summaryrefslogtreecommitdiff
path: root/gcc/tree-into-ssa.c
blob: f6d23b009468ac14b6b4a8b8e72a86fcaa455af4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
/* Rewrite a program in Normal form into SSA.
   Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007
   Free Software Foundation, Inc.
   Contributed by Diego Novillo <dnovillo@redhat.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "flags.h"
#include "rtl.h"
#include "tm_p.h"
#include "langhooks.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "output.h"
#include "expr.h"
#include "function.h"
#include "diagnostic.h"
#include "bitmap.h"
#include "tree-flow.h"
#include "tree-gimple.h"
#include "tree-inline.h"
#include "varray.h"
#include "timevar.h"
#include "hashtab.h"
#include "tree-dump.h"
#include "tree-pass.h"
#include "cfgloop.h"
#include "domwalk.h"
#include "ggc.h"
#include "params.h"
#include "vecprim.h"

/* This file builds the SSA form for a function as described in:
   R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
   Computing Static Single Assignment Form and the Control Dependence
   Graph. ACM Transactions on Programming Languages and Systems,
   13(4):451-490, October 1991.  */

/* True if the code is in ssa form.  */
bool in_ssa_p;

/* Structure to map a variable VAR to the set of blocks that contain
   definitions for VAR.  */
struct def_blocks_d
{
  /* The variable.  */
  tree var;

  /* Blocks that contain definitions of VAR.  Bit I will be set if the
     Ith block contains a definition of VAR.  */
  bitmap def_blocks;

  /* Blocks that contain a PHI node for VAR.  */
  bitmap phi_blocks;

  /* Blocks where VAR is live-on-entry.  Similar semantics as
     DEF_BLOCKS.  */
  bitmap livein_blocks;
};


/* Each entry in DEF_BLOCKS contains an element of type STRUCT
   DEF_BLOCKS_D, mapping a variable VAR to a bitmap describing all the
   basic blocks where VAR is defined (assigned a new value).  It also
   contains a bitmap of all the blocks where VAR is live-on-entry
   (i.e., there is a use of VAR in block B without a preceding
   definition in B).  The live-on-entry information is used when
   computing PHI pruning heuristics.  */
static htab_t def_blocks;

/* Stack of trees used to restore the global currdefs to its original
   state after completing rewriting of a block and its dominator
   children.  Its elements have the following properties:

   - An SSA_NAME indicates that the current definition of the
     underlying variable should be set to the given SSA_NAME.

   - A _DECL node indicates that the underlying variable has no
     current definition.

   - A NULL node is used to mark the last node associated with the
     current block.

   - A NULL node at the top entry is used to mark the last node
     associated with the current block.  */
static VEC(tree,heap) *block_defs_stack;

/* Set of existing SSA names being replaced by update_ssa.  */
static sbitmap old_ssa_names;

/* Set of new SSA names being added by update_ssa.  Note that both
   NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
   the operations done on them are presence tests.  */
static sbitmap new_ssa_names;

/* Symbols whose SSA form needs to be updated or created for the first
   time.  */
static bitmap syms_to_rename;

/* Set of SSA names that have been marked to be released after they
   were registered in the replacement table.  They will be finally
   released after we finish updating the SSA web.  */
static bitmap names_to_release;

/* For each block, the phi nodes that need to be rewritten are stored into
   these vectors.  */

typedef VEC(tree, heap) *tree_vec;
DEF_VEC_P (tree_vec);
DEF_VEC_ALLOC_P (tree_vec, heap);

static VEC(tree_vec, heap) *phis_to_rewrite;

/* The bitmap of non-NULL elements of PHIS_TO_REWRITE.  */

static bitmap blocks_with_phis_to_rewrite;

/* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES.  These sets need
   to grow as the callers to register_new_name_mapping will typically
   create new names on the fly.  FIXME.  Currently set to 1/3 to avoid
   frequent reallocations but still need to find a reasonable growth
   strategy.  */
#define NAME_SETS_GROWTH_FACTOR	(MAX (3, num_ssa_names / 3))

/* Tuple used to represent replacement mappings.  */
struct repl_map_d
{
  tree name;
  bitmap set;
};

/* NEW -> OLD_SET replacement table.  If we are replacing several
   existing SSA names O_1, O_2, ..., O_j with a new name N_i,
   then REPL_TBL[N_i] = { O_1, O_2, ..., O_j }.  */
static htab_t repl_tbl;

/* true if register_new_name_mapping needs to initialize the data
   structures needed by update_ssa.  */
static bool need_to_initialize_update_ssa_p = true;

/* true if update_ssa needs to update virtual operands.  */
static bool need_to_update_vops_p = false;

/* Statistics kept by update_ssa to use in the virtual mapping
   heuristic.  If the number of virtual mappings is beyond certain
   threshold, the updater will switch from using the mappings into
   renaming the virtual symbols from scratch.  In some cases, the
   large number of name mappings for virtual names causes significant
   slowdowns in the PHI insertion code.  */
struct update_ssa_stats_d
{
  unsigned num_virtual_mappings;
  unsigned num_total_mappings;
  bitmap virtual_symbols;
  unsigned num_virtual_symbols;
};
static struct update_ssa_stats_d update_ssa_stats;

/* Global data to attach to the main dominator walk structure.  */
struct mark_def_sites_global_data
{
  /* This bitmap contains the variables which are set before they
     are used in a basic block.  */
  bitmap kills;

  /* Bitmap of names to rename.  */
  sbitmap names_to_rename;

  /* Set of blocks that mark_def_sites deems interesting for the
     renamer to process.  */
  sbitmap interesting_blocks;
};


/* Information stored for SSA names.  */
struct ssa_name_info
{
  /* The actual definition of the ssa name.  */
  tree current_def;

  /* This field indicates whether or not the variable may need PHI nodes.
     See the enum's definition for more detailed information about the
     states.  */
  ENUM_BITFIELD (need_phi_state) need_phi_state : 2;

  /* Age of this record (so that info_for_ssa_name table can be cleared
     quicky); if AGE < CURRENT_INFO_FOR_SSA_NAME_AGE, then the fields
     are assumed to be null.  */
  unsigned age;
};

/* The information associated with names.  */
typedef struct ssa_name_info *ssa_name_info_p;
DEF_VEC_P (ssa_name_info_p);
DEF_VEC_ALLOC_P (ssa_name_info_p, heap);

static VEC(ssa_name_info_p, heap) *info_for_ssa_name;
static unsigned current_info_for_ssa_name_age;

/* The set of blocks affected by update_ssa.  */

static bitmap blocks_to_update;

/* The main entry point to the SSA renamer (rewrite_blocks) may be
   called several times to do different, but related, tasks.
   Initially, we need it to rename the whole program into SSA form.
   At other times, we may need it to only rename into SSA newly
   exposed symbols.  Finally, we can also call it to incrementally fix
   an already built SSA web.  */
enum rewrite_mode {
    /* Convert the whole function into SSA form.  */
    REWRITE_ALL,

    /* Incrementally update the SSA web by replacing existing SSA
       names with new ones.  See update_ssa for details.  */
    REWRITE_UPDATE
};


/* Use TREE_VISITED to keep track of which statements we want to
   rename.  When renaming a subset of the variables, not all
   statements will be processed.  This is decided in mark_def_sites.  */
#define REWRITE_THIS_STMT(T)	TREE_VISITED (T)

/* Use the unsigned flag to keep track of which statements we want to
   visit when marking new definition sites.  This is slightly
   different than REWRITE_THIS_STMT: it's used by update_ssa to
   distinguish statements that need to have both uses and defs
   processed from those that only need to have their defs processed.
   Statements that define new SSA names only need to have their defs
   registered, but they don't need to have their uses renamed.  */
#define REGISTER_DEFS_IN_THIS_STMT(T)	(T)->common.unsigned_flag


/* Prototypes for debugging functions.  */
extern void dump_tree_ssa (FILE *);
extern void debug_tree_ssa (void);
extern void debug_def_blocks (void);
extern void dump_tree_ssa_stats (FILE *);
extern void debug_tree_ssa_stats (void);
void dump_update_ssa (FILE *);
void debug_update_ssa (void);
void dump_names_replaced_by (FILE *, tree);
void debug_names_replaced_by (tree);

/* Get the information associated with NAME.  */

static inline struct ssa_name_info *
get_ssa_name_ann (tree name)
{
  unsigned ver = SSA_NAME_VERSION (name);
  unsigned len = VEC_length (ssa_name_info_p, info_for_ssa_name);
  struct ssa_name_info *info;

  if (ver >= len)
    {
      unsigned new_len = num_ssa_names;

      VEC_reserve (ssa_name_info_p, heap, info_for_ssa_name, new_len);
      while (len++ < new_len)
	{
	  struct ssa_name_info *info = XCNEW (struct ssa_name_info);
	  info->age = current_info_for_ssa_name_age;
	  VEC_quick_push (ssa_name_info_p, info_for_ssa_name, info);
	}
    }

  info = VEC_index (ssa_name_info_p, info_for_ssa_name, ver);
  if (info->age < current_info_for_ssa_name_age)
    {
      info->need_phi_state = 0;
      info->current_def = NULL_TREE;
      info->age = current_info_for_ssa_name_age;
    }

  return info;
}

/* Clears info for ssa names.  */

static void
clear_ssa_name_info (void)
{
  current_info_for_ssa_name_age++;
}

/* Gets phi_state field for VAR.  */

static inline enum need_phi_state
get_phi_state (tree var)
{
  if (TREE_CODE (var) == SSA_NAME)
    return get_ssa_name_ann (var)->need_phi_state;
  else
    return var_ann (var)->need_phi_state;
}


/* Sets phi_state field for VAR to STATE.  */

static inline void
set_phi_state (tree var, enum need_phi_state state)
{
  if (TREE_CODE (var) == SSA_NAME)
    get_ssa_name_ann (var)->need_phi_state = state;
  else
    var_ann (var)->need_phi_state = state;
}


/* Return the current definition for VAR.  */

tree
get_current_def (tree var)
{
  if (TREE_CODE (var) == SSA_NAME)
    return get_ssa_name_ann (var)->current_def;
  else
    return var_ann (var)->current_def;
}


/* Sets current definition of VAR to DEF.  */

void
set_current_def (tree var, tree def)
{
  if (TREE_CODE (var) == SSA_NAME)
    get_ssa_name_ann (var)->current_def = def;
  else
    var_ann (var)->current_def = def;
}


/* Compute global livein information given the set of blockx where
   an object is locally live at the start of the block (LIVEIN)
   and the set of blocks where the object is defined (DEF_BLOCKS).

   Note: This routine augments the existing local livein information
   to include global livein (i.e., it modifies the underlying bitmap
   for LIVEIN).  */

void
compute_global_livein (bitmap livein, bitmap def_blocks)
{
  basic_block bb, *worklist, *tos;
  unsigned i;
  bitmap_iterator bi;

  tos = worklist
    = (basic_block *) xmalloc (sizeof (basic_block) * (last_basic_block + 1));

  EXECUTE_IF_SET_IN_BITMAP (livein, 0, i, bi)
    {
      *tos++ = BASIC_BLOCK (i);
    }

  /* Iterate until the worklist is empty.  */
  while (tos != worklist)
    {
      edge e;
      edge_iterator ei;

      /* Pull a block off the worklist.  */
      bb = *--tos;

      /* For each predecessor block.  */
      FOR_EACH_EDGE (e, ei, bb->preds)
	{
	  basic_block pred = e->src;
	  int pred_index = pred->index;

	  /* None of this is necessary for the entry block.  */
	  if (pred != ENTRY_BLOCK_PTR
	      && ! bitmap_bit_p (livein, pred_index)
	      && ! bitmap_bit_p (def_blocks, pred_index))
	    {
	      *tos++ = pred;
	      bitmap_set_bit (livein, pred_index);
	    }
	}
    }

  free (worklist);
}


/* Cleans up the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags for
   all statements in basic block BB.  */

static void
initialize_flags_in_bb (basic_block bb)
{
  tree phi, stmt;
  block_stmt_iterator bsi;

  for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
    {
      REWRITE_THIS_STMT (phi) = 0;
      REGISTER_DEFS_IN_THIS_STMT (phi) = 0;
    }

  for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
    {
      stmt = bsi_stmt (bsi);
      /* We are going to use the operand cache API, such as
	 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST.  The operand
	 cache for each statement should be up-to-date.  */
      gcc_assert (!stmt_modified_p (stmt));
      REWRITE_THIS_STMT (stmt) = 0;
      REGISTER_DEFS_IN_THIS_STMT (stmt) = 0;
    }
}

/* Mark block BB as interesting for update_ssa.  */

static void
mark_block_for_update (basic_block bb)
{
  gcc_assert (blocks_to_update != NULL);
  if (bitmap_bit_p (blocks_to_update, bb->index))
    return;
  bitmap_set_bit (blocks_to_update, bb->index);
  initialize_flags_in_bb (bb);
}

/* Return the set of blocks where variable VAR is defined and the blocks
   where VAR is live on entry (livein).  If no entry is found in
   DEF_BLOCKS, a new one is created and returned.  */

static inline struct def_blocks_d *
get_def_blocks_for (tree var)
{
  struct def_blocks_d db, *db_p;
  void **slot;

  db.var = var;
  slot = htab_find_slot (def_blocks, (void *) &db, INSERT);
  if (*slot == NULL)
    {
      db_p = XNEW (struct def_blocks_d);
      db_p->var = var;
      db_p->def_blocks = BITMAP_ALLOC (NULL);
      db_p->phi_blocks = BITMAP_ALLOC (NULL);
      db_p->livein_blocks = BITMAP_ALLOC (NULL);
      *slot = (void *) db_p;
    }
  else
    db_p = (struct def_blocks_d *) *slot;

  return db_p;
}


/* Mark block BB as the definition site for variable VAR.  PHI_P is true if
   VAR is defined by a PHI node.  */

static void
set_def_block (tree var, basic_block bb, bool phi_p)
{
  struct def_blocks_d *db_p;
  enum need_phi_state state;

  state = get_phi_state (var);
  db_p = get_def_blocks_for (var);

  /* Set the bit corresponding to the block where VAR is defined.  */
  bitmap_set_bit (db_p->def_blocks, bb->index);
  if (phi_p)
    bitmap_set_bit (db_p->phi_blocks, bb->index);

  /* Keep track of whether or not we may need to insert PHI nodes.

     If we are in the UNKNOWN state, then this is the first definition
     of VAR.  Additionally, we have not seen any uses of VAR yet, so
     we do not need a PHI node for this variable at this time (i.e.,
     transition to NEED_PHI_STATE_NO).

     If we are in any other state, then we either have multiple definitions
     of this variable occurring in different blocks or we saw a use of the
     variable which was not dominated by the block containing the
     definition(s).  In this case we may need a PHI node, so enter
     state NEED_PHI_STATE_MAYBE.  */
  if (state == NEED_PHI_STATE_UNKNOWN)
    set_phi_state (var, NEED_PHI_STATE_NO);
  else
    set_phi_state (var, NEED_PHI_STATE_MAYBE);
}


/* Mark block BB as having VAR live at the entry to BB.  */

static void
set_livein_block (tree var, basic_block bb)
{
  struct def_blocks_d *db_p;
  enum need_phi_state state = get_phi_state (var);

  db_p = get_def_blocks_for (var);

  /* Set the bit corresponding to the block where VAR is live in.  */
  bitmap_set_bit (db_p->livein_blocks, bb->index);

  /* Keep track of whether or not we may need to insert PHI nodes.

     If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
     by the single block containing the definition(s) of this variable.  If
     it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
     NEED_PHI_STATE_MAYBE.  */
  if (state == NEED_PHI_STATE_NO)
    {
      int def_block_index = bitmap_first_set_bit (db_p->def_blocks);

      if (def_block_index == -1
	  || ! dominated_by_p (CDI_DOMINATORS, bb,
	                       BASIC_BLOCK (def_block_index)))
	set_phi_state (var, NEED_PHI_STATE_MAYBE);
    }
  else
    set_phi_state (var, NEED_PHI_STATE_MAYBE);
}


/* Return true if symbol SYM is marked for renaming.  */

static inline bool
symbol_marked_for_renaming (tree sym)
{
  gcc_assert (DECL_P (sym));
  return bitmap_bit_p (syms_to_rename, DECL_UID (sym));
}


/* Return true if NAME is in OLD_SSA_NAMES.  */

static inline bool
is_old_name (tree name)
{
  unsigned ver = SSA_NAME_VERSION (name);
  return ver < new_ssa_names->n_bits && TEST_BIT (old_ssa_names, ver);
}


/* Return true if NAME is in NEW_SSA_NAMES.  */

static inline bool
is_new_name (tree name)
{
  unsigned ver = SSA_NAME_VERSION (name);
  return ver < new_ssa_names->n_bits && TEST_BIT (new_ssa_names, ver);
}


/* Hashing and equality functions for REPL_TBL.  */

static hashval_t
repl_map_hash (const void *p)
{
  return htab_hash_pointer ((const void *)((const struct repl_map_d *)p)->name);
}

static int
repl_map_eq (const void *p1, const void *p2)
{
  return ((const struct repl_map_d *)p1)->name
	 == ((const struct repl_map_d *)p2)->name;
}

static void
repl_map_free (void *p)
{
  BITMAP_FREE (((struct repl_map_d *)p)->set);
  free (p);
}


/* Return the names replaced by NEW (i.e., REPL_TBL[NEW].SET).  */

static inline bitmap
names_replaced_by (tree new)
{
  struct repl_map_d m;
  void **slot;

  m.name = new;
  slot = htab_find_slot (repl_tbl, (void *) &m, NO_INSERT);

  /* If N was not registered in the replacement table, return NULL.  */
  if (slot == NULL || *slot == NULL)
    return NULL;

  return ((struct repl_map_d *) *slot)->set;
}


/* Add OLD to REPL_TBL[NEW].SET.  */

static inline void
add_to_repl_tbl (tree new, tree old)
{
  struct repl_map_d m, *mp;
  void **slot;

  m.name = new;
  slot = htab_find_slot (repl_tbl, (void *) &m, INSERT);
  if (*slot == NULL)
    {
      mp = XNEW (struct repl_map_d);
      mp->name = new;
      mp->set = BITMAP_ALLOC (NULL);
      *slot = (void *) mp;
    }
  else
    mp = (struct repl_map_d *) *slot;

  bitmap_set_bit (mp->set, SSA_NAME_VERSION (old));
}


/* Add a new mapping NEW -> OLD REPL_TBL.  Every entry N_i in REPL_TBL
   represents the set of names O_1 ... O_j replaced by N_i.  This is
   used by update_ssa and its helpers to introduce new SSA names in an
   already formed SSA web.  */

static void
add_new_name_mapping (tree new, tree old)
{
  timevar_push (TV_TREE_SSA_INCREMENTAL);

  /* OLD and NEW must be different SSA names for the same symbol.  */
  gcc_assert (new != old && SSA_NAME_VAR (new) == SSA_NAME_VAR (old));

  /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
     caller may have created new names since the set was created.  */
  if (new_ssa_names->n_bits <= num_ssa_names - 1)
    {
      unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
      new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
      old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
    }

  /* If this mapping is for virtual names, we will need to update
     virtual operands.  */
  if (!is_gimple_reg (new))
    {
      tree sym;
      size_t uid;

      need_to_update_vops_p = true;

      /* Keep counts of virtual mappings and symbols to use in the
	 virtual mapping heuristic.  If we have large numbers of
	 virtual mappings for a relatively low number of symbols, it
	 will make more sense to rename the symbols from scratch.
	 Otherwise, the insertion of PHI nodes for each of the old
	 names in these mappings will be very slow.  */
      sym = SSA_NAME_VAR (new);
      uid = DECL_UID (sym);
      update_ssa_stats.num_virtual_mappings++;
      if (!bitmap_bit_p (update_ssa_stats.virtual_symbols, uid))
	{
	  bitmap_set_bit (update_ssa_stats.virtual_symbols, uid);
	  update_ssa_stats.num_virtual_symbols++;
	}
    }

  /* Update the REPL_TBL table.  */
  add_to_repl_tbl (new, old);

  /* If OLD had already been registered as a new name, then all the
     names that OLD replaces should also be replaced by NEW.  */
  if (is_new_name (old))
    bitmap_ior_into (names_replaced_by (new), names_replaced_by (old));

  /* Register NEW and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
     respectively.  */
  SET_BIT (new_ssa_names, SSA_NAME_VERSION (new));
  SET_BIT (old_ssa_names, SSA_NAME_VERSION (old));

  /* Update mapping counter to use in the virtual mapping heuristic.  */
  update_ssa_stats.num_total_mappings++;

  timevar_pop (TV_TREE_SSA_INCREMENTAL);
}


/* Call back for walk_dominator_tree used to collect definition sites
   for every variable in the function.  For every statement S in block
   BB:

   1- Variables defined by S in the DEFS of S are marked in the bitmap
      WALK_DATA->GLOBAL_DATA->KILLS.

   2- If S uses a variable VAR and there is no preceding kill of VAR,
      then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.

   This information is used to determine which variables are live
   across block boundaries to reduce the number of PHI nodes
   we create.  */

static void
mark_def_sites (struct dom_walk_data *walk_data,
		basic_block bb,
		block_stmt_iterator bsi)
{
  struct mark_def_sites_global_data *gd =
     (struct mark_def_sites_global_data *) walk_data->global_data;
  bitmap kills = gd->kills;
  tree stmt, def;
  use_operand_p use_p;
  def_operand_p def_p;
  ssa_op_iter iter;

  stmt = bsi_stmt (bsi);
  update_stmt_if_modified (stmt);

  gcc_assert (blocks_to_update == NULL);
  REGISTER_DEFS_IN_THIS_STMT (stmt) = 0;
  REWRITE_THIS_STMT (stmt) = 0;

  /* If a variable is used before being set, then the variable is live
     across a block boundary, so mark it live-on-entry to BB.  */
  FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
			    SSA_OP_USE | SSA_OP_VUSE | SSA_OP_VMUSTKILL)
    {
      tree sym = USE_FROM_PTR (use_p);
      gcc_assert (DECL_P (sym));
      if (!bitmap_bit_p (kills, DECL_UID (sym)))
	set_livein_block (sym, bb);
      REWRITE_THIS_STMT (stmt) = 1;
    }
  
  /* Note that virtual definitions are irrelevant for computing KILLS
     because a V_MAY_DEF does not constitute a killing definition of the
     variable.  However, the operand of a virtual definitions is a use
     of the variable, so it may cause the variable to be considered
     live-on-entry.  */
  FOR_EACH_SSA_MAYDEF_OPERAND (def_p, use_p, stmt, iter)
    {
      tree sym = USE_FROM_PTR (use_p);
      gcc_assert (DECL_P (sym));
      set_livein_block (sym, bb);
      set_def_block (sym, bb, false);
      REGISTER_DEFS_IN_THIS_STMT (stmt) = 1;
      REWRITE_THIS_STMT (stmt) = 1;
    }

  /* Now process the defs and must-defs made by this statement.  */
  FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF | SSA_OP_VMUSTDEF)
    {
      gcc_assert (DECL_P (def));
      set_def_block (def, bb, false);
      bitmap_set_bit (kills, DECL_UID (def));
      REGISTER_DEFS_IN_THIS_STMT (stmt) = 1;
    }

  /* If we found the statement interesting then also mark the block BB
     as interesting.  */
  if (REWRITE_THIS_STMT (stmt) || REGISTER_DEFS_IN_THIS_STMT (stmt))
    SET_BIT (gd->interesting_blocks, bb->index);
}

/* Structure used by prune_unused_phi_nodes to record bounds of the intervals
   in the dfs numbering of the dominance tree.  */

struct dom_dfsnum
{
  /* Basic block whose index this entry corresponds to.  */
  unsigned bb_index;

  /* The dfs number of this node.  */
  unsigned dfs_num;
};

/* Compares two entries of type struct dom_dfsnum by dfs_num field.  Callback
   for qsort.  */

static int
cmp_dfsnum (const void *a, const void *b)
{
  const struct dom_dfsnum *da = a;
  const struct dom_dfsnum *db = b;

  return (int) da->dfs_num - (int) db->dfs_num;
}

/* Among the intervals starting at the N points specified in DEFS, find
   the one that contains S, and return its bb_index.  */

static unsigned
find_dfsnum_interval (struct dom_dfsnum *defs, unsigned n, unsigned s)
{
  unsigned f = 0, t = n, m;

  while (t > f + 1)
    {
      m = (f + t) / 2;
      if (defs[m].dfs_num <= s)
	f = m;
      else
	t = m;
    }

  return defs[f].bb_index;
}

/* Clean bits from PHIS for phi nodes whose value cannot be used in USES.
   KILLS is a bitmap of blocks where the value is defined before any use.  */

static void
prune_unused_phi_nodes (bitmap phis, bitmap kills, bitmap uses)
{
  VEC(int, heap) *worklist;
  bitmap_iterator bi;
  unsigned i, b, p, u, top;
  bitmap live_phis;
  basic_block def_bb, use_bb;
  edge e;
  edge_iterator ei;
  bitmap to_remove;
  struct dom_dfsnum *defs;
  unsigned n_defs, adef;

  if (bitmap_empty_p (uses))
    {
      bitmap_clear (phis);
      return;
    }

  /* The phi must dominate a use, or an argument of a live phi.  Also, we
     do not create any phi nodes in def blocks, unless they are also livein.  */
  to_remove = BITMAP_ALLOC (NULL);
  bitmap_and_compl (to_remove, kills, uses);
  bitmap_and_compl_into (phis, to_remove);
  if (bitmap_empty_p (phis))
    {
      BITMAP_FREE (to_remove);
      return;
    }

  /* We want to remove the unnecessary phi nodes, but we do not want to compute
     liveness information, as that may be linear in the size of CFG, and if
     there are lot of different variables to rewrite, this may lead to quadratic
     behavior.

     Instead, we basically emulate standard dce.  We put all uses to worklist,
     then for each of them find the nearest def that dominates them.  If this
     def is a phi node, we mark it live, and if it was not live before, we
     add the predecessors of its basic block to the worklist.
   
     To quickly locate the nearest def that dominates use, we use dfs numbering
     of the dominance tree (that is already available in order to speed up
     queries).  For each def, we have the interval given by the dfs number on
     entry to and on exit from the corresponding subtree in the dominance tree.
     The nearest dominator for a given use is the smallest of these intervals
     that contains entry and exit dfs numbers for the basic block with the use.
     If we store the bounds for all the uses to an array and sort it, we can
     locate the nearest dominating def in logarithmic time by binary search.*/
  bitmap_ior (to_remove, kills, phis);
  n_defs = bitmap_count_bits (to_remove);
  defs = XNEWVEC (struct dom_dfsnum, 2 * n_defs + 1);
  defs[0].bb_index = 1;
  defs[0].dfs_num = 0;
  adef = 1;
  EXECUTE_IF_SET_IN_BITMAP (to_remove, 0, i, bi)
    {
      def_bb = BASIC_BLOCK (i);
      defs[adef].bb_index = i;
      defs[adef].dfs_num = bb_dom_dfs_in (CDI_DOMINATORS, def_bb);
      defs[adef + 1].bb_index = i;
      defs[adef + 1].dfs_num = bb_dom_dfs_out (CDI_DOMINATORS, def_bb);
      adef += 2;
    }
  BITMAP_FREE (to_remove);
  gcc_assert (adef == 2 * n_defs + 1);
  qsort (defs, adef, sizeof (struct dom_dfsnum), cmp_dfsnum);
  gcc_assert (defs[0].bb_index == 1);

  /* Now each DEFS entry contains the number of the basic block to that the
     dfs number corresponds.  Change them to the number of basic block that
     corresponds to the interval following the dfs number.  Also, for the
     dfs_out numbers, increase the dfs number by one (so that it corresponds
     to the start of the following interval, not to the end of the current
     one).  We use WORKLIST as a stack.  */
  worklist = VEC_alloc (int, heap, n_defs + 1);
  VEC_quick_push (int, worklist, 1);
  top = 1;
  n_defs = 1;
  for (i = 1; i < adef; i++)
    {
      b = defs[i].bb_index;
      if (b == top)
	{
	  /* This is a closing element.  Interval corresponding to the top
	     of the stack after removing it follows.  */
	  VEC_pop (int, worklist);
	  top = VEC_index (int, worklist, VEC_length (int, worklist) - 1);
	  defs[n_defs].bb_index = top;
	  defs[n_defs].dfs_num = defs[i].dfs_num + 1;
	}
      else
	{
	  /* Opening element.  Nothing to do, just push it to the stack and move
	     it to the correct position.  */
	  defs[n_defs].bb_index = defs[i].bb_index;
	  defs[n_defs].dfs_num = defs[i].dfs_num;
	  VEC_quick_push (int, worklist, b);
	  top = b;
	}

      /* If this interval starts at the same point as the previous one, cancel
	 the previous one.  */
      if (defs[n_defs].dfs_num == defs[n_defs - 1].dfs_num)
	defs[n_defs - 1].bb_index = defs[n_defs].bb_index;
      else
	n_defs++;
    }
  VEC_pop (int, worklist);
  gcc_assert (VEC_empty (int, worklist));

  /* Now process the uses.  */
  live_phis = BITMAP_ALLOC (NULL);
  EXECUTE_IF_SET_IN_BITMAP (uses, 0, i, bi)
    {
      VEC_safe_push (int, heap, worklist, i);
    }

  while (!VEC_empty (int, worklist))
    {
      b = VEC_pop (int, worklist);
      if (b == ENTRY_BLOCK)
	continue;

      /* If there is a phi node in USE_BB, it is made live.  Otherwise,
	 find the def that dominates the immediate dominator of USE_BB
	 (the kill in USE_BB does not dominate the use).  */
      if (bitmap_bit_p (phis, b))
	p = b;
      else
	{
	  use_bb = get_immediate_dominator (CDI_DOMINATORS, BASIC_BLOCK (b));
	  p = find_dfsnum_interval (defs, n_defs,
				    bb_dom_dfs_in (CDI_DOMINATORS, use_bb));
	  if (!bitmap_bit_p (phis, p))
	    continue;
	}

      /* If the phi node is already live, there is nothing to do.  */
      if (bitmap_bit_p (live_phis, p))
	continue;

      /* Mark the phi as live, and add the new uses to the worklist.  */
      bitmap_set_bit (live_phis, p);
      def_bb = BASIC_BLOCK (p);
      FOR_EACH_EDGE (e, ei, def_bb->preds)
	{
	  u = e->src->index;
	  if (bitmap_bit_p (uses, u))
	    continue;

	  /* In case there is a kill directly in the use block, do not record
	     the use (this is also necessary for correctness, as we assume that
	     uses dominated by a def directly in their block have been filtered
	     out before).  */
	  if (bitmap_bit_p (kills, u))
	    continue;

	  bitmap_set_bit (uses, u);
	  VEC_safe_push (int, heap, worklist, u);
	}
    }

  VEC_free (int, heap, worklist);
  bitmap_copy (phis, live_phis);
  BITMAP_FREE (live_phis);
  free (defs);
}

/* Given a set of blocks with variable definitions (DEF_BLOCKS),
   return a bitmap with all the blocks in the iterated dominance
   frontier of the blocks in DEF_BLOCKS.  DFS contains dominance
   frontier information as returned by compute_dominance_frontiers.
   
   The resulting set of blocks are the potential sites where PHI nodes
   are needed.  The caller is responsible from freeing the memory
   allocated for the return value.  */

static bitmap
find_idf (bitmap def_blocks, bitmap *dfs)
{
  bitmap_iterator bi;
  unsigned bb_index;
  VEC(int,heap) *work_stack;
  bitmap phi_insertion_points;

  work_stack = VEC_alloc (int, heap, n_basic_blocks);
  phi_insertion_points = BITMAP_ALLOC (NULL);

  /* Seed the work list with all the blocks in DEF_BLOCKS.  */
  EXECUTE_IF_SET_IN_BITMAP (def_blocks, 0, bb_index, bi)
    /* We use VEC_quick_push here for speed.  This is safe because we
       know that the number of definition blocks is no greater than
       the number of basic blocks, which is the initial capacity of
       WORK_STACK.  */
    VEC_quick_push (int, work_stack, bb_index);

  /* Pop a block off the worklist, add every block that appears in
     the original block's DF that we have not already processed to
     the worklist.  Iterate until the worklist is empty.   Blocks
     which are added to the worklist are potential sites for
     PHI nodes.  */
  while (VEC_length (int, work_stack) > 0)
    {
      bb_index = VEC_pop (int, work_stack);

      /* Since the registration of NEW -> OLD name mappings is done
	 separately from the call to update_ssa, when updating the SSA
	 form, the basic blocks where new and/or old names are defined
	 may have disappeared by CFG cleanup calls.  In this case,
	 we may pull a non-existing block from the work stack.  */
      gcc_assert (bb_index < (unsigned) last_basic_block);

      EXECUTE_IF_AND_COMPL_IN_BITMAP (dfs[bb_index], phi_insertion_points,
	                              0, bb_index, bi)
	{
	  /* Use a safe push because if there is a definition of VAR
	     in every basic block, then WORK_STACK may eventually have
	     more than N_BASIC_BLOCK entries.  */
	  VEC_safe_push (int, heap, work_stack, bb_index);
	  bitmap_set_bit (phi_insertion_points, bb_index);
	}
    }

  VEC_free (int, heap, work_stack);

  return phi_insertion_points;
}


/* Return the set of blocks where variable VAR is defined and the blocks
   where VAR is live on entry (livein).  Return NULL, if no entry is
   found in DEF_BLOCKS.  */

static inline struct def_blocks_d *
find_def_blocks_for (tree var)
{
  struct def_blocks_d dm;
  dm.var = var;
  return (struct def_blocks_d *) htab_find (def_blocks, &dm);
}


/* Retrieve or create a default definition for symbol SYM.  */

static inline tree
get_default_def_for (tree sym)
{
  tree ddef = default_def (sym);

  if (ddef == NULL_TREE)
    {
      ddef = make_ssa_name (sym, build_empty_stmt ());
      set_default_def (sym, ddef);
    }

  return ddef;
}


/* Marks phi node PHI in basic block BB for rewrite.  */

static void
mark_phi_for_rewrite (basic_block bb, tree phi)
{
  tree_vec phis;
  unsigned i, idx = bb->index;

  if (REWRITE_THIS_STMT (phi))
    return;
  REWRITE_THIS_STMT (phi) = 1;

  if (!blocks_with_phis_to_rewrite)
    return;

  bitmap_set_bit (blocks_with_phis_to_rewrite, idx);
  VEC_reserve (tree_vec, heap, phis_to_rewrite, last_basic_block + 1);
  for (i = VEC_length (tree_vec, phis_to_rewrite); i <= idx; i++)
    VEC_quick_push (tree_vec, phis_to_rewrite, NULL);

  phis = VEC_index (tree_vec, phis_to_rewrite, idx);
  if (!phis)
    phis = VEC_alloc (tree, heap, 10);

  VEC_safe_push (tree, heap, phis, phi);
  VEC_replace (tree_vec, phis_to_rewrite, idx, phis);
}

/* Insert PHI nodes for variable VAR using the iterated dominance
   frontier given in PHI_INSERTION_POINTS.  If UPDATE_P is true, this
   function assumes that the caller is incrementally updating the SSA
   form, in which case (1) VAR is assumed to be an SSA name, (2) a new
   SSA name is created for VAR's symbol, and, (3) all the arguments
   for the newly created PHI node are set to VAR.

   PHI_INSERTION_POINTS is updated to reflect nodes that already had a
   PHI node for VAR.  On exit, only the nodes that received a PHI node
   for VAR will be present in PHI_INSERTION_POINTS.  */

static void
insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
{
  unsigned bb_index;
  edge e;
  tree phi;
  basic_block bb;
  bitmap_iterator bi;
  struct def_blocks_d *def_map;

  def_map = find_def_blocks_for (var);
  gcc_assert (def_map);

  /* Remove the blocks where we already have PHI nodes for VAR.  */
  bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);

  /* Remove obviously useless phi nodes.  */
  prune_unused_phi_nodes (phi_insertion_points, def_map->def_blocks,
			  def_map->livein_blocks);

  /* And insert the PHI nodes.  */
  EXECUTE_IF_SET_IN_BITMAP (phi_insertion_points, 0, bb_index, bi)
    {
      bb = BASIC_BLOCK (bb_index);
      if (update_p)
	mark_block_for_update (bb);

      if (update_p && TREE_CODE (var) == SSA_NAME)
	{
	  /* If we are rewriting SSA names, create the LHS of the PHI
	     node by duplicating VAR.  This is useful in the case of
	     pointers, to also duplicate pointer attributes (alias
	     information, in particular).  */
	  edge_iterator ei;
	  tree new_lhs;

	  phi = create_phi_node (var, bb);
	  new_lhs = duplicate_ssa_name (var, phi);
	  SET_PHI_RESULT (phi, new_lhs);
	  add_new_name_mapping (new_lhs, var);

	  /* Add VAR to every argument slot of PHI.  We need VAR in
	     every argument so that rewrite_update_phi_arguments knows
	     which name is this PHI node replacing.  If VAR is a
	     symbol marked for renaming, this is not necessary, the
	     renamer will use the symbol on the LHS to get its
	     reaching definition.  */
	  FOR_EACH_EDGE (e, ei, bb->preds)
	    add_phi_arg (phi, var, e);
	}
      else
	{
	  tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
	  phi = create_phi_node (sym, bb);
	}

      /* Mark this PHI node as interesting for update_ssa.  */
      REGISTER_DEFS_IN_THIS_STMT (phi) = 1;
      mark_phi_for_rewrite (bb, phi);
    }
}


/* Insert PHI nodes at the dominance frontier of blocks with variable
   definitions.  DFS contains the dominance frontier information for
   the flowgraph.  PHI nodes will only be inserted at the dominance
   frontier of definition blocks for variables whose NEED_PHI_STATE
   annotation is marked as ``maybe'' or ``unknown'' (computed by
   mark_def_sites).  */

static void
insert_phi_nodes (bitmap *dfs)
{
  referenced_var_iterator rvi;
  tree var;

  timevar_push (TV_TREE_INSERT_PHI_NODES);
  
  FOR_EACH_REFERENCED_VAR (var, rvi)
    {
      struct def_blocks_d *def_map;
      bitmap idf;

      def_map = find_def_blocks_for (var);
      if (def_map == NULL)
	continue;

      if (get_phi_state (var) != NEED_PHI_STATE_NO)
	{
	  idf = find_idf (def_map->def_blocks, dfs);
	  insert_phi_nodes_for (var, idf, false);
	  BITMAP_FREE (idf);
	}
    }

  timevar_pop (TV_TREE_INSERT_PHI_NODES);
}


/* Register DEF (an SSA_NAME) to be a new definition for its underlying
   variable (SSA_NAME_VAR (DEF)) and push VAR's current reaching definition
   into the stack pointed to by BLOCK_DEFS_P.  */

void
register_new_def (tree def, VEC(tree,heap) **block_defs_p)
{
  tree var = SSA_NAME_VAR (def);
  tree currdef;
   
  /* If this variable is set in a single basic block and all uses are
     dominated by the set(s) in that single basic block, then there is
     no reason to record anything for this variable in the block local
     definition stacks.  Doing so just wastes time and memory.

     This is the same test to prune the set of variables which may
     need PHI nodes.  So we just use that information since it's already
     computed and available for us to use.  */
  if (get_phi_state (var) == NEED_PHI_STATE_NO)
    {
      set_current_def (var, def);
      return;
    }

  currdef = get_current_def (var);

  /* Push the current reaching definition into *BLOCK_DEFS_P.  This stack is
     later used by the dominator tree callbacks to restore the reaching
     definitions for all the variables defined in the block after a recursive
     visit to all its immediately dominated blocks.  If there is no current
     reaching definition, then just record the underlying _DECL node.  */
  VEC_safe_push (tree, heap, *block_defs_p, currdef ? currdef : var);

  /* Set the current reaching definition for VAR to be DEF.  */
  set_current_def (var, def);
}


/* Perform a depth-first traversal of the dominator tree looking for
   variables to rename.  BB is the block where to start searching.
   Renaming is a five step process:

   1- Every definition made by PHI nodes at the start of the blocks is
      registered as the current definition for the corresponding variable.

   2- Every statement in BB is rewritten.  USE and VUSE operands are
      rewritten with their corresponding reaching definition.  DEF and
      VDEF targets are registered as new definitions.
      
   3- All the PHI nodes in successor blocks of BB are visited.  The
      argument corresponding to BB is replaced with its current reaching
      definition.

   4- Recursively rewrite every dominator child block of BB.

   5- Restore (in reverse order) the current reaching definition for every
      new definition introduced in this block.  This is done so that when
      we return from the recursive call, all the current reaching
      definitions are restored to the names that were valid in the
      dominator parent of BB.  */

/* SSA Rewriting Step 1.  Initialization, create a block local stack
   of reaching definitions for new SSA names produced in this block
   (BLOCK_DEFS).  Register new definitions for every PHI node in the
   block.  */

static void
rewrite_initialize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
			  basic_block bb)
{
  tree phi;

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);

  /* Mark the unwind point for this block.  */
  VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);

  /* Step 1.  Register new definitions for every PHI node in the block.
     Conceptually, all the PHI nodes are executed in parallel and each PHI
     node introduces a new version for the associated variable.  */
  for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
    {
      tree result = PHI_RESULT (phi);
      register_new_def (result, &block_defs_stack);
    }
}


/* Return the current definition for variable VAR.  If none is found,
   create a new SSA name to act as the zeroth definition for VAR.  If VAR
   is call clobbered and there exists a more recent definition of
   GLOBAL_VAR, return the definition for GLOBAL_VAR.  This means that VAR
   has been clobbered by a function call since its last assignment.  */

static tree
get_reaching_def (tree var)
{
  tree currdef_var, avar;
  
  /* Lookup the current reaching definition for VAR.  */
  currdef_var = get_current_def (var);

  /* If there is no reaching definition for VAR, create and register a
     default definition for it (if needed).  */
  if (currdef_var == NULL_TREE)
    {
      avar = DECL_P (var) ? var : SSA_NAME_VAR (var);
      currdef_var = get_default_def_for (avar);
      set_current_def (var, currdef_var);
    }

  /* Return the current reaching definition for VAR, or the default
     definition, if we had to create one.  */
  return currdef_var;
}


/* SSA Rewriting Step 2.  Rewrite every variable used in each statement in
   the block with its immediate reaching definitions.  Update the current
   definition of a variable when a new real or virtual definition is found.  */

static void
rewrite_stmt (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
	      basic_block bb ATTRIBUTE_UNUSED,
	      block_stmt_iterator si)
{
  tree stmt;
  use_operand_p use_p;
  def_operand_p def_p;
  ssa_op_iter iter;

  stmt = bsi_stmt (si);

  /* If mark_def_sites decided that we don't need to rewrite this
     statement, ignore it.  */
  gcc_assert (blocks_to_update == NULL);
  if (!REWRITE_THIS_STMT (stmt) && !REGISTER_DEFS_IN_THIS_STMT (stmt))
    return;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Renaming statement ");
      print_generic_stmt (dump_file, stmt, TDF_SLIM);
      fprintf (dump_file, "\n");
    }

  /* Step 1.  Rewrite USES and VUSES in the statement.  */
  if (REWRITE_THIS_STMT (stmt))
    FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
	                      SSA_OP_ALL_USES|SSA_OP_ALL_KILLS)
      {
	tree var = USE_FROM_PTR (use_p);
	gcc_assert (DECL_P (var));
	SET_USE (use_p, get_reaching_def (var));
      }

  /* Step 2.  Register the statement's DEF and VDEF operands.  */
  if (REGISTER_DEFS_IN_THIS_STMT (stmt))
    FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
      {
	tree var = DEF_FROM_PTR (def_p);
	gcc_assert (DECL_P (var));
	SET_DEF (def_p, make_ssa_name (var, stmt));
	register_new_def (DEF_FROM_PTR (def_p), &block_defs_stack);
      }
}


/* SSA Rewriting Step 3.  Visit all the successor blocks of BB looking for
   PHI nodes.  For every PHI node found, add a new argument containing the
   current reaching definition for the variable and the edge through which
   that definition is reaching the PHI node.  */

static void
rewrite_add_phi_arguments (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
			   basic_block bb)
{
  edge e;
  edge_iterator ei;

  FOR_EACH_EDGE (e, ei, bb->succs)
    {
      tree phi;

      for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
	{
	  tree currdef;
	  currdef = get_reaching_def (SSA_NAME_VAR (PHI_RESULT (phi)));
	  add_phi_arg (phi, currdef, e);
	}
    }
}


/* Called after visiting basic block BB.  Restore CURRDEFS to its
   original value.  */

static void
rewrite_finalize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
			basic_block bb ATTRIBUTE_UNUSED)
{
  /* Restore CURRDEFS to its original state.  */
  while (VEC_length (tree, block_defs_stack) > 0)
    {
      tree tmp = VEC_pop (tree, block_defs_stack);
      tree saved_def, var;

      if (tmp == NULL_TREE)
	break;

      /* If we recorded an SSA_NAME, then make the SSA_NAME the current
	 definition of its underlying variable.  If we recorded anything
	 else, it must have been an _DECL node and its current reaching
	 definition must have been NULL.  */
      if (TREE_CODE (tmp) == SSA_NAME)
	{
	  saved_def = tmp;
	  var = SSA_NAME_VAR (saved_def);
	}
      else
	{
	  saved_def = NULL;
	  var = tmp;
	}
                                                                                
      set_current_def (var, saved_def);
    }
}


/* Dump SSA information to FILE.  */

void
dump_tree_ssa (FILE *file)
{
  basic_block bb;
  const char *funcname
    = lang_hooks.decl_printable_name (current_function_decl, 2);

  fprintf (file, "SSA information for %s\n\n", funcname);

  FOR_EACH_BB (bb)
    {
      dump_bb (bb, file, 0);
      fputs ("    ", file);
      print_generic_stmt (file, phi_nodes (bb), dump_flags);
      fputs ("\n\n", file);
    }
}


/* Dump SSA information to stderr.  */

void
debug_tree_ssa (void)
{
  dump_tree_ssa (stderr);
}


/* Dump statistics for the hash table HTAB.  */

static void
htab_statistics (FILE *file, htab_t htab)
{
  fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
	   (long) htab_size (htab),
	   (long) htab_elements (htab),
	   htab_collisions (htab));
}


/* Dump SSA statistics on FILE.  */

void
dump_tree_ssa_stats (FILE *file)
{
  fprintf (file, "\nHash table statistics:\n");

  fprintf (file, "    def_blocks: ");
  htab_statistics (file, def_blocks);

  fprintf (file, "\n");
}


/* Dump SSA statistics on stderr.  */

void
debug_tree_ssa_stats (void)
{
  dump_tree_ssa_stats (stderr);
}


/* Hashing and equality functions for DEF_BLOCKS.  */

static hashval_t
def_blocks_hash (const void *p)
{
  return htab_hash_pointer
	((const void *)((const struct def_blocks_d *)p)->var);
}

static int
def_blocks_eq (const void *p1, const void *p2)
{
  return ((const struct def_blocks_d *)p1)->var
	 == ((const struct def_blocks_d *)p2)->var;
}


/* Free memory allocated by one entry in DEF_BLOCKS.  */

static void
def_blocks_free (void *p)
{
  struct def_blocks_d *entry = (struct def_blocks_d *) p;
  BITMAP_FREE (entry->def_blocks);
  BITMAP_FREE (entry->phi_blocks);
  BITMAP_FREE (entry->livein_blocks);
  free (entry);
}


/* Callback for htab_traverse to dump the DEF_BLOCKS hash table.  */

static int
debug_def_blocks_r (void **slot, void *data ATTRIBUTE_UNUSED)
{
  struct def_blocks_d *db_p = (struct def_blocks_d *) *slot;
  
  fprintf (stderr, "VAR: ");
  print_generic_expr (stderr, db_p->var, dump_flags);
  bitmap_print (stderr, db_p->def_blocks, ", DEF_BLOCKS: { ", "}");
  bitmap_print (stderr, db_p->livein_blocks, ", LIVEIN_BLOCKS: { ", "}\n");

  return 1;
}


/* Dump the DEF_BLOCKS hash table on stderr.  */

void
debug_def_blocks (void)
{
  htab_traverse (def_blocks, debug_def_blocks_r, NULL);
}


/* Register NEW_NAME to be the new reaching definition for OLD_NAME.  */

static inline void
register_new_update_single (tree new_name, tree old_name)
{
  tree currdef = get_current_def (old_name);

  /* Push the current reaching definition into *BLOCK_DEFS_P.
     This stack is later used by the dominator tree callbacks to
     restore the reaching definitions for all the variables
     defined in the block after a recursive visit to all its
     immediately dominated blocks.  */
  VEC_reserve (tree, heap, block_defs_stack, 2);
  VEC_quick_push (tree, block_defs_stack, currdef);
  VEC_quick_push (tree, block_defs_stack, old_name);

  /* Set the current reaching definition for OLD_NAME to be
     NEW_NAME.  */
  set_current_def (old_name, new_name);
}


/* Register NEW_NAME to be the new reaching definition for all the
   names in OLD_NAMES.  Used by the incremental SSA update routines to
   replace old SSA names with new ones.  */

static inline void
register_new_update_set (tree new_name, bitmap old_names)
{
  bitmap_iterator bi;
  unsigned i;

  EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
    register_new_update_single (new_name, ssa_name (i));
}


/* Initialization of block data structures for the incremental SSA
   update pass.  Create a block local stack of reaching definitions
   for new SSA names produced in this block (BLOCK_DEFS).  Register
   new definitions for every PHI node in the block.  */

static void
rewrite_update_init_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
		           basic_block bb)
{
  edge e;
  edge_iterator ei;
  tree phi;
  bool is_abnormal_phi;

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\n\nRegistering new PHI nodes in block #%d\n\n",
	     bb->index);

  /* Mark the unwind point for this block.  */
  VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);

  if (!bitmap_bit_p (blocks_to_update, bb->index))
    return;

  /* Mark the LHS if any of the arguments flows through an abnormal
     edge.  */
  is_abnormal_phi = false;
  FOR_EACH_EDGE (e, ei, bb->preds)
    if (e->flags & EDGE_ABNORMAL)
      {
	is_abnormal_phi = true;
	break;
      }

  /* If any of the PHI nodes is a replacement for a name in
     OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
     register it as a new definition for its corresponding name.  Also
     register definitions for names whose underlying symbols are
     marked for renaming.  */

  for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
    {
      tree lhs, lhs_sym;

      if (!REGISTER_DEFS_IN_THIS_STMT (phi))
	continue;
      
      lhs = PHI_RESULT (phi);
      lhs_sym = SSA_NAME_VAR (lhs);

      if (symbol_marked_for_renaming (lhs_sym))
	register_new_update_single (lhs, lhs_sym);
      else
	{
	  /* If LHS is a new name, register a new definition for all
	     the names replaced by LHS.  */
	  if (is_new_name (lhs))
	    register_new_update_set (lhs, names_replaced_by (lhs));
	  
	  /* If LHS is an OLD name, register it as a new definition
	     for itself.  */
	  if (is_old_name (lhs))
	    register_new_update_single (lhs, lhs);
	}

      if (is_abnormal_phi)
	SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
    }
}


/* Called after visiting block BB.  Unwind BLOCK_DEFS_STACK to restore
   the current reaching definition of every name re-written in BB to
   the original reaching definition before visiting BB.  This
   unwinding must be done in the opposite order to what is done in
   register_new_update_set.  */

static void
rewrite_update_fini_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
			   basic_block bb ATTRIBUTE_UNUSED)
{
  while (VEC_length (tree, block_defs_stack) > 0)
    {
      tree var = VEC_pop (tree, block_defs_stack);
      tree saved_def;
      
      /* NULL indicates the unwind stop point for this block (see
	 rewrite_update_init_block).  */
      if (var == NULL)
	return;

      saved_def = VEC_pop (tree, block_defs_stack);
      set_current_def (var, saved_def);
    }
}


/* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
   it is a symbol marked for renaming, replace it with USE_P's current
   reaching definition.  */

static inline void
maybe_replace_use (use_operand_p use_p)
{
  tree rdef = NULL_TREE;
  tree use = USE_FROM_PTR (use_p);
  tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);

  if (symbol_marked_for_renaming (sym))
    rdef = get_reaching_def (sym);
  else if (is_old_name (use))
    rdef = get_reaching_def (use);

  if (rdef && rdef != use)
    SET_USE (use_p, rdef);
}


/* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
   or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
   register it as the current definition for the names replaced by
   DEF_P.  */

static inline void
maybe_register_def (def_operand_p def_p, tree stmt)
{
  tree def = DEF_FROM_PTR (def_p);
  tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);

  /* If DEF is a naked symbol that needs renaming, create a
     new name for it.  */
  if (symbol_marked_for_renaming (sym))
    {
      if (DECL_P (def))
	{
	  def = make_ssa_name (def, stmt);
	  SET_DEF (def_p, def);
	}

      register_new_update_single (def, sym);
    }
  else
    {
      /* If DEF is a new name, register it as a new definition
	 for all the names replaced by DEF.  */
      if (is_new_name (def))
	register_new_update_set (def, names_replaced_by (def));

      /* If DEF is an old name, register DEF as a new
	 definition for itself.  */
      if (is_old_name (def))
	register_new_update_single (def, def);
    }
}


/* Update every variable used in the statement pointed-to by SI.  The
   statement is assumed to be in SSA form already.  Names in
   OLD_SSA_NAMES used by SI will be updated to their current reaching
   definition.  Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
   will be registered as a new definition for their corresponding name
   in OLD_SSA_NAMES.  */

static void
rewrite_update_stmt (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
		     basic_block bb ATTRIBUTE_UNUSED,
		     block_stmt_iterator si)
{
  stmt_ann_t ann;
  tree stmt;
  use_operand_p use_p;
  def_operand_p def_p;
  ssa_op_iter iter;

  stmt = bsi_stmt (si);
  ann = stmt_ann (stmt);

  gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));

  /* Only update marked statements.  */
  if (!REWRITE_THIS_STMT (stmt) && !REGISTER_DEFS_IN_THIS_STMT (stmt))
    return;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Updating SSA information for statement ");
      print_generic_stmt (dump_file, stmt, TDF_SLIM);
      fprintf (dump_file, "\n");
    }

  /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
     symbol is marked for renaming.  */
  if (REWRITE_THIS_STMT (stmt))
    {
      FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
	maybe_replace_use (use_p);

      if (need_to_update_vops_p)
	FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
				  SSA_OP_VIRTUAL_USES | SSA_OP_VIRTUAL_KILLS)
	  maybe_replace_use (use_p);
    }

  /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
     Also register definitions for names whose underlying symbol is
     marked for renaming.  */
  if (REGISTER_DEFS_IN_THIS_STMT (stmt))
    {
      FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_DEF)
	maybe_register_def (def_p, stmt);

      if (need_to_update_vops_p)
	FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_VIRTUAL_DEFS)
	  maybe_register_def (def_p, stmt);
    }
}


/* Replace the operand pointed to by USE_P with USE's current reaching
   definition.  */

static inline void
replace_use (use_operand_p use_p, tree use)
{
  tree rdef = get_reaching_def (use);
  if (rdef != use)
    SET_USE (use_p, rdef);
}


/* Visit all the successor blocks of BB looking for PHI nodes.  For
   every PHI node found, check if any of its arguments is in
   OLD_SSA_NAMES.  If so, and if the argument has a current reaching
   definition, replace it.  */

static void
rewrite_update_phi_arguments (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
			      basic_block bb)
{
  edge e;
  edge_iterator ei;
  unsigned i;

  FOR_EACH_EDGE (e, ei, bb->succs)
    {
      tree phi;
      tree_vec phis;

      if (!bitmap_bit_p (blocks_with_phis_to_rewrite, e->dest->index))
	continue;
     
      phis = VEC_index (tree_vec, phis_to_rewrite, e->dest->index);
      for (i = 0; VEC_iterate (tree, phis, i, phi); i++)
	{
	  tree arg;
	  use_operand_p arg_p;

  	  gcc_assert (REWRITE_THIS_STMT (phi));

	  arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
	  arg = USE_FROM_PTR (arg_p);

	  if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
	    continue;

	  if (arg == NULL_TREE)
	    {
	      /* When updating a PHI node for a recently introduced
		 symbol we may find NULL arguments.  That's why we
		 take the symbol from the LHS of the PHI node.  */
	      replace_use (arg_p, SSA_NAME_VAR (PHI_RESULT (phi)));
	    }
	  else
	    {
	      tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);

	      if (symbol_marked_for_renaming (sym))
		replace_use (arg_p, sym);
	      else if (is_old_name (arg))
		replace_use (arg_p, arg);
	    }

	  if (e->flags & EDGE_ABNORMAL)
	    SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
	}
    }
}


/* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
   form.  

   ENTRY indicates the block where to start.  Every block dominated by
      ENTRY will be rewritten.

   WHAT indicates what actions will be taken by the renamer (see enum
      rewrite_mode).

   BLOCKS are the set of interesting blocks for the dominator walker
      to process.  If this set is NULL, then all the nodes dominated
      by ENTRY are walked.  Otherwise, blocks dominated by ENTRY that
      are not present in BLOCKS are ignored.  */

static void
rewrite_blocks (basic_block entry, enum rewrite_mode what, sbitmap blocks)
{
  struct dom_walk_data walk_data;
  
  /* Rewrite all the basic blocks in the program.  */
  timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);

  /* Setup callbacks for the generic dominator tree walker.  */
  memset (&walk_data, 0, sizeof (walk_data));

  walk_data.dom_direction = CDI_DOMINATORS;
  walk_data.interesting_blocks = blocks;

  if (what == REWRITE_UPDATE)
    walk_data.before_dom_children_before_stmts = rewrite_update_init_block;
  else
    walk_data.before_dom_children_before_stmts = rewrite_initialize_block;

  if (what == REWRITE_ALL)
    walk_data.before_dom_children_walk_stmts = rewrite_stmt;
  else if (what == REWRITE_UPDATE)
    walk_data.before_dom_children_walk_stmts = rewrite_update_stmt;
  else
    gcc_unreachable ();

  if (what == REWRITE_ALL)
    walk_data.before_dom_children_after_stmts = rewrite_add_phi_arguments;
  else if (what == REWRITE_UPDATE)
    walk_data.before_dom_children_after_stmts = rewrite_update_phi_arguments;
  else
    gcc_unreachable ();
  
  if (what == REWRITE_ALL)
    walk_data.after_dom_children_after_stmts =  rewrite_finalize_block;
  else if (what == REWRITE_UPDATE)
    walk_data.after_dom_children_after_stmts = rewrite_update_fini_block;
  else
    gcc_unreachable ();

  block_defs_stack = VEC_alloc (tree, heap, 10);

  /* Initialize the dominator walker.  */
  init_walk_dominator_tree (&walk_data);

  /* Recursively walk the dominator tree rewriting each statement in
     each basic block.  */
  walk_dominator_tree (&walk_data, entry);

  /* Finalize the dominator walker.  */
  fini_walk_dominator_tree (&walk_data);

  /* Debugging dumps.  */
  if (dump_file && (dump_flags & TDF_STATS))
    {
      dump_dfa_stats (dump_file);
      if (def_blocks)
	dump_tree_ssa_stats (dump_file);
    }

  if (def_blocks)
    {
      htab_delete (def_blocks);
      def_blocks = NULL;
    }
  
  VEC_free (tree, heap, block_defs_stack);

  timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
}


/* Block initialization routine for mark_def_sites.  Clear the 
   KILLS bitmap at the start of each block.  */

static void
mark_def_sites_initialize_block (struct dom_walk_data *walk_data,
				 basic_block bb ATTRIBUTE_UNUSED)
{
  struct mark_def_sites_global_data *gd =
     (struct mark_def_sites_global_data *) walk_data->global_data;
  bitmap kills = gd->kills;
  bitmap_clear (kills);
}


/* Mark the definition site blocks for each variable, so that we know
   where the variable is actually live.

   INTERESTING_BLOCKS will be filled in with all the blocks that
      should be processed by the renamer.  It is assumed to be
      initialized and zeroed by the caller.  */

static void
mark_def_site_blocks (sbitmap interesting_blocks)
{
  struct dom_walk_data walk_data;
  struct mark_def_sites_global_data mark_def_sites_global_data;
  referenced_var_iterator rvi;
  tree var;

  /* Allocate memory for the DEF_BLOCKS hash table.  */
  def_blocks = htab_create (num_referenced_vars,
			    def_blocks_hash, def_blocks_eq, def_blocks_free);
  FOR_EACH_REFERENCED_VAR(var, rvi)
    set_current_def (var, NULL_TREE);

  /* Setup callbacks for the generic dominator tree walker to find and
     mark definition sites.  */
  walk_data.walk_stmts_backward = false;
  walk_data.dom_direction = CDI_DOMINATORS;
  walk_data.initialize_block_local_data = NULL;
  walk_data.before_dom_children_before_stmts = mark_def_sites_initialize_block;
  walk_data.before_dom_children_walk_stmts = mark_def_sites;
  walk_data.before_dom_children_after_stmts = NULL; 
  walk_data.after_dom_children_before_stmts =  NULL;
  walk_data.after_dom_children_walk_stmts =  NULL;
  walk_data.after_dom_children_after_stmts =  NULL;
  walk_data.interesting_blocks = NULL;

  /* Notice that this bitmap is indexed using variable UIDs, so it must be
     large enough to accommodate all the variables referenced in the
     function, not just the ones we are renaming.  */
  mark_def_sites_global_data.kills = BITMAP_ALLOC (NULL);

  /* Create the set of interesting blocks that will be filled by
     mark_def_sites.  */
  mark_def_sites_global_data.interesting_blocks = interesting_blocks;
  walk_data.global_data = &mark_def_sites_global_data;

  /* We do not have any local data.  */
  walk_data.block_local_data_size = 0;

  /* Initialize the dominator walker.  */
  init_walk_dominator_tree (&walk_data);

  /* Recursively walk the dominator tree.  */
  walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);

  /* Finalize the dominator walker.  */
  fini_walk_dominator_tree (&walk_data);

  /* We no longer need this bitmap, clear and free it.  */
  BITMAP_FREE (mark_def_sites_global_data.kills);
}


/* Main entry point into the SSA builder.  The renaming process
   proceeds in four main phases:

   1- Compute dominance frontier and immediate dominators, needed to
      insert PHI nodes and rename the function in dominator tree
      order.

   2- Find and mark all the blocks that define variables
      (mark_def_site_blocks).

   3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).

   4- Rename all the blocks (rewrite_blocks) and statements in the program.

   Steps 3 and 4 are done using the dominator tree walker
   (walk_dominator_tree).  */

static unsigned int
rewrite_into_ssa (void)
{
  bitmap *dfs;
  basic_block bb;
  sbitmap interesting_blocks;
  
  timevar_push (TV_TREE_SSA_OTHER);

  /* Initialize operand data structures.  */
  init_ssa_operands ();

  /* Initialize the set of interesting blocks.  The callback
     mark_def_sites will add to this set those blocks that the renamer
     should process.  */
  interesting_blocks = sbitmap_alloc (last_basic_block);
  sbitmap_zero (interesting_blocks);

  /* Initialize dominance frontier.  */
  dfs = (bitmap *) xmalloc (last_basic_block * sizeof (bitmap));
  FOR_EACH_BB (bb)
    dfs[bb->index] = BITMAP_ALLOC (NULL);

  /* 1- Compute dominance frontiers.  */
  calculate_dominance_info (CDI_DOMINATORS);
  compute_dominance_frontiers (dfs);

  /* 2- Find and mark definition sites.  */
  mark_def_site_blocks (interesting_blocks);

  /* 3- Insert PHI nodes at dominance frontiers of definition blocks.  */
  insert_phi_nodes (dfs);

  /* 4- Rename all the blocks.  */
  rewrite_blocks (ENTRY_BLOCK_PTR, REWRITE_ALL, interesting_blocks);

  /* Free allocated memory.  */
  FOR_EACH_BB (bb)
    BITMAP_FREE (dfs[bb->index]);
  free (dfs);
  sbitmap_free (interesting_blocks);

  timevar_pop (TV_TREE_SSA_OTHER);
  in_ssa_p = true;
  return 0;
}


struct tree_opt_pass pass_build_ssa = 
{
  "ssa",				/* name */
  NULL,					/* gate */
  rewrite_into_ssa,			/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  0,					/* tv_id */
  PROP_cfg | PROP_referenced_vars,	/* properties_required */
  PROP_ssa,				/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  TODO_dump_func
    | TODO_verify_ssa
    | TODO_remove_unused_locals,	/* todo_flags_finish */
  0					/* letter */
};


/* Mark the definition of VAR at STMT and BB as interesting for the
   renamer.  BLOCKS is the set of blocks that need updating.  */

static void
mark_def_interesting (tree var, tree stmt, basic_block bb, bool insert_phi_p)
{
  gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));
  REGISTER_DEFS_IN_THIS_STMT (stmt) = 1;

  if (insert_phi_p)
    {
      bool is_phi_p = TREE_CODE (stmt) == PHI_NODE;

      set_def_block (var, bb, is_phi_p);

      /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
	 site for both itself and all the old names replaced by it.  */
      if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
	{
	  bitmap_iterator bi;
	  unsigned i;
	  bitmap set = names_replaced_by (var);
	  if (set)
	    EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
	      set_def_block (ssa_name (i), bb, is_phi_p);
	}
    }
}


/* Mark the use of VAR at STMT and BB as interesting for the
   renamer.  INSERT_PHI_P is true if we are going to insert new PHI
   nodes.  */

static inline void
mark_use_interesting (tree var, tree stmt, basic_block bb, bool insert_phi_p)
{
  basic_block def_bb = bb_for_stmt (stmt);

  mark_block_for_update (def_bb);
  mark_block_for_update (bb);

  if (TREE_CODE (stmt) == PHI_NODE)
    mark_phi_for_rewrite (def_bb, stmt);
  else
    REWRITE_THIS_STMT (stmt) = 1;

  /* If VAR has not been defined in BB, then it is live-on-entry
     to BB.  Note that we cannot just use the block holding VAR's
     definition because if VAR is one of the names in OLD_SSA_NAMES,
     it will have several definitions (itself and all the names that
     replace it).  */
  if (insert_phi_p)
    {
      struct def_blocks_d *db_p = get_def_blocks_for (var);
      if (!bitmap_bit_p (db_p->def_blocks, bb->index))
	set_livein_block (var, bb);
    }
}


/* Do a dominator walk starting at BB processing statements that
   reference symbols in SYMS_TO_RENAME.  This is very similar to
   mark_def_sites, but the scan handles statements whose operands may
   already be SSA names.

   If INSERT_PHI_P is true, mark those uses as live in the
   corresponding block.  This is later used by the PHI placement
   algorithm to make PHI pruning decisions.  */

static void
prepare_block_for_update (basic_block bb, bool insert_phi_p)
{
  basic_block son;
  block_stmt_iterator si;
  tree phi;
  edge e;
  edge_iterator ei;

  mark_block_for_update (bb);

  /* Process PHI nodes marking interesting those that define or use
     the symbols that we are interested in.  */
  for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
    {
      tree lhs_sym, lhs = PHI_RESULT (phi);

      lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);

      if (!symbol_marked_for_renaming (lhs_sym))
	continue;
      mark_def_interesting (lhs_sym, phi, bb, insert_phi_p);

      /* Mark the uses in phi nodes as interesting.  It would be more correct
	 to process the arguments of the phi nodes of the successor edges of
	 BB at the end of prepare_block_for_update, however, that turns out
	 to be significantly more expensive.  Doing it here is conservatively
	 correct -- it may only cause us to believe a value to be live in a
	 block that also contains its definition, and thus insert a few more
	 phi nodes for it.  */
      FOR_EACH_EDGE (e, ei, bb->preds)
	{
	  mark_use_interesting (lhs_sym, phi, e->src, insert_phi_p);
	}
    }

  /* Process the statements.  */
  for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
    {
      tree stmt;
      ssa_op_iter i;
      use_operand_p use_p;
      def_operand_p def_p;
      
      stmt = bsi_stmt (si);

      FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_USE)
	{
	  tree use = USE_FROM_PTR (use_p);
	  tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
	  if (symbol_marked_for_renaming (sym))
	    mark_use_interesting (use, stmt, bb, insert_phi_p);
	}

      FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_DEF)
	{
	  tree def = DEF_FROM_PTR (def_p);
	  tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);

	  if (symbol_marked_for_renaming (sym))
	    mark_def_interesting (def, stmt, bb, insert_phi_p);
	}

      FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_VIRTUAL_DEFS)
	{
	  tree def = DEF_FROM_PTR (def_p);
	  tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);

	  if (symbol_marked_for_renaming (sym))
	    {
	      mark_use_interesting (sym, stmt, bb, insert_phi_p);
	      mark_def_interesting (sym, stmt, bb, insert_phi_p);
	    }
	}

      FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_VUSE)
	{
	  tree use = USE_FROM_PTR (use_p);
	  tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);

	  if (symbol_marked_for_renaming (sym))
	    mark_use_interesting (sym, stmt, bb, insert_phi_p);
	}
    }

  /* Now visit all the blocks dominated by BB.  */
  for (son = first_dom_son (CDI_DOMINATORS, bb);
      son;
      son = next_dom_son (CDI_DOMINATORS, son))
    prepare_block_for_update (son, insert_phi_p);
}


/* Helper for prepare_names_to_update.  Mark all the use sites for
   NAME as interesting.  BLOCKS and INSERT_PHI_P are as in
   prepare_names_to_update.  */

static void
prepare_use_sites_for (tree name, bool insert_phi_p)
{
  use_operand_p use_p;
  imm_use_iterator iter;

  FOR_EACH_IMM_USE_FAST (use_p, iter, name)
    {
      tree stmt = USE_STMT (use_p);
      basic_block bb = bb_for_stmt (stmt);

      if (TREE_CODE (stmt) == PHI_NODE)
	{
	  int ix = PHI_ARG_INDEX_FROM_USE (use_p);
	  edge e = PHI_ARG_EDGE (stmt, ix);
	  mark_use_interesting (name, stmt, e->src, insert_phi_p);
	}
      else
	{
	  /* For regular statements, mark this as an interesting use
	     for NAME.  */
	  mark_use_interesting (name, stmt, bb, insert_phi_p);
	}
    }
}


/* Helper for prepare_names_to_update.  Mark the definition site for
   NAME as interesting.  BLOCKS and INSERT_PHI_P are as in
   prepare_names_to_update.  */

static void
prepare_def_site_for (tree name, bool insert_phi_p)
{
  tree stmt;
  basic_block bb;

  gcc_assert (names_to_release == NULL
	      || !bitmap_bit_p (names_to_release, SSA_NAME_VERSION (name)));

  stmt = SSA_NAME_DEF_STMT (name);
  bb = bb_for_stmt (stmt);
  if (bb)
    {
      gcc_assert (bb->index < last_basic_block);
      mark_block_for_update (bb);
      mark_def_interesting (name, stmt, bb, insert_phi_p);
    }
}


/* Mark definition and use sites of names in NEW_SSA_NAMES and
   OLD_SSA_NAMES.  INSERT_PHI_P is true if the caller wants to insert
   PHI nodes for newly created names.  */

static void
prepare_names_to_update (bool insert_phi_p)
{
  unsigned i = 0;
  bitmap_iterator bi;
  sbitmap_iterator sbi;

  /* If a name N from NEW_SSA_NAMES is also marked to be released,
     remove it from NEW_SSA_NAMES so that we don't try to visit its
     defining basic block (which most likely doesn't exist).  Notice
     that we cannot do the same with names in OLD_SSA_NAMES because we
     want to replace existing instances.  */
  if (names_to_release)
    EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
      RESET_BIT (new_ssa_names, i);

  /* First process names in NEW_SSA_NAMES.  Otherwise, uses of old
     names may be considered to be live-in on blocks that contain
     definitions for their replacements.  */
  EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
    prepare_def_site_for (ssa_name (i), insert_phi_p);

  /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
     OLD_SSA_NAMES, but we have to ignore its definition site.  */
  EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
    {
      if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
	prepare_def_site_for (ssa_name (i), insert_phi_p);
      prepare_use_sites_for (ssa_name (i), insert_phi_p);
    }
}


/* Dump all the names replaced by NAME to FILE.  */

void
dump_names_replaced_by (FILE *file, tree name)
{
  unsigned i;
  bitmap old_set;
  bitmap_iterator bi;

  print_generic_expr (file, name, 0);
  fprintf (file, " -> { ");

  old_set = names_replaced_by (name);
  EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
    {
      print_generic_expr (file, ssa_name (i), 0);
      fprintf (file, " ");
    }

  fprintf (file, "}\n");
}


/* Dump all the names replaced by NAME to stderr.  */

void
debug_names_replaced_by (tree name)
{
  dump_names_replaced_by (stderr, name);
}


/* Dump SSA update information to FILE.  */

void
dump_update_ssa (FILE *file)
{
  unsigned i = 0;
  bitmap_iterator bi;

  if (!need_ssa_update_p ())
    return;

  if (new_ssa_names && sbitmap_first_set_bit (new_ssa_names) >= 0)
    {
      sbitmap_iterator sbi;

      fprintf (file, "\nSSA replacement table\n");
      fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
	             "O_1, ..., O_j\n\n");

      EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
	dump_names_replaced_by (file, ssa_name (i));

      fprintf (file, "\n");
      fprintf (file, "Number of virtual NEW -> OLD mappings: %7u\n",
	       update_ssa_stats.num_virtual_mappings);
      fprintf (file, "Number of real NEW -> OLD mappings:    %7u\n",
	       update_ssa_stats.num_total_mappings
	       - update_ssa_stats.num_virtual_mappings);
      fprintf (file, "Number of total NEW -> OLD mappings:   %7u\n",
	       update_ssa_stats.num_total_mappings);

      fprintf (file, "\nNumber of virtual symbols: %u\n",
	       update_ssa_stats.num_virtual_symbols);
    }

  if (syms_to_rename && !bitmap_empty_p (syms_to_rename))
    {
      fprintf (file, "\n\nSymbols to be put in SSA form\n\n");
      EXECUTE_IF_SET_IN_BITMAP (syms_to_rename, 0, i, bi)
	{
	  print_generic_expr (file, referenced_var (i), 0);
	  fprintf (file, " ");
	}
    }

  if (names_to_release && !bitmap_empty_p (names_to_release))
    {
      fprintf (file, "\n\nSSA names to release after updating the SSA web\n\n");
      EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
	{
	  print_generic_expr (file, ssa_name (i), 0);
	  fprintf (file, " ");
	}
    }

  fprintf (file, "\n\n");
}


/* Dump SSA update information to stderr.  */

void
debug_update_ssa (void)
{
  dump_update_ssa (stderr);
}


/* Initialize data structures used for incremental SSA updates.  */

static void
init_update_ssa (void)
{
  /* Reserve more space than the current number of names.  The calls to
     add_new_name_mapping are typically done after creating new SSA
     names, so we'll need to reallocate these arrays.  */
  old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
  sbitmap_zero (old_ssa_names);

  new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
  sbitmap_zero (new_ssa_names);

  repl_tbl = htab_create (20, repl_map_hash, repl_map_eq, repl_map_free);
  need_to_initialize_update_ssa_p = false;
  need_to_update_vops_p = false;
  syms_to_rename = BITMAP_ALLOC (NULL);
  names_to_release = NULL;
  memset (&update_ssa_stats, 0, sizeof (update_ssa_stats));
  update_ssa_stats.virtual_symbols = BITMAP_ALLOC (NULL);
}


/* Deallocate data structures used for incremental SSA updates.  */

void
delete_update_ssa (void)
{
  unsigned i;
  bitmap_iterator bi;

  sbitmap_free (old_ssa_names);
  old_ssa_names = NULL;

  sbitmap_free (new_ssa_names);
  new_ssa_names = NULL;

  htab_delete (repl_tbl);
  repl_tbl = NULL;

  need_to_initialize_update_ssa_p = true;
  need_to_update_vops_p = false;
  BITMAP_FREE (syms_to_rename);
  BITMAP_FREE (update_ssa_stats.virtual_symbols);

  if (names_to_release)
    {
      EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
	release_ssa_name (ssa_name (i));
      BITMAP_FREE (names_to_release);
    }

  clear_ssa_name_info ();
}


/* Create a new name for OLD_NAME in statement STMT and replace the
   operand pointed to by DEF_P with the newly created name.  Return
   the new name and register the replacement mapping <NEW, OLD> in
   update_ssa's tables.  */

tree
create_new_def_for (tree old_name, tree stmt, def_operand_p def)
{
  tree new_name = duplicate_ssa_name (old_name, stmt);

  SET_DEF (def, new_name);

  if (TREE_CODE (stmt) == PHI_NODE)
    {
      edge e;
      edge_iterator ei;
      basic_block bb = bb_for_stmt (stmt);

      /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
      FOR_EACH_EDGE (e, ei, bb->preds)
	if (e->flags & EDGE_ABNORMAL)
	  {
	    SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = 1;
	    break;
	  }
    }

  register_new_name_mapping (new_name, old_name);

  /* For the benefit of passes that will be updating the SSA form on
     their own, set the current reaching definition of OLD_NAME to be
     NEW_NAME.  */
  set_current_def (old_name, new_name);

  return new_name;
}


/* Register name NEW to be a replacement for name OLD.  This function
   must be called for every replacement that should be performed by
   update_ssa.  */

void
register_new_name_mapping (tree new, tree old)
{
  if (need_to_initialize_update_ssa_p)
    init_update_ssa ();

  add_new_name_mapping (new, old);
}


/* Register symbol SYM to be renamed by update_ssa.  */

void
mark_sym_for_renaming (tree sym)
{
  if (need_to_initialize_update_ssa_p)
    init_update_ssa ();

  bitmap_set_bit (syms_to_rename, DECL_UID (sym));

  if (!is_gimple_reg (sym))
    need_to_update_vops_p = true;
}


/* Register all the symbols in SET to be renamed by update_ssa.  */

void
mark_set_for_renaming (bitmap set)
{
  bitmap_iterator bi;
  unsigned i;

  if (bitmap_empty_p (set))
    return;

  if (need_to_initialize_update_ssa_p)
    init_update_ssa ();

  bitmap_ior_into (syms_to_rename, set);

  EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
    if (!is_gimple_reg (referenced_var (i)))
      {
	need_to_update_vops_p = true;
	break;
      }
}


/* Return true if there is any work to be done by update_ssa.  */

bool
need_ssa_update_p (void)
{
  return syms_to_rename || old_ssa_names || new_ssa_names;
}


/* Return true if name N has been registered in the replacement table.  */

bool
name_registered_for_update_p (tree n)
{
  if (!need_ssa_update_p ())
    return false;

  return is_new_name (n)
         || is_old_name (n)
	 || symbol_marked_for_renaming (SSA_NAME_VAR (n));
}


/* Return the set of all the SSA names marked to be replaced.  */

bitmap
ssa_names_to_replace (void)
{
  unsigned i = 0;
  bitmap ret;
  sbitmap_iterator sbi;
  
  ret = BITMAP_ALLOC (NULL);
  EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
    bitmap_set_bit (ret, i);

  return ret;
}


/* Mark NAME to be released after update_ssa has finished.  */

void
release_ssa_name_after_update_ssa (tree name)
{
  gcc_assert (!need_to_initialize_update_ssa_p);

  if (names_to_release == NULL)
    names_to_release = BITMAP_ALLOC (NULL);

  bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
}


/* Insert new PHI nodes to replace VAR.  DFS contains dominance
   frontier information.  BLOCKS is the set of blocks to be updated.

   This is slightly different than the regular PHI insertion
   algorithm.  The value of UPDATE_FLAGS controls how PHI nodes for
   real names (i.e., GIMPLE registers) are inserted:
 
   - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
     nodes inside the region affected by the block that defines VAR
     and the blocks that define all its replacements.  All these
     definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.

     First, we compute the entry point to the region (ENTRY).  This is
     given by the nearest common dominator to all the definition
     blocks. When computing the iterated dominance frontier (IDF), any
     block not strictly dominated by ENTRY is ignored.

     We then call the standard PHI insertion algorithm with the pruned
     IDF.

   - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
     names is not pruned.  PHI nodes are inserted at every IDF block.  */

static void
insert_updated_phi_nodes_for (tree var, bitmap *dfs, bitmap blocks,
                              unsigned update_flags)
{
  basic_block entry;
  struct def_blocks_d *db;
  bitmap idf, pruned_idf;
  bitmap_iterator bi;
  unsigned i;

#if defined ENABLE_CHECKING
  if (TREE_CODE (var) == SSA_NAME)
    gcc_assert (is_old_name (var));
  else
    gcc_assert (symbol_marked_for_renaming (var));
#endif

  /* Get all the definition sites for VAR.  */
  db = find_def_blocks_for (var);

  /* No need to do anything if there were no definitions to VAR.  */
  if (db == NULL || bitmap_empty_p (db->def_blocks))
    return;

  /* Compute the initial iterated dominance frontier.  */
  idf = find_idf (db->def_blocks, dfs);
  pruned_idf = BITMAP_ALLOC (NULL);

  if (TREE_CODE (var) == SSA_NAME)
    {
      if (update_flags == TODO_update_ssa)
	{
	  /* If doing regular SSA updates for GIMPLE registers, we are
	     only interested in IDF blocks dominated by the nearest
	     common dominator of all the definition blocks.  */
	  entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
						    db->def_blocks);

	  if (entry != ENTRY_BLOCK_PTR)
	    EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
	      if (BASIC_BLOCK (i) != entry
		  && dominated_by_p (CDI_DOMINATORS, BASIC_BLOCK (i), entry))
		bitmap_set_bit (pruned_idf, i);
	}
      else
	{
	  /* Otherwise, do not prune the IDF for VAR.  */
	  gcc_assert (update_flags == TODO_update_ssa_full_phi);
	  bitmap_copy (pruned_idf, idf);
	}
    }
  else
    {
      /* Otherwise, VAR is a symbol that needs to be put into SSA form
	 for the first time, so we need to compute the full IDF for
	 it.  */
      bitmap_copy (pruned_idf, idf);
    }

  if (!bitmap_empty_p (pruned_idf))
    {
      /* Make sure that PRUNED_IDF blocks and all their feeding blocks
	 are included in the region to be updated.  The feeding blocks
	 are important to guarantee that the PHI arguments are renamed
	 properly.  */
      bitmap_ior_into (blocks, pruned_idf);
      EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
	{
	  edge e;
	  edge_iterator ei;
	  basic_block bb = BASIC_BLOCK (i);

	  FOR_EACH_EDGE (e, ei, bb->preds)
	    if (e->src->index >= 0)
	      bitmap_set_bit (blocks, e->src->index);
	}

      insert_phi_nodes_for (var, pruned_idf, true);
    }

  BITMAP_FREE (pruned_idf);
  BITMAP_FREE (idf);
}


/* Heuristic to determine whether SSA name mappings for virtual names
   should be discarded and their symbols rewritten from scratch.  When
   there is a large number of mappings for virtual names, the
   insertion of PHI nodes for the old names in the mappings takes
   considerable more time than if we inserted PHI nodes for the
   symbols instead.

   Currently the heuristic takes these stats into account:

   	- Number of mappings for virtual SSA names.
	- Number of distinct virtual symbols involved in those mappings.

   If the number of virtual mappings is much larger than the number of
   virtual symbols, then it will be faster to compute PHI insertion
   spots for the symbols.  Even if this involves traversing the whole
   CFG, which is what happens when symbols are renamed from scratch.  */

static bool
switch_virtuals_to_full_rewrite_p (void)
{
  if (update_ssa_stats.num_virtual_mappings < (unsigned) MIN_VIRTUAL_MAPPINGS)
    return false;

  if (update_ssa_stats.num_virtual_mappings
      > (unsigned) VIRTUAL_MAPPINGS_TO_SYMS_RATIO
        * update_ssa_stats.num_virtual_symbols)
    return true;

  return false;
}


/* Remove every virtual mapping and mark all the affected virtual
   symbols for renaming.  */

static void
switch_virtuals_to_full_rewrite (void)
{
  unsigned i = 0;
  sbitmap_iterator sbi;

  if (dump_file)
    {
      fprintf (dump_file, "\nEnabled virtual name mapping heuristic.\n");
      fprintf (dump_file, "\tNumber of virtual mappings:       %7u\n",
	       update_ssa_stats.num_virtual_mappings);
      fprintf (dump_file, "\tNumber of unique virtual symbols: %7u\n",
	       update_ssa_stats.num_virtual_symbols);
      fprintf (dump_file, "Updating FUD-chains from top of CFG will be "
	                  "faster than processing\nthe name mappings.\n\n");
    }

  /* Remove all virtual names from NEW_SSA_NAMES and OLD_SSA_NAMES.
     Note that it is not really necessary to remove the mappings from
     REPL_TBL, that would only waste time.  */
  EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
    if (!is_gimple_reg (ssa_name (i)))
      RESET_BIT (new_ssa_names, i);

  EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
    if (!is_gimple_reg (ssa_name (i)))
      RESET_BIT (old_ssa_names, i);

  bitmap_ior_into (syms_to_rename, update_ssa_stats.virtual_symbols);
}


/* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
   existing SSA names (OLD_SSA_NAMES), update the SSA form so that:

   1- The names in OLD_SSA_NAMES dominated by the definitions of
      NEW_SSA_NAMES are all re-written to be reached by the
      appropriate definition from NEW_SSA_NAMES.

   2- If needed, new PHI nodes are added to the iterated dominance
      frontier of the blocks where each of NEW_SSA_NAMES are defined.

   The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
   calling register_new_name_mapping for every pair of names that the
   caller wants to replace.

   The caller identifies the new names that have been inserted and the
   names that need to be replaced by calling register_new_name_mapping
   for every pair <NEW, OLD>.  Note that the function assumes that the
   new names have already been inserted in the IL.

   For instance, given the following code:

     1	L0:
     2	x_1 = PHI (0, x_5)
     3	if (x_1 < 10)
     4	  if (x_1 > 7)
     5	    y_2 = 0
     6	  else
     7	    y_3 = x_1 + x_7
     8	  endif
     9	  x_5 = x_1 + 1
     10   goto L0;
     11	endif

   Suppose that we insert new names x_10 and x_11 (lines 4 and 8).

     1	L0:
     2	x_1 = PHI (0, x_5)
     3	if (x_1 < 10)
     4	  x_10 = ...
     5	  if (x_1 > 7)
     6	    y_2 = 0
     7	  else
     8	    x_11 = ...
     9	    y_3 = x_1 + x_7
     10	  endif
     11	  x_5 = x_1 + 1
     12	  goto L0;
     13	endif

   We want to replace all the uses of x_1 with the new definitions of
   x_10 and x_11.  Note that the only uses that should be replaced are
   those at lines 5, 9 and 11.  Also, the use of x_7 at line 9 should
   *not* be replaced (this is why we cannot just mark symbol 'x' for
   renaming).

   Additionally, we may need to insert a PHI node at line 11 because
   that is a merge point for x_10 and x_11.  So the use of x_1 at line
   11 will be replaced with the new PHI node.  The insertion of PHI
   nodes is optional.  They are not strictly necessary to preserve the
   SSA form, and depending on what the caller inserted, they may not
   even be useful for the optimizers.  UPDATE_FLAGS controls various
   aspects of how update_ssa operates, see the documentation for
   TODO_update_ssa*.  */

void
update_ssa (unsigned update_flags)
{
  basic_block bb, start_bb;
  bitmap_iterator bi;
  unsigned i = 0;
  sbitmap tmp;
  bool insert_phi_p;
  sbitmap_iterator sbi;

  if (!need_ssa_update_p ())
    return;

  timevar_push (TV_TREE_SSA_INCREMENTAL);

  blocks_with_phis_to_rewrite = BITMAP_ALLOC (NULL);
  if (!phis_to_rewrite)
    phis_to_rewrite = VEC_alloc (tree_vec, heap, last_basic_block);
  blocks_to_update = BITMAP_ALLOC (NULL);

  /* Ensure that the dominance information is up-to-date.  */
  calculate_dominance_info (CDI_DOMINATORS);

  /* Only one update flag should be set.  */
  gcc_assert (update_flags == TODO_update_ssa
              || update_flags == TODO_update_ssa_no_phi
	      || update_flags == TODO_update_ssa_full_phi
	      || update_flags == TODO_update_ssa_only_virtuals);

  /* If we only need to update virtuals, remove all the mappings for
     real names before proceeding.  The caller is responsible for
     having dealt with the name mappings before calling update_ssa.  */
  if (update_flags == TODO_update_ssa_only_virtuals)
    {
      sbitmap_zero (old_ssa_names);
      sbitmap_zero (new_ssa_names);
      htab_empty (repl_tbl);
    }

  insert_phi_p = (update_flags != TODO_update_ssa_no_phi);

  if (insert_phi_p)
    {
      /* If the caller requested PHI nodes to be added, initialize
	 live-in information data structures (DEF_BLOCKS).  */

      /* For each SSA name N, the DEF_BLOCKS table describes where the
	 name is defined, which blocks have PHI nodes for N, and which
	 blocks have uses of N (i.e., N is live-on-entry in those
	 blocks).  */
      def_blocks = htab_create (num_ssa_names, def_blocks_hash,
				def_blocks_eq, def_blocks_free);
    }
  else
    {
      def_blocks = NULL;
    }

  /* Heuristic to avoid massive slow downs when the replacement
     mappings include lots of virtual names.  */
  if (insert_phi_p && switch_virtuals_to_full_rewrite_p ())
    switch_virtuals_to_full_rewrite ();

  /* If there are names defined in the replacement table, prepare
     definition and use sites for all the names in NEW_SSA_NAMES and
     OLD_SSA_NAMES.  */
  if (sbitmap_first_set_bit (new_ssa_names) >= 0)
    {
      prepare_names_to_update (insert_phi_p);

      /* If all the names in NEW_SSA_NAMES had been marked for
	 removal, and there are no symbols to rename, then there's
	 nothing else to do.  */
      if (sbitmap_first_set_bit (new_ssa_names) < 0
	  && bitmap_empty_p (syms_to_rename))
	goto done;
    }

  /* Next, determine the block at which to start the renaming process.  */
  if (!bitmap_empty_p (syms_to_rename))
    {
      /* If we have to rename some symbols from scratch, we need to
	 start the process at the root of the CFG.  FIXME, it should
	 be possible to determine the nearest block that had a
	 definition for each of the symbols that are marked for
	 updating.  For now this seems more work than it's worth.  */
      start_bb = ENTRY_BLOCK_PTR;

      /* Traverse the CFG looking for definitions and uses of symbols
	 in SYMS_TO_RENAME.  Mark interesting blocks and statements
	 and set local live-in information for the PHI placement
	 heuristics.  */
      prepare_block_for_update (start_bb, insert_phi_p);
    }
  else
    {
      /* Otherwise, the entry block to the region is the nearest
	 common dominator for the blocks in BLOCKS.  */
      start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
						   blocks_to_update);
    }

  /* If requested, insert PHI nodes at the iterated dominance frontier
     of every block, creating new definitions for names in OLD_SSA_NAMES
     and for symbols in SYMS_TO_RENAME.  */
  if (insert_phi_p)
    {
      bitmap *dfs;

      /* If the caller requested PHI nodes to be added, compute
	 dominance frontiers.  */
      dfs = XNEWVEC (bitmap, last_basic_block);
      FOR_EACH_BB (bb)
	dfs[bb->index] = BITMAP_ALLOC (NULL);
      compute_dominance_frontiers (dfs);

      if (sbitmap_first_set_bit (old_ssa_names) >= 0)
	{
	  sbitmap_iterator sbi;

	  /* insert_update_phi_nodes_for will call add_new_name_mapping
	     when inserting new PHI nodes, so the set OLD_SSA_NAMES
	     will grow while we are traversing it (but it will not
	     gain any new members).  Copy OLD_SSA_NAMES to a temporary
	     for traversal.  */
	  sbitmap tmp = sbitmap_alloc (old_ssa_names->n_bits);
	  sbitmap_copy (tmp, old_ssa_names);
	  EXECUTE_IF_SET_IN_SBITMAP (tmp, 0, i, sbi)
	    insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks_to_update,
	                                  update_flags);
	  sbitmap_free (tmp);
	}

      EXECUTE_IF_SET_IN_BITMAP (syms_to_rename, 0, i, bi)
	insert_updated_phi_nodes_for (referenced_var (i), dfs,
				      blocks_to_update, update_flags);

      FOR_EACH_BB (bb)
	BITMAP_FREE (dfs[bb->index]);
      free (dfs);

      /* Insertion of PHI nodes may have added blocks to the region.
	 We need to re-compute START_BB to include the newly added
	 blocks.  */
      if (start_bb != ENTRY_BLOCK_PTR)
	start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
						     blocks_to_update);
    }

  /* Reset the current definition for name and symbol before renaming
     the sub-graph.  */
  EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
    set_current_def (ssa_name (i), NULL_TREE);

  EXECUTE_IF_SET_IN_BITMAP (syms_to_rename, 0, i, bi)
    set_current_def (referenced_var (i), NULL_TREE);

  /* Now start the renaming process at START_BB.  */
  tmp = sbitmap_alloc (last_basic_block);
  sbitmap_zero (tmp);
  EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
    SET_BIT (tmp, i);

  rewrite_blocks (start_bb, REWRITE_UPDATE, tmp);

  sbitmap_free (tmp);

  /* Debugging dumps.  */
  if (dump_file)
    {
      int c;
      unsigned i;

      dump_update_ssa (dump_file);

      fprintf (dump_file, "Incremental SSA update started at block: %d\n\n",
	       start_bb->index);

      c = 0;
      EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
	c++;
      fprintf (dump_file, "Number of blocks in CFG: %d\n", last_basic_block);
      fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n\n",
	       c, PERCENT (c, last_basic_block));

      if (dump_flags & TDF_DETAILS)
	{
	  fprintf (dump_file, "Affected blocks: ");
	  EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
	    fprintf (dump_file, "%u ", i);
	  fprintf (dump_file, "\n");
	}

      fprintf (dump_file, "\n\n");
    }

  /* Free allocated memory.  */
done:
  EXECUTE_IF_SET_IN_BITMAP (blocks_with_phis_to_rewrite, 0, i, bi)
    {
      tree_vec phis = VEC_index (tree_vec, phis_to_rewrite, i);

      VEC_free (tree, heap, phis);
      VEC_replace (tree_vec, phis_to_rewrite, i, NULL);
    }
  BITMAP_FREE (blocks_with_phis_to_rewrite);
  BITMAP_FREE (blocks_to_update);
  delete_update_ssa ();

  timevar_pop (TV_TREE_SSA_INCREMENTAL);
}