1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
|
/* Exception handling semantics and decomposition for trees.
Copyright (C) 2003-2017 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "ssa.h"
#include "cgraph.h"
#include "diagnostic-core.h"
#include "fold-const.h"
#include "calls.h"
#include "except.h"
#include "cfganal.h"
#include "cfgcleanup.h"
#include "tree-eh.h"
#include "gimple-iterator.h"
#include "tree-cfg.h"
#include "tree-into-ssa.h"
#include "tree-ssa.h"
#include "tree-inline.h"
#include "langhooks.h"
#include "cfgloop.h"
#include "gimple-low.h"
/* In some instances a tree and a gimple need to be stored in a same table,
i.e. in hash tables. This is a structure to do this. */
typedef union {tree *tp; tree t; gimple *g;} treemple;
/* Misc functions used in this file. */
/* Remember and lookup EH landing pad data for arbitrary statements.
Really this means any statement that could_throw_p. We could
stuff this information into the stmt_ann data structure, but:
(1) We absolutely rely on this information being kept until
we get to rtl. Once we're done with lowering here, if we lose
the information there's no way to recover it!
(2) There are many more statements that *cannot* throw as
compared to those that can. We should be saving some amount
of space by only allocating memory for those that can throw. */
/* Add statement T in function IFUN to landing pad NUM. */
static void
add_stmt_to_eh_lp_fn (struct function *ifun, gimple *t, int num)
{
gcc_assert (num != 0);
if (!get_eh_throw_stmt_table (ifun))
set_eh_throw_stmt_table (ifun, hash_map<gimple *, int>::create_ggc (31));
gcc_assert (!get_eh_throw_stmt_table (ifun)->put (t, num));
}
/* Add statement T in the current function (cfun) to EH landing pad NUM. */
void
add_stmt_to_eh_lp (gimple *t, int num)
{
add_stmt_to_eh_lp_fn (cfun, t, num);
}
/* Add statement T to the single EH landing pad in REGION. */
static void
record_stmt_eh_region (eh_region region, gimple *t)
{
if (region == NULL)
return;
if (region->type == ERT_MUST_NOT_THROW)
add_stmt_to_eh_lp_fn (cfun, t, -region->index);
else
{
eh_landing_pad lp = region->landing_pads;
if (lp == NULL)
lp = gen_eh_landing_pad (region);
else
gcc_assert (lp->next_lp == NULL);
add_stmt_to_eh_lp_fn (cfun, t, lp->index);
}
}
/* Remove statement T in function IFUN from its EH landing pad. */
bool
remove_stmt_from_eh_lp_fn (struct function *ifun, gimple *t)
{
if (!get_eh_throw_stmt_table (ifun))
return false;
if (!get_eh_throw_stmt_table (ifun)->get (t))
return false;
get_eh_throw_stmt_table (ifun)->remove (t);
return true;
}
/* Remove statement T in the current function (cfun) from its
EH landing pad. */
bool
remove_stmt_from_eh_lp (gimple *t)
{
return remove_stmt_from_eh_lp_fn (cfun, t);
}
/* Determine if statement T is inside an EH region in function IFUN.
Positive numbers indicate a landing pad index; negative numbers
indicate a MUST_NOT_THROW region index; zero indicates that the
statement is not recorded in the region table. */
int
lookup_stmt_eh_lp_fn (struct function *ifun, gimple *t)
{
if (ifun->eh->throw_stmt_table == NULL)
return 0;
int *lp_nr = ifun->eh->throw_stmt_table->get (t);
return lp_nr ? *lp_nr : 0;
}
/* Likewise, but always use the current function. */
int
lookup_stmt_eh_lp (gimple *t)
{
/* We can get called from initialized data when -fnon-call-exceptions
is on; prevent crash. */
if (!cfun)
return 0;
return lookup_stmt_eh_lp_fn (cfun, t);
}
/* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
nodes and LABEL_DECL nodes. We will use this during the second phase to
determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
struct finally_tree_node
{
/* When storing a GIMPLE_TRY, we have to record a gimple. However
when deciding whether a GOTO to a certain LABEL_DECL (which is a
tree) leaves the TRY block, its necessary to record a tree in
this field. Thus a treemple is used. */
treemple child;
gtry *parent;
};
/* Hashtable helpers. */
struct finally_tree_hasher : free_ptr_hash <finally_tree_node>
{
static inline hashval_t hash (const finally_tree_node *);
static inline bool equal (const finally_tree_node *,
const finally_tree_node *);
};
inline hashval_t
finally_tree_hasher::hash (const finally_tree_node *v)
{
return (intptr_t)v->child.t >> 4;
}
inline bool
finally_tree_hasher::equal (const finally_tree_node *v,
const finally_tree_node *c)
{
return v->child.t == c->child.t;
}
/* Note that this table is *not* marked GTY. It is short-lived. */
static hash_table<finally_tree_hasher> *finally_tree;
static void
record_in_finally_tree (treemple child, gtry *parent)
{
struct finally_tree_node *n;
finally_tree_node **slot;
n = XNEW (struct finally_tree_node);
n->child = child;
n->parent = parent;
slot = finally_tree->find_slot (n, INSERT);
gcc_assert (!*slot);
*slot = n;
}
static void
collect_finally_tree (gimple *stmt, gtry *region);
/* Go through the gimple sequence. Works with collect_finally_tree to
record all GIMPLE_LABEL and GIMPLE_TRY statements. */
static void
collect_finally_tree_1 (gimple_seq seq, gtry *region)
{
gimple_stmt_iterator gsi;
for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
collect_finally_tree (gsi_stmt (gsi), region);
}
static void
collect_finally_tree (gimple *stmt, gtry *region)
{
treemple temp;
switch (gimple_code (stmt))
{
case GIMPLE_LABEL:
temp.t = gimple_label_label (as_a <glabel *> (stmt));
record_in_finally_tree (temp, region);
break;
case GIMPLE_TRY:
if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
{
temp.g = stmt;
record_in_finally_tree (temp, region);
collect_finally_tree_1 (gimple_try_eval (stmt),
as_a <gtry *> (stmt));
collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
}
else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
{
collect_finally_tree_1 (gimple_try_eval (stmt), region);
collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
}
break;
case GIMPLE_CATCH:
collect_finally_tree_1 (gimple_catch_handler (
as_a <gcatch *> (stmt)),
region);
break;
case GIMPLE_EH_FILTER:
collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
break;
case GIMPLE_EH_ELSE:
{
geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
collect_finally_tree_1 (gimple_eh_else_n_body (eh_else_stmt), region);
collect_finally_tree_1 (gimple_eh_else_e_body (eh_else_stmt), region);
}
break;
default:
/* A type, a decl, or some kind of statement that we're not
interested in. Don't walk them. */
break;
}
}
/* Use the finally tree to determine if a jump from START to TARGET
would leave the try_finally node that START lives in. */
static bool
outside_finally_tree (treemple start, gimple *target)
{
struct finally_tree_node n, *p;
do
{
n.child = start;
p = finally_tree->find (&n);
if (!p)
return true;
start.g = p->parent;
}
while (start.g != target);
return false;
}
/* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
nodes into a set of gotos, magic labels, and eh regions.
The eh region creation is straight-forward, but frobbing all the gotos
and such into shape isn't. */
/* The sequence into which we record all EH stuff. This will be
placed at the end of the function when we're all done. */
static gimple_seq eh_seq;
/* Record whether an EH region contains something that can throw,
indexed by EH region number. */
static bitmap eh_region_may_contain_throw_map;
/* The GOTO_QUEUE is an array of GIMPLE_GOTO and GIMPLE_RETURN
statements that are seen to escape this GIMPLE_TRY_FINALLY node.
The idea is to record a gimple statement for everything except for
the conditionals, which get their labels recorded. Since labels are
of type 'tree', we need this node to store both gimple and tree
objects. REPL_STMT is the sequence used to replace the goto/return
statement. CONT_STMT is used to store the statement that allows
the return/goto to jump to the original destination. */
struct goto_queue_node
{
treemple stmt;
location_t location;
gimple_seq repl_stmt;
gimple *cont_stmt;
int index;
/* This is used when index >= 0 to indicate that stmt is a label (as
opposed to a goto stmt). */
int is_label;
};
/* State of the world while lowering. */
struct leh_state
{
/* What's "current" while constructing the eh region tree. These
correspond to variables of the same name in cfun->eh, which we
don't have easy access to. */
eh_region cur_region;
/* What's "current" for the purposes of __builtin_eh_pointer. For
a CATCH, this is the associated TRY. For an EH_FILTER, this is
the associated ALLOWED_EXCEPTIONS, etc. */
eh_region ehp_region;
/* Processing of TRY_FINALLY requires a bit more state. This is
split out into a separate structure so that we don't have to
copy so much when processing other nodes. */
struct leh_tf_state *tf;
};
struct leh_tf_state
{
/* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
this so that outside_finally_tree can reliably reference the tree used
in the collect_finally_tree data structures. */
gtry *try_finally_expr;
gtry *top_p;
/* While lowering a top_p usually it is expanded into multiple statements,
thus we need the following field to store them. */
gimple_seq top_p_seq;
/* The state outside this try_finally node. */
struct leh_state *outer;
/* The exception region created for it. */
eh_region region;
/* The goto queue. */
struct goto_queue_node *goto_queue;
size_t goto_queue_size;
size_t goto_queue_active;
/* Pointer map to help in searching goto_queue when it is large. */
hash_map<gimple *, goto_queue_node *> *goto_queue_map;
/* The set of unique labels seen as entries in the goto queue. */
vec<tree> dest_array;
/* A label to be added at the end of the completed transformed
sequence. It will be set if may_fallthru was true *at one time*,
though subsequent transformations may have cleared that flag. */
tree fallthru_label;
/* True if it is possible to fall out the bottom of the try block.
Cleared if the fallthru is converted to a goto. */
bool may_fallthru;
/* True if any entry in goto_queue is a GIMPLE_RETURN. */
bool may_return;
/* True if the finally block can receive an exception edge.
Cleared if the exception case is handled by code duplication. */
bool may_throw;
};
static gimple_seq lower_eh_must_not_throw (struct leh_state *, gtry *);
/* Search for STMT in the goto queue. Return the replacement,
or null if the statement isn't in the queue. */
#define LARGE_GOTO_QUEUE 20
static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq *seq);
static gimple_seq
find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
{
unsigned int i;
if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
{
for (i = 0; i < tf->goto_queue_active; i++)
if ( tf->goto_queue[i].stmt.g == stmt.g)
return tf->goto_queue[i].repl_stmt;
return NULL;
}
/* If we have a large number of entries in the goto_queue, create a
pointer map and use that for searching. */
if (!tf->goto_queue_map)
{
tf->goto_queue_map = new hash_map<gimple *, goto_queue_node *>;
for (i = 0; i < tf->goto_queue_active; i++)
{
bool existed = tf->goto_queue_map->put (tf->goto_queue[i].stmt.g,
&tf->goto_queue[i]);
gcc_assert (!existed);
}
}
goto_queue_node **slot = tf->goto_queue_map->get (stmt.g);
if (slot != NULL)
return ((*slot)->repl_stmt);
return NULL;
}
/* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
then we can just splat it in, otherwise we add the new stmts immediately
after the GIMPLE_COND and redirect. */
static void
replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
gimple_stmt_iterator *gsi)
{
tree label;
gimple_seq new_seq;
treemple temp;
location_t loc = gimple_location (gsi_stmt (*gsi));
temp.tp = tp;
new_seq = find_goto_replacement (tf, temp);
if (!new_seq)
return;
if (gimple_seq_singleton_p (new_seq)
&& gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
{
*tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
return;
}
label = create_artificial_label (loc);
/* Set the new label for the GIMPLE_COND */
*tp = label;
gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
}
/* The real work of replace_goto_queue. Returns with TSI updated to
point to the next statement. */
static void replace_goto_queue_stmt_list (gimple_seq *, struct leh_tf_state *);
static void
replace_goto_queue_1 (gimple *stmt, struct leh_tf_state *tf,
gimple_stmt_iterator *gsi)
{
gimple_seq seq;
treemple temp;
temp.g = NULL;
switch (gimple_code (stmt))
{
case GIMPLE_GOTO:
case GIMPLE_RETURN:
temp.g = stmt;
seq = find_goto_replacement (tf, temp);
if (seq)
{
gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
gsi_remove (gsi, false);
return;
}
break;
case GIMPLE_COND:
replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
break;
case GIMPLE_TRY:
replace_goto_queue_stmt_list (gimple_try_eval_ptr (stmt), tf);
replace_goto_queue_stmt_list (gimple_try_cleanup_ptr (stmt), tf);
break;
case GIMPLE_CATCH:
replace_goto_queue_stmt_list (gimple_catch_handler_ptr (
as_a <gcatch *> (stmt)),
tf);
break;
case GIMPLE_EH_FILTER:
replace_goto_queue_stmt_list (gimple_eh_filter_failure_ptr (stmt), tf);
break;
case GIMPLE_EH_ELSE:
{
geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
replace_goto_queue_stmt_list (gimple_eh_else_n_body_ptr (eh_else_stmt),
tf);
replace_goto_queue_stmt_list (gimple_eh_else_e_body_ptr (eh_else_stmt),
tf);
}
break;
default:
/* These won't have gotos in them. */
break;
}
gsi_next (gsi);
}
/* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
static void
replace_goto_queue_stmt_list (gimple_seq *seq, struct leh_tf_state *tf)
{
gimple_stmt_iterator gsi = gsi_start (*seq);
while (!gsi_end_p (gsi))
replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
}
/* Replace all goto queue members. */
static void
replace_goto_queue (struct leh_tf_state *tf)
{
if (tf->goto_queue_active == 0)
return;
replace_goto_queue_stmt_list (&tf->top_p_seq, tf);
replace_goto_queue_stmt_list (&eh_seq, tf);
}
/* Add a new record to the goto queue contained in TF. NEW_STMT is the
data to be added, IS_LABEL indicates whether NEW_STMT is a label or
a gimple return. */
static void
record_in_goto_queue (struct leh_tf_state *tf,
treemple new_stmt,
int index,
bool is_label,
location_t location)
{
size_t active, size;
struct goto_queue_node *q;
gcc_assert (!tf->goto_queue_map);
active = tf->goto_queue_active;
size = tf->goto_queue_size;
if (active >= size)
{
size = (size ? size * 2 : 32);
tf->goto_queue_size = size;
tf->goto_queue
= XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
}
q = &tf->goto_queue[active];
tf->goto_queue_active = active + 1;
memset (q, 0, sizeof (*q));
q->stmt = new_stmt;
q->index = index;
q->location = location;
q->is_label = is_label;
}
/* Record the LABEL label in the goto queue contained in TF.
TF is not null. */
static void
record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label,
location_t location)
{
int index;
treemple temp, new_stmt;
if (!label)
return;
/* Computed and non-local gotos do not get processed. Given
their nature we can neither tell whether we've escaped the
finally block nor redirect them if we knew. */
if (TREE_CODE (label) != LABEL_DECL)
return;
/* No need to record gotos that don't leave the try block. */
temp.t = label;
if (!outside_finally_tree (temp, tf->try_finally_expr))
return;
if (! tf->dest_array.exists ())
{
tf->dest_array.create (10);
tf->dest_array.quick_push (label);
index = 0;
}
else
{
int n = tf->dest_array.length ();
for (index = 0; index < n; ++index)
if (tf->dest_array[index] == label)
break;
if (index == n)
tf->dest_array.safe_push (label);
}
/* In the case of a GOTO we want to record the destination label,
since with a GIMPLE_COND we have an easy access to the then/else
labels. */
new_stmt = stmt;
record_in_goto_queue (tf, new_stmt, index, true, location);
}
/* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
node, and if so record that fact in the goto queue associated with that
try_finally node. */
static void
maybe_record_in_goto_queue (struct leh_state *state, gimple *stmt)
{
struct leh_tf_state *tf = state->tf;
treemple new_stmt;
if (!tf)
return;
switch (gimple_code (stmt))
{
case GIMPLE_COND:
{
gcond *cond_stmt = as_a <gcond *> (stmt);
new_stmt.tp = gimple_op_ptr (cond_stmt, 2);
record_in_goto_queue_label (tf, new_stmt,
gimple_cond_true_label (cond_stmt),
EXPR_LOCATION (*new_stmt.tp));
new_stmt.tp = gimple_op_ptr (cond_stmt, 3);
record_in_goto_queue_label (tf, new_stmt,
gimple_cond_false_label (cond_stmt),
EXPR_LOCATION (*new_stmt.tp));
}
break;
case GIMPLE_GOTO:
new_stmt.g = stmt;
record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt),
gimple_location (stmt));
break;
case GIMPLE_RETURN:
tf->may_return = true;
new_stmt.g = stmt;
record_in_goto_queue (tf, new_stmt, -1, false, gimple_location (stmt));
break;
default:
gcc_unreachable ();
}
}
#if CHECKING_P
/* We do not process GIMPLE_SWITCHes for now. As long as the original source
was in fact structured, and we've not yet done jump threading, then none
of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
static void
verify_norecord_switch_expr (struct leh_state *state,
gswitch *switch_expr)
{
struct leh_tf_state *tf = state->tf;
size_t i, n;
if (!tf)
return;
n = gimple_switch_num_labels (switch_expr);
for (i = 0; i < n; ++i)
{
treemple temp;
tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
temp.t = lab;
gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
}
}
#else
#define verify_norecord_switch_expr(state, switch_expr)
#endif
/* Redirect a RETURN_EXPR pointed to by Q to FINLAB. If MOD is
non-null, insert it before the new branch. */
static void
do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod)
{
gimple *x;
/* In the case of a return, the queue node must be a gimple statement. */
gcc_assert (!q->is_label);
/* Note that the return value may have already been computed, e.g.,
int x;
int foo (void)
{
x = 0;
try {
return x;
} finally {
x++;
}
}
should return 0, not 1. We don't have to do anything to make
this happens because the return value has been placed in the
RESULT_DECL already. */
q->cont_stmt = q->stmt.g;
if (mod)
gimple_seq_add_seq (&q->repl_stmt, mod);
x = gimple_build_goto (finlab);
gimple_set_location (x, q->location);
gimple_seq_add_stmt (&q->repl_stmt, x);
}
/* Similar, but easier, for GIMPLE_GOTO. */
static void
do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
struct leh_tf_state *tf)
{
ggoto *x;
gcc_assert (q->is_label);
q->cont_stmt = gimple_build_goto (tf->dest_array[q->index]);
if (mod)
gimple_seq_add_seq (&q->repl_stmt, mod);
x = gimple_build_goto (finlab);
gimple_set_location (x, q->location);
gimple_seq_add_stmt (&q->repl_stmt, x);
}
/* Emit a standard landing pad sequence into SEQ for REGION. */
static void
emit_post_landing_pad (gimple_seq *seq, eh_region region)
{
eh_landing_pad lp = region->landing_pads;
glabel *x;
if (lp == NULL)
lp = gen_eh_landing_pad (region);
lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
x = gimple_build_label (lp->post_landing_pad);
gimple_seq_add_stmt (seq, x);
}
/* Emit a RESX statement into SEQ for REGION. */
static void
emit_resx (gimple_seq *seq, eh_region region)
{
gresx *x = gimple_build_resx (region->index);
gimple_seq_add_stmt (seq, x);
if (region->outer)
record_stmt_eh_region (region->outer, x);
}
/* Emit an EH_DISPATCH statement into SEQ for REGION. */
static void
emit_eh_dispatch (gimple_seq *seq, eh_region region)
{
geh_dispatch *x = gimple_build_eh_dispatch (region->index);
gimple_seq_add_stmt (seq, x);
}
/* Note that the current EH region may contain a throw, or a
call to a function which itself may contain a throw. */
static void
note_eh_region_may_contain_throw (eh_region region)
{
while (bitmap_set_bit (eh_region_may_contain_throw_map, region->index))
{
if (region->type == ERT_MUST_NOT_THROW)
break;
region = region->outer;
if (region == NULL)
break;
}
}
/* Check if REGION has been marked as containing a throw. If REGION is
NULL, this predicate is false. */
static inline bool
eh_region_may_contain_throw (eh_region r)
{
return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
}
/* We want to transform
try { body; } catch { stuff; }
to
normal_sequence:
body;
over:
eh_sequence:
landing_pad:
stuff;
goto over;
TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
should be placed before the second operand, or NULL. OVER is
an existing label that should be put at the exit, or NULL. */
static gimple_seq
frob_into_branch_around (gtry *tp, eh_region region, tree over)
{
gimple *x;
gimple_seq cleanup, result;
location_t loc = gimple_location (tp);
cleanup = gimple_try_cleanup (tp);
result = gimple_try_eval (tp);
if (region)
emit_post_landing_pad (&eh_seq, region);
if (gimple_seq_may_fallthru (cleanup))
{
if (!over)
over = create_artificial_label (loc);
x = gimple_build_goto (over);
gimple_set_location (x, loc);
gimple_seq_add_stmt (&cleanup, x);
}
gimple_seq_add_seq (&eh_seq, cleanup);
if (over)
{
x = gimple_build_label (over);
gimple_seq_add_stmt (&result, x);
}
return result;
}
/* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
Make sure to record all new labels found. */
static gimple_seq
lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state,
location_t loc)
{
gtry *region = NULL;
gimple_seq new_seq;
gimple_stmt_iterator gsi;
new_seq = copy_gimple_seq_and_replace_locals (seq);
for (gsi = gsi_start (new_seq); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
/* We duplicate __builtin_stack_restore at -O0 in the hope of eliminating
it on the EH paths. When it is not eliminated, make it transparent in
the debug info. */
if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
gimple_set_location (stmt, UNKNOWN_LOCATION);
else if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
{
tree block = gimple_block (stmt);
gimple_set_location (stmt, loc);
gimple_set_block (stmt, block);
}
}
if (outer_state->tf)
region = outer_state->tf->try_finally_expr;
collect_finally_tree_1 (new_seq, region);
return new_seq;
}
/* A subroutine of lower_try_finally. Create a fallthru label for
the given try_finally state. The only tricky bit here is that
we have to make sure to record the label in our outer context. */
static tree
lower_try_finally_fallthru_label (struct leh_tf_state *tf)
{
tree label = tf->fallthru_label;
treemple temp;
if (!label)
{
label = create_artificial_label (gimple_location (tf->try_finally_expr));
tf->fallthru_label = label;
if (tf->outer->tf)
{
temp.t = label;
record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
}
}
return label;
}
/* A subroutine of lower_try_finally. If FINALLY consits of a
GIMPLE_EH_ELSE node, return it. */
static inline geh_else *
get_eh_else (gimple_seq finally)
{
gimple *x = gimple_seq_first_stmt (finally);
if (gimple_code (x) == GIMPLE_EH_ELSE)
{
gcc_assert (gimple_seq_singleton_p (finally));
return as_a <geh_else *> (x);
}
return NULL;
}
/* A subroutine of lower_try_finally. If the eh_protect_cleanup_actions
langhook returns non-null, then the language requires that the exception
path out of a try_finally be treated specially. To wit: the code within
the finally block may not itself throw an exception. We have two choices
here. First we can duplicate the finally block and wrap it in a
must_not_throw region. Second, we can generate code like
try {
finally_block;
} catch {
if (fintmp == eh_edge)
protect_cleanup_actions;
}
where "fintmp" is the temporary used in the switch statement generation
alternative considered below. For the nonce, we always choose the first
option.
THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
static void
honor_protect_cleanup_actions (struct leh_state *outer_state,
struct leh_state *this_state,
struct leh_tf_state *tf)
{
gimple_seq finally = gimple_try_cleanup (tf->top_p);
/* EH_ELSE doesn't come from user code; only compiler generated stuff.
It does need to be handled here, so as to separate the (different)
EH path from the normal path. But we should not attempt to wrap
it with a must-not-throw node (which indeed gets in the way). */
if (geh_else *eh_else = get_eh_else (finally))
{
gimple_try_set_cleanup (tf->top_p, gimple_eh_else_n_body (eh_else));
finally = gimple_eh_else_e_body (eh_else);
/* Let the ELSE see the exception that's being processed. */
eh_region save_ehp = this_state->ehp_region;
this_state->ehp_region = this_state->cur_region;
lower_eh_constructs_1 (this_state, &finally);
this_state->ehp_region = save_ehp;
}
else
{
/* First check for nothing to do. */
if (lang_hooks.eh_protect_cleanup_actions == NULL)
return;
tree actions = lang_hooks.eh_protect_cleanup_actions ();
if (actions == NULL)
return;
if (this_state)
finally = lower_try_finally_dup_block (finally, outer_state,
gimple_location (tf->try_finally_expr));
/* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
to be in an enclosing scope, but needs to be implemented at this level
to avoid a nesting violation (see wrap_temporary_cleanups in
cp/decl.c). Since it's logically at an outer level, we should call
terminate before we get to it, so strip it away before adding the
MUST_NOT_THROW filter. */
gimple_stmt_iterator gsi = gsi_start (finally);
gimple *x = gsi_stmt (gsi);
if (gimple_code (x) == GIMPLE_TRY
&& gimple_try_kind (x) == GIMPLE_TRY_CATCH
&& gimple_try_catch_is_cleanup (x))
{
gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
gsi_remove (&gsi, false);
}
/* Wrap the block with protect_cleanup_actions as the action. */
geh_mnt *eh_mnt = gimple_build_eh_must_not_throw (actions);
gtry *try_stmt = gimple_build_try (finally,
gimple_seq_alloc_with_stmt (eh_mnt),
GIMPLE_TRY_CATCH);
finally = lower_eh_must_not_throw (outer_state, try_stmt);
}
/* Drop all of this into the exception sequence. */
emit_post_landing_pad (&eh_seq, tf->region);
gimple_seq_add_seq (&eh_seq, finally);
if (gimple_seq_may_fallthru (finally))
emit_resx (&eh_seq, tf->region);
/* Having now been handled, EH isn't to be considered with
the rest of the outgoing edges. */
tf->may_throw = false;
}
/* A subroutine of lower_try_finally. We have determined that there is
no fallthru edge out of the finally block. This means that there is
no outgoing edge corresponding to any incoming edge. Restructure the
try_finally node for this special case. */
static void
lower_try_finally_nofallthru (struct leh_state *state,
struct leh_tf_state *tf)
{
tree lab;
gimple *x;
geh_else *eh_else;
gimple_seq finally;
struct goto_queue_node *q, *qe;
lab = create_artificial_label (gimple_location (tf->try_finally_expr));
/* We expect that tf->top_p is a GIMPLE_TRY. */
finally = gimple_try_cleanup (tf->top_p);
tf->top_p_seq = gimple_try_eval (tf->top_p);
x = gimple_build_label (lab);
gimple_seq_add_stmt (&tf->top_p_seq, x);
q = tf->goto_queue;
qe = q + tf->goto_queue_active;
for (; q < qe; ++q)
if (q->index < 0)
do_return_redirection (q, lab, NULL);
else
do_goto_redirection (q, lab, NULL, tf);
replace_goto_queue (tf);
/* Emit the finally block into the stream. Lower EH_ELSE at this time. */
eh_else = get_eh_else (finally);
if (eh_else)
{
finally = gimple_eh_else_n_body (eh_else);
lower_eh_constructs_1 (state, &finally);
gimple_seq_add_seq (&tf->top_p_seq, finally);
if (tf->may_throw)
{
finally = gimple_eh_else_e_body (eh_else);
lower_eh_constructs_1 (state, &finally);
emit_post_landing_pad (&eh_seq, tf->region);
gimple_seq_add_seq (&eh_seq, finally);
}
}
else
{
lower_eh_constructs_1 (state, &finally);
gimple_seq_add_seq (&tf->top_p_seq, finally);
if (tf->may_throw)
{
emit_post_landing_pad (&eh_seq, tf->region);
x = gimple_build_goto (lab);
gimple_set_location (x, gimple_location (tf->try_finally_expr));
gimple_seq_add_stmt (&eh_seq, x);
}
}
}
/* A subroutine of lower_try_finally. We have determined that there is
exactly one destination of the finally block. Restructure the
try_finally node for this special case. */
static void
lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
{
struct goto_queue_node *q, *qe;
geh_else *eh_else;
glabel *label_stmt;
gimple *x;
gimple_seq finally;
gimple_stmt_iterator gsi;
tree finally_label;
location_t loc = gimple_location (tf->try_finally_expr);
finally = gimple_try_cleanup (tf->top_p);
tf->top_p_seq = gimple_try_eval (tf->top_p);
/* Since there's only one destination, and the destination edge can only
either be EH or non-EH, that implies that all of our incoming edges
are of the same type. Therefore we can lower EH_ELSE immediately. */
eh_else = get_eh_else (finally);
if (eh_else)
{
if (tf->may_throw)
finally = gimple_eh_else_e_body (eh_else);
else
finally = gimple_eh_else_n_body (eh_else);
}
lower_eh_constructs_1 (state, &finally);
for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
{
tree block = gimple_block (stmt);
gimple_set_location (stmt, gimple_location (tf->try_finally_expr));
gimple_set_block (stmt, block);
}
}
if (tf->may_throw)
{
/* Only reachable via the exception edge. Add the given label to
the head of the FINALLY block. Append a RESX at the end. */
emit_post_landing_pad (&eh_seq, tf->region);
gimple_seq_add_seq (&eh_seq, finally);
emit_resx (&eh_seq, tf->region);
return;
}
if (tf->may_fallthru)
{
/* Only reachable via the fallthru edge. Do nothing but let
the two blocks run together; we'll fall out the bottom. */
gimple_seq_add_seq (&tf->top_p_seq, finally);
return;
}
finally_label = create_artificial_label (loc);
label_stmt = gimple_build_label (finally_label);
gimple_seq_add_stmt (&tf->top_p_seq, label_stmt);
gimple_seq_add_seq (&tf->top_p_seq, finally);
q = tf->goto_queue;
qe = q + tf->goto_queue_active;
if (tf->may_return)
{
/* Reachable by return expressions only. Redirect them. */
for (; q < qe; ++q)
do_return_redirection (q, finally_label, NULL);
replace_goto_queue (tf);
}
else
{
/* Reachable by goto expressions only. Redirect them. */
for (; q < qe; ++q)
do_goto_redirection (q, finally_label, NULL, tf);
replace_goto_queue (tf);
if (tf->dest_array[0] == tf->fallthru_label)
{
/* Reachable by goto to fallthru label only. Redirect it
to the new label (already created, sadly), and do not
emit the final branch out, or the fallthru label. */
tf->fallthru_label = NULL;
return;
}
}
/* Place the original return/goto to the original destination
immediately after the finally block. */
x = tf->goto_queue[0].cont_stmt;
gimple_seq_add_stmt (&tf->top_p_seq, x);
maybe_record_in_goto_queue (state, x);
}
/* A subroutine of lower_try_finally. There are multiple edges incoming
and outgoing from the finally block. Implement this by duplicating the
finally block for every destination. */
static void
lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
{
gimple_seq finally;
gimple_seq new_stmt;
gimple_seq seq;
gimple *x;
geh_else *eh_else;
tree tmp;
location_t tf_loc = gimple_location (tf->try_finally_expr);
finally = gimple_try_cleanup (tf->top_p);
/* Notice EH_ELSE, and simplify some of the remaining code
by considering FINALLY to be the normal return path only. */
eh_else = get_eh_else (finally);
if (eh_else)
finally = gimple_eh_else_n_body (eh_else);
tf->top_p_seq = gimple_try_eval (tf->top_p);
new_stmt = NULL;
if (tf->may_fallthru)
{
seq = lower_try_finally_dup_block (finally, state, tf_loc);
lower_eh_constructs_1 (state, &seq);
gimple_seq_add_seq (&new_stmt, seq);
tmp = lower_try_finally_fallthru_label (tf);
x = gimple_build_goto (tmp);
gimple_set_location (x, tf_loc);
gimple_seq_add_stmt (&new_stmt, x);
}
if (tf->may_throw)
{
/* We don't need to copy the EH path of EH_ELSE,
since it is only emitted once. */
if (eh_else)
seq = gimple_eh_else_e_body (eh_else);
else
seq = lower_try_finally_dup_block (finally, state, tf_loc);
lower_eh_constructs_1 (state, &seq);
emit_post_landing_pad (&eh_seq, tf->region);
gimple_seq_add_seq (&eh_seq, seq);
emit_resx (&eh_seq, tf->region);
}
if (tf->goto_queue)
{
struct goto_queue_node *q, *qe;
int return_index, index;
struct labels_s
{
struct goto_queue_node *q;
tree label;
} *labels;
return_index = tf->dest_array.length ();
labels = XCNEWVEC (struct labels_s, return_index + 1);
q = tf->goto_queue;
qe = q + tf->goto_queue_active;
for (; q < qe; q++)
{
index = q->index < 0 ? return_index : q->index;
if (!labels[index].q)
labels[index].q = q;
}
for (index = 0; index < return_index + 1; index++)
{
tree lab;
q = labels[index].q;
if (! q)
continue;
lab = labels[index].label
= create_artificial_label (tf_loc);
if (index == return_index)
do_return_redirection (q, lab, NULL);
else
do_goto_redirection (q, lab, NULL, tf);
x = gimple_build_label (lab);
gimple_seq_add_stmt (&new_stmt, x);
seq = lower_try_finally_dup_block (finally, state, q->location);
lower_eh_constructs_1 (state, &seq);
gimple_seq_add_seq (&new_stmt, seq);
gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
maybe_record_in_goto_queue (state, q->cont_stmt);
}
for (q = tf->goto_queue; q < qe; q++)
{
tree lab;
index = q->index < 0 ? return_index : q->index;
if (labels[index].q == q)
continue;
lab = labels[index].label;
if (index == return_index)
do_return_redirection (q, lab, NULL);
else
do_goto_redirection (q, lab, NULL, tf);
}
replace_goto_queue (tf);
free (labels);
}
/* Need to link new stmts after running replace_goto_queue due
to not wanting to process the same goto stmts twice. */
gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
}
/* A subroutine of lower_try_finally. There are multiple edges incoming
and outgoing from the finally block. Implement this by instrumenting
each incoming edge and creating a switch statement at the end of the
finally block that branches to the appropriate destination. */
static void
lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
{
struct goto_queue_node *q, *qe;
tree finally_tmp, finally_label;
int return_index, eh_index, fallthru_index;
int nlabels, ndests, j, last_case_index;
tree last_case;
auto_vec<tree> case_label_vec;
gimple_seq switch_body = NULL;
gimple *x;
geh_else *eh_else;
tree tmp;
gimple *switch_stmt;
gimple_seq finally;
hash_map<tree, gimple *> *cont_map = NULL;
/* The location of the TRY_FINALLY stmt. */
location_t tf_loc = gimple_location (tf->try_finally_expr);
/* The location of the finally block. */
location_t finally_loc;
finally = gimple_try_cleanup (tf->top_p);
eh_else = get_eh_else (finally);
/* Mash the TRY block to the head of the chain. */
tf->top_p_seq = gimple_try_eval (tf->top_p);
/* The location of the finally is either the last stmt in the finally
block or the location of the TRY_FINALLY itself. */
x = gimple_seq_last_stmt (finally);
finally_loc = x ? gimple_location (x) : tf_loc;
/* Prepare for switch statement generation. */
nlabels = tf->dest_array.length ();
return_index = nlabels;
eh_index = return_index + tf->may_return;
fallthru_index = eh_index + (tf->may_throw && !eh_else);
ndests = fallthru_index + tf->may_fallthru;
finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
finally_label = create_artificial_label (finally_loc);
/* We use vec::quick_push on case_label_vec throughout this function,
since we know the size in advance and allocate precisely as muce
space as needed. */
case_label_vec.create (ndests);
last_case = NULL;
last_case_index = 0;
/* Begin inserting code for getting to the finally block. Things
are done in this order to correspond to the sequence the code is
laid out. */
if (tf->may_fallthru)
{
x = gimple_build_assign (finally_tmp,
build_int_cst (integer_type_node,
fallthru_index));
gimple_seq_add_stmt (&tf->top_p_seq, x);
tmp = build_int_cst (integer_type_node, fallthru_index);
last_case = build_case_label (tmp, NULL,
create_artificial_label (tf_loc));
case_label_vec.quick_push (last_case);
last_case_index++;
x = gimple_build_label (CASE_LABEL (last_case));
gimple_seq_add_stmt (&switch_body, x);
tmp = lower_try_finally_fallthru_label (tf);
x = gimple_build_goto (tmp);
gimple_set_location (x, tf_loc);
gimple_seq_add_stmt (&switch_body, x);
}
/* For EH_ELSE, emit the exception path (plus resx) now, then
subsequently we only need consider the normal path. */
if (eh_else)
{
if (tf->may_throw)
{
finally = gimple_eh_else_e_body (eh_else);
lower_eh_constructs_1 (state, &finally);
emit_post_landing_pad (&eh_seq, tf->region);
gimple_seq_add_seq (&eh_seq, finally);
emit_resx (&eh_seq, tf->region);
}
finally = gimple_eh_else_n_body (eh_else);
}
else if (tf->may_throw)
{
emit_post_landing_pad (&eh_seq, tf->region);
x = gimple_build_assign (finally_tmp,
build_int_cst (integer_type_node, eh_index));
gimple_seq_add_stmt (&eh_seq, x);
x = gimple_build_goto (finally_label);
gimple_set_location (x, tf_loc);
gimple_seq_add_stmt (&eh_seq, x);
tmp = build_int_cst (integer_type_node, eh_index);
last_case = build_case_label (tmp, NULL,
create_artificial_label (tf_loc));
case_label_vec.quick_push (last_case);
last_case_index++;
x = gimple_build_label (CASE_LABEL (last_case));
gimple_seq_add_stmt (&eh_seq, x);
emit_resx (&eh_seq, tf->region);
}
x = gimple_build_label (finally_label);
gimple_seq_add_stmt (&tf->top_p_seq, x);
lower_eh_constructs_1 (state, &finally);
gimple_seq_add_seq (&tf->top_p_seq, finally);
/* Redirect each incoming goto edge. */
q = tf->goto_queue;
qe = q + tf->goto_queue_active;
j = last_case_index + tf->may_return;
/* Prepare the assignments to finally_tmp that are executed upon the
entrance through a particular edge. */
for (; q < qe; ++q)
{
gimple_seq mod = NULL;
int switch_id;
unsigned int case_index;
if (q->index < 0)
{
x = gimple_build_assign (finally_tmp,
build_int_cst (integer_type_node,
return_index));
gimple_seq_add_stmt (&mod, x);
do_return_redirection (q, finally_label, mod);
switch_id = return_index;
}
else
{
x = gimple_build_assign (finally_tmp,
build_int_cst (integer_type_node, q->index));
gimple_seq_add_stmt (&mod, x);
do_goto_redirection (q, finally_label, mod, tf);
switch_id = q->index;
}
case_index = j + q->index;
if (case_label_vec.length () <= case_index || !case_label_vec[case_index])
{
tree case_lab;
tmp = build_int_cst (integer_type_node, switch_id);
case_lab = build_case_label (tmp, NULL,
create_artificial_label (tf_loc));
/* We store the cont_stmt in the pointer map, so that we can recover
it in the loop below. */
if (!cont_map)
cont_map = new hash_map<tree, gimple *>;
cont_map->put (case_lab, q->cont_stmt);
case_label_vec.quick_push (case_lab);
}
}
for (j = last_case_index; j < last_case_index + nlabels; j++)
{
gimple *cont_stmt;
last_case = case_label_vec[j];
gcc_assert (last_case);
gcc_assert (cont_map);
cont_stmt = *cont_map->get (last_case);
x = gimple_build_label (CASE_LABEL (last_case));
gimple_seq_add_stmt (&switch_body, x);
gimple_seq_add_stmt (&switch_body, cont_stmt);
maybe_record_in_goto_queue (state, cont_stmt);
}
if (cont_map)
delete cont_map;
replace_goto_queue (tf);
/* Make sure that the last case is the default label, as one is required.
Then sort the labels, which is also required in GIMPLE. */
CASE_LOW (last_case) = NULL;
tree tem = case_label_vec.pop ();
gcc_assert (tem == last_case);
sort_case_labels (case_label_vec);
/* Build the switch statement, setting last_case to be the default
label. */
switch_stmt = gimple_build_switch (finally_tmp, last_case,
case_label_vec);
gimple_set_location (switch_stmt, finally_loc);
/* Need to link SWITCH_STMT after running replace_goto_queue
due to not wanting to process the same goto stmts twice. */
gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
gimple_seq_add_seq (&tf->top_p_seq, switch_body);
}
/* Decide whether or not we are going to duplicate the finally block.
There are several considerations.
First, if this is Java, then the finally block contains code
written by the user. It has line numbers associated with it,
so duplicating the block means it's difficult to set a breakpoint.
Since controlling code generation via -g is verboten, we simply
never duplicate code without optimization.
Second, we'd like to prevent egregious code growth. One way to
do this is to estimate the size of the finally block, multiply
that by the number of copies we'd need to make, and compare against
the estimate of the size of the switch machinery we'd have to add. */
static bool
decide_copy_try_finally (int ndests, bool may_throw, gimple_seq finally)
{
int f_estimate, sw_estimate;
geh_else *eh_else;
/* If there's an EH_ELSE involved, the exception path is separate
and really doesn't come into play for this computation. */
eh_else = get_eh_else (finally);
if (eh_else)
{
ndests -= may_throw;
finally = gimple_eh_else_n_body (eh_else);
}
if (!optimize)
{
gimple_stmt_iterator gsi;
if (ndests == 1)
return true;
for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
{
/* Duplicate __builtin_stack_restore in the hope of eliminating it
on the EH paths and, consequently, useless cleanups. */
gimple *stmt = gsi_stmt (gsi);
if (!is_gimple_debug (stmt)
&& !gimple_clobber_p (stmt)
&& !gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
return false;
}
return true;
}
/* Finally estimate N times, plus N gotos. */
f_estimate = estimate_num_insns_seq (finally, &eni_size_weights);
f_estimate = (f_estimate + 1) * ndests;
/* Switch statement (cost 10), N variable assignments, N gotos. */
sw_estimate = 10 + 2 * ndests;
/* Optimize for size clearly wants our best guess. */
if (optimize_function_for_size_p (cfun))
return f_estimate < sw_estimate;
/* ??? These numbers are completely made up so far. */
if (optimize > 1)
return f_estimate < 100 || f_estimate < sw_estimate * 2;
else
return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
}
/* REG is the enclosing region for a possible cleanup region, or the region
itself. Returns TRUE if such a region would be unreachable.
Cleanup regions within a must-not-throw region aren't actually reachable
even if there are throwing stmts within them, because the personality
routine will call terminate before unwinding. */
static bool
cleanup_is_dead_in (eh_region reg)
{
while (reg && reg->type == ERT_CLEANUP)
reg = reg->outer;
return (reg && reg->type == ERT_MUST_NOT_THROW);
}
/* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
to a sequence of labels and blocks, plus the exception region trees
that record all the magic. This is complicated by the need to
arrange for the FINALLY block to be executed on all exits. */
static gimple_seq
lower_try_finally (struct leh_state *state, gtry *tp)
{
struct leh_tf_state this_tf;
struct leh_state this_state;
int ndests;
gimple_seq old_eh_seq;
/* Process the try block. */
memset (&this_tf, 0, sizeof (this_tf));
this_tf.try_finally_expr = tp;
this_tf.top_p = tp;
this_tf.outer = state;
if (using_eh_for_cleanups_p () && !cleanup_is_dead_in (state->cur_region))
{
this_tf.region = gen_eh_region_cleanup (state->cur_region);
this_state.cur_region = this_tf.region;
}
else
{
this_tf.region = NULL;
this_state.cur_region = state->cur_region;
}
this_state.ehp_region = state->ehp_region;
this_state.tf = &this_tf;
old_eh_seq = eh_seq;
eh_seq = NULL;
lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
/* Determine if the try block is escaped through the bottom. */
this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
/* Determine if any exceptions are possible within the try block. */
if (this_tf.region)
this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
if (this_tf.may_throw)
honor_protect_cleanup_actions (state, &this_state, &this_tf);
/* Determine how many edges (still) reach the finally block. Or rather,
how many destinations are reached by the finally block. Use this to
determine how we process the finally block itself. */
ndests = this_tf.dest_array.length ();
ndests += this_tf.may_fallthru;
ndests += this_tf.may_return;
ndests += this_tf.may_throw;
/* If the FINALLY block is not reachable, dike it out. */
if (ndests == 0)
{
gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
gimple_try_set_cleanup (tp, NULL);
}
/* If the finally block doesn't fall through, then any destination
we might try to impose there isn't reached either. There may be
some minor amount of cleanup and redirection still needed. */
else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
lower_try_finally_nofallthru (state, &this_tf);
/* We can easily special-case redirection to a single destination. */
else if (ndests == 1)
lower_try_finally_onedest (state, &this_tf);
else if (decide_copy_try_finally (ndests, this_tf.may_throw,
gimple_try_cleanup (tp)))
lower_try_finally_copy (state, &this_tf);
else
lower_try_finally_switch (state, &this_tf);
/* If someone requested we add a label at the end of the transformed
block, do so. */
if (this_tf.fallthru_label)
{
/* This must be reached only if ndests == 0. */
gimple *x = gimple_build_label (this_tf.fallthru_label);
gimple_seq_add_stmt (&this_tf.top_p_seq, x);
}
this_tf.dest_array.release ();
free (this_tf.goto_queue);
if (this_tf.goto_queue_map)
delete this_tf.goto_queue_map;
/* If there was an old (aka outer) eh_seq, append the current eh_seq.
If there was no old eh_seq, then the append is trivially already done. */
if (old_eh_seq)
{
if (eh_seq == NULL)
eh_seq = old_eh_seq;
else
{
gimple_seq new_eh_seq = eh_seq;
eh_seq = old_eh_seq;
gimple_seq_add_seq (&eh_seq, new_eh_seq);
}
}
return this_tf.top_p_seq;
}
/* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
exception region trees that records all the magic. */
static gimple_seq
lower_catch (struct leh_state *state, gtry *tp)
{
eh_region try_region = NULL;
struct leh_state this_state = *state;
gimple_stmt_iterator gsi;
tree out_label;
gimple_seq new_seq, cleanup;
gimple *x;
location_t try_catch_loc = gimple_location (tp);
if (flag_exceptions)
{
try_region = gen_eh_region_try (state->cur_region);
this_state.cur_region = try_region;
}
lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
if (!eh_region_may_contain_throw (try_region))
return gimple_try_eval (tp);
new_seq = NULL;
emit_eh_dispatch (&new_seq, try_region);
emit_resx (&new_seq, try_region);
this_state.cur_region = state->cur_region;
this_state.ehp_region = try_region;
/* Add eh_seq from lowering EH in the cleanup sequence after the cleanup
itself, so that e.g. for coverage purposes the nested cleanups don't
appear before the cleanup body. See PR64634 for details. */
gimple_seq old_eh_seq = eh_seq;
eh_seq = NULL;
out_label = NULL;
cleanup = gimple_try_cleanup (tp);
for (gsi = gsi_start (cleanup);
!gsi_end_p (gsi);
gsi_next (&gsi))
{
eh_catch c;
gcatch *catch_stmt;
gimple_seq handler;
catch_stmt = as_a <gcatch *> (gsi_stmt (gsi));
c = gen_eh_region_catch (try_region, gimple_catch_types (catch_stmt));
handler = gimple_catch_handler (catch_stmt);
lower_eh_constructs_1 (&this_state, &handler);
c->label = create_artificial_label (UNKNOWN_LOCATION);
x = gimple_build_label (c->label);
gimple_seq_add_stmt (&new_seq, x);
gimple_seq_add_seq (&new_seq, handler);
if (gimple_seq_may_fallthru (new_seq))
{
if (!out_label)
out_label = create_artificial_label (try_catch_loc);
x = gimple_build_goto (out_label);
gimple_seq_add_stmt (&new_seq, x);
}
if (!c->type_list)
break;
}
gimple_try_set_cleanup (tp, new_seq);
gimple_seq new_eh_seq = eh_seq;
eh_seq = old_eh_seq;
gimple_seq ret_seq = frob_into_branch_around (tp, try_region, out_label);
gimple_seq_add_seq (&eh_seq, new_eh_seq);
return ret_seq;
}
/* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
region trees that record all the magic. */
static gimple_seq
lower_eh_filter (struct leh_state *state, gtry *tp)
{
struct leh_state this_state = *state;
eh_region this_region = NULL;
gimple *inner, *x;
gimple_seq new_seq;
inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
if (flag_exceptions)
{
this_region = gen_eh_region_allowed (state->cur_region,
gimple_eh_filter_types (inner));
this_state.cur_region = this_region;
}
lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
if (!eh_region_may_contain_throw (this_region))
return gimple_try_eval (tp);
new_seq = NULL;
this_state.cur_region = state->cur_region;
this_state.ehp_region = this_region;
emit_eh_dispatch (&new_seq, this_region);
emit_resx (&new_seq, this_region);
this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
x = gimple_build_label (this_region->u.allowed.label);
gimple_seq_add_stmt (&new_seq, x);
lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure_ptr (inner));
gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
gimple_try_set_cleanup (tp, new_seq);
return frob_into_branch_around (tp, this_region, NULL);
}
/* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
plus the exception region trees that record all the magic. */
static gimple_seq
lower_eh_must_not_throw (struct leh_state *state, gtry *tp)
{
struct leh_state this_state = *state;
if (flag_exceptions)
{
gimple *inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
eh_region this_region;
this_region = gen_eh_region_must_not_throw (state->cur_region);
this_region->u.must_not_throw.failure_decl
= gimple_eh_must_not_throw_fndecl (
as_a <geh_mnt *> (inner));
this_region->u.must_not_throw.failure_loc
= LOCATION_LOCUS (gimple_location (tp));
/* In order to get mangling applied to this decl, we must mark it
used now. Otherwise, pass_ipa_free_lang_data won't think it
needs to happen. */
TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
this_state.cur_region = this_region;
}
lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
return gimple_try_eval (tp);
}
/* Implement a cleanup expression. This is similar to try-finally,
except that we only execute the cleanup block for exception edges. */
static gimple_seq
lower_cleanup (struct leh_state *state, gtry *tp)
{
struct leh_state this_state = *state;
eh_region this_region = NULL;
struct leh_tf_state fake_tf;
gimple_seq result;
bool cleanup_dead = cleanup_is_dead_in (state->cur_region);
if (flag_exceptions && !cleanup_dead)
{
this_region = gen_eh_region_cleanup (state->cur_region);
this_state.cur_region = this_region;
}
lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
if (cleanup_dead || !eh_region_may_contain_throw (this_region))
return gimple_try_eval (tp);
/* Build enough of a try-finally state so that we can reuse
honor_protect_cleanup_actions. */
memset (&fake_tf, 0, sizeof (fake_tf));
fake_tf.top_p = fake_tf.try_finally_expr = tp;
fake_tf.outer = state;
fake_tf.region = this_region;
fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
fake_tf.may_throw = true;
honor_protect_cleanup_actions (state, NULL, &fake_tf);
if (fake_tf.may_throw)
{
/* In this case honor_protect_cleanup_actions had nothing to do,
and we should process this normally. */
lower_eh_constructs_1 (state, gimple_try_cleanup_ptr (tp));
result = frob_into_branch_around (tp, this_region,
fake_tf.fallthru_label);
}
else
{
/* In this case honor_protect_cleanup_actions did nearly all of
the work. All we have left is to append the fallthru_label. */
result = gimple_try_eval (tp);
if (fake_tf.fallthru_label)
{
gimple *x = gimple_build_label (fake_tf.fallthru_label);
gimple_seq_add_stmt (&result, x);
}
}
return result;
}
/* Main loop for lowering eh constructs. Also moves gsi to the next
statement. */
static void
lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
{
gimple_seq replace;
gimple *x;
gimple *stmt = gsi_stmt (*gsi);
switch (gimple_code (stmt))
{
case GIMPLE_CALL:
{
tree fndecl = gimple_call_fndecl (stmt);
tree rhs, lhs;
if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
switch (DECL_FUNCTION_CODE (fndecl))
{
case BUILT_IN_EH_POINTER:
/* The front end may have generated a call to
__builtin_eh_pointer (0) within a catch region. Replace
this zero argument with the current catch region number. */
if (state->ehp_region)
{
tree nr = build_int_cst (integer_type_node,
state->ehp_region->index);
gimple_call_set_arg (stmt, 0, nr);
}
else
{
/* The user has dome something silly. Remove it. */
rhs = null_pointer_node;
goto do_replace;
}
break;
case BUILT_IN_EH_FILTER:
/* ??? This should never appear, but since it's a builtin it
is accessible to abuse by users. Just remove it and
replace the use with the arbitrary value zero. */
rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
do_replace:
lhs = gimple_call_lhs (stmt);
x = gimple_build_assign (lhs, rhs);
gsi_insert_before (gsi, x, GSI_SAME_STMT);
/* FALLTHRU */
case BUILT_IN_EH_COPY_VALUES:
/* Likewise this should not appear. Remove it. */
gsi_remove (gsi, true);
return;
default:
break;
}
}
/* FALLTHRU */
case GIMPLE_ASSIGN:
/* If the stmt can throw use a new temporary for the assignment
to a LHS. This makes sure the old value of the LHS is
available on the EH edge. Only do so for statements that
potentially fall through (no noreturn calls e.g.), otherwise
this new assignment might create fake fallthru regions. */
if (stmt_could_throw_p (stmt)
&& gimple_has_lhs (stmt)
&& gimple_stmt_may_fallthru (stmt)
&& !tree_could_throw_p (gimple_get_lhs (stmt))
&& is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
{
tree lhs = gimple_get_lhs (stmt);
tree tmp = create_tmp_var (TREE_TYPE (lhs));
gimple *s = gimple_build_assign (lhs, tmp);
gimple_set_location (s, gimple_location (stmt));
gimple_set_block (s, gimple_block (stmt));
gimple_set_lhs (stmt, tmp);
if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
|| TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
DECL_GIMPLE_REG_P (tmp) = 1;
gsi_insert_after (gsi, s, GSI_SAME_STMT);
}
/* Look for things that can throw exceptions, and record them. */
if (state->cur_region && stmt_could_throw_p (stmt))
{
record_stmt_eh_region (state->cur_region, stmt);
note_eh_region_may_contain_throw (state->cur_region);
}
break;
case GIMPLE_COND:
case GIMPLE_GOTO:
case GIMPLE_RETURN:
maybe_record_in_goto_queue (state, stmt);
break;
case GIMPLE_SWITCH:
verify_norecord_switch_expr (state, as_a <gswitch *> (stmt));
break;
case GIMPLE_TRY:
{
gtry *try_stmt = as_a <gtry *> (stmt);
if (gimple_try_kind (try_stmt) == GIMPLE_TRY_FINALLY)
replace = lower_try_finally (state, try_stmt);
else
{
x = gimple_seq_first_stmt (gimple_try_cleanup (try_stmt));
if (!x)
{
replace = gimple_try_eval (try_stmt);
lower_eh_constructs_1 (state, &replace);
}
else
switch (gimple_code (x))
{
case GIMPLE_CATCH:
replace = lower_catch (state, try_stmt);
break;
case GIMPLE_EH_FILTER:
replace = lower_eh_filter (state, try_stmt);
break;
case GIMPLE_EH_MUST_NOT_THROW:
replace = lower_eh_must_not_throw (state, try_stmt);
break;
case GIMPLE_EH_ELSE:
/* This code is only valid with GIMPLE_TRY_FINALLY. */
gcc_unreachable ();
default:
replace = lower_cleanup (state, try_stmt);
break;
}
}
}
/* Remove the old stmt and insert the transformed sequence
instead. */
gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
gsi_remove (gsi, true);
/* Return since we don't want gsi_next () */
return;
case GIMPLE_EH_ELSE:
/* We should be eliminating this in lower_try_finally et al. */
gcc_unreachable ();
default:
/* A type, a decl, or some kind of statement that we're not
interested in. Don't walk them. */
break;
}
gsi_next (gsi);
}
/* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
static void
lower_eh_constructs_1 (struct leh_state *state, gimple_seq *pseq)
{
gimple_stmt_iterator gsi;
for (gsi = gsi_start (*pseq); !gsi_end_p (gsi);)
lower_eh_constructs_2 (state, &gsi);
}
namespace {
const pass_data pass_data_lower_eh =
{
GIMPLE_PASS, /* type */
"eh", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_TREE_EH, /* tv_id */
PROP_gimple_lcf, /* properties_required */
PROP_gimple_leh, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_lower_eh : public gimple_opt_pass
{
public:
pass_lower_eh (gcc::context *ctxt)
: gimple_opt_pass (pass_data_lower_eh, ctxt)
{}
/* opt_pass methods: */
virtual unsigned int execute (function *);
}; // class pass_lower_eh
unsigned int
pass_lower_eh::execute (function *fun)
{
struct leh_state null_state;
gimple_seq bodyp;
bodyp = gimple_body (current_function_decl);
if (bodyp == NULL)
return 0;
finally_tree = new hash_table<finally_tree_hasher> (31);
eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
memset (&null_state, 0, sizeof (null_state));
collect_finally_tree_1 (bodyp, NULL);
lower_eh_constructs_1 (&null_state, &bodyp);
gimple_set_body (current_function_decl, bodyp);
/* We assume there's a return statement, or something, at the end of
the function, and thus ploping the EH sequence afterward won't
change anything. */
gcc_assert (!gimple_seq_may_fallthru (bodyp));
gimple_seq_add_seq (&bodyp, eh_seq);
/* We assume that since BODYP already existed, adding EH_SEQ to it
didn't change its value, and we don't have to re-set the function. */
gcc_assert (bodyp == gimple_body (current_function_decl));
delete finally_tree;
finally_tree = NULL;
BITMAP_FREE (eh_region_may_contain_throw_map);
eh_seq = NULL;
/* If this function needs a language specific EH personality routine
and the frontend didn't already set one do so now. */
if (function_needs_eh_personality (fun) == eh_personality_lang
&& !DECL_FUNCTION_PERSONALITY (current_function_decl))
DECL_FUNCTION_PERSONALITY (current_function_decl)
= lang_hooks.eh_personality ();
return 0;
}
} // anon namespace
gimple_opt_pass *
make_pass_lower_eh (gcc::context *ctxt)
{
return new pass_lower_eh (ctxt);
}
/* Create the multiple edges from an EH_DISPATCH statement to all of
the possible handlers for its EH region. Return true if there's
no fallthru edge; false if there is. */
bool
make_eh_dispatch_edges (geh_dispatch *stmt)
{
eh_region r;
eh_catch c;
basic_block src, dst;
r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
src = gimple_bb (stmt);
switch (r->type)
{
case ERT_TRY:
for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
{
dst = label_to_block (c->label);
make_edge (src, dst, 0);
/* A catch-all handler doesn't have a fallthru. */
if (c->type_list == NULL)
return false;
}
break;
case ERT_ALLOWED_EXCEPTIONS:
dst = label_to_block (r->u.allowed.label);
make_edge (src, dst, 0);
break;
default:
gcc_unreachable ();
}
return true;
}
/* Create the single EH edge from STMT to its nearest landing pad,
if there is such a landing pad within the current function. */
void
make_eh_edges (gimple *stmt)
{
basic_block src, dst;
eh_landing_pad lp;
int lp_nr;
lp_nr = lookup_stmt_eh_lp (stmt);
if (lp_nr <= 0)
return;
lp = get_eh_landing_pad_from_number (lp_nr);
gcc_assert (lp != NULL);
src = gimple_bb (stmt);
dst = label_to_block (lp->post_landing_pad);
make_edge (src, dst, EDGE_EH);
}
/* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
do not actually perform the final edge redirection.
CHANGE_REGION is true when we're being called from cleanup_empty_eh and
we intend to change the destination EH region as well; this means
EH_LANDING_PAD_NR must already be set on the destination block label.
If false, we're being called from generic cfg manipulation code and we
should preserve our place within the region tree. */
static void
redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
{
eh_landing_pad old_lp, new_lp;
basic_block old_bb;
gimple *throw_stmt;
int old_lp_nr, new_lp_nr;
tree old_label, new_label;
edge_iterator ei;
edge e;
old_bb = edge_in->dest;
old_label = gimple_block_label (old_bb);
old_lp_nr = EH_LANDING_PAD_NR (old_label);
gcc_assert (old_lp_nr > 0);
old_lp = get_eh_landing_pad_from_number (old_lp_nr);
throw_stmt = last_stmt (edge_in->src);
gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
new_label = gimple_block_label (new_bb);
/* Look for an existing region that might be using NEW_BB already. */
new_lp_nr = EH_LANDING_PAD_NR (new_label);
if (new_lp_nr)
{
new_lp = get_eh_landing_pad_from_number (new_lp_nr);
gcc_assert (new_lp);
/* Unless CHANGE_REGION is true, the new and old landing pad
had better be associated with the same EH region. */
gcc_assert (change_region || new_lp->region == old_lp->region);
}
else
{
new_lp = NULL;
gcc_assert (!change_region);
}
/* Notice when we redirect the last EH edge away from OLD_BB. */
FOR_EACH_EDGE (e, ei, old_bb->preds)
if (e != edge_in && (e->flags & EDGE_EH))
break;
if (new_lp)
{
/* NEW_LP already exists. If there are still edges into OLD_LP,
there's nothing to do with the EH tree. If there are no more
edges into OLD_LP, then we want to remove OLD_LP as it is unused.
If CHANGE_REGION is true, then our caller is expecting to remove
the landing pad. */
if (e == NULL && !change_region)
remove_eh_landing_pad (old_lp);
}
else
{
/* No correct landing pad exists. If there are no more edges
into OLD_LP, then we can simply re-use the existing landing pad.
Otherwise, we have to create a new landing pad. */
if (e == NULL)
{
EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
new_lp = old_lp;
}
else
new_lp = gen_eh_landing_pad (old_lp->region);
new_lp->post_landing_pad = new_label;
EH_LANDING_PAD_NR (new_label) = new_lp->index;
}
/* Maybe move the throwing statement to the new region. */
if (old_lp != new_lp)
{
remove_stmt_from_eh_lp (throw_stmt);
add_stmt_to_eh_lp (throw_stmt, new_lp->index);
}
}
/* Redirect EH edge E to NEW_BB. */
edge
redirect_eh_edge (edge edge_in, basic_block new_bb)
{
redirect_eh_edge_1 (edge_in, new_bb, false);
return ssa_redirect_edge (edge_in, new_bb);
}
/* This is a subroutine of gimple_redirect_edge_and_branch. Update the
labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
The actual edge update will happen in the caller. */
void
redirect_eh_dispatch_edge (geh_dispatch *stmt, edge e, basic_block new_bb)
{
tree new_lab = gimple_block_label (new_bb);
bool any_changed = false;
basic_block old_bb;
eh_region r;
eh_catch c;
r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
switch (r->type)
{
case ERT_TRY:
for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
{
old_bb = label_to_block (c->label);
if (old_bb == e->dest)
{
c->label = new_lab;
any_changed = true;
}
}
break;
case ERT_ALLOWED_EXCEPTIONS:
old_bb = label_to_block (r->u.allowed.label);
gcc_assert (old_bb == e->dest);
r->u.allowed.label = new_lab;
any_changed = true;
break;
default:
gcc_unreachable ();
}
gcc_assert (any_changed);
}
/* Helper function for operation_could_trap_p and stmt_could_throw_p. */
bool
operation_could_trap_helper_p (enum tree_code op,
bool fp_operation,
bool honor_trapv,
bool honor_nans,
bool honor_snans,
tree divisor,
bool *handled)
{
*handled = true;
switch (op)
{
case TRUNC_DIV_EXPR:
case CEIL_DIV_EXPR:
case FLOOR_DIV_EXPR:
case ROUND_DIV_EXPR:
case EXACT_DIV_EXPR:
case CEIL_MOD_EXPR:
case FLOOR_MOD_EXPR:
case ROUND_MOD_EXPR:
case TRUNC_MOD_EXPR:
case RDIV_EXPR:
if (honor_snans || honor_trapv)
return true;
if (fp_operation)
return flag_trapping_math;
if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
return true;
return false;
case LT_EXPR:
case LE_EXPR:
case GT_EXPR:
case GE_EXPR:
case LTGT_EXPR:
/* Some floating point comparisons may trap. */
return honor_nans;
case EQ_EXPR:
case NE_EXPR:
case UNORDERED_EXPR:
case ORDERED_EXPR:
case UNLT_EXPR:
case UNLE_EXPR:
case UNGT_EXPR:
case UNGE_EXPR:
case UNEQ_EXPR:
return honor_snans;
case NEGATE_EXPR:
case ABS_EXPR:
case CONJ_EXPR:
/* These operations don't trap with floating point. */
if (honor_trapv)
return true;
return false;
case PLUS_EXPR:
case MINUS_EXPR:
case MULT_EXPR:
/* Any floating arithmetic may trap. */
if (fp_operation && flag_trapping_math)
return true;
if (honor_trapv)
return true;
return false;
case COMPLEX_EXPR:
case CONSTRUCTOR:
/* Constructing an object cannot trap. */
return false;
default:
/* Any floating arithmetic may trap. */
if (fp_operation && flag_trapping_math)
return true;
*handled = false;
return false;
}
}
/* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
on floating-point values. HONOR_TRAPV is true if OP is applied on integer
type operands that may trap. If OP is a division operator, DIVISOR contains
the value of the divisor. */
bool
operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
tree divisor)
{
bool honor_nans = (fp_operation && flag_trapping_math
&& !flag_finite_math_only);
bool honor_snans = fp_operation && flag_signaling_nans != 0;
bool handled;
if (TREE_CODE_CLASS (op) != tcc_comparison
&& TREE_CODE_CLASS (op) != tcc_unary
&& TREE_CODE_CLASS (op) != tcc_binary
&& op != FMA_EXPR)
return false;
return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
honor_nans, honor_snans, divisor,
&handled);
}
/* Returns true if it is possible to prove that the index of
an array access REF (an ARRAY_REF expression) falls into the
array bounds. */
static bool
in_array_bounds_p (tree ref)
{
tree idx = TREE_OPERAND (ref, 1);
tree min, max;
if (TREE_CODE (idx) != INTEGER_CST)
return false;
min = array_ref_low_bound (ref);
max = array_ref_up_bound (ref);
if (!min
|| !max
|| TREE_CODE (min) != INTEGER_CST
|| TREE_CODE (max) != INTEGER_CST)
return false;
if (tree_int_cst_lt (idx, min)
|| tree_int_cst_lt (max, idx))
return false;
return true;
}
/* Returns true if it is possible to prove that the range of
an array access REF (an ARRAY_RANGE_REF expression) falls
into the array bounds. */
static bool
range_in_array_bounds_p (tree ref)
{
tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
tree range_min, range_max, min, max;
range_min = TYPE_MIN_VALUE (domain_type);
range_max = TYPE_MAX_VALUE (domain_type);
if (!range_min
|| !range_max
|| TREE_CODE (range_min) != INTEGER_CST
|| TREE_CODE (range_max) != INTEGER_CST)
return false;
min = array_ref_low_bound (ref);
max = array_ref_up_bound (ref);
if (!min
|| !max
|| TREE_CODE (min) != INTEGER_CST
|| TREE_CODE (max) != INTEGER_CST)
return false;
if (tree_int_cst_lt (range_min, min)
|| tree_int_cst_lt (max, range_max))
return false;
return true;
}
/* Return true if EXPR can trap, as in dereferencing an invalid pointer
location or floating point arithmetic. C.f. the rtl version, may_trap_p.
This routine expects only GIMPLE lhs or rhs input. */
bool
tree_could_trap_p (tree expr)
{
enum tree_code code;
bool fp_operation = false;
bool honor_trapv = false;
tree t, base, div = NULL_TREE;
if (!expr)
return false;
code = TREE_CODE (expr);
t = TREE_TYPE (expr);
if (t)
{
if (COMPARISON_CLASS_P (expr))
fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
else
fp_operation = FLOAT_TYPE_P (t);
honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
}
if (TREE_CODE_CLASS (code) == tcc_binary)
div = TREE_OPERAND (expr, 1);
if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
return true;
restart:
switch (code)
{
case COMPONENT_REF:
case REALPART_EXPR:
case IMAGPART_EXPR:
case BIT_FIELD_REF:
case VIEW_CONVERT_EXPR:
case WITH_SIZE_EXPR:
expr = TREE_OPERAND (expr, 0);
code = TREE_CODE (expr);
goto restart;
case ARRAY_RANGE_REF:
base = TREE_OPERAND (expr, 0);
if (tree_could_trap_p (base))
return true;
if (TREE_THIS_NOTRAP (expr))
return false;
return !range_in_array_bounds_p (expr);
case ARRAY_REF:
base = TREE_OPERAND (expr, 0);
if (tree_could_trap_p (base))
return true;
if (TREE_THIS_NOTRAP (expr))
return false;
return !in_array_bounds_p (expr);
case TARGET_MEM_REF:
case MEM_REF:
if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR
&& tree_could_trap_p (TREE_OPERAND (TREE_OPERAND (expr, 0), 0)))
return true;
if (TREE_THIS_NOTRAP (expr))
return false;
/* We cannot prove that the access is in-bounds when we have
variable-index TARGET_MEM_REFs. */
if (code == TARGET_MEM_REF
&& (TMR_INDEX (expr) || TMR_INDEX2 (expr)))
return true;
if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR)
{
tree base = TREE_OPERAND (TREE_OPERAND (expr, 0), 0);
offset_int off = mem_ref_offset (expr);
if (wi::neg_p (off, SIGNED))
return true;
if (TREE_CODE (base) == STRING_CST)
return wi::leu_p (TREE_STRING_LENGTH (base), off);
else if (DECL_SIZE_UNIT (base) == NULL_TREE
|| TREE_CODE (DECL_SIZE_UNIT (base)) != INTEGER_CST
|| wi::leu_p (wi::to_offset (DECL_SIZE_UNIT (base)), off))
return true;
/* Now we are sure the first byte of the access is inside
the object. */
return false;
}
return true;
case INDIRECT_REF:
return !TREE_THIS_NOTRAP (expr);
case ASM_EXPR:
return TREE_THIS_VOLATILE (expr);
case CALL_EXPR:
t = get_callee_fndecl (expr);
/* Assume that calls to weak functions may trap. */
if (!t || !DECL_P (t))
return true;
if (DECL_WEAK (t))
return tree_could_trap_p (t);
return false;
case FUNCTION_DECL:
/* Assume that accesses to weak functions may trap, unless we know
they are certainly defined in current TU or in some other
LTO partition. */
if (DECL_WEAK (expr) && !DECL_COMDAT (expr) && DECL_EXTERNAL (expr))
{
cgraph_node *node = cgraph_node::get (expr);
if (node)
node = node->function_symbol ();
return !(node && node->in_other_partition);
}
return false;
case VAR_DECL:
/* Assume that accesses to weak vars may trap, unless we know
they are certainly defined in current TU or in some other
LTO partition. */
if (DECL_WEAK (expr) && !DECL_COMDAT (expr) && DECL_EXTERNAL (expr))
{
varpool_node *node = varpool_node::get (expr);
if (node)
node = node->ultimate_alias_target ();
return !(node && node->in_other_partition);
}
return false;
default:
return false;
}
}
/* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
an assignment or a conditional) may throw. */
static bool
stmt_could_throw_1_p (gassign *stmt)
{
enum tree_code code = gimple_assign_rhs_code (stmt);
bool honor_nans = false;
bool honor_snans = false;
bool fp_operation = false;
bool honor_trapv = false;
tree t;
size_t i;
bool handled, ret;
if (TREE_CODE_CLASS (code) == tcc_comparison
|| TREE_CODE_CLASS (code) == tcc_unary
|| TREE_CODE_CLASS (code) == tcc_binary
|| code == FMA_EXPR)
{
if (TREE_CODE_CLASS (code) == tcc_comparison)
t = TREE_TYPE (gimple_assign_rhs1 (stmt));
else
t = gimple_expr_type (stmt);
fp_operation = FLOAT_TYPE_P (t);
if (fp_operation)
{
honor_nans = flag_trapping_math && !flag_finite_math_only;
honor_snans = flag_signaling_nans != 0;
}
else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
honor_trapv = true;
}
/* First check the LHS. */
if (tree_could_trap_p (gimple_assign_lhs (stmt)))
return true;
/* Check if the main expression may trap. */
ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
honor_nans, honor_snans,
gimple_assign_rhs2 (stmt),
&handled);
if (handled)
return ret;
/* If the expression does not trap, see if any of the individual operands may
trap. */
for (i = 1; i < gimple_num_ops (stmt); i++)
if (tree_could_trap_p (gimple_op (stmt, i)))
return true;
return false;
}
/* Return true if statement STMT could throw an exception. */
bool
stmt_could_throw_p (gimple *stmt)
{
if (!flag_exceptions)
return false;
/* The only statements that can throw an exception are assignments,
conditionals, calls, resx, and asms. */
switch (gimple_code (stmt))
{
case GIMPLE_RESX:
return true;
case GIMPLE_CALL:
return !gimple_call_nothrow_p (as_a <gcall *> (stmt));
case GIMPLE_COND:
{
if (!cfun->can_throw_non_call_exceptions)
return false;
gcond *cond = as_a <gcond *> (stmt);
tree lhs = gimple_cond_lhs (cond);
return operation_could_trap_p (gimple_cond_code (cond),
FLOAT_TYPE_P (TREE_TYPE (lhs)),
false, NULL_TREE);
}
case GIMPLE_ASSIGN:
if (!cfun->can_throw_non_call_exceptions
|| gimple_clobber_p (stmt))
return false;
return stmt_could_throw_1_p (as_a <gassign *> (stmt));
case GIMPLE_ASM:
if (!cfun->can_throw_non_call_exceptions)
return false;
return gimple_asm_volatile_p (as_a <gasm *> (stmt));
default:
return false;
}
}
/* Return true if expression T could throw an exception. */
bool
tree_could_throw_p (tree t)
{
if (!flag_exceptions)
return false;
if (TREE_CODE (t) == MODIFY_EXPR)
{
if (cfun->can_throw_non_call_exceptions
&& tree_could_trap_p (TREE_OPERAND (t, 0)))
return true;
t = TREE_OPERAND (t, 1);
}
if (TREE_CODE (t) == WITH_SIZE_EXPR)
t = TREE_OPERAND (t, 0);
if (TREE_CODE (t) == CALL_EXPR)
return (call_expr_flags (t) & ECF_NOTHROW) == 0;
if (cfun->can_throw_non_call_exceptions)
return tree_could_trap_p (t);
return false;
}
/* Return true if STMT can throw an exception that is not caught within
the current function (CFUN). */
bool
stmt_can_throw_external (gimple *stmt)
{
int lp_nr;
if (!stmt_could_throw_p (stmt))
return false;
lp_nr = lookup_stmt_eh_lp (stmt);
return lp_nr == 0;
}
/* Return true if STMT can throw an exception that is caught within
the current function (CFUN). */
bool
stmt_can_throw_internal (gimple *stmt)
{
int lp_nr;
if (!stmt_could_throw_p (stmt))
return false;
lp_nr = lookup_stmt_eh_lp (stmt);
return lp_nr > 0;
}
/* Given a statement STMT in IFUN, if STMT can no longer throw, then
remove any entry it might have from the EH table. Return true if
any change was made. */
bool
maybe_clean_eh_stmt_fn (struct function *ifun, gimple *stmt)
{
if (stmt_could_throw_p (stmt))
return false;
return remove_stmt_from_eh_lp_fn (ifun, stmt);
}
/* Likewise, but always use the current function. */
bool
maybe_clean_eh_stmt (gimple *stmt)
{
return maybe_clean_eh_stmt_fn (cfun, stmt);
}
/* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
in the table if it should be in there. Return TRUE if a replacement was
done that my require an EH edge purge. */
bool
maybe_clean_or_replace_eh_stmt (gimple *old_stmt, gimple *new_stmt)
{
int lp_nr = lookup_stmt_eh_lp (old_stmt);
if (lp_nr != 0)
{
bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
if (new_stmt == old_stmt && new_stmt_could_throw)
return false;
remove_stmt_from_eh_lp (old_stmt);
if (new_stmt_could_throw)
{
add_stmt_to_eh_lp (new_stmt, lp_nr);
return false;
}
else
return true;
}
return false;
}
/* Given a statement OLD_STMT in OLD_FUN and a duplicate statement NEW_STMT
in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
operand is the return value of duplicate_eh_regions. */
bool
maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple *new_stmt,
struct function *old_fun, gimple *old_stmt,
hash_map<void *, void *> *map,
int default_lp_nr)
{
int old_lp_nr, new_lp_nr;
if (!stmt_could_throw_p (new_stmt))
return false;
old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
if (old_lp_nr == 0)
{
if (default_lp_nr == 0)
return false;
new_lp_nr = default_lp_nr;
}
else if (old_lp_nr > 0)
{
eh_landing_pad old_lp, new_lp;
old_lp = (*old_fun->eh->lp_array)[old_lp_nr];
new_lp = static_cast<eh_landing_pad> (*map->get (old_lp));
new_lp_nr = new_lp->index;
}
else
{
eh_region old_r, new_r;
old_r = (*old_fun->eh->region_array)[-old_lp_nr];
new_r = static_cast<eh_region> (*map->get (old_r));
new_lp_nr = -new_r->index;
}
add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
return true;
}
/* Similar, but both OLD_STMT and NEW_STMT are within the current function,
and thus no remapping is required. */
bool
maybe_duplicate_eh_stmt (gimple *new_stmt, gimple *old_stmt)
{
int lp_nr;
if (!stmt_could_throw_p (new_stmt))
return false;
lp_nr = lookup_stmt_eh_lp (old_stmt);
if (lp_nr == 0)
return false;
add_stmt_to_eh_lp (new_stmt, lp_nr);
return true;
}
/* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
GIMPLE_TRY) that are similar enough to be considered the same. Currently
this only handles handlers consisting of a single call, as that's the
important case for C++: a destructor call for a particular object showing
up in multiple handlers. */
static bool
same_handler_p (gimple_seq oneh, gimple_seq twoh)
{
gimple_stmt_iterator gsi;
gimple *ones, *twos;
unsigned int ai;
gsi = gsi_start (oneh);
if (!gsi_one_before_end_p (gsi))
return false;
ones = gsi_stmt (gsi);
gsi = gsi_start (twoh);
if (!gsi_one_before_end_p (gsi))
return false;
twos = gsi_stmt (gsi);
if (!is_gimple_call (ones)
|| !is_gimple_call (twos)
|| gimple_call_lhs (ones)
|| gimple_call_lhs (twos)
|| gimple_call_chain (ones)
|| gimple_call_chain (twos)
|| !gimple_call_same_target_p (ones, twos)
|| gimple_call_num_args (ones) != gimple_call_num_args (twos))
return false;
for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
if (!operand_equal_p (gimple_call_arg (ones, ai),
gimple_call_arg (twos, ai), 0))
return false;
return true;
}
/* Optimize
try { A() } finally { try { ~B() } catch { ~A() } }
try { ... } finally { ~A() }
into
try { A() } catch { ~B() }
try { ~B() ... } finally { ~A() }
This occurs frequently in C++, where A is a local variable and B is a
temporary used in the initializer for A. */
static void
optimize_double_finally (gtry *one, gtry *two)
{
gimple *oneh;
gimple_stmt_iterator gsi;
gimple_seq cleanup;
cleanup = gimple_try_cleanup (one);
gsi = gsi_start (cleanup);
if (!gsi_one_before_end_p (gsi))
return;
oneh = gsi_stmt (gsi);
if (gimple_code (oneh) != GIMPLE_TRY
|| gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
return;
if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
{
gimple_seq seq = gimple_try_eval (oneh);
gimple_try_set_cleanup (one, seq);
gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
seq = copy_gimple_seq_and_replace_locals (seq);
gimple_seq_add_seq (&seq, gimple_try_eval (two));
gimple_try_set_eval (two, seq);
}
}
/* Perform EH refactoring optimizations that are simpler to do when code
flow has been lowered but EH structures haven't. */
static void
refactor_eh_r (gimple_seq seq)
{
gimple_stmt_iterator gsi;
gimple *one, *two;
one = NULL;
two = NULL;
gsi = gsi_start (seq);
while (1)
{
one = two;
if (gsi_end_p (gsi))
two = NULL;
else
two = gsi_stmt (gsi);
if (one && two)
if (gtry *try_one = dyn_cast <gtry *> (one))
if (gtry *try_two = dyn_cast <gtry *> (two))
if (gimple_try_kind (try_one) == GIMPLE_TRY_FINALLY
&& gimple_try_kind (try_two) == GIMPLE_TRY_FINALLY)
optimize_double_finally (try_one, try_two);
if (one)
switch (gimple_code (one))
{
case GIMPLE_TRY:
refactor_eh_r (gimple_try_eval (one));
refactor_eh_r (gimple_try_cleanup (one));
break;
case GIMPLE_CATCH:
refactor_eh_r (gimple_catch_handler (as_a <gcatch *> (one)));
break;
case GIMPLE_EH_FILTER:
refactor_eh_r (gimple_eh_filter_failure (one));
break;
case GIMPLE_EH_ELSE:
{
geh_else *eh_else_stmt = as_a <geh_else *> (one);
refactor_eh_r (gimple_eh_else_n_body (eh_else_stmt));
refactor_eh_r (gimple_eh_else_e_body (eh_else_stmt));
}
break;
default:
break;
}
if (two)
gsi_next (&gsi);
else
break;
}
}
namespace {
const pass_data pass_data_refactor_eh =
{
GIMPLE_PASS, /* type */
"ehopt", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_TREE_EH, /* tv_id */
PROP_gimple_lcf, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_refactor_eh : public gimple_opt_pass
{
public:
pass_refactor_eh (gcc::context *ctxt)
: gimple_opt_pass (pass_data_refactor_eh, ctxt)
{}
/* opt_pass methods: */
virtual bool gate (function *) { return flag_exceptions != 0; }
virtual unsigned int execute (function *)
{
refactor_eh_r (gimple_body (current_function_decl));
return 0;
}
}; // class pass_refactor_eh
} // anon namespace
gimple_opt_pass *
make_pass_refactor_eh (gcc::context *ctxt)
{
return new pass_refactor_eh (ctxt);
}
/* At the end of gimple optimization, we can lower RESX. */
static bool
lower_resx (basic_block bb, gresx *stmt,
hash_map<eh_region, tree> *mnt_map)
{
int lp_nr;
eh_region src_r, dst_r;
gimple_stmt_iterator gsi;
gimple *x;
tree fn, src_nr;
bool ret = false;
lp_nr = lookup_stmt_eh_lp (stmt);
if (lp_nr != 0)
dst_r = get_eh_region_from_lp_number (lp_nr);
else
dst_r = NULL;
src_r = get_eh_region_from_number (gimple_resx_region (stmt));
gsi = gsi_last_bb (bb);
if (src_r == NULL)
{
/* We can wind up with no source region when pass_cleanup_eh shows
that there are no entries into an eh region and deletes it, but
then the block that contains the resx isn't removed. This can
happen without optimization when the switch statement created by
lower_try_finally_switch isn't simplified to remove the eh case.
Resolve this by expanding the resx node to an abort. */
fn = builtin_decl_implicit (BUILT_IN_TRAP);
x = gimple_build_call (fn, 0);
gsi_insert_before (&gsi, x, GSI_SAME_STMT);
while (EDGE_COUNT (bb->succs) > 0)
remove_edge (EDGE_SUCC (bb, 0));
}
else if (dst_r)
{
/* When we have a destination region, we resolve this by copying
the excptr and filter values into place, and changing the edge
to immediately after the landing pad. */
edge e;
if (lp_nr < 0)
{
basic_block new_bb;
tree lab;
/* We are resuming into a MUST_NOT_CALL region. Expand a call to
the failure decl into a new block, if needed. */
gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
tree *slot = mnt_map->get (dst_r);
if (slot == NULL)
{
gimple_stmt_iterator gsi2;
new_bb = create_empty_bb (bb);
add_bb_to_loop (new_bb, bb->loop_father);
lab = gimple_block_label (new_bb);
gsi2 = gsi_start_bb (new_bb);
fn = dst_r->u.must_not_throw.failure_decl;
x = gimple_build_call (fn, 0);
gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
mnt_map->put (dst_r, lab);
}
else
{
lab = *slot;
new_bb = label_to_block (lab);
}
gcc_assert (EDGE_COUNT (bb->succs) == 0);
e = make_edge (bb, new_bb, EDGE_FALLTHRU);
e->count = bb->count;
e->probability = REG_BR_PROB_BASE;
}
else
{
edge_iterator ei;
tree dst_nr = build_int_cst (integer_type_node, dst_r->index);
fn = builtin_decl_implicit (BUILT_IN_EH_COPY_VALUES);
src_nr = build_int_cst (integer_type_node, src_r->index);
x = gimple_build_call (fn, 2, dst_nr, src_nr);
gsi_insert_before (&gsi, x, GSI_SAME_STMT);
/* Update the flags for the outgoing edge. */
e = single_succ_edge (bb);
gcc_assert (e->flags & EDGE_EH);
e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
e->probability = REG_BR_PROB_BASE;
e->count = bb->count;
/* If there are no more EH users of the landing pad, delete it. */
FOR_EACH_EDGE (e, ei, e->dest->preds)
if (e->flags & EDGE_EH)
break;
if (e == NULL)
{
eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
remove_eh_landing_pad (lp);
}
}
ret = true;
}
else
{
tree var;
/* When we don't have a destination region, this exception escapes
up the call chain. We resolve this by generating a call to the
_Unwind_Resume library function. */
/* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
with no arguments for C++ and Java. Check for that. */
if (src_r->use_cxa_end_cleanup)
{
fn = builtin_decl_implicit (BUILT_IN_CXA_END_CLEANUP);
x = gimple_build_call (fn, 0);
gsi_insert_before (&gsi, x, GSI_SAME_STMT);
}
else
{
fn = builtin_decl_implicit (BUILT_IN_EH_POINTER);
src_nr = build_int_cst (integer_type_node, src_r->index);
x = gimple_build_call (fn, 1, src_nr);
var = create_tmp_var (ptr_type_node);
var = make_ssa_name (var, x);
gimple_call_set_lhs (x, var);
gsi_insert_before (&gsi, x, GSI_SAME_STMT);
fn = builtin_decl_implicit (BUILT_IN_UNWIND_RESUME);
x = gimple_build_call (fn, 1, var);
gsi_insert_before (&gsi, x, GSI_SAME_STMT);
}
gcc_assert (EDGE_COUNT (bb->succs) == 0);
}
gsi_remove (&gsi, true);
return ret;
}
namespace {
const pass_data pass_data_lower_resx =
{
GIMPLE_PASS, /* type */
"resx", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_TREE_EH, /* tv_id */
PROP_gimple_lcf, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_lower_resx : public gimple_opt_pass
{
public:
pass_lower_resx (gcc::context *ctxt)
: gimple_opt_pass (pass_data_lower_resx, ctxt)
{}
/* opt_pass methods: */
virtual bool gate (function *) { return flag_exceptions != 0; }
virtual unsigned int execute (function *);
}; // class pass_lower_resx
unsigned
pass_lower_resx::execute (function *fun)
{
basic_block bb;
bool dominance_invalidated = false;
bool any_rewritten = false;
hash_map<eh_region, tree> mnt_map;
FOR_EACH_BB_FN (bb, fun)
{
gimple *last = last_stmt (bb);
if (last && is_gimple_resx (last))
{
dominance_invalidated |=
lower_resx (bb, as_a <gresx *> (last), &mnt_map);
any_rewritten = true;
}
}
if (dominance_invalidated)
{
free_dominance_info (CDI_DOMINATORS);
free_dominance_info (CDI_POST_DOMINATORS);
}
return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
}
} // anon namespace
gimple_opt_pass *
make_pass_lower_resx (gcc::context *ctxt)
{
return new pass_lower_resx (ctxt);
}
/* Try to optimize var = {v} {CLOBBER} stmts followed just by
external throw. */
static void
optimize_clobbers (basic_block bb)
{
gimple_stmt_iterator gsi = gsi_last_bb (bb);
bool any_clobbers = false;
bool seen_stack_restore = false;
edge_iterator ei;
edge e;
/* Only optimize anything if the bb contains at least one clobber,
ends with resx (checked by caller), optionally contains some
debug stmts or labels, or at most one __builtin_stack_restore
call, and has an incoming EH edge. */
for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
if (is_gimple_debug (stmt))
continue;
if (gimple_clobber_p (stmt))
{
any_clobbers = true;
continue;
}
if (!seen_stack_restore
&& gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
{
seen_stack_restore = true;
continue;
}
if (gimple_code (stmt) == GIMPLE_LABEL)
break;
return;
}
if (!any_clobbers)
return;
FOR_EACH_EDGE (e, ei, bb->preds)
if (e->flags & EDGE_EH)
break;
if (e == NULL)
return;
gsi = gsi_last_bb (bb);
for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
if (!gimple_clobber_p (stmt))
continue;
unlink_stmt_vdef (stmt);
gsi_remove (&gsi, true);
release_defs (stmt);
}
}
/* Try to sink var = {v} {CLOBBER} stmts followed just by
internal throw to successor BB. */
static int
sink_clobbers (basic_block bb)
{
edge e;
edge_iterator ei;
gimple_stmt_iterator gsi, dgsi;
basic_block succbb;
bool any_clobbers = false;
unsigned todo = 0;
/* Only optimize if BB has a single EH successor and
all predecessor edges are EH too. */
if (!single_succ_p (bb)
|| (single_succ_edge (bb)->flags & EDGE_EH) == 0)
return 0;
FOR_EACH_EDGE (e, ei, bb->preds)
{
if ((e->flags & EDGE_EH) == 0)
return 0;
}
/* And BB contains only CLOBBER stmts before the final
RESX. */
gsi = gsi_last_bb (bb);
for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
if (is_gimple_debug (stmt))
continue;
if (gimple_code (stmt) == GIMPLE_LABEL)
break;
if (!gimple_clobber_p (stmt))
return 0;
any_clobbers = true;
}
if (!any_clobbers)
return 0;
edge succe = single_succ_edge (bb);
succbb = succe->dest;
/* See if there is a virtual PHI node to take an updated virtual
operand from. */
gphi *vphi = NULL;
tree vuse = NULL_TREE;
for (gphi_iterator gpi = gsi_start_phis (succbb);
!gsi_end_p (gpi); gsi_next (&gpi))
{
tree res = gimple_phi_result (gpi.phi ());
if (virtual_operand_p (res))
{
vphi = gpi.phi ();
vuse = res;
break;
}
}
dgsi = gsi_after_labels (succbb);
gsi = gsi_last_bb (bb);
for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
tree lhs;
if (is_gimple_debug (stmt))
continue;
if (gimple_code (stmt) == GIMPLE_LABEL)
break;
lhs = gimple_assign_lhs (stmt);
/* Unfortunately we don't have dominance info updated at this
point, so checking if
dominated_by_p (CDI_DOMINATORS, succbb,
gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (lhs, 0)))
would be too costly. Thus, avoid sinking any clobbers that
refer to non-(D) SSA_NAMEs. */
if (TREE_CODE (lhs) == MEM_REF
&& TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME
&& !SSA_NAME_IS_DEFAULT_DEF (TREE_OPERAND (lhs, 0)))
{
unlink_stmt_vdef (stmt);
gsi_remove (&gsi, true);
release_defs (stmt);
continue;
}
/* As we do not change stmt order when sinking across a
forwarder edge we can keep virtual operands in place. */
gsi_remove (&gsi, false);
gsi_insert_before (&dgsi, stmt, GSI_NEW_STMT);
/* But adjust virtual operands if we sunk across a PHI node. */
if (vuse)
{
gimple *use_stmt;
imm_use_iterator iter;
use_operand_p use_p;
FOR_EACH_IMM_USE_STMT (use_stmt, iter, vuse)
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
SET_USE (use_p, gimple_vdef (stmt));
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse))
{
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_vdef (stmt)) = 1;
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 0;
}
/* Adjust the incoming virtual operand. */
SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (vphi, succe), gimple_vuse (stmt));
SET_USE (gimple_vuse_op (stmt), vuse);
}
/* If there isn't a single predecessor but no virtual PHI node
arrange for virtual operands to be renamed. */
else if (gimple_vuse_op (stmt) != NULL_USE_OPERAND_P
&& !single_pred_p (succbb))
{
/* In this case there will be no use of the VDEF of this stmt.
??? Unless this is a secondary opportunity and we have not
removed unreachable blocks yet, so we cannot assert this.
Which also means we will end up renaming too many times. */
SET_USE (gimple_vuse_op (stmt), gimple_vop (cfun));
mark_virtual_operands_for_renaming (cfun);
todo |= TODO_update_ssa_only_virtuals;
}
}
return todo;
}
/* At the end of inlining, we can lower EH_DISPATCH. Return true when
we have found some duplicate labels and removed some edges. */
static bool
lower_eh_dispatch (basic_block src, geh_dispatch *stmt)
{
gimple_stmt_iterator gsi;
int region_nr;
eh_region r;
tree filter, fn;
gimple *x;
bool redirected = false;
region_nr = gimple_eh_dispatch_region (stmt);
r = get_eh_region_from_number (region_nr);
gsi = gsi_last_bb (src);
switch (r->type)
{
case ERT_TRY:
{
auto_vec<tree> labels;
tree default_label = NULL;
eh_catch c;
edge_iterator ei;
edge e;
hash_set<tree> seen_values;
/* Collect the labels for a switch. Zero the post_landing_pad
field becase we'll no longer have anything keeping these labels
in existence and the optimizer will be free to merge these
blocks at will. */
for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
{
tree tp_node, flt_node, lab = c->label;
bool have_label = false;
c->label = NULL;
tp_node = c->type_list;
flt_node = c->filter_list;
if (tp_node == NULL)
{
default_label = lab;
break;
}
do
{
/* Filter out duplicate labels that arise when this handler
is shadowed by an earlier one. When no labels are
attached to the handler anymore, we remove
the corresponding edge and then we delete unreachable
blocks at the end of this pass. */
if (! seen_values.contains (TREE_VALUE (flt_node)))
{
tree t = build_case_label (TREE_VALUE (flt_node),
NULL, lab);
labels.safe_push (t);
seen_values.add (TREE_VALUE (flt_node));
have_label = true;
}
tp_node = TREE_CHAIN (tp_node);
flt_node = TREE_CHAIN (flt_node);
}
while (tp_node);
if (! have_label)
{
remove_edge (find_edge (src, label_to_block (lab)));
redirected = true;
}
}
/* Clean up the edge flags. */
FOR_EACH_EDGE (e, ei, src->succs)
{
if (e->flags & EDGE_FALLTHRU)
{
/* If there was no catch-all, use the fallthru edge. */
if (default_label == NULL)
default_label = gimple_block_label (e->dest);
e->flags &= ~EDGE_FALLTHRU;
}
}
gcc_assert (default_label != NULL);
/* Don't generate a switch if there's only a default case.
This is common in the form of try { A; } catch (...) { B; }. */
if (!labels.exists ())
{
e = single_succ_edge (src);
e->flags |= EDGE_FALLTHRU;
}
else
{
fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
region_nr));
filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)));
filter = make_ssa_name (filter, x);
gimple_call_set_lhs (x, filter);
gsi_insert_before (&gsi, x, GSI_SAME_STMT);
/* Turn the default label into a default case. */
default_label = build_case_label (NULL, NULL, default_label);
sort_case_labels (labels);
x = gimple_build_switch (filter, default_label, labels);
gsi_insert_before (&gsi, x, GSI_SAME_STMT);
}
}
break;
case ERT_ALLOWED_EXCEPTIONS:
{
edge b_e = BRANCH_EDGE (src);
edge f_e = FALLTHRU_EDGE (src);
fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
region_nr));
filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)));
filter = make_ssa_name (filter, x);
gimple_call_set_lhs (x, filter);
gsi_insert_before (&gsi, x, GSI_SAME_STMT);
r->u.allowed.label = NULL;
x = gimple_build_cond (EQ_EXPR, filter,
build_int_cst (TREE_TYPE (filter),
r->u.allowed.filter),
NULL_TREE, NULL_TREE);
gsi_insert_before (&gsi, x, GSI_SAME_STMT);
b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
}
break;
default:
gcc_unreachable ();
}
/* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
gsi_remove (&gsi, true);
return redirected;
}
namespace {
const pass_data pass_data_lower_eh_dispatch =
{
GIMPLE_PASS, /* type */
"ehdisp", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_TREE_EH, /* tv_id */
PROP_gimple_lcf, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_lower_eh_dispatch : public gimple_opt_pass
{
public:
pass_lower_eh_dispatch (gcc::context *ctxt)
: gimple_opt_pass (pass_data_lower_eh_dispatch, ctxt)
{}
/* opt_pass methods: */
virtual bool gate (function *fun) { return fun->eh->region_tree != NULL; }
virtual unsigned int execute (function *);
}; // class pass_lower_eh_dispatch
unsigned
pass_lower_eh_dispatch::execute (function *fun)
{
basic_block bb;
int flags = 0;
bool redirected = false;
assign_filter_values ();
FOR_EACH_BB_FN (bb, fun)
{
gimple *last = last_stmt (bb);
if (last == NULL)
continue;
if (gimple_code (last) == GIMPLE_EH_DISPATCH)
{
redirected |= lower_eh_dispatch (bb,
as_a <geh_dispatch *> (last));
flags |= TODO_update_ssa_only_virtuals;
}
else if (gimple_code (last) == GIMPLE_RESX)
{
if (stmt_can_throw_external (last))
optimize_clobbers (bb);
else
flags |= sink_clobbers (bb);
}
}
if (redirected)
delete_unreachable_blocks ();
return flags;
}
} // anon namespace
gimple_opt_pass *
make_pass_lower_eh_dispatch (gcc::context *ctxt)
{
return new pass_lower_eh_dispatch (ctxt);
}
/* Walk statements, see what regions and, optionally, landing pads
are really referenced.
Returns in R_REACHABLEP an sbitmap with bits set for reachable regions,
and in LP_REACHABLE an sbitmap with bits set for reachable landing pads.
Passing NULL for LP_REACHABLE is valid, in this case only reachable
regions are marked.
The caller is responsible for freeing the returned sbitmaps. */
static void
mark_reachable_handlers (sbitmap *r_reachablep, sbitmap *lp_reachablep)
{
sbitmap r_reachable, lp_reachable;
basic_block bb;
bool mark_landing_pads = (lp_reachablep != NULL);
gcc_checking_assert (r_reachablep != NULL);
r_reachable = sbitmap_alloc (cfun->eh->region_array->length ());
bitmap_clear (r_reachable);
*r_reachablep = r_reachable;
if (mark_landing_pads)
{
lp_reachable = sbitmap_alloc (cfun->eh->lp_array->length ());
bitmap_clear (lp_reachable);
*lp_reachablep = lp_reachable;
}
else
lp_reachable = NULL;
FOR_EACH_BB_FN (bb, cfun)
{
gimple_stmt_iterator gsi;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
if (mark_landing_pads)
{
int lp_nr = lookup_stmt_eh_lp (stmt);
/* Negative LP numbers are MUST_NOT_THROW regions which
are not considered BB enders. */
if (lp_nr < 0)
bitmap_set_bit (r_reachable, -lp_nr);
/* Positive LP numbers are real landing pads, and BB enders. */
else if (lp_nr > 0)
{
gcc_assert (gsi_one_before_end_p (gsi));
eh_region region = get_eh_region_from_lp_number (lp_nr);
bitmap_set_bit (r_reachable, region->index);
bitmap_set_bit (lp_reachable, lp_nr);
}
}
/* Avoid removing regions referenced from RESX/EH_DISPATCH. */
switch (gimple_code (stmt))
{
case GIMPLE_RESX:
bitmap_set_bit (r_reachable,
gimple_resx_region (as_a <gresx *> (stmt)));
break;
case GIMPLE_EH_DISPATCH:
bitmap_set_bit (r_reachable,
gimple_eh_dispatch_region (
as_a <geh_dispatch *> (stmt)));
break;
case GIMPLE_CALL:
if (gimple_call_builtin_p (stmt, BUILT_IN_EH_COPY_VALUES))
for (int i = 0; i < 2; ++i)
{
tree rt = gimple_call_arg (stmt, i);
HOST_WIDE_INT ri = tree_to_shwi (rt);
gcc_assert (ri == (int)ri);
bitmap_set_bit (r_reachable, ri);
}
break;
default:
break;
}
}
}
}
/* Remove unreachable handlers and unreachable landing pads. */
static void
remove_unreachable_handlers (void)
{
sbitmap r_reachable, lp_reachable;
eh_region region;
eh_landing_pad lp;
unsigned i;
mark_reachable_handlers (&r_reachable, &lp_reachable);
if (dump_file)
{
fprintf (dump_file, "Before removal of unreachable regions:\n");
dump_eh_tree (dump_file, cfun);
fprintf (dump_file, "Reachable regions: ");
dump_bitmap_file (dump_file, r_reachable);
fprintf (dump_file, "Reachable landing pads: ");
dump_bitmap_file (dump_file, lp_reachable);
}
if (dump_file)
{
FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
if (region && !bitmap_bit_p (r_reachable, region->index))
fprintf (dump_file,
"Removing unreachable region %d\n",
region->index);
}
remove_unreachable_eh_regions (r_reachable);
FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
if (lp && !bitmap_bit_p (lp_reachable, lp->index))
{
if (dump_file)
fprintf (dump_file,
"Removing unreachable landing pad %d\n",
lp->index);
remove_eh_landing_pad (lp);
}
if (dump_file)
{
fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
dump_eh_tree (dump_file, cfun);
fprintf (dump_file, "\n\n");
}
sbitmap_free (r_reachable);
sbitmap_free (lp_reachable);
if (flag_checking)
verify_eh_tree (cfun);
}
/* Remove unreachable handlers if any landing pads have been removed after
last ehcleanup pass (due to gimple_purge_dead_eh_edges). */
void
maybe_remove_unreachable_handlers (void)
{
eh_landing_pad lp;
unsigned i;
if (cfun->eh == NULL)
return;
FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
if (lp && lp->post_landing_pad)
{
if (label_to_block (lp->post_landing_pad) == NULL)
{
remove_unreachable_handlers ();
return;
}
}
}
/* Remove regions that do not have landing pads. This assumes
that remove_unreachable_handlers has already been run, and
that we've just manipulated the landing pads since then.
Preserve regions with landing pads and regions that prevent
exceptions from propagating further, even if these regions
are not reachable. */
static void
remove_unreachable_handlers_no_lp (void)
{
eh_region region;
sbitmap r_reachable;
unsigned i;
mark_reachable_handlers (&r_reachable, /*lp_reachablep=*/NULL);
FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
{
if (! region)
continue;
if (region->landing_pads != NULL
|| region->type == ERT_MUST_NOT_THROW)
bitmap_set_bit (r_reachable, region->index);
if (dump_file
&& !bitmap_bit_p (r_reachable, region->index))
fprintf (dump_file,
"Removing unreachable region %d\n",
region->index);
}
remove_unreachable_eh_regions (r_reachable);
sbitmap_free (r_reachable);
}
/* Undo critical edge splitting on an EH landing pad. Earlier, we
optimisticaly split all sorts of edges, including EH edges. The
optimization passes in between may not have needed them; if not,
we should undo the split.
Recognize this case by having one EH edge incoming to the BB and
one normal edge outgoing; BB should be empty apart from the
post_landing_pad label.
Note that this is slightly different from the empty handler case
handled by cleanup_empty_eh, in that the actual handler may yet
have actual code but the landing pad has been separated from the
handler. As such, cleanup_empty_eh relies on this transformation
having been done first. */
static bool
unsplit_eh (eh_landing_pad lp)
{
basic_block bb = label_to_block (lp->post_landing_pad);
gimple_stmt_iterator gsi;
edge e_in, e_out;
/* Quickly check the edge counts on BB for singularity. */
if (!single_pred_p (bb) || !single_succ_p (bb))
return false;
e_in = single_pred_edge (bb);
e_out = single_succ_edge (bb);
/* Input edge must be EH and output edge must be normal. */
if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
return false;
/* The block must be empty except for the labels and debug insns. */
gsi = gsi_after_labels (bb);
if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
gsi_next_nondebug (&gsi);
if (!gsi_end_p (gsi))
return false;
/* The destination block must not already have a landing pad
for a different region. */
for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
{
glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
tree lab;
int lp_nr;
if (!label_stmt)
break;
lab = gimple_label_label (label_stmt);
lp_nr = EH_LANDING_PAD_NR (lab);
if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
return false;
}
/* The new destination block must not already be a destination of
the source block, lest we merge fallthru and eh edges and get
all sorts of confused. */
if (find_edge (e_in->src, e_out->dest))
return false;
/* ??? We can get degenerate phis due to cfg cleanups. I would have
thought this should have been cleaned up by a phicprop pass, but
that doesn't appear to handle virtuals. Propagate by hand. */
if (!gimple_seq_empty_p (phi_nodes (bb)))
{
for (gphi_iterator gpi = gsi_start_phis (bb); !gsi_end_p (gpi); )
{
gimple *use_stmt;
gphi *phi = gpi.phi ();
tree lhs = gimple_phi_result (phi);
tree rhs = gimple_phi_arg_def (phi, 0);
use_operand_p use_p;
imm_use_iterator iter;
FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
{
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
SET_USE (use_p, rhs);
}
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
remove_phi_node (&gpi, true);
}
}
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
lp->index, e_out->dest->index);
/* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
a successor edge, humor it. But do the real CFG change with the
predecessor of E_OUT in order to preserve the ordering of arguments
to the PHI nodes in E_OUT->DEST. */
redirect_eh_edge_1 (e_in, e_out->dest, false);
redirect_edge_pred (e_out, e_in->src);
e_out->flags = e_in->flags;
e_out->probability = e_in->probability;
e_out->count = e_in->count;
remove_edge (e_in);
return true;
}
/* Examine each landing pad block and see if it matches unsplit_eh. */
static bool
unsplit_all_eh (void)
{
bool changed = false;
eh_landing_pad lp;
int i;
for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
if (lp)
changed |= unsplit_eh (lp);
return changed;
}
/* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
to OLD_BB to NEW_BB; return true on success, false on failure.
OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
Virtual PHIs may be deleted and marked for renaming. */
static bool
cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
edge old_bb_out, bool change_region)
{
gphi_iterator ngsi, ogsi;
edge_iterator ei;
edge e;
bitmap ophi_handled;
/* The destination block must not be a regular successor for any
of the preds of the landing pad. Thus, avoid turning
<..>
| \ EH
| <..>
| /
<..>
into
<..>
| | EH
<..>
which CFG verification would choke on. See PR45172 and PR51089. */
FOR_EACH_EDGE (e, ei, old_bb->preds)
if (find_edge (e->src, new_bb))
return false;
FOR_EACH_EDGE (e, ei, old_bb->preds)
redirect_edge_var_map_clear (e);
ophi_handled = BITMAP_ALLOC (NULL);
/* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
for the edges we're going to move. */
for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
{
gphi *ophi, *nphi = ngsi.phi ();
tree nresult, nop;
nresult = gimple_phi_result (nphi);
nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
/* Find the corresponding PHI in OLD_BB so we can forward-propagate
the source ssa_name. */
ophi = NULL;
for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
{
ophi = ogsi.phi ();
if (gimple_phi_result (ophi) == nop)
break;
ophi = NULL;
}
/* If we did find the corresponding PHI, copy those inputs. */
if (ophi)
{
/* If NOP is used somewhere else beyond phis in new_bb, give up. */
if (!has_single_use (nop))
{
imm_use_iterator imm_iter;
use_operand_p use_p;
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, nop)
{
if (!gimple_debug_bind_p (USE_STMT (use_p))
&& (gimple_code (USE_STMT (use_p)) != GIMPLE_PHI
|| gimple_bb (USE_STMT (use_p)) != new_bb))
goto fail;
}
}
bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
FOR_EACH_EDGE (e, ei, old_bb->preds)
{
location_t oloc;
tree oop;
if ((e->flags & EDGE_EH) == 0)
continue;
oop = gimple_phi_arg_def (ophi, e->dest_idx);
oloc = gimple_phi_arg_location (ophi, e->dest_idx);
redirect_edge_var_map_add (e, nresult, oop, oloc);
}
}
/* If we didn't find the PHI, if it's a real variable or a VOP, we know
from the fact that OLD_BB is tree_empty_eh_handler_p that the
variable is unchanged from input to the block and we can simply
re-use the input to NEW_BB from the OLD_BB_OUT edge. */
else
{
location_t nloc
= gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
FOR_EACH_EDGE (e, ei, old_bb->preds)
redirect_edge_var_map_add (e, nresult, nop, nloc);
}
}
/* Second, verify that all PHIs from OLD_BB have been handled. If not,
we don't know what values from the other edges into NEW_BB to use. */
for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
{
gphi *ophi = ogsi.phi ();
tree oresult = gimple_phi_result (ophi);
if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
goto fail;
}
/* Finally, move the edges and update the PHIs. */
for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
if (e->flags & EDGE_EH)
{
/* ??? CFG manipluation routines do not try to update loop
form on edge redirection. Do so manually here for now. */
/* If we redirect a loop entry or latch edge that will either create
a multiple entry loop or rotate the loop. If the loops merge
we may have created a loop with multiple latches.
All of this isn't easily fixed thus cancel the affected loop
and mark the other loop as possibly having multiple latches. */
if (e->dest == e->dest->loop_father->header)
{
mark_loop_for_removal (e->dest->loop_father);
new_bb->loop_father->latch = NULL;
loops_state_set (LOOPS_MAY_HAVE_MULTIPLE_LATCHES);
}
redirect_eh_edge_1 (e, new_bb, change_region);
redirect_edge_succ (e, new_bb);
flush_pending_stmts (e);
}
else
ei_next (&ei);
BITMAP_FREE (ophi_handled);
return true;
fail:
FOR_EACH_EDGE (e, ei, old_bb->preds)
redirect_edge_var_map_clear (e);
BITMAP_FREE (ophi_handled);
return false;
}
/* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
old region to NEW_REGION at BB. */
static void
cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
eh_landing_pad lp, eh_region new_region)
{
gimple_stmt_iterator gsi;
eh_landing_pad *pp;
for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
continue;
*pp = lp->next_lp;
lp->region = new_region;
lp->next_lp = new_region->landing_pads;
new_region->landing_pads = lp;
/* Delete the RESX that was matched within the empty handler block. */
gsi = gsi_last_bb (bb);
unlink_stmt_vdef (gsi_stmt (gsi));
gsi_remove (&gsi, true);
/* Clean up E_OUT for the fallthru. */
e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
e_out->probability = REG_BR_PROB_BASE;
e_out->count = e_out->src->count;
}
/* A subroutine of cleanup_empty_eh. Handle more complex cases of
unsplitting than unsplit_eh was prepared to handle, e.g. when
multiple incoming edges and phis are involved. */
static bool
cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
{
gimple_stmt_iterator gsi;
tree lab;
/* We really ought not have totally lost everything following
a landing pad label. Given that BB is empty, there had better
be a successor. */
gcc_assert (e_out != NULL);
/* The destination block must not already have a landing pad
for a different region. */
lab = NULL;
for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
{
glabel *stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
int lp_nr;
if (!stmt)
break;
lab = gimple_label_label (stmt);
lp_nr = EH_LANDING_PAD_NR (lab);
if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
return false;
}
/* Attempt to move the PHIs into the successor block. */
if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Unsplit EH landing pad %d to block %i "
"(via cleanup_empty_eh).\n",
lp->index, e_out->dest->index);
return true;
}
return false;
}
/* Return true if edge E_FIRST is part of an empty infinite loop
or leads to such a loop through a series of single successor
empty bbs. */
static bool
infinite_empty_loop_p (edge e_first)
{
bool inf_loop = false;
edge e;
if (e_first->dest == e_first->src)
return true;
e_first->src->aux = (void *) 1;
for (e = e_first; single_succ_p (e->dest); e = single_succ_edge (e->dest))
{
gimple_stmt_iterator gsi;
if (e->dest->aux)
{
inf_loop = true;
break;
}
e->dest->aux = (void *) 1;
gsi = gsi_after_labels (e->dest);
if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
gsi_next_nondebug (&gsi);
if (!gsi_end_p (gsi))
break;
}
e_first->src->aux = NULL;
for (e = e_first; e->dest->aux; e = single_succ_edge (e->dest))
e->dest->aux = NULL;
return inf_loop;
}
/* Examine the block associated with LP to determine if it's an empty
handler for its EH region. If so, attempt to redirect EH edges to
an outer region. Return true the CFG was updated in any way. This
is similar to jump forwarding, just across EH edges. */
static bool
cleanup_empty_eh (eh_landing_pad lp)
{
basic_block bb = label_to_block (lp->post_landing_pad);
gimple_stmt_iterator gsi;
gimple *resx;
eh_region new_region;
edge_iterator ei;
edge e, e_out;
bool has_non_eh_pred;
bool ret = false;
int new_lp_nr;
/* There can be zero or one edges out of BB. This is the quickest test. */
switch (EDGE_COUNT (bb->succs))
{
case 0:
e_out = NULL;
break;
case 1:
e_out = single_succ_edge (bb);
break;
default:
return false;
}
gsi = gsi_last_nondebug_bb (bb);
resx = gsi_stmt (gsi);
if (resx && is_gimple_resx (resx))
{
if (stmt_can_throw_external (resx))
optimize_clobbers (bb);
else if (sink_clobbers (bb))
ret = true;
}
gsi = gsi_after_labels (bb);
/* Make sure to skip debug statements. */
if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
gsi_next_nondebug (&gsi);
/* If the block is totally empty, look for more unsplitting cases. */
if (gsi_end_p (gsi))
{
/* For the degenerate case of an infinite loop bail out.
If bb has no successors and is totally empty, which can happen e.g.
because of incorrect noreturn attribute, bail out too. */
if (e_out == NULL
|| infinite_empty_loop_p (e_out))
return ret;
return ret | cleanup_empty_eh_unsplit (bb, e_out, lp);
}
/* The block should consist only of a single RESX statement, modulo a
preceding call to __builtin_stack_restore if there is no outgoing
edge, since the call can be eliminated in this case. */
resx = gsi_stmt (gsi);
if (!e_out && gimple_call_builtin_p (resx, BUILT_IN_STACK_RESTORE))
{
gsi_next_nondebug (&gsi);
resx = gsi_stmt (gsi);
}
if (!is_gimple_resx (resx))
return ret;
gcc_assert (gsi_one_nondebug_before_end_p (gsi));
/* Determine if there are non-EH edges, or resx edges into the handler. */
has_non_eh_pred = false;
FOR_EACH_EDGE (e, ei, bb->preds)
if (!(e->flags & EDGE_EH))
has_non_eh_pred = true;
/* Find the handler that's outer of the empty handler by looking at
where the RESX instruction was vectored. */
new_lp_nr = lookup_stmt_eh_lp (resx);
new_region = get_eh_region_from_lp_number (new_lp_nr);
/* If there's no destination region within the current function,
redirection is trivial via removing the throwing statements from
the EH region, removing the EH edges, and allowing the block
to go unreachable. */
if (new_region == NULL)
{
gcc_assert (e_out == NULL);
for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
if (e->flags & EDGE_EH)
{
gimple *stmt = last_stmt (e->src);
remove_stmt_from_eh_lp (stmt);
remove_edge (e);
}
else
ei_next (&ei);
goto succeed;
}
/* If the destination region is a MUST_NOT_THROW, allow the runtime
to handle the abort and allow the blocks to go unreachable. */
if (new_region->type == ERT_MUST_NOT_THROW)
{
for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
if (e->flags & EDGE_EH)
{
gimple *stmt = last_stmt (e->src);
remove_stmt_from_eh_lp (stmt);
add_stmt_to_eh_lp (stmt, new_lp_nr);
remove_edge (e);
}
else
ei_next (&ei);
goto succeed;
}
/* Try to redirect the EH edges and merge the PHIs into the destination
landing pad block. If the merge succeeds, we'll already have redirected
all the EH edges. The handler itself will go unreachable if there were
no normal edges. */
if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
goto succeed;
/* Finally, if all input edges are EH edges, then we can (potentially)
reduce the number of transfers from the runtime by moving the landing
pad from the original region to the new region. This is a win when
we remove the last CLEANUP region along a particular exception
propagation path. Since nothing changes except for the region with
which the landing pad is associated, the PHI nodes do not need to be
adjusted at all. */
if (!has_non_eh_pred)
{
cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
lp->index, new_region->index);
/* ??? The CFG didn't change, but we may have rendered the
old EH region unreachable. Trigger a cleanup there. */
return true;
}
return ret;
succeed:
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
remove_eh_landing_pad (lp);
return true;
}
/* Do a post-order traversal of the EH region tree. Examine each
post_landing_pad block and see if we can eliminate it as empty. */
static bool
cleanup_all_empty_eh (void)
{
bool changed = false;
eh_landing_pad lp;
int i;
for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
if (lp)
changed |= cleanup_empty_eh (lp);
return changed;
}
/* Perform cleanups and lowering of exception handling
1) cleanups regions with handlers doing nothing are optimized out
2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
3) Info about regions that are containing instructions, and regions
reachable via local EH edges is collected
4) Eh tree is pruned for regions no longer necessary.
TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
Unify those that have the same failure decl and locus.
*/
static unsigned int
execute_cleanup_eh_1 (void)
{
/* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
looking up unreachable landing pads. */
remove_unreachable_handlers ();
/* Watch out for the region tree vanishing due to all unreachable. */
if (cfun->eh->region_tree)
{
bool changed = false;
if (optimize)
changed |= unsplit_all_eh ();
changed |= cleanup_all_empty_eh ();
if (changed)
{
free_dominance_info (CDI_DOMINATORS);
free_dominance_info (CDI_POST_DOMINATORS);
/* We delayed all basic block deletion, as we may have performed
cleanups on EH edges while non-EH edges were still present. */
delete_unreachable_blocks ();
/* We manipulated the landing pads. Remove any region that no
longer has a landing pad. */
remove_unreachable_handlers_no_lp ();
return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
}
}
return 0;
}
namespace {
const pass_data pass_data_cleanup_eh =
{
GIMPLE_PASS, /* type */
"ehcleanup", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_TREE_EH, /* tv_id */
PROP_gimple_lcf, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_cleanup_eh : public gimple_opt_pass
{
public:
pass_cleanup_eh (gcc::context *ctxt)
: gimple_opt_pass (pass_data_cleanup_eh, ctxt)
{}
/* opt_pass methods: */
opt_pass * clone () { return new pass_cleanup_eh (m_ctxt); }
virtual bool gate (function *fun)
{
return fun->eh != NULL && fun->eh->region_tree != NULL;
}
virtual unsigned int execute (function *);
}; // class pass_cleanup_eh
unsigned int
pass_cleanup_eh::execute (function *fun)
{
int ret = execute_cleanup_eh_1 ();
/* If the function no longer needs an EH personality routine
clear it. This exposes cross-language inlining opportunities
and avoids references to a never defined personality routine. */
if (DECL_FUNCTION_PERSONALITY (current_function_decl)
&& function_needs_eh_personality (fun) != eh_personality_lang)
DECL_FUNCTION_PERSONALITY (current_function_decl) = NULL_TREE;
return ret;
}
} // anon namespace
gimple_opt_pass *
make_pass_cleanup_eh (gcc::context *ctxt)
{
return new pass_cleanup_eh (ctxt);
}
/* Verify that BB containing STMT as the last statement, has precisely the
edge that make_eh_edges would create. */
DEBUG_FUNCTION bool
verify_eh_edges (gimple *stmt)
{
basic_block bb = gimple_bb (stmt);
eh_landing_pad lp = NULL;
int lp_nr;
edge_iterator ei;
edge e, eh_edge;
lp_nr = lookup_stmt_eh_lp (stmt);
if (lp_nr > 0)
lp = get_eh_landing_pad_from_number (lp_nr);
eh_edge = NULL;
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (e->flags & EDGE_EH)
{
if (eh_edge)
{
error ("BB %i has multiple EH edges", bb->index);
return true;
}
else
eh_edge = e;
}
}
if (lp == NULL)
{
if (eh_edge)
{
error ("BB %i can not throw but has an EH edge", bb->index);
return true;
}
return false;
}
if (!stmt_could_throw_p (stmt))
{
error ("BB %i last statement has incorrectly set lp", bb->index);
return true;
}
if (eh_edge == NULL)
{
error ("BB %i is missing an EH edge", bb->index);
return true;
}
if (eh_edge->dest != label_to_block (lp->post_landing_pad))
{
error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
return true;
}
return false;
}
/* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
DEBUG_FUNCTION bool
verify_eh_dispatch_edge (geh_dispatch *stmt)
{
eh_region r;
eh_catch c;
basic_block src, dst;
bool want_fallthru = true;
edge_iterator ei;
edge e, fall_edge;
r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
src = gimple_bb (stmt);
FOR_EACH_EDGE (e, ei, src->succs)
gcc_assert (e->aux == NULL);
switch (r->type)
{
case ERT_TRY:
for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
{
dst = label_to_block (c->label);
e = find_edge (src, dst);
if (e == NULL)
{
error ("BB %i is missing an edge", src->index);
return true;
}
e->aux = (void *)e;
/* A catch-all handler doesn't have a fallthru. */
if (c->type_list == NULL)
{
want_fallthru = false;
break;
}
}
break;
case ERT_ALLOWED_EXCEPTIONS:
dst = label_to_block (r->u.allowed.label);
e = find_edge (src, dst);
if (e == NULL)
{
error ("BB %i is missing an edge", src->index);
return true;
}
e->aux = (void *)e;
break;
default:
gcc_unreachable ();
}
fall_edge = NULL;
FOR_EACH_EDGE (e, ei, src->succs)
{
if (e->flags & EDGE_FALLTHRU)
{
if (fall_edge != NULL)
{
error ("BB %i too many fallthru edges", src->index);
return true;
}
fall_edge = e;
}
else if (e->aux)
e->aux = NULL;
else
{
error ("BB %i has incorrect edge", src->index);
return true;
}
}
if ((fall_edge != NULL) ^ want_fallthru)
{
error ("BB %i has incorrect fallthru edge", src->index);
return true;
}
return false;
}
|