heap, x->vertices);
free (x);
}
}
/* Build the COMPONENTS vector with the strongly connected components
of RDG in which the STARTING_VERTICES occur. */
static void
rdg_build_components (struct graph *rdg, VEC (int, heap) *starting_vertices,
VEC (rdgc, heap) **components)
{
int i, v;
bitmap saved_components = BITMAP_ALLOC (NULL);
int n_components = graphds_scc (rdg, NULL);
VEC (int, heap) **all_components = XNEWVEC (VEC (int, heap) *, n_components);
for (i = 0; i < n_components; i++)
all_components[i] = VEC_alloc (int, heap, 3);
for (i = 0; i < rdg->n_vertices; i++)
VEC_safe_push (int, heap, all_components[rdg->vertices[i].component], i);
for (i = 0; VEC_iterate (int, starting_vertices, i, v); i++)
{
int c = rdg->vertices[v].component;
if (!bitmap_bit_p (saved_components, c))
{
rdgc x = XCNEW (struct rdg_component);
x->num = c;
x->vertices = all_components[c];
VEC_safe_push (rdgc, heap, *components, x);
bitmap_set_bit (saved_components, c);
}
}
for (i = 0; i < n_components; i++)
if (!bitmap_bit_p (saved_components, i))
VEC_free (int, heap, all_components[i]);
free (all_components);
BITMAP_FREE (saved_components);
}
/* Aggregate several components into a useful partition that is
registered in the PARTITIONS vector. Partitions will be
distributed in different loops. */
static void
rdg_build_partitions (struct graph *rdg, VEC (rdgc, heap) *components,
VEC (int, heap) **other_stores,
VEC (bitmap, heap) **partitions, bitmap processed)
{
int i;
rdgc x;
bitmap partition = BITMAP_ALLOC (NULL);
for (i = 0; VEC_iterate (rdgc, components, i, x); i++)
{
bitmap np;
bool part_has_writes = false;
int v = VEC_index (int, x->vertices, 0);
if (bitmap_bit_p (processed, v))
continue;
np = build_rdg_partition_for_component (rdg, x, &part_has_writes,
other_stores);
bitmap_ior_into (partition, np);
bitmap_ior_into (processed, np);
BITMAP_FREE (np);
if (part_has_writes)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "ldist useful partition:\n");
dump_bitmap (dump_file, partition);
}
VEC_safe_push (bitmap, heap, *partitions, partition);
partition = BITMAP_ALLOC (NULL);
}
}
/* Add the nodes from the RDG that were not marked as processed, and
that are used outside the current loop. These are scalar
computations that are not yet part of previous partitions. */
for (i = 0; i < rdg->n_vertices; i++)
if (!bitmap_bit_p (processed, i)
&& rdg_defs_used_in_other_loops_p (rdg, i))
VEC_safe_push (int, heap, *other_stores, i);
/* If there are still statements left in the OTHER_STORES array,
create other components and partitions with these stores and
their dependences. */
if (VEC_length (int, *other_stores) > 0)
{
VEC (rdgc, heap) *comps = VEC_alloc (rdgc, heap, 3);
VEC (int, heap) *foo = VEC_alloc (int, heap, 3);
rdg_build_components (rdg, *other_stores, &comps);
rdg_build_partitions (rdg, comps, &foo, partitions, processed);
VEC_free (int, heap, foo);
free_rdg_components (comps);
}
/* If there is something left in the last partition, save it. */
if (bitmap_count_bits (partition) > 0)
VEC_safe_push (bitmap, heap, *partitions, partition);
else
BITMAP_FREE (partition);
}
/* Dump to FILE the PARTITIONS. */
static void
dump_rdg_partitions (FILE *file, VEC (bitmap, heap) *partitions)
{
int i;
bitmap partition;
for (i = 0; VEC_iterate (bitmap, partitions, i, partition); i++)
debug_bitmap_file (file, partition);
}
/* Debug PARTITIONS. */
extern void debug_rdg_partitions (VEC (bitmap, heap) *);
void
debug_rdg_partitions (VEC (bitmap, heap) *partitions)
{
dump_rdg_partitions (stderr, partitions);
}
/* Returns the number of read and write operations in the RDG. */
static int
number_of_rw_in_rdg (struct graph *rdg)
{
int i, res = 0;
for (i = 0; i < rdg->n_vertices; i++)
{
if (RDG_MEM_WRITE_STMT (rdg, i))
++res;
if (RDG_MEM_READS_STMT (rdg, i))
++res;
}
return res;
}
/* Returns the number of read and write operations in a PARTITION of
the RDG. */
static int
number_of_rw_in_partition (struct graph *rdg, bitmap partition)
{
int res = 0;
unsigned i;
bitmap_iterator ii;
EXECUTE_IF_SET_IN_BITMAP (partition, 0, i, ii)
{
if (RDG_MEM_WRITE_STMT (rdg, i))
++res;
if (RDG_MEM_READS_STMT (rdg, i))
++res;
}
return res;
}
/* Returns true when one of the PARTITIONS contains all the read or
write operations of RDG. */
static bool
partition_contains_all_rw (struct graph *rdg, VEC (bitmap, heap) *partitions)
{
int i;
bitmap partition;
int nrw = number_of_rw_in_rdg (rdg);
for (i = 0; VEC_iterate (bitmap, partitions, i, partition); i++)
if (nrw == number_of_rw_in_partition (rdg, partition))
return true;
return false;
}
/* Generate code from STARTING_VERTICES in RDG. Returns the number of
distributed loops. */
static int
ldist_gen (struct loop *loop, struct graph *rdg,
VEC (int, heap) *starting_vertices)
{
int i, nbp;
VEC (rdgc, heap) *components = VEC_alloc (rdgc, heap, 3);
VEC (bitmap, heap) *partitions = VEC_alloc (bitmap, heap, 3);
VEC (int, heap) *other_stores = VEC_alloc (int, heap, 3);
bitmap partition, processed = BITMAP_ALLOC (NULL);
remaining_stmts = BITMAP_ALLOC (NULL);
upstream_mem_writes = BITMAP_ALLOC (NULL);
for (i = 0; i < rdg->n_vertices; i++)
{
bitmap_set_bit (remaining_stmts, i);
/* Save in OTHER_STORES all the memory writes that are not in
STARTING_VERTICES. */
if (RDG_MEM_WRITE_STMT (rdg, i))
{
int v;
unsigned j;
bool found = false;
for (j = 0; VEC_iterate (int, starting_vertices, j, v); j++)
if (i == v)
{
found = true;
break;
}
if (!found)
VEC_safe_push (int, heap, other_stores, i);
}
}
mark_nodes_having_upstream_mem_writes (rdg);
rdg_build_components (rdg, starting_vertices, &components);
rdg_build_partitions (rdg, components, &other_stores, &partitions,
processed);
BITMAP_FREE (processed);
nbp = VEC_length (bitmap, partitions);
if (nbp <= 1
|| partition_contains_all_rw (rdg, partitions))
goto ldist_done;
if (dump_file && (dump_flags & TDF_DETAILS))
dump_rdg_partitions (dump_file, partitions);
for (i = 0; VEC_iterate (bitmap, partitions, i, partition); i++)
if (!generate_code_for_partition (loop, partition, i < nbp - 1))
goto ldist_done;
rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
update_ssa (TODO_update_ssa_only_virtuals | TODO_update_ssa);
ldist_done:
BITMAP_FREE (remaining_stmts);
BITMAP_FREE (upstream_mem_writes);
for (i = 0; VEC_iterate (bitmap, partitions, i, partition); i++)
BITMAP_FREE (partition);
VEC_free (int, heap, other_stores);
VEC_free (bitmap, heap, partitions);
free_rdg_components (components);
return nbp;
}
/* Distributes the code from LOOP in such a way that producer
statements are placed before consumer statements. When STMTS is
NULL, performs the maximal distribution, if STMTS is not NULL,
tries to separate only these statements from the LOOP's body.
Returns the number of distributed loops. */
static int
distribute_loop (struct loop *loop, VEC (gimple, heap) *stmts)
{
bool res = false;
struct graph *rdg;
gimple s;
unsigned i;
VEC (int, heap) *vertices;
if (loop->num_nodes > 2)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"FIXME: Loop %d not distributed: it has more than two basic blocks.\n",
loop->num);
return res;
}
rdg = build_rdg (loop);
if (!rdg)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"FIXME: Loop %d not distributed: failed to build the RDG.\n",
loop->num);
return res;
}
vertices = VEC_alloc (int, heap, 3);
if (dump_file && (dump_flags & TDF_DETAILS))
dump_rdg (dump_file, rdg);
for (i = 0; VEC_iterate (gimple, stmts, i, s); i++)
{
int v = rdg_vertex_for_stmt (rdg, s);
if (v >= 0)
{
VEC_safe_push (int, heap, vertices, v);
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"ldist asked to generate code for vertex %d\n", v);
}
}
res = ldist_gen (loop, rdg, vertices);
VEC_free (int, heap, vertices);
free_rdg (rdg);
return res;
}
/* Distribute all loops in the current function. */
static unsigned int
tree_loop_distribution (void)
{
struct loop *loop;
loop_iterator li;
int nb_generated_loops = 0;
FOR_EACH_LOOP (li, loop, 0)
{
VEC (gimple, heap) *work_list = VEC_alloc (gimple, heap, 3);
/* With the following working list, we're asking distribute_loop
to separate the stores of the loop: when dependences allow,
it will end on having one store per loop. */
stores_from_loop (loop, &work_list);
/* A simple heuristic for cache locality is to not split stores
to the same array. Without this call, an unrolled loop would
be split into as many loops as unroll factor, each loop
storing in the same array. */
remove_similar_memory_refs (&work_list);
nb_generated_loops = distribute_loop (loop, work_list);
if (dump_file && (dump_flags & TDF_DETAILS))
{
if (nb_generated_loops > 1)
fprintf (dump_file, "Loop %d distributed: split to %d loops.\n",
loop->num, nb_generated_loops);
else
fprintf (dump_file, "Loop %d is the same.\n", loop->num);
}
verify_loop_structure ();
VEC_free (gimple, heap, work_list);
}
return 0;
}
static bool
gate_tree_loop_distribution (void)
{
return flag_tree_loop_distribution != 0;
}
struct gimple_opt_pass pass_loop_distribution =
{
{
GIMPLE_PASS,
"ldist", /* name */
gate_tree_loop_distribution, /* gate */
tree_loop_distribution, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_TREE_LOOP_DISTRIBUTION, /* tv_id */
PROP_cfg | PROP_ssa, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_func | TODO_verify_loops /* todo_flags_finish */
}
};
|