1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
|
/* Data references and dependences detectors.
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
Free Software Foundation, Inc.
Contributed by Sebastian Pop <pop@cri.ensmp.fr>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* This pass walks a given loop structure searching for array
references. The information about the array accesses is recorded
in DATA_REFERENCE structures.
The basic test for determining the dependences is:
given two access functions chrec1 and chrec2 to a same array, and
x and y two vectors from the iteration domain, the same element of
the array is accessed twice at iterations x and y if and only if:
| chrec1 (x) == chrec2 (y).
The goals of this analysis are:
- to determine the independence: the relation between two
independent accesses is qualified with the chrec_known (this
information allows a loop parallelization),
- when two data references access the same data, to qualify the
dependence relation with classic dependence representations:
- distance vectors
- direction vectors
- loop carried level dependence
- polyhedron dependence
or with the chains of recurrences based representation,
- to define a knowledge base for storing the data dependence
information,
- to define an interface to access this data.
Definitions:
- subscript: given two array accesses a subscript is the tuple
composed of the access functions for a given dimension. Example:
Given A[f1][f2][f3] and B[g1][g2][g3], there are three subscripts:
(f1, g1), (f2, g2), (f3, g3).
- Diophantine equation: an equation whose coefficients and
solutions are integer constants, for example the equation
| 3*x + 2*y = 1
has an integer solution x = 1 and y = -1.
References:
- "Advanced Compilation for High Performance Computing" by Randy
Allen and Ken Kennedy.
http://citeseer.ist.psu.edu/goff91practical.html
- "Loop Transformations for Restructuring Compilers - The Foundations"
by Utpal Banerjee.
*/
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "gimple-pretty-print.h"
#include "tree-flow.h"
#include "cfgloop.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "tree-pass.h"
#include "langhooks.h"
static struct datadep_stats
{
int num_dependence_tests;
int num_dependence_dependent;
int num_dependence_independent;
int num_dependence_undetermined;
int num_subscript_tests;
int num_subscript_undetermined;
int num_same_subscript_function;
int num_ziv;
int num_ziv_independent;
int num_ziv_dependent;
int num_ziv_unimplemented;
int num_siv;
int num_siv_independent;
int num_siv_dependent;
int num_siv_unimplemented;
int num_miv;
int num_miv_independent;
int num_miv_dependent;
int num_miv_unimplemented;
} dependence_stats;
static bool subscript_dependence_tester_1 (struct data_dependence_relation *,
struct data_reference *,
struct data_reference *,
struct loop *);
/* Returns true iff A divides B. */
static inline bool
tree_fold_divides_p (const_tree a, const_tree b)
{
gcc_assert (TREE_CODE (a) == INTEGER_CST);
gcc_assert (TREE_CODE (b) == INTEGER_CST);
return integer_zerop (int_const_binop (TRUNC_MOD_EXPR, b, a));
}
/* Returns true iff A divides B. */
static inline bool
int_divides_p (int a, int b)
{
return ((b % a) == 0);
}
/* Dump into FILE all the data references from DATAREFS. */
void
dump_data_references (FILE *file, VEC (data_reference_p, heap) *datarefs)
{
unsigned int i;
struct data_reference *dr;
FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
dump_data_reference (file, dr);
}
/* Dump into STDERR all the data references from DATAREFS. */
DEBUG_FUNCTION void
debug_data_references (VEC (data_reference_p, heap) *datarefs)
{
dump_data_references (stderr, datarefs);
}
/* Dump to STDERR all the dependence relations from DDRS. */
DEBUG_FUNCTION void
debug_data_dependence_relations (VEC (ddr_p, heap) *ddrs)
{
dump_data_dependence_relations (stderr, ddrs);
}
/* Dump into FILE all the dependence relations from DDRS. */
void
dump_data_dependence_relations (FILE *file,
VEC (ddr_p, heap) *ddrs)
{
unsigned int i;
struct data_dependence_relation *ddr;
FOR_EACH_VEC_ELT (ddr_p, ddrs, i, ddr)
dump_data_dependence_relation (file, ddr);
}
/* Print to STDERR the data_reference DR. */
DEBUG_FUNCTION void
debug_data_reference (struct data_reference *dr)
{
dump_data_reference (stderr, dr);
}
/* Dump function for a DATA_REFERENCE structure. */
void
dump_data_reference (FILE *outf,
struct data_reference *dr)
{
unsigned int i;
fprintf (outf, "#(Data Ref: \n");
fprintf (outf, "# bb: %d \n", gimple_bb (DR_STMT (dr))->index);
fprintf (outf, "# stmt: ");
print_gimple_stmt (outf, DR_STMT (dr), 0, 0);
fprintf (outf, "# ref: ");
print_generic_stmt (outf, DR_REF (dr), 0);
fprintf (outf, "# base_object: ");
print_generic_stmt (outf, DR_BASE_OBJECT (dr), 0);
for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
{
fprintf (outf, "# Access function %d: ", i);
print_generic_stmt (outf, DR_ACCESS_FN (dr, i), 0);
}
fprintf (outf, "#)\n");
}
/* Dumps the affine function described by FN to the file OUTF. */
static void
dump_affine_function (FILE *outf, affine_fn fn)
{
unsigned i;
tree coef;
print_generic_expr (outf, VEC_index (tree, fn, 0), TDF_SLIM);
for (i = 1; VEC_iterate (tree, fn, i, coef); i++)
{
fprintf (outf, " + ");
print_generic_expr (outf, coef, TDF_SLIM);
fprintf (outf, " * x_%u", i);
}
}
/* Dumps the conflict function CF to the file OUTF. */
static void
dump_conflict_function (FILE *outf, conflict_function *cf)
{
unsigned i;
if (cf->n == NO_DEPENDENCE)
fprintf (outf, "no dependence\n");
else if (cf->n == NOT_KNOWN)
fprintf (outf, "not known\n");
else
{
for (i = 0; i < cf->n; i++)
{
fprintf (outf, "[");
dump_affine_function (outf, cf->fns[i]);
fprintf (outf, "]\n");
}
}
}
/* Dump function for a SUBSCRIPT structure. */
void
dump_subscript (FILE *outf, struct subscript *subscript)
{
conflict_function *cf = SUB_CONFLICTS_IN_A (subscript);
fprintf (outf, "\n (subscript \n");
fprintf (outf, " iterations_that_access_an_element_twice_in_A: ");
dump_conflict_function (outf, cf);
if (CF_NONTRIVIAL_P (cf))
{
tree last_iteration = SUB_LAST_CONFLICT (subscript);
fprintf (outf, " last_conflict: ");
print_generic_stmt (outf, last_iteration, 0);
}
cf = SUB_CONFLICTS_IN_B (subscript);
fprintf (outf, " iterations_that_access_an_element_twice_in_B: ");
dump_conflict_function (outf, cf);
if (CF_NONTRIVIAL_P (cf))
{
tree last_iteration = SUB_LAST_CONFLICT (subscript);
fprintf (outf, " last_conflict: ");
print_generic_stmt (outf, last_iteration, 0);
}
fprintf (outf, " (Subscript distance: ");
print_generic_stmt (outf, SUB_DISTANCE (subscript), 0);
fprintf (outf, " )\n");
fprintf (outf, " )\n");
}
/* Print the classic direction vector DIRV to OUTF. */
void
print_direction_vector (FILE *outf,
lambda_vector dirv,
int length)
{
int eq;
for (eq = 0; eq < length; eq++)
{
enum data_dependence_direction dir = ((enum data_dependence_direction)
dirv[eq]);
switch (dir)
{
case dir_positive:
fprintf (outf, " +");
break;
case dir_negative:
fprintf (outf, " -");
break;
case dir_equal:
fprintf (outf, " =");
break;
case dir_positive_or_equal:
fprintf (outf, " +=");
break;
case dir_positive_or_negative:
fprintf (outf, " +-");
break;
case dir_negative_or_equal:
fprintf (outf, " -=");
break;
case dir_star:
fprintf (outf, " *");
break;
default:
fprintf (outf, "indep");
break;
}
}
fprintf (outf, "\n");
}
/* Print a vector of direction vectors. */
void
print_dir_vectors (FILE *outf, VEC (lambda_vector, heap) *dir_vects,
int length)
{
unsigned j;
lambda_vector v;
FOR_EACH_VEC_ELT (lambda_vector, dir_vects, j, v)
print_direction_vector (outf, v, length);
}
/* Print out a vector VEC of length N to OUTFILE. */
static inline void
print_lambda_vector (FILE * outfile, lambda_vector vector, int n)
{
int i;
for (i = 0; i < n; i++)
fprintf (outfile, "%3d ", vector[i]);
fprintf (outfile, "\n");
}
/* Print a vector of distance vectors. */
void
print_dist_vectors (FILE *outf, VEC (lambda_vector, heap) *dist_vects,
int length)
{
unsigned j;
lambda_vector v;
FOR_EACH_VEC_ELT (lambda_vector, dist_vects, j, v)
print_lambda_vector (outf, v, length);
}
/* Debug version. */
DEBUG_FUNCTION void
debug_data_dependence_relation (struct data_dependence_relation *ddr)
{
dump_data_dependence_relation (stderr, ddr);
}
/* Dump function for a DATA_DEPENDENCE_RELATION structure. */
void
dump_data_dependence_relation (FILE *outf,
struct data_dependence_relation *ddr)
{
struct data_reference *dra, *drb;
fprintf (outf, "(Data Dep: \n");
if (!ddr || DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
{
if (ddr)
{
dra = DDR_A (ddr);
drb = DDR_B (ddr);
if (dra)
dump_data_reference (outf, dra);
else
fprintf (outf, " (nil)\n");
if (drb)
dump_data_reference (outf, drb);
else
fprintf (outf, " (nil)\n");
}
fprintf (outf, " (don't know)\n)\n");
return;
}
dra = DDR_A (ddr);
drb = DDR_B (ddr);
dump_data_reference (outf, dra);
dump_data_reference (outf, drb);
if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
fprintf (outf, " (no dependence)\n");
else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
{
unsigned int i;
struct loop *loopi;
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
{
fprintf (outf, " access_fn_A: ");
print_generic_stmt (outf, DR_ACCESS_FN (dra, i), 0);
fprintf (outf, " access_fn_B: ");
print_generic_stmt (outf, DR_ACCESS_FN (drb, i), 0);
dump_subscript (outf, DDR_SUBSCRIPT (ddr, i));
}
fprintf (outf, " inner loop index: %d\n", DDR_INNER_LOOP (ddr));
fprintf (outf, " loop nest: (");
FOR_EACH_VEC_ELT (loop_p, DDR_LOOP_NEST (ddr), i, loopi)
fprintf (outf, "%d ", loopi->num);
fprintf (outf, ")\n");
for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
{
fprintf (outf, " distance_vector: ");
print_lambda_vector (outf, DDR_DIST_VECT (ddr, i),
DDR_NB_LOOPS (ddr));
}
for (i = 0; i < DDR_NUM_DIR_VECTS (ddr); i++)
{
fprintf (outf, " direction_vector: ");
print_direction_vector (outf, DDR_DIR_VECT (ddr, i),
DDR_NB_LOOPS (ddr));
}
}
fprintf (outf, ")\n");
}
/* Dump function for a DATA_DEPENDENCE_DIRECTION structure. */
void
dump_data_dependence_direction (FILE *file,
enum data_dependence_direction dir)
{
switch (dir)
{
case dir_positive:
fprintf (file, "+");
break;
case dir_negative:
fprintf (file, "-");
break;
case dir_equal:
fprintf (file, "=");
break;
case dir_positive_or_negative:
fprintf (file, "+-");
break;
case dir_positive_or_equal:
fprintf (file, "+=");
break;
case dir_negative_or_equal:
fprintf (file, "-=");
break;
case dir_star:
fprintf (file, "*");
break;
default:
break;
}
}
/* Dumps the distance and direction vectors in FILE. DDRS contains
the dependence relations, and VECT_SIZE is the size of the
dependence vectors, or in other words the number of loops in the
considered nest. */
void
dump_dist_dir_vectors (FILE *file, VEC (ddr_p, heap) *ddrs)
{
unsigned int i, j;
struct data_dependence_relation *ddr;
lambda_vector v;
FOR_EACH_VEC_ELT (ddr_p, ddrs, i, ddr)
if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE && DDR_AFFINE_P (ddr))
{
FOR_EACH_VEC_ELT (lambda_vector, DDR_DIST_VECTS (ddr), j, v)
{
fprintf (file, "DISTANCE_V (");
print_lambda_vector (file, v, DDR_NB_LOOPS (ddr));
fprintf (file, ")\n");
}
FOR_EACH_VEC_ELT (lambda_vector, DDR_DIR_VECTS (ddr), j, v)
{
fprintf (file, "DIRECTION_V (");
print_direction_vector (file, v, DDR_NB_LOOPS (ddr));
fprintf (file, ")\n");
}
}
fprintf (file, "\n\n");
}
/* Dumps the data dependence relations DDRS in FILE. */
void
dump_ddrs (FILE *file, VEC (ddr_p, heap) *ddrs)
{
unsigned int i;
struct data_dependence_relation *ddr;
FOR_EACH_VEC_ELT (ddr_p, ddrs, i, ddr)
dump_data_dependence_relation (file, ddr);
fprintf (file, "\n\n");
}
/* Helper function for split_constant_offset. Expresses OP0 CODE OP1
(the type of the result is TYPE) as VAR + OFF, where OFF is a nonzero
constant of type ssizetype, and returns true. If we cannot do this
with OFF nonzero, OFF and VAR are set to NULL_TREE instead and false
is returned. */
static bool
split_constant_offset_1 (tree type, tree op0, enum tree_code code, tree op1,
tree *var, tree *off)
{
tree var0, var1;
tree off0, off1;
enum tree_code ocode = code;
*var = NULL_TREE;
*off = NULL_TREE;
switch (code)
{
case INTEGER_CST:
*var = build_int_cst (type, 0);
*off = fold_convert (ssizetype, op0);
return true;
case POINTER_PLUS_EXPR:
ocode = PLUS_EXPR;
/* FALLTHROUGH */
case PLUS_EXPR:
case MINUS_EXPR:
split_constant_offset (op0, &var0, &off0);
split_constant_offset (op1, &var1, &off1);
*var = fold_build2 (code, type, var0, var1);
*off = size_binop (ocode, off0, off1);
return true;
case MULT_EXPR:
if (TREE_CODE (op1) != INTEGER_CST)
return false;
split_constant_offset (op0, &var0, &off0);
*var = fold_build2 (MULT_EXPR, type, var0, op1);
*off = size_binop (MULT_EXPR, off0, fold_convert (ssizetype, op1));
return true;
case ADDR_EXPR:
{
tree base, poffset;
HOST_WIDE_INT pbitsize, pbitpos;
enum machine_mode pmode;
int punsignedp, pvolatilep;
op0 = TREE_OPERAND (op0, 0);
if (!handled_component_p (op0))
return false;
base = get_inner_reference (op0, &pbitsize, &pbitpos, &poffset,
&pmode, &punsignedp, &pvolatilep, false);
if (pbitpos % BITS_PER_UNIT != 0)
return false;
base = build_fold_addr_expr (base);
off0 = ssize_int (pbitpos / BITS_PER_UNIT);
if (poffset)
{
split_constant_offset (poffset, &poffset, &off1);
off0 = size_binop (PLUS_EXPR, off0, off1);
if (POINTER_TYPE_P (TREE_TYPE (base)))
base = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (base),
base, fold_convert (sizetype, poffset));
else
base = fold_build2 (PLUS_EXPR, TREE_TYPE (base), base,
fold_convert (TREE_TYPE (base), poffset));
}
var0 = fold_convert (type, base);
/* If variable length types are involved, punt, otherwise casts
might be converted into ARRAY_REFs in gimplify_conversion.
To compute that ARRAY_REF's element size TYPE_SIZE_UNIT, which
possibly no longer appears in current GIMPLE, might resurface.
This perhaps could run
if (CONVERT_EXPR_P (var0))
{
gimplify_conversion (&var0);
// Attempt to fill in any within var0 found ARRAY_REF's
// element size from corresponding op embedded ARRAY_REF,
// if unsuccessful, just punt.
} */
while (POINTER_TYPE_P (type))
type = TREE_TYPE (type);
if (int_size_in_bytes (type) < 0)
return false;
*var = var0;
*off = off0;
return true;
}
case SSA_NAME:
{
gimple def_stmt = SSA_NAME_DEF_STMT (op0);
enum tree_code subcode;
if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
return false;
var0 = gimple_assign_rhs1 (def_stmt);
subcode = gimple_assign_rhs_code (def_stmt);
var1 = gimple_assign_rhs2 (def_stmt);
return split_constant_offset_1 (type, var0, subcode, var1, var, off);
}
CASE_CONVERT:
{
/* We must not introduce undefined overflow, and we must not change the value.
Hence we're okay if the inner type doesn't overflow to start with
(pointer or signed), the outer type also is an integer or pointer
and the outer precision is at least as large as the inner. */
tree itype = TREE_TYPE (op0);
if ((POINTER_TYPE_P (itype)
|| (INTEGRAL_TYPE_P (itype) && TYPE_OVERFLOW_UNDEFINED (itype)))
&& TYPE_PRECISION (type) >= TYPE_PRECISION (itype)
&& (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)))
{
split_constant_offset (op0, &var0, off);
*var = fold_convert (type, var0);
return true;
}
return false;
}
default:
return false;
}
}
/* Expresses EXP as VAR + OFF, where off is a constant. The type of OFF
will be ssizetype. */
void
split_constant_offset (tree exp, tree *var, tree *off)
{
tree type = TREE_TYPE (exp), otype, op0, op1, e, o;
enum tree_code code;
*var = exp;
*off = ssize_int (0);
STRIP_NOPS (exp);
if (tree_is_chrec (exp))
return;
otype = TREE_TYPE (exp);
code = TREE_CODE (exp);
extract_ops_from_tree (exp, &code, &op0, &op1);
if (split_constant_offset_1 (otype, op0, code, op1, &e, &o))
{
*var = fold_convert (type, e);
*off = o;
}
}
/* Returns the address ADDR of an object in a canonical shape (without nop
casts, and with type of pointer to the object). */
static tree
canonicalize_base_object_address (tree addr)
{
tree orig = addr;
STRIP_NOPS (addr);
/* The base address may be obtained by casting from integer, in that case
keep the cast. */
if (!POINTER_TYPE_P (TREE_TYPE (addr)))
return orig;
if (TREE_CODE (addr) != ADDR_EXPR)
return addr;
return build_fold_addr_expr (TREE_OPERAND (addr, 0));
}
/* Analyzes the behavior of the memory reference DR in the innermost loop or
basic block that contains it. Returns true if analysis succeed or false
otherwise. */
bool
dr_analyze_innermost (struct data_reference *dr)
{
gimple stmt = DR_STMT (dr);
struct loop *loop = loop_containing_stmt (stmt);
tree ref = DR_REF (dr);
HOST_WIDE_INT pbitsize, pbitpos;
tree base, poffset;
enum machine_mode pmode;
int punsignedp, pvolatilep;
affine_iv base_iv, offset_iv;
tree init, dinit, step;
bool in_loop = (loop && loop->num);
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "analyze_innermost: ");
base = get_inner_reference (ref, &pbitsize, &pbitpos, &poffset,
&pmode, &punsignedp, &pvolatilep, false);
gcc_assert (base != NULL_TREE);
if (pbitpos % BITS_PER_UNIT != 0)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "failed: bit offset alignment.\n");
return false;
}
if (TREE_CODE (base) == MEM_REF)
{
if (!integer_zerop (TREE_OPERAND (base, 1)))
{
if (!poffset)
{
double_int moff = mem_ref_offset (base);
poffset = double_int_to_tree (sizetype, moff);
}
else
poffset = size_binop (PLUS_EXPR, poffset, TREE_OPERAND (base, 1));
}
base = TREE_OPERAND (base, 0);
}
else
base = build_fold_addr_expr (base);
if (in_loop)
{
if (!simple_iv (loop, loop_containing_stmt (stmt), base, &base_iv,
false))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "failed: evolution of base is not affine.\n");
return false;
}
}
else
{
base_iv.base = base;
base_iv.step = ssize_int (0);
base_iv.no_overflow = true;
}
if (!poffset)
{
offset_iv.base = ssize_int (0);
offset_iv.step = ssize_int (0);
}
else
{
if (!in_loop)
{
offset_iv.base = poffset;
offset_iv.step = ssize_int (0);
}
else if (!simple_iv (loop, loop_containing_stmt (stmt),
poffset, &offset_iv, false))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "failed: evolution of offset is not"
" affine.\n");
return false;
}
}
init = ssize_int (pbitpos / BITS_PER_UNIT);
split_constant_offset (base_iv.base, &base_iv.base, &dinit);
init = size_binop (PLUS_EXPR, init, dinit);
split_constant_offset (offset_iv.base, &offset_iv.base, &dinit);
init = size_binop (PLUS_EXPR, init, dinit);
step = size_binop (PLUS_EXPR,
fold_convert (ssizetype, base_iv.step),
fold_convert (ssizetype, offset_iv.step));
DR_BASE_ADDRESS (dr) = canonicalize_base_object_address (base_iv.base);
DR_OFFSET (dr) = fold_convert (ssizetype, offset_iv.base);
DR_INIT (dr) = init;
DR_STEP (dr) = step;
DR_ALIGNED_TO (dr) = size_int (highest_pow2_factor (offset_iv.base));
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "success.\n");
return true;
}
/* Determines the base object and the list of indices of memory reference
DR, analyzed in LOOP and instantiated in loop nest NEST. */
static void
dr_analyze_indices (struct data_reference *dr, loop_p nest, loop_p loop)
{
VEC (tree, heap) *access_fns = NULL;
tree ref = unshare_expr (DR_REF (dr)), aref = ref, op;
tree base, off, access_fn = NULL_TREE;
basic_block before_loop = NULL;
if (nest)
before_loop = block_before_loop (nest);
while (handled_component_p (aref))
{
if (TREE_CODE (aref) == ARRAY_REF)
{
op = TREE_OPERAND (aref, 1);
if (nest)
{
access_fn = analyze_scalar_evolution (loop, op);
access_fn = instantiate_scev (before_loop, loop, access_fn);
VEC_safe_push (tree, heap, access_fns, access_fn);
}
TREE_OPERAND (aref, 1) = build_int_cst (TREE_TYPE (op), 0);
}
aref = TREE_OPERAND (aref, 0);
}
if (nest
&& (INDIRECT_REF_P (aref)
|| TREE_CODE (aref) == MEM_REF))
{
op = TREE_OPERAND (aref, 0);
access_fn = analyze_scalar_evolution (loop, op);
access_fn = instantiate_scev (before_loop, loop, access_fn);
base = initial_condition (access_fn);
split_constant_offset (base, &base, &off);
if (TREE_CODE (aref) == MEM_REF)
off = size_binop (PLUS_EXPR, off,
fold_convert (ssizetype, TREE_OPERAND (aref, 1)));
access_fn = chrec_replace_initial_condition (access_fn,
fold_convert (TREE_TYPE (base), off));
TREE_OPERAND (aref, 0) = base;
VEC_safe_push (tree, heap, access_fns, access_fn);
}
if (TREE_CODE (aref) == MEM_REF)
TREE_OPERAND (aref, 1)
= build_int_cst (TREE_TYPE (TREE_OPERAND (aref, 1)), 0);
if (TREE_CODE (ref) == MEM_REF
&& TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR
&& integer_zerop (TREE_OPERAND (ref, 1)))
ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
/* For canonicalization purposes we'd like to strip all outermost
zero-offset component-refs.
??? For now simply handle zero-index array-refs. */
while (TREE_CODE (ref) == ARRAY_REF
&& integer_zerop (TREE_OPERAND (ref, 1)))
ref = TREE_OPERAND (ref, 0);
DR_BASE_OBJECT (dr) = ref;
DR_ACCESS_FNS (dr) = access_fns;
}
/* Extracts the alias analysis information from the memory reference DR. */
static void
dr_analyze_alias (struct data_reference *dr)
{
tree ref = DR_REF (dr);
tree base = get_base_address (ref), addr;
if (INDIRECT_REF_P (base)
|| TREE_CODE (base) == MEM_REF)
{
addr = TREE_OPERAND (base, 0);
if (TREE_CODE (addr) == SSA_NAME)
DR_PTR_INFO (dr) = SSA_NAME_PTR_INFO (addr);
}
}
/* Returns true if the address of DR is invariant. */
static bool
dr_address_invariant_p (struct data_reference *dr)
{
unsigned i;
tree idx;
FOR_EACH_VEC_ELT (tree, DR_ACCESS_FNS (dr), i, idx)
if (tree_contains_chrecs (idx, NULL))
return false;
return true;
}
/* Frees data reference DR. */
void
free_data_ref (data_reference_p dr)
{
VEC_free (tree, heap, DR_ACCESS_FNS (dr));
free (dr);
}
/* Analyzes memory reference MEMREF accessed in STMT. The reference
is read if IS_READ is true, write otherwise. Returns the
data_reference description of MEMREF. NEST is the outermost loop
in which the reference should be instantiated, LOOP is the loop in
which the data reference should be analyzed. */
struct data_reference *
create_data_ref (loop_p nest, loop_p loop, tree memref, gimple stmt,
bool is_read)
{
struct data_reference *dr;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Creating dr for ");
print_generic_expr (dump_file, memref, TDF_SLIM);
fprintf (dump_file, "\n");
}
dr = XCNEW (struct data_reference);
DR_STMT (dr) = stmt;
DR_REF (dr) = memref;
DR_IS_READ (dr) = is_read;
dr_analyze_innermost (dr);
dr_analyze_indices (dr, nest, loop);
dr_analyze_alias (dr);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\tbase_address: ");
print_generic_expr (dump_file, DR_BASE_ADDRESS (dr), TDF_SLIM);
fprintf (dump_file, "\n\toffset from base address: ");
print_generic_expr (dump_file, DR_OFFSET (dr), TDF_SLIM);
fprintf (dump_file, "\n\tconstant offset from base address: ");
print_generic_expr (dump_file, DR_INIT (dr), TDF_SLIM);
fprintf (dump_file, "\n\tstep: ");
print_generic_expr (dump_file, DR_STEP (dr), TDF_SLIM);
fprintf (dump_file, "\n\taligned to: ");
print_generic_expr (dump_file, DR_ALIGNED_TO (dr), TDF_SLIM);
fprintf (dump_file, "\n\tbase_object: ");
print_generic_expr (dump_file, DR_BASE_OBJECT (dr), TDF_SLIM);
fprintf (dump_file, "\n");
}
return dr;
}
/* Check if OFFSET1 and OFFSET2 (DR_OFFSETs of some data-refs) are identical
expressions. */
static bool
dr_equal_offsets_p1 (tree offset1, tree offset2)
{
bool res;
STRIP_NOPS (offset1);
STRIP_NOPS (offset2);
if (offset1 == offset2)
return true;
if (TREE_CODE (offset1) != TREE_CODE (offset2)
|| (!BINARY_CLASS_P (offset1) && !UNARY_CLASS_P (offset1)))
return false;
res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 0),
TREE_OPERAND (offset2, 0));
if (!res || !BINARY_CLASS_P (offset1))
return res;
res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 1),
TREE_OPERAND (offset2, 1));
return res;
}
/* Check if DRA and DRB have equal offsets. */
bool
dr_equal_offsets_p (struct data_reference *dra,
struct data_reference *drb)
{
tree offset1, offset2;
offset1 = DR_OFFSET (dra);
offset2 = DR_OFFSET (drb);
return dr_equal_offsets_p1 (offset1, offset2);
}
/* Returns true if FNA == FNB. */
static bool
affine_function_equal_p (affine_fn fna, affine_fn fnb)
{
unsigned i, n = VEC_length (tree, fna);
if (n != VEC_length (tree, fnb))
return false;
for (i = 0; i < n; i++)
if (!operand_equal_p (VEC_index (tree, fna, i),
VEC_index (tree, fnb, i), 0))
return false;
return true;
}
/* If all the functions in CF are the same, returns one of them,
otherwise returns NULL. */
static affine_fn
common_affine_function (conflict_function *cf)
{
unsigned i;
affine_fn comm;
if (!CF_NONTRIVIAL_P (cf))
return NULL;
comm = cf->fns[0];
for (i = 1; i < cf->n; i++)
if (!affine_function_equal_p (comm, cf->fns[i]))
return NULL;
return comm;
}
/* Returns the base of the affine function FN. */
static tree
affine_function_base (affine_fn fn)
{
return VEC_index (tree, fn, 0);
}
/* Returns true if FN is a constant. */
static bool
affine_function_constant_p (affine_fn fn)
{
unsigned i;
tree coef;
for (i = 1; VEC_iterate (tree, fn, i, coef); i++)
if (!integer_zerop (coef))
return false;
return true;
}
/* Returns true if FN is the zero constant function. */
static bool
affine_function_zero_p (affine_fn fn)
{
return (integer_zerop (affine_function_base (fn))
&& affine_function_constant_p (fn));
}
/* Returns a signed integer type with the largest precision from TA
and TB. */
static tree
signed_type_for_types (tree ta, tree tb)
{
if (TYPE_PRECISION (ta) > TYPE_PRECISION (tb))
return signed_type_for (ta);
else
return signed_type_for (tb);
}
/* Applies operation OP on affine functions FNA and FNB, and returns the
result. */
static affine_fn
affine_fn_op (enum tree_code op, affine_fn fna, affine_fn fnb)
{
unsigned i, n, m;
affine_fn ret;
tree coef;
if (VEC_length (tree, fnb) > VEC_length (tree, fna))
{
n = VEC_length (tree, fna);
m = VEC_length (tree, fnb);
}
else
{
n = VEC_length (tree, fnb);
m = VEC_length (tree, fna);
}
ret = VEC_alloc (tree, heap, m);
for (i = 0; i < n; i++)
{
tree type = signed_type_for_types (TREE_TYPE (VEC_index (tree, fna, i)),
TREE_TYPE (VEC_index (tree, fnb, i)));
VEC_quick_push (tree, ret,
fold_build2 (op, type,
VEC_index (tree, fna, i),
VEC_index (tree, fnb, i)));
}
for (; VEC_iterate (tree, fna, i, coef); i++)
VEC_quick_push (tree, ret,
fold_build2 (op, signed_type_for (TREE_TYPE (coef)),
coef, integer_zero_node));
for (; VEC_iterate (tree, fnb, i, coef); i++)
VEC_quick_push (tree, ret,
fold_build2 (op, signed_type_for (TREE_TYPE (coef)),
integer_zero_node, coef));
return ret;
}
/* Returns the sum of affine functions FNA and FNB. */
static affine_fn
affine_fn_plus (affine_fn fna, affine_fn fnb)
{
return affine_fn_op (PLUS_EXPR, fna, fnb);
}
/* Returns the difference of affine functions FNA and FNB. */
static affine_fn
affine_fn_minus (affine_fn fna, affine_fn fnb)
{
return affine_fn_op (MINUS_EXPR, fna, fnb);
}
/* Frees affine function FN. */
static void
affine_fn_free (affine_fn fn)
{
VEC_free (tree, heap, fn);
}
/* Determine for each subscript in the data dependence relation DDR
the distance. */
static void
compute_subscript_distance (struct data_dependence_relation *ddr)
{
conflict_function *cf_a, *cf_b;
affine_fn fn_a, fn_b, diff;
if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
{
unsigned int i;
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
{
struct subscript *subscript;
subscript = DDR_SUBSCRIPT (ddr, i);
cf_a = SUB_CONFLICTS_IN_A (subscript);
cf_b = SUB_CONFLICTS_IN_B (subscript);
fn_a = common_affine_function (cf_a);
fn_b = common_affine_function (cf_b);
if (!fn_a || !fn_b)
{
SUB_DISTANCE (subscript) = chrec_dont_know;
return;
}
diff = affine_fn_minus (fn_a, fn_b);
if (affine_function_constant_p (diff))
SUB_DISTANCE (subscript) = affine_function_base (diff);
else
SUB_DISTANCE (subscript) = chrec_dont_know;
affine_fn_free (diff);
}
}
}
/* Returns the conflict function for "unknown". */
static conflict_function *
conflict_fn_not_known (void)
{
conflict_function *fn = XCNEW (conflict_function);
fn->n = NOT_KNOWN;
return fn;
}
/* Returns the conflict function for "independent". */
static conflict_function *
conflict_fn_no_dependence (void)
{
conflict_function *fn = XCNEW (conflict_function);
fn->n = NO_DEPENDENCE;
return fn;
}
/* Returns true if the address of OBJ is invariant in LOOP. */
static bool
object_address_invariant_in_loop_p (const struct loop *loop, const_tree obj)
{
while (handled_component_p (obj))
{
if (TREE_CODE (obj) == ARRAY_REF)
{
/* Index of the ARRAY_REF was zeroed in analyze_indices, thus we only
need to check the stride and the lower bound of the reference. */
if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 2),
loop->num)
|| chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 3),
loop->num))
return false;
}
else if (TREE_CODE (obj) == COMPONENT_REF)
{
if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 2),
loop->num))
return false;
}
obj = TREE_OPERAND (obj, 0);
}
if (!INDIRECT_REF_P (obj)
&& TREE_CODE (obj) != MEM_REF)
return true;
return !chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 0),
loop->num);
}
/* Returns false if we can prove that data references A and B do not alias,
true otherwise. */
bool
dr_may_alias_p (const struct data_reference *a, const struct data_reference *b)
{
tree addr_a = DR_BASE_OBJECT (a);
tree addr_b = DR_BASE_OBJECT (b);
if (DR_IS_WRITE (a) && DR_IS_WRITE (b))
return refs_output_dependent_p (addr_a, addr_b);
else if (DR_IS_READ (a) && DR_IS_WRITE (b))
return refs_anti_dependent_p (addr_a, addr_b);
return refs_may_alias_p (addr_a, addr_b);
}
static void compute_self_dependence (struct data_dependence_relation *);
/* Initialize a data dependence relation between data accesses A and
B. NB_LOOPS is the number of loops surrounding the references: the
size of the classic distance/direction vectors. */
static struct data_dependence_relation *
initialize_data_dependence_relation (struct data_reference *a,
struct data_reference *b,
VEC (loop_p, heap) *loop_nest)
{
struct data_dependence_relation *res;
unsigned int i;
res = XNEW (struct data_dependence_relation);
DDR_A (res) = a;
DDR_B (res) = b;
DDR_LOOP_NEST (res) = NULL;
DDR_REVERSED_P (res) = false;
DDR_SUBSCRIPTS (res) = NULL;
DDR_DIR_VECTS (res) = NULL;
DDR_DIST_VECTS (res) = NULL;
if (a == NULL || b == NULL)
{
DDR_ARE_DEPENDENT (res) = chrec_dont_know;
return res;
}
/* If the data references do not alias, then they are independent. */
if (!dr_may_alias_p (a, b))
{
DDR_ARE_DEPENDENT (res) = chrec_known;
return res;
}
/* When the references are exactly the same, don't spend time doing
the data dependence tests, just initialize the ddr and return. */
if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
{
DDR_AFFINE_P (res) = true;
DDR_ARE_DEPENDENT (res) = NULL_TREE;
DDR_SUBSCRIPTS (res) = VEC_alloc (subscript_p, heap, DR_NUM_DIMENSIONS (a));
DDR_LOOP_NEST (res) = loop_nest;
DDR_INNER_LOOP (res) = 0;
DDR_SELF_REFERENCE (res) = true;
compute_self_dependence (res);
return res;
}
/* If the references do not access the same object, we do not know
whether they alias or not. */
if (!operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0))
{
DDR_ARE_DEPENDENT (res) = chrec_dont_know;
return res;
}
/* If the base of the object is not invariant in the loop nest, we cannot
analyze it. TODO -- in fact, it would suffice to record that there may
be arbitrary dependences in the loops where the base object varies. */
if (loop_nest
&& !object_address_invariant_in_loop_p (VEC_index (loop_p, loop_nest, 0),
DR_BASE_OBJECT (a)))
{
DDR_ARE_DEPENDENT (res) = chrec_dont_know;
return res;
}
/* If the number of dimensions of the access to not agree we can have
a pointer access to a component of the array element type and an
array access while the base-objects are still the same. Punt. */
if (DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b))
{
DDR_ARE_DEPENDENT (res) = chrec_dont_know;
return res;
}
DDR_AFFINE_P (res) = true;
DDR_ARE_DEPENDENT (res) = NULL_TREE;
DDR_SUBSCRIPTS (res) = VEC_alloc (subscript_p, heap, DR_NUM_DIMENSIONS (a));
DDR_LOOP_NEST (res) = loop_nest;
DDR_INNER_LOOP (res) = 0;
DDR_SELF_REFERENCE (res) = false;
for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
{
struct subscript *subscript;
subscript = XNEW (struct subscript);
SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
SUB_DISTANCE (subscript) = chrec_dont_know;
VEC_safe_push (subscript_p, heap, DDR_SUBSCRIPTS (res), subscript);
}
return res;
}
/* Frees memory used by the conflict function F. */
static void
free_conflict_function (conflict_function *f)
{
unsigned i;
if (CF_NONTRIVIAL_P (f))
{
for (i = 0; i < f->n; i++)
affine_fn_free (f->fns[i]);
}
free (f);
}
/* Frees memory used by SUBSCRIPTS. */
static void
free_subscripts (VEC (subscript_p, heap) *subscripts)
{
unsigned i;
subscript_p s;
FOR_EACH_VEC_ELT (subscript_p, subscripts, i, s)
{
free_conflict_function (s->conflicting_iterations_in_a);
free_conflict_function (s->conflicting_iterations_in_b);
free (s);
}
VEC_free (subscript_p, heap, subscripts);
}
/* Set DDR_ARE_DEPENDENT to CHREC and finalize the subscript overlap
description. */
static inline void
finalize_ddr_dependent (struct data_dependence_relation *ddr,
tree chrec)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "(dependence classified: ");
print_generic_expr (dump_file, chrec, 0);
fprintf (dump_file, ")\n");
}
DDR_ARE_DEPENDENT (ddr) = chrec;
free_subscripts (DDR_SUBSCRIPTS (ddr));
DDR_SUBSCRIPTS (ddr) = NULL;
}
/* The dependence relation DDR cannot be represented by a distance
vector. */
static inline void
non_affine_dependence_relation (struct data_dependence_relation *ddr)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "(Dependence relation cannot be represented by distance vector.) \n");
DDR_AFFINE_P (ddr) = false;
}
/* This section contains the classic Banerjee tests. */
/* Returns true iff CHREC_A and CHREC_B are not dependent on any index
variables, i.e., if the ZIV (Zero Index Variable) test is true. */
static inline bool
ziv_subscript_p (const_tree chrec_a, const_tree chrec_b)
{
return (evolution_function_is_constant_p (chrec_a)
&& evolution_function_is_constant_p (chrec_b));
}
/* Returns true iff CHREC_A and CHREC_B are dependent on an index
variable, i.e., if the SIV (Single Index Variable) test is true. */
static bool
siv_subscript_p (const_tree chrec_a, const_tree chrec_b)
{
if ((evolution_function_is_constant_p (chrec_a)
&& evolution_function_is_univariate_p (chrec_b))
|| (evolution_function_is_constant_p (chrec_b)
&& evolution_function_is_univariate_p (chrec_a)))
return true;
if (evolution_function_is_univariate_p (chrec_a)
&& evolution_function_is_univariate_p (chrec_b))
{
switch (TREE_CODE (chrec_a))
{
case POLYNOMIAL_CHREC:
switch (TREE_CODE (chrec_b))
{
case POLYNOMIAL_CHREC:
if (CHREC_VARIABLE (chrec_a) != CHREC_VARIABLE (chrec_b))
return false;
default:
return true;
}
default:
return true;
}
}
return false;
}
/* Creates a conflict function with N dimensions. The affine functions
in each dimension follow. */
static conflict_function *
conflict_fn (unsigned n, ...)
{
unsigned i;
conflict_function *ret = XCNEW (conflict_function);
va_list ap;
gcc_assert (0 < n && n <= MAX_DIM);
va_start(ap, n);
ret->n = n;
for (i = 0; i < n; i++)
ret->fns[i] = va_arg (ap, affine_fn);
va_end(ap);
return ret;
}
/* Returns constant affine function with value CST. */
static affine_fn
affine_fn_cst (tree cst)
{
affine_fn fn = VEC_alloc (tree, heap, 1);
VEC_quick_push (tree, fn, cst);
return fn;
}
/* Returns affine function with single variable, CST + COEF * x_DIM. */
static affine_fn
affine_fn_univar (tree cst, unsigned dim, tree coef)
{
affine_fn fn = VEC_alloc (tree, heap, dim + 1);
unsigned i;
gcc_assert (dim > 0);
VEC_quick_push (tree, fn, cst);
for (i = 1; i < dim; i++)
VEC_quick_push (tree, fn, integer_zero_node);
VEC_quick_push (tree, fn, coef);
return fn;
}
/* Analyze a ZIV (Zero Index Variable) subscript. *OVERLAPS_A and
*OVERLAPS_B are initialized to the functions that describe the
relation between the elements accessed twice by CHREC_A and
CHREC_B. For k >= 0, the following property is verified:
CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
static void
analyze_ziv_subscript (tree chrec_a,
tree chrec_b,
conflict_function **overlaps_a,
conflict_function **overlaps_b,
tree *last_conflicts)
{
tree type, difference;
dependence_stats.num_ziv++;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "(analyze_ziv_subscript \n");
type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
chrec_a = chrec_convert (type, chrec_a, NULL);
chrec_b = chrec_convert (type, chrec_b, NULL);
difference = chrec_fold_minus (type, chrec_a, chrec_b);
switch (TREE_CODE (difference))
{
case INTEGER_CST:
if (integer_zerop (difference))
{
/* The difference is equal to zero: the accessed index
overlaps for each iteration in the loop. */
*overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
*overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
*last_conflicts = chrec_dont_know;
dependence_stats.num_ziv_dependent++;
}
else
{
/* The accesses do not overlap. */
*overlaps_a = conflict_fn_no_dependence ();
*overlaps_b = conflict_fn_no_dependence ();
*last_conflicts = integer_zero_node;
dependence_stats.num_ziv_independent++;
}
break;
default:
/* We're not sure whether the indexes overlap. For the moment,
conservatively answer "don't know". */
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "ziv test failed: difference is non-integer.\n");
*overlaps_a = conflict_fn_not_known ();
*overlaps_b = conflict_fn_not_known ();
*last_conflicts = chrec_dont_know;
dependence_stats.num_ziv_unimplemented++;
break;
}
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, ")\n");
}
/* Similar to max_stmt_executions_int, but returns the bound as a tree,
and only if it fits to the int type. If this is not the case, or the
bound on the number of iterations of LOOP could not be derived, returns
chrec_dont_know. */
static tree
max_stmt_executions_tree (struct loop *loop)
{
double_int nit;
tree type;
if (!max_stmt_executions (loop, true, &nit))
return chrec_dont_know;
type = lang_hooks.types.type_for_size (INT_TYPE_SIZE, true);
if (!double_int_fits_to_tree_p (type, nit))
return chrec_dont_know;
return double_int_to_tree (type, nit);
}
/* Analyze a SIV (Single Index Variable) subscript where CHREC_A is a
constant, and CHREC_B is an affine function. *OVERLAPS_A and
*OVERLAPS_B are initialized to the functions that describe the
relation between the elements accessed twice by CHREC_A and
CHREC_B. For k >= 0, the following property is verified:
CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
static void
analyze_siv_subscript_cst_affine (tree chrec_a,
tree chrec_b,
conflict_function **overlaps_a,
conflict_function **overlaps_b,
tree *last_conflicts)
{
bool value0, value1, value2;
tree type, difference, tmp;
type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
chrec_a = chrec_convert (type, chrec_a, NULL);
chrec_b = chrec_convert (type, chrec_b, NULL);
difference = chrec_fold_minus (type, initial_condition (chrec_b), chrec_a);
if (!chrec_is_positive (initial_condition (difference), &value0))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "siv test failed: chrec is not positive.\n");
dependence_stats.num_siv_unimplemented++;
*overlaps_a = conflict_fn_not_known ();
*overlaps_b = conflict_fn_not_known ();
*last_conflicts = chrec_dont_know;
return;
}
else
{
if (value0 == false)
{
if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value1))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "siv test failed: chrec not positive.\n");
*overlaps_a = conflict_fn_not_known ();
*overlaps_b = conflict_fn_not_known ();
*last_conflicts = chrec_dont_know;
dependence_stats.num_siv_unimplemented++;
return;
}
else
{
if (value1 == true)
{
/* Example:
chrec_a = 12
chrec_b = {10, +, 1}
*/
if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
{
HOST_WIDE_INT numiter;
struct loop *loop = get_chrec_loop (chrec_b);
*overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
tmp = fold_build2 (EXACT_DIV_EXPR, type,
fold_build1 (ABS_EXPR, type, difference),
CHREC_RIGHT (chrec_b));
*overlaps_b = conflict_fn (1, affine_fn_cst (tmp));
*last_conflicts = integer_one_node;
/* Perform weak-zero siv test to see if overlap is
outside the loop bounds. */
numiter = max_stmt_executions_int (loop, true);
if (numiter >= 0
&& compare_tree_int (tmp, numiter) > 0)
{
free_conflict_function (*overlaps_a);
free_conflict_function (*overlaps_b);
*overlaps_a = conflict_fn_no_dependence ();
*overlaps_b = conflict_fn_no_dependence ();
*last_conflicts = integer_zero_node;
dependence_stats.num_siv_independent++;
return;
}
dependence_stats.num_siv_dependent++;
return;
}
/* When the step does not divide the difference, there are
no overlaps. */
else
{
*overlaps_a = conflict_fn_no_dependence ();
*overlaps_b = conflict_fn_no_dependence ();
*last_conflicts = integer_zero_node;
dependence_stats.num_siv_independent++;
return;
}
}
else
{
/* Example:
chrec_a = 12
chrec_b = {10, +, -1}
In this case, chrec_a will not overlap with chrec_b. */
*overlaps_a = conflict_fn_no_dependence ();
*overlaps_b = conflict_fn_no_dependence ();
*last_conflicts = integer_zero_node;
dependence_stats.num_siv_independent++;
return;
}
}
}
else
{
if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value2))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "siv test failed: chrec not positive.\n");
*overlaps_a = conflict_fn_not_known ();
*overlaps_b = conflict_fn_not_known ();
*last_conflicts = chrec_dont_know;
dependence_stats.num_siv_unimplemented++;
return;
}
else
{
if (value2 == false)
{
/* Example:
chrec_a = 3
chrec_b = {10, +, -1}
*/
if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
{
HOST_WIDE_INT numiter;
struct loop *loop = get_chrec_loop (chrec_b);
*overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
tmp = fold_build2 (EXACT_DIV_EXPR, type, difference,
CHREC_RIGHT (chrec_b));
*overlaps_b = conflict_fn (1, affine_fn_cst (tmp));
*last_conflicts = integer_one_node;
/* Perform weak-zero siv test to see if overlap is
outside the loop bounds. */
numiter = max_stmt_executions_int (loop, true);
if (numiter >= 0
&& compare_tree_int (tmp, numiter) > 0)
{
free_conflict_function (*overlaps_a);
free_conflict_function (*overlaps_b);
*overlaps_a = conflict_fn_no_dependence ();
*overlaps_b = conflict_fn_no_dependence ();
*last_conflicts = integer_zero_node;
dependence_stats.num_siv_independent++;
return;
}
dependence_stats.num_siv_dependent++;
return;
}
/* When the step does not divide the difference, there
are no overlaps. */
else
{
*overlaps_a = conflict_fn_no_dependence ();
*overlaps_b = conflict_fn_no_dependence ();
*last_conflicts = integer_zero_node;
dependence_stats.num_siv_independent++;
return;
}
}
else
{
/* Example:
chrec_a = 3
chrec_b = {4, +, 1}
In this case, chrec_a will not overlap with chrec_b. */
*overlaps_a = conflict_fn_no_dependence ();
*overlaps_b = conflict_fn_no_dependence ();
*last_conflicts = integer_zero_node;
dependence_stats.num_siv_independent++;
return;
}
}
}
}
}
/* Helper recursive function for initializing the matrix A. Returns
the initial value of CHREC. */
static tree
initialize_matrix_A (lambda_matrix A, tree chrec, unsigned index, int mult)
{
gcc_assert (chrec);
switch (TREE_CODE (chrec))
{
case POLYNOMIAL_CHREC:
gcc_assert (TREE_CODE (CHREC_RIGHT (chrec)) == INTEGER_CST);
A[index][0] = mult * int_cst_value (CHREC_RIGHT (chrec));
return initialize_matrix_A (A, CHREC_LEFT (chrec), index + 1, mult);
case PLUS_EXPR:
case MULT_EXPR:
case MINUS_EXPR:
{
tree op0 = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
tree op1 = initialize_matrix_A (A, TREE_OPERAND (chrec, 1), index, mult);
return chrec_fold_op (TREE_CODE (chrec), chrec_type (chrec), op0, op1);
}
case NOP_EXPR:
{
tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
return chrec_convert (chrec_type (chrec), op, NULL);
}
case BIT_NOT_EXPR:
{
/* Handle ~X as -1 - X. */
tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
return chrec_fold_op (MINUS_EXPR, chrec_type (chrec),
build_int_cst (TREE_TYPE (chrec), -1), op);
}
case INTEGER_CST:
return chrec;
default:
gcc_unreachable ();
return NULL_TREE;
}
}
#define FLOOR_DIV(x,y) ((x) / (y))
/* Solves the special case of the Diophantine equation:
| {0, +, STEP_A}_x (OVERLAPS_A) = {0, +, STEP_B}_y (OVERLAPS_B)
Computes the descriptions OVERLAPS_A and OVERLAPS_B. NITER is the
number of iterations that loops X and Y run. The overlaps will be
constructed as evolutions in dimension DIM. */
static void
compute_overlap_steps_for_affine_univar (int niter, int step_a, int step_b,
affine_fn *overlaps_a,
affine_fn *overlaps_b,
tree *last_conflicts, int dim)
{
if (((step_a > 0 && step_b > 0)
|| (step_a < 0 && step_b < 0)))
{
int step_overlaps_a, step_overlaps_b;
int gcd_steps_a_b, last_conflict, tau2;
gcd_steps_a_b = gcd (step_a, step_b);
step_overlaps_a = step_b / gcd_steps_a_b;
step_overlaps_b = step_a / gcd_steps_a_b;
if (niter > 0)
{
tau2 = FLOOR_DIV (niter, step_overlaps_a);
tau2 = MIN (tau2, FLOOR_DIV (niter, step_overlaps_b));
last_conflict = tau2;
*last_conflicts = build_int_cst (NULL_TREE, last_conflict);
}
else
*last_conflicts = chrec_dont_know;
*overlaps_a = affine_fn_univar (integer_zero_node, dim,
build_int_cst (NULL_TREE,
step_overlaps_a));
*overlaps_b = affine_fn_univar (integer_zero_node, dim,
build_int_cst (NULL_TREE,
step_overlaps_b));
}
else
{
*overlaps_a = affine_fn_cst (integer_zero_node);
*overlaps_b = affine_fn_cst (integer_zero_node);
*last_conflicts = integer_zero_node;
}
}
/* Solves the special case of a Diophantine equation where CHREC_A is
an affine bivariate function, and CHREC_B is an affine univariate
function. For example,
| {{0, +, 1}_x, +, 1335}_y = {0, +, 1336}_z
has the following overlapping functions:
| x (t, u, v) = {{0, +, 1336}_t, +, 1}_v
| y (t, u, v) = {{0, +, 1336}_u, +, 1}_v
| z (t, u, v) = {{{0, +, 1}_t, +, 1335}_u, +, 1}_v
FORNOW: This is a specialized implementation for a case occurring in
a common benchmark. Implement the general algorithm. */
static void
compute_overlap_steps_for_affine_1_2 (tree chrec_a, tree chrec_b,
conflict_function **overlaps_a,
conflict_function **overlaps_b,
tree *last_conflicts)
{
bool xz_p, yz_p, xyz_p;
int step_x, step_y, step_z;
HOST_WIDE_INT niter_x, niter_y, niter_z, niter;
affine_fn overlaps_a_xz, overlaps_b_xz;
affine_fn overlaps_a_yz, overlaps_b_yz;
affine_fn overlaps_a_xyz, overlaps_b_xyz;
affine_fn ova1, ova2, ovb;
tree last_conflicts_xz, last_conflicts_yz, last_conflicts_xyz;
step_x = int_cst_value (CHREC_RIGHT (CHREC_LEFT (chrec_a)));
step_y = int_cst_value (CHREC_RIGHT (chrec_a));
step_z = int_cst_value (CHREC_RIGHT (chrec_b));
niter_x =
max_stmt_executions_int (get_chrec_loop (CHREC_LEFT (chrec_a)), true);
niter_y = max_stmt_executions_int (get_chrec_loop (chrec_a), true);
niter_z = max_stmt_executions_int (get_chrec_loop (chrec_b), true);
if (niter_x < 0 || niter_y < 0 || niter_z < 0)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "overlap steps test failed: no iteration counts.\n");
*overlaps_a = conflict_fn_not_known ();
*overlaps_b = conflict_fn_not_known ();
*last_conflicts = chrec_dont_know;
return;
}
niter = MIN (niter_x, niter_z);
compute_overlap_steps_for_affine_univar (niter, step_x, step_z,
&overlaps_a_xz,
&overlaps_b_xz,
&last_conflicts_xz, 1);
niter = MIN (niter_y, niter_z);
compute_overlap_steps_for_affine_univar (niter, step_y, step_z,
&overlaps_a_yz,
&overlaps_b_yz,
&last_conflicts_yz, 2);
niter = MIN (niter_x, niter_z);
niter = MIN (niter_y, niter);
compute_overlap_steps_for_affine_univar (niter, step_x + step_y, step_z,
&overlaps_a_xyz,
&overlaps_b_xyz,
&last_conflicts_xyz, 3);
xz_p = !integer_zerop (last_conflicts_xz);
yz_p = !integer_zerop (last_conflicts_yz);
xyz_p = !integer_zerop (last_conflicts_xyz);
if (xz_p || yz_p || xyz_p)
{
ova1 = affine_fn_cst (integer_zero_node);
ova2 = affine_fn_cst (integer_zero_node);
ovb = affine_fn_cst (integer_zero_node);
if (xz_p)
{
affine_fn t0 = ova1;
affine_fn t2 = ovb;
ova1 = affine_fn_plus (ova1, overlaps_a_xz);
ovb = affine_fn_plus (ovb, overlaps_b_xz);
affine_fn_free (t0);
affine_fn_free (t2);
*last_conflicts = last_conflicts_xz;
}
if (yz_p)
{
affine_fn t0 = ova2;
affine_fn t2 = ovb;
ova2 = affine_fn_plus (ova2, overlaps_a_yz);
ovb = affine_fn_plus (ovb, overlaps_b_yz);
affine_fn_free (t0);
affine_fn_free (t2);
*last_conflicts = last_conflicts_yz;
}
if (xyz_p)
{
affine_fn t0 = ova1;
affine_fn t2 = ova2;
affine_fn t4 = ovb;
ova1 = affine_fn_plus (ova1, overlaps_a_xyz);
ova2 = affine_fn_plus (ova2, overlaps_a_xyz);
ovb = affine_fn_plus (ovb, overlaps_b_xyz);
affine_fn_free (t0);
affine_fn_free (t2);
affine_fn_free (t4);
*last_conflicts = last_conflicts_xyz;
}
*overlaps_a = conflict_fn (2, ova1, ova2);
*overlaps_b = conflict_fn (1, ovb);
}
else
{
*overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
*overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
*last_conflicts = integer_zero_node;
}
affine_fn_free (overlaps_a_xz);
affine_fn_free (overlaps_b_xz);
affine_fn_free (overlaps_a_yz);
affine_fn_free (overlaps_b_yz);
affine_fn_free (overlaps_a_xyz);
affine_fn_free (overlaps_b_xyz);
}
/* Copy the elements of vector VEC1 with length SIZE to VEC2. */
static void
lambda_vector_copy (lambda_vector vec1, lambda_vector vec2,
int size)
{
memcpy (vec2, vec1, size * sizeof (*vec1));
}
/* Copy the elements of M x N matrix MAT1 to MAT2. */
static void
lambda_matrix_copy (lambda_matrix mat1, lambda_matrix mat2,
int m, int n)
{
int i;
for (i = 0; i < m; i++)
lambda_vector_copy (mat1[i], mat2[i], n);
}
/* Store the N x N identity matrix in MAT. */
static void
lambda_matrix_id (lambda_matrix mat, int size)
{
int i, j;
for (i = 0; i < size; i++)
for (j = 0; j < size; j++)
mat[i][j] = (i == j) ? 1 : 0;
}
/* Return the first nonzero element of vector VEC1 between START and N.
We must have START <= N. Returns N if VEC1 is the zero vector. */
static int
lambda_vector_first_nz (lambda_vector vec1, int n, int start)
{
int j = start;
while (j < n && vec1[j] == 0)
j++;
return j;
}
/* Add a multiple of row R1 of matrix MAT with N columns to row R2:
R2 = R2 + CONST1 * R1. */
static void
lambda_matrix_row_add (lambda_matrix mat, int n, int r1, int r2, int const1)
{
int i;
if (const1 == 0)
return;
for (i = 0; i < n; i++)
mat[r2][i] += const1 * mat[r1][i];
}
/* Swap rows R1 and R2 in matrix MAT. */
static void
lambda_matrix_row_exchange (lambda_matrix mat, int r1, int r2)
{
lambda_vector row;
row = mat[r1];
mat[r1] = mat[r2];
mat[r2] = row;
}
/* Multiply vector VEC1 of length SIZE by a constant CONST1,
and store the result in VEC2. */
static void
lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2,
int size, int const1)
{
int i;
if (const1 == 0)
lambda_vector_clear (vec2, size);
else
for (i = 0; i < size; i++)
vec2[i] = const1 * vec1[i];
}
/* Negate vector VEC1 with length SIZE and store it in VEC2. */
static void
lambda_vector_negate (lambda_vector vec1, lambda_vector vec2,
int size)
{
lambda_vector_mult_const (vec1, vec2, size, -1);
}
/* Negate row R1 of matrix MAT which has N columns. */
static void
lambda_matrix_row_negate (lambda_matrix mat, int n, int r1)
{
lambda_vector_negate (mat[r1], mat[r1], n);
}
/* Return true if two vectors are equal. */
static bool
lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size)
{
int i;
for (i = 0; i < size; i++)
if (vec1[i] != vec2[i])
return false;
return true;
}
/* Given an M x N integer matrix A, this function determines an M x
M unimodular matrix U, and an M x N echelon matrix S such that
"U.A = S". This decomposition is also known as "right Hermite".
Ref: Algorithm 2.1 page 33 in "Loop Transformations for
Restructuring Compilers" Utpal Banerjee. */
static void
lambda_matrix_right_hermite (lambda_matrix A, int m, int n,
lambda_matrix S, lambda_matrix U)
{
int i, j, i0 = 0;
lambda_matrix_copy (A, S, m, n);
lambda_matrix_id (U, m);
for (j = 0; j < n; j++)
{
if (lambda_vector_first_nz (S[j], m, i0) < m)
{
++i0;
for (i = m - 1; i >= i0; i--)
{
while (S[i][j] != 0)
{
int sigma, factor, a, b;
a = S[i-1][j];
b = S[i][j];
sigma = (a * b < 0) ? -1: 1;
a = abs (a);
b = abs (b);
factor = sigma * (a / b);
lambda_matrix_row_add (S, n, i, i-1, -factor);
lambda_matrix_row_exchange (S, i, i-1);
lambda_matrix_row_add (U, m, i, i-1, -factor);
lambda_matrix_row_exchange (U, i, i-1);
}
}
}
}
}
/* Determines the overlapping elements due to accesses CHREC_A and
CHREC_B, that are affine functions. This function cannot handle
symbolic evolution functions, ie. when initial conditions are
parameters, because it uses lambda matrices of integers. */
static void
analyze_subscript_affine_affine (tree chrec_a,
tree chrec_b,
conflict_function **overlaps_a,
conflict_function **overlaps_b,
tree *last_conflicts)
{
unsigned nb_vars_a, nb_vars_b, dim;
HOST_WIDE_INT init_a, init_b, gamma, gcd_alpha_beta;
lambda_matrix A, U, S;
struct obstack scratch_obstack;
if (eq_evolutions_p (chrec_a, chrec_b))
{
/* The accessed index overlaps for each iteration in the
loop. */
*overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
*overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
*last_conflicts = chrec_dont_know;
return;
}
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "(analyze_subscript_affine_affine \n");
/* For determining the initial intersection, we have to solve a
Diophantine equation. This is the most time consuming part.
For answering to the question: "Is there a dependence?" we have
to prove that there exists a solution to the Diophantine
equation, and that the solution is in the iteration domain,
i.e. the solution is positive or zero, and that the solution
happens before the upper bound loop.nb_iterations. Otherwise
there is no dependence. This function outputs a description of
the iterations that hold the intersections. */
nb_vars_a = nb_vars_in_chrec (chrec_a);
nb_vars_b = nb_vars_in_chrec (chrec_b);
gcc_obstack_init (&scratch_obstack);
dim = nb_vars_a + nb_vars_b;
U = lambda_matrix_new (dim, dim, &scratch_obstack);
A = lambda_matrix_new (dim, 1, &scratch_obstack);
S = lambda_matrix_new (dim, 1, &scratch_obstack);
init_a = int_cst_value (initialize_matrix_A (A, chrec_a, 0, 1));
init_b = int_cst_value (initialize_matrix_A (A, chrec_b, nb_vars_a, -1));
gamma = init_b - init_a;
/* Don't do all the hard work of solving the Diophantine equation
when we already know the solution: for example,
| {3, +, 1}_1
| {3, +, 4}_2
| gamma = 3 - 3 = 0.
Then the first overlap occurs during the first iterations:
| {3, +, 1}_1 ({0, +, 4}_x) = {3, +, 4}_2 ({0, +, 1}_x)
*/
if (gamma == 0)
{
if (nb_vars_a == 1 && nb_vars_b == 1)
{
HOST_WIDE_INT step_a, step_b;
HOST_WIDE_INT niter, niter_a, niter_b;
affine_fn ova, ovb;
niter_a = max_stmt_executions_int (get_chrec_loop (chrec_a), true);
niter_b = max_stmt_executions_int (get_chrec_loop (chrec_b), true);
niter = MIN (niter_a, niter_b);
step_a = int_cst_value (CHREC_RIGHT (chrec_a));
step_b = int_cst_value (CHREC_RIGHT (chrec_b));
compute_overlap_steps_for_affine_univar (niter, step_a, step_b,
&ova, &ovb,
last_conflicts, 1);
*overlaps_a = conflict_fn (1, ova);
*overlaps_b = conflict_fn (1, ovb);
}
else if (nb_vars_a == 2 && nb_vars_b == 1)
compute_overlap_steps_for_affine_1_2
(chrec_a, chrec_b, overlaps_a, overlaps_b, last_conflicts);
else if (nb_vars_a == 1 && nb_vars_b == 2)
compute_overlap_steps_for_affine_1_2
(chrec_b, chrec_a, overlaps_b, overlaps_a, last_conflicts);
else
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "affine-affine test failed: too many variables.\n");
*overlaps_a = conflict_fn_not_known ();
*overlaps_b = conflict_fn_not_known ();
*last_conflicts = chrec_dont_know;
}
goto end_analyze_subs_aa;
}
/* U.A = S */
lambda_matrix_right_hermite (A, dim, 1, S, U);
if (S[0][0] < 0)
{
S[0][0] *= -1;
lambda_matrix_row_negate (U, dim, 0);
}
gcd_alpha_beta = S[0][0];
/* Something went wrong: for example in {1, +, 0}_5 vs. {0, +, 0}_5,
but that is a quite strange case. Instead of ICEing, answer
don't know. */
if (gcd_alpha_beta == 0)
{
*overlaps_a = conflict_fn_not_known ();
*overlaps_b = conflict_fn_not_known ();
*last_conflicts = chrec_dont_know;
goto end_analyze_subs_aa;
}
/* The classic "gcd-test". */
if (!int_divides_p (gcd_alpha_beta, gamma))
{
/* The "gcd-test" has determined that there is no integer
solution, i.e. there is no dependence. */
*overlaps_a = conflict_fn_no_dependence ();
*overlaps_b = conflict_fn_no_dependence ();
*last_conflicts = integer_zero_node;
}
/* Both access functions are univariate. This includes SIV and MIV cases. */
else if (nb_vars_a == 1 && nb_vars_b == 1)
{
/* Both functions should have the same evolution sign. */
if (((A[0][0] > 0 && -A[1][0] > 0)
|| (A[0][0] < 0 && -A[1][0] < 0)))
{
/* The solutions are given by:
|
| [GAMMA/GCD_ALPHA_BETA t].[u11 u12] = [x0]
| [u21 u22] [y0]
For a given integer t. Using the following variables,
| i0 = u11 * gamma / gcd_alpha_beta
| j0 = u12 * gamma / gcd_alpha_beta
| i1 = u21
| j1 = u22
the solutions are:
| x0 = i0 + i1 * t,
| y0 = j0 + j1 * t. */
HOST_WIDE_INT i0, j0, i1, j1;
i0 = U[0][0] * gamma / gcd_alpha_beta;
j0 = U[0][1] * gamma / gcd_alpha_beta;
i1 = U[1][0];
j1 = U[1][1];
if ((i1 == 0 && i0 < 0)
|| (j1 == 0 && j0 < 0))
{
/* There is no solution.
FIXME: The case "i0 > nb_iterations, j0 > nb_iterations"
falls in here, but for the moment we don't look at the
upper bound of the iteration domain. */
*overlaps_a = conflict_fn_no_dependence ();
*overlaps_b = conflict_fn_no_dependence ();
*last_conflicts = integer_zero_node;
goto end_analyze_subs_aa;
}
if (i1 > 0 && j1 > 0)
{
HOST_WIDE_INT niter_a = max_stmt_executions_int
(get_chrec_loop (chrec_a), true);
HOST_WIDE_INT niter_b = max_stmt_executions_int
(get_chrec_loop (chrec_b), true);
HOST_WIDE_INT niter = MIN (niter_a, niter_b);
/* (X0, Y0) is a solution of the Diophantine equation:
"chrec_a (X0) = chrec_b (Y0)". */
HOST_WIDE_INT tau1 = MAX (CEIL (-i0, i1),
CEIL (-j0, j1));
HOST_WIDE_INT x0 = i1 * tau1 + i0;
HOST_WIDE_INT y0 = j1 * tau1 + j0;
/* (X1, Y1) is the smallest positive solution of the eq
"chrec_a (X1) = chrec_b (Y1)", i.e. this is where the
first conflict occurs. */
HOST_WIDE_INT min_multiple = MIN (x0 / i1, y0 / j1);
HOST_WIDE_INT x1 = x0 - i1 * min_multiple;
HOST_WIDE_INT y1 = y0 - j1 * min_multiple;
if (niter > 0)
{
HOST_WIDE_INT tau2 = MIN (FLOOR_DIV (niter - i0, i1),
FLOOR_DIV (niter - j0, j1));
HOST_WIDE_INT last_conflict = tau2 - (x1 - i0)/i1;
/* If the overlap occurs outside of the bounds of the
loop, there is no dependence. */
if (x1 >= niter || y1 >= niter)
{
*overlaps_a = conflict_fn_no_dependence ();
*overlaps_b = conflict_fn_no_dependence ();
*last_conflicts = integer_zero_node;
goto end_analyze_subs_aa;
}
else
*last_conflicts = build_int_cst (NULL_TREE, last_conflict);
}
else
*last_conflicts = chrec_dont_know;
*overlaps_a
= conflict_fn (1,
affine_fn_univar (build_int_cst (NULL_TREE, x1),
1,
build_int_cst (NULL_TREE, i1)));
*overlaps_b
= conflict_fn (1,
affine_fn_univar (build_int_cst (NULL_TREE, y1),
1,
build_int_cst (NULL_TREE, j1)));
}
else
{
/* FIXME: For the moment, the upper bound of the
iteration domain for i and j is not checked. */
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
*overlaps_a = conflict_fn_not_known ();
*overlaps_b = conflict_fn_not_known ();
*last_conflicts = chrec_dont_know;
}
}
else
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
*overlaps_a = conflict_fn_not_known ();
*overlaps_b = conflict_fn_not_known ();
*last_conflicts = chrec_dont_know;
}
}
else
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
*overlaps_a = conflict_fn_not_known ();
*overlaps_b = conflict_fn_not_known ();
*last_conflicts = chrec_dont_know;
}
end_analyze_subs_aa:
obstack_free (&scratch_obstack, NULL);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " (overlaps_a = ");
dump_conflict_function (dump_file, *overlaps_a);
fprintf (dump_file, ")\n (overlaps_b = ");
dump_conflict_function (dump_file, *overlaps_b);
fprintf (dump_file, ")\n");
fprintf (dump_file, ")\n");
}
}
/* Returns true when analyze_subscript_affine_affine can be used for
determining the dependence relation between chrec_a and chrec_b,
that contain symbols. This function modifies chrec_a and chrec_b
such that the analysis result is the same, and such that they don't
contain symbols, and then can safely be passed to the analyzer.
Example: The analysis of the following tuples of evolutions produce
the same results: {x+1, +, 1}_1 vs. {x+3, +, 1}_1, and {-2, +, 1}_1
vs. {0, +, 1}_1
{x+1, +, 1}_1 ({2, +, 1}_1) = {x+3, +, 1}_1 ({0, +, 1}_1)
{-2, +, 1}_1 ({2, +, 1}_1) = {0, +, 1}_1 ({0, +, 1}_1)
*/
static bool
can_use_analyze_subscript_affine_affine (tree *chrec_a, tree *chrec_b)
{
tree diff, type, left_a, left_b, right_b;
if (chrec_contains_symbols (CHREC_RIGHT (*chrec_a))
|| chrec_contains_symbols (CHREC_RIGHT (*chrec_b)))
/* FIXME: For the moment not handled. Might be refined later. */
return false;
type = chrec_type (*chrec_a);
left_a = CHREC_LEFT (*chrec_a);
left_b = chrec_convert (type, CHREC_LEFT (*chrec_b), NULL);
diff = chrec_fold_minus (type, left_a, left_b);
if (!evolution_function_is_constant_p (diff))
return false;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "can_use_subscript_aff_aff_for_symbolic \n");
*chrec_a = build_polynomial_chrec (CHREC_VARIABLE (*chrec_a),
diff, CHREC_RIGHT (*chrec_a));
right_b = chrec_convert (type, CHREC_RIGHT (*chrec_b), NULL);
*chrec_b = build_polynomial_chrec (CHREC_VARIABLE (*chrec_b),
build_int_cst (type, 0),
right_b);
return true;
}
/* Analyze a SIV (Single Index Variable) subscript. *OVERLAPS_A and
*OVERLAPS_B are initialized to the functions that describe the
relation between the elements accessed twice by CHREC_A and
CHREC_B. For k >= 0, the following property is verified:
CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
static void
analyze_siv_subscript (tree chrec_a,
tree chrec_b,
conflict_function **overlaps_a,
conflict_function **overlaps_b,
tree *last_conflicts,
int loop_nest_num)
{
dependence_stats.num_siv++;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "(analyze_siv_subscript \n");
if (evolution_function_is_constant_p (chrec_a)
&& evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
analyze_siv_subscript_cst_affine (chrec_a, chrec_b,
overlaps_a, overlaps_b, last_conflicts);
else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
&& evolution_function_is_constant_p (chrec_b))
analyze_siv_subscript_cst_affine (chrec_b, chrec_a,
overlaps_b, overlaps_a, last_conflicts);
else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
&& evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
{
if (!chrec_contains_symbols (chrec_a)
&& !chrec_contains_symbols (chrec_b))
{
analyze_subscript_affine_affine (chrec_a, chrec_b,
overlaps_a, overlaps_b,
last_conflicts);
if (CF_NOT_KNOWN_P (*overlaps_a)
|| CF_NOT_KNOWN_P (*overlaps_b))
dependence_stats.num_siv_unimplemented++;
else if (CF_NO_DEPENDENCE_P (*overlaps_a)
|| CF_NO_DEPENDENCE_P (*overlaps_b))
dependence_stats.num_siv_independent++;
else
dependence_stats.num_siv_dependent++;
}
else if (can_use_analyze_subscript_affine_affine (&chrec_a,
&chrec_b))
{
analyze_subscript_affine_affine (chrec_a, chrec_b,
overlaps_a, overlaps_b,
last_conflicts);
if (CF_NOT_KNOWN_P (*overlaps_a)
|| CF_NOT_KNOWN_P (*overlaps_b))
dependence_stats.num_siv_unimplemented++;
else if (CF_NO_DEPENDENCE_P (*overlaps_a)
|| CF_NO_DEPENDENCE_P (*overlaps_b))
dependence_stats.num_siv_independent++;
else
dependence_stats.num_siv_dependent++;
}
else
goto siv_subscript_dontknow;
}
else
{
siv_subscript_dontknow:;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "siv test failed: unimplemented.\n");
*overlaps_a = conflict_fn_not_known ();
*overlaps_b = conflict_fn_not_known ();
*last_conflicts = chrec_dont_know;
dependence_stats.num_siv_unimplemented++;
}
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, ")\n");
}
/* Returns false if we can prove that the greatest common divisor of the steps
of CHREC does not divide CST, false otherwise. */
static bool
gcd_of_steps_may_divide_p (const_tree chrec, const_tree cst)
{
HOST_WIDE_INT cd = 0, val;
tree step;
if (!host_integerp (cst, 0))
return true;
val = tree_low_cst (cst, 0);
while (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
{
step = CHREC_RIGHT (chrec);
if (!host_integerp (step, 0))
return true;
cd = gcd (cd, tree_low_cst (step, 0));
chrec = CHREC_LEFT (chrec);
}
return val % cd == 0;
}
/* Analyze a MIV (Multiple Index Variable) subscript with respect to
LOOP_NEST. *OVERLAPS_A and *OVERLAPS_B are initialized to the
functions that describe the relation between the elements accessed
twice by CHREC_A and CHREC_B. For k >= 0, the following property
is verified:
CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
static void
analyze_miv_subscript (tree chrec_a,
tree chrec_b,
conflict_function **overlaps_a,
conflict_function **overlaps_b,
tree *last_conflicts,
struct loop *loop_nest)
{
tree type, difference;
dependence_stats.num_miv++;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "(analyze_miv_subscript \n");
type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
chrec_a = chrec_convert (type, chrec_a, NULL);
chrec_b = chrec_convert (type, chrec_b, NULL);
difference = chrec_fold_minus (type, chrec_a, chrec_b);
if (eq_evolutions_p (chrec_a, chrec_b))
{
/* Access functions are the same: all the elements are accessed
in the same order. */
*overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
*overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
*last_conflicts = max_stmt_executions_tree (get_chrec_loop (chrec_a));
dependence_stats.num_miv_dependent++;
}
else if (evolution_function_is_constant_p (difference)
/* For the moment, the following is verified:
evolution_function_is_affine_multivariate_p (chrec_a,
loop_nest->num) */
&& !gcd_of_steps_may_divide_p (chrec_a, difference))
{
/* testsuite/.../ssa-chrec-33.c
{{21, +, 2}_1, +, -2}_2 vs. {{20, +, 2}_1, +, -2}_2
The difference is 1, and all the evolution steps are multiples
of 2, consequently there are no overlapping elements. */
*overlaps_a = conflict_fn_no_dependence ();
*overlaps_b = conflict_fn_no_dependence ();
*last_conflicts = integer_zero_node;
dependence_stats.num_miv_independent++;
}
else if (evolution_function_is_affine_multivariate_p (chrec_a, loop_nest->num)
&& !chrec_contains_symbols (chrec_a)
&& evolution_function_is_affine_multivariate_p (chrec_b, loop_nest->num)
&& !chrec_contains_symbols (chrec_b))
{
/* testsuite/.../ssa-chrec-35.c
{0, +, 1}_2 vs. {0, +, 1}_3
the overlapping elements are respectively located at iterations:
{0, +, 1}_x and {0, +, 1}_x,
in other words, we have the equality:
{0, +, 1}_2 ({0, +, 1}_x) = {0, +, 1}_3 ({0, +, 1}_x)
Other examples:
{{0, +, 1}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y) =
{0, +, 1}_1 ({{0, +, 1}_x, +, 2}_y)
{{0, +, 2}_1, +, 3}_2 ({0, +, 1}_y, {0, +, 1}_x) =
{{0, +, 3}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y)
*/
analyze_subscript_affine_affine (chrec_a, chrec_b,
overlaps_a, overlaps_b, last_conflicts);
if (CF_NOT_KNOWN_P (*overlaps_a)
|| CF_NOT_KNOWN_P (*overlaps_b))
dependence_stats.num_miv_unimplemented++;
else if (CF_NO_DEPENDENCE_P (*overlaps_a)
|| CF_NO_DEPENDENCE_P (*overlaps_b))
dependence_stats.num_miv_independent++;
else
dependence_stats.num_miv_dependent++;
}
else
{
/* When the analysis is too difficult, answer "don't know". */
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "analyze_miv_subscript test failed: unimplemented.\n");
*overlaps_a = conflict_fn_not_known ();
*overlaps_b = conflict_fn_not_known ();
*last_conflicts = chrec_dont_know;
dependence_stats.num_miv_unimplemented++;
}
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, ")\n");
}
/* Determines the iterations for which CHREC_A is equal to CHREC_B in
with respect to LOOP_NEST. OVERLAP_ITERATIONS_A and
OVERLAP_ITERATIONS_B are initialized with two functions that
describe the iterations that contain conflicting elements.
Remark: For an integer k >= 0, the following equality is true:
CHREC_A (OVERLAP_ITERATIONS_A (k)) == CHREC_B (OVERLAP_ITERATIONS_B (k)).
*/
static void
analyze_overlapping_iterations (tree chrec_a,
tree chrec_b,
conflict_function **overlap_iterations_a,
conflict_function **overlap_iterations_b,
tree *last_conflicts, struct loop *loop_nest)
{
unsigned int lnn = loop_nest->num;
dependence_stats.num_subscript_tests++;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "(analyze_overlapping_iterations \n");
fprintf (dump_file, " (chrec_a = ");
print_generic_expr (dump_file, chrec_a, 0);
fprintf (dump_file, ")\n (chrec_b = ");
print_generic_expr (dump_file, chrec_b, 0);
fprintf (dump_file, ")\n");
}
if (chrec_a == NULL_TREE
|| chrec_b == NULL_TREE
|| chrec_contains_undetermined (chrec_a)
|| chrec_contains_undetermined (chrec_b))
{
dependence_stats.num_subscript_undetermined++;
*overlap_iterations_a = conflict_fn_not_known ();
*overlap_iterations_b = conflict_fn_not_known ();
}
/* If they are the same chrec, and are affine, they overlap
on every iteration. */
else if (eq_evolutions_p (chrec_a, chrec_b)
&& (evolution_function_is_affine_multivariate_p (chrec_a, lnn)
|| operand_equal_p (chrec_a, chrec_b, 0)))
{
dependence_stats.num_same_subscript_function++;
*overlap_iterations_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
*overlap_iterations_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
*last_conflicts = chrec_dont_know;
}
/* If they aren't the same, and aren't affine, we can't do anything
yet. */
else if ((chrec_contains_symbols (chrec_a)
|| chrec_contains_symbols (chrec_b))
&& (!evolution_function_is_affine_multivariate_p (chrec_a, lnn)
|| !evolution_function_is_affine_multivariate_p (chrec_b, lnn)))
{
dependence_stats.num_subscript_undetermined++;
*overlap_iterations_a = conflict_fn_not_known ();
*overlap_iterations_b = conflict_fn_not_known ();
}
else if (ziv_subscript_p (chrec_a, chrec_b))
analyze_ziv_subscript (chrec_a, chrec_b,
overlap_iterations_a, overlap_iterations_b,
last_conflicts);
else if (siv_subscript_p (chrec_a, chrec_b))
analyze_siv_subscript (chrec_a, chrec_b,
overlap_iterations_a, overlap_iterations_b,
last_conflicts, lnn);
else
analyze_miv_subscript (chrec_a, chrec_b,
overlap_iterations_a, overlap_iterations_b,
last_conflicts, loop_nest);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " (overlap_iterations_a = ");
dump_conflict_function (dump_file, *overlap_iterations_a);
fprintf (dump_file, ")\n (overlap_iterations_b = ");
dump_conflict_function (dump_file, *overlap_iterations_b);
fprintf (dump_file, ")\n");
fprintf (dump_file, ")\n");
}
}
/* Helper function for uniquely inserting distance vectors. */
static void
save_dist_v (struct data_dependence_relation *ddr, lambda_vector dist_v)
{
unsigned i;
lambda_vector v;
FOR_EACH_VEC_ELT (lambda_vector, DDR_DIST_VECTS (ddr), i, v)
if (lambda_vector_equal (v, dist_v, DDR_NB_LOOPS (ddr)))
return;
VEC_safe_push (lambda_vector, heap, DDR_DIST_VECTS (ddr), dist_v);
}
/* Helper function for uniquely inserting direction vectors. */
static void
save_dir_v (struct data_dependence_relation *ddr, lambda_vector dir_v)
{
unsigned i;
lambda_vector v;
FOR_EACH_VEC_ELT (lambda_vector, DDR_DIR_VECTS (ddr), i, v)
if (lambda_vector_equal (v, dir_v, DDR_NB_LOOPS (ddr)))
return;
VEC_safe_push (lambda_vector, heap, DDR_DIR_VECTS (ddr), dir_v);
}
/* Add a distance of 1 on all the loops outer than INDEX. If we
haven't yet determined a distance for this outer loop, push a new
distance vector composed of the previous distance, and a distance
of 1 for this outer loop. Example:
| loop_1
| loop_2
| A[10]
| endloop_2
| endloop_1
Saved vectors are of the form (dist_in_1, dist_in_2). First, we
save (0, 1), then we have to save (1, 0). */
static void
add_outer_distances (struct data_dependence_relation *ddr,
lambda_vector dist_v, int index)
{
/* For each outer loop where init_v is not set, the accesses are
in dependence of distance 1 in the loop. */
while (--index >= 0)
{
lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
save_v[index] = 1;
save_dist_v (ddr, save_v);
}
}
/* Return false when fail to represent the data dependence as a
distance vector. INIT_B is set to true when a component has been
added to the distance vector DIST_V. INDEX_CARRY is then set to
the index in DIST_V that carries the dependence. */
static bool
build_classic_dist_vector_1 (struct data_dependence_relation *ddr,
struct data_reference *ddr_a,
struct data_reference *ddr_b,
lambda_vector dist_v, bool *init_b,
int *index_carry)
{
unsigned i;
lambda_vector init_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
{
tree access_fn_a, access_fn_b;
struct subscript *subscript = DDR_SUBSCRIPT (ddr, i);
if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
{
non_affine_dependence_relation (ddr);
return false;
}
access_fn_a = DR_ACCESS_FN (ddr_a, i);
access_fn_b = DR_ACCESS_FN (ddr_b, i);
if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC
&& TREE_CODE (access_fn_b) == POLYNOMIAL_CHREC)
{
int dist, index;
int var_a = CHREC_VARIABLE (access_fn_a);
int var_b = CHREC_VARIABLE (access_fn_b);
if (var_a != var_b
|| chrec_contains_undetermined (SUB_DISTANCE (subscript)))
{
non_affine_dependence_relation (ddr);
return false;
}
dist = int_cst_value (SUB_DISTANCE (subscript));
index = index_in_loop_nest (var_a, DDR_LOOP_NEST (ddr));
*index_carry = MIN (index, *index_carry);
/* This is the subscript coupling test. If we have already
recorded a distance for this loop (a distance coming from
another subscript), it should be the same. For example,
in the following code, there is no dependence:
| loop i = 0, N, 1
| T[i+1][i] = ...
| ... = T[i][i]
| endloop
*/
if (init_v[index] != 0 && dist_v[index] != dist)
{
finalize_ddr_dependent (ddr, chrec_known);
return false;
}
dist_v[index] = dist;
init_v[index] = 1;
*init_b = true;
}
else if (!operand_equal_p (access_fn_a, access_fn_b, 0))
{
/* This can be for example an affine vs. constant dependence
(T[i] vs. T[3]) that is not an affine dependence and is
not representable as a distance vector. */
non_affine_dependence_relation (ddr);
return false;
}
}
return true;
}
/* Return true when the DDR contains only constant access functions. */
static bool
constant_access_functions (const struct data_dependence_relation *ddr)
{
unsigned i;
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
if (!evolution_function_is_constant_p (DR_ACCESS_FN (DDR_A (ddr), i))
|| !evolution_function_is_constant_p (DR_ACCESS_FN (DDR_B (ddr), i)))
return false;
return true;
}
/* Helper function for the case where DDR_A and DDR_B are the same
multivariate access function with a constant step. For an example
see pr34635-1.c. */
static void
add_multivariate_self_dist (struct data_dependence_relation *ddr, tree c_2)
{
int x_1, x_2;
tree c_1 = CHREC_LEFT (c_2);
tree c_0 = CHREC_LEFT (c_1);
lambda_vector dist_v;
int v1, v2, cd;
/* Polynomials with more than 2 variables are not handled yet. When
the evolution steps are parameters, it is not possible to
represent the dependence using classical distance vectors. */
if (TREE_CODE (c_0) != INTEGER_CST
|| TREE_CODE (CHREC_RIGHT (c_1)) != INTEGER_CST
|| TREE_CODE (CHREC_RIGHT (c_2)) != INTEGER_CST)
{
DDR_AFFINE_P (ddr) = false;
return;
}
x_2 = index_in_loop_nest (CHREC_VARIABLE (c_2), DDR_LOOP_NEST (ddr));
x_1 = index_in_loop_nest (CHREC_VARIABLE (c_1), DDR_LOOP_NEST (ddr));
/* For "{{0, +, 2}_1, +, 3}_2" the distance vector is (3, -2). */
dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
v1 = int_cst_value (CHREC_RIGHT (c_1));
v2 = int_cst_value (CHREC_RIGHT (c_2));
cd = gcd (v1, v2);
v1 /= cd;
v2 /= cd;
if (v2 < 0)
{
v2 = -v2;
v1 = -v1;
}
dist_v[x_1] = v2;
dist_v[x_2] = -v1;
save_dist_v (ddr, dist_v);
add_outer_distances (ddr, dist_v, x_1);
}
/* Helper function for the case where DDR_A and DDR_B are the same
access functions. */
static void
add_other_self_distances (struct data_dependence_relation *ddr)
{
lambda_vector dist_v;
unsigned i;
int index_carry = DDR_NB_LOOPS (ddr);
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
{
tree access_fun = DR_ACCESS_FN (DDR_A (ddr), i);
if (TREE_CODE (access_fun) == POLYNOMIAL_CHREC)
{
if (!evolution_function_is_univariate_p (access_fun))
{
if (DDR_NUM_SUBSCRIPTS (ddr) != 1)
{
DDR_ARE_DEPENDENT (ddr) = chrec_dont_know;
return;
}
access_fun = DR_ACCESS_FN (DDR_A (ddr), 0);
if (TREE_CODE (CHREC_LEFT (access_fun)) == POLYNOMIAL_CHREC)
add_multivariate_self_dist (ddr, access_fun);
else
/* The evolution step is not constant: it varies in
the outer loop, so this cannot be represented by a
distance vector. For example in pr34635.c the
evolution is {0, +, {0, +, 4}_1}_2. */
DDR_AFFINE_P (ddr) = false;
return;
}
index_carry = MIN (index_carry,
index_in_loop_nest (CHREC_VARIABLE (access_fun),
DDR_LOOP_NEST (ddr)));
}
}
dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
add_outer_distances (ddr, dist_v, index_carry);
}
static void
insert_innermost_unit_dist_vector (struct data_dependence_relation *ddr)
{
lambda_vector dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
dist_v[DDR_INNER_LOOP (ddr)] = 1;
save_dist_v (ddr, dist_v);
}
/* Adds a unit distance vector to DDR when there is a 0 overlap. This
is the case for example when access functions are the same and
equal to a constant, as in:
| loop_1
| A[3] = ...
| ... = A[3]
| endloop_1
in which case the distance vectors are (0) and (1). */
static void
add_distance_for_zero_overlaps (struct data_dependence_relation *ddr)
{
unsigned i, j;
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
{
subscript_p sub = DDR_SUBSCRIPT (ddr, i);
conflict_function *ca = SUB_CONFLICTS_IN_A (sub);
conflict_function *cb = SUB_CONFLICTS_IN_B (sub);
for (j = 0; j < ca->n; j++)
if (affine_function_zero_p (ca->fns[j]))
{
insert_innermost_unit_dist_vector (ddr);
return;
}
for (j = 0; j < cb->n; j++)
if (affine_function_zero_p (cb->fns[j]))
{
insert_innermost_unit_dist_vector (ddr);
return;
}
}
}
/* Compute the classic per loop distance vector. DDR is the data
dependence relation to build a vector from. Return false when fail
to represent the data dependence as a distance vector. */
static bool
build_classic_dist_vector (struct data_dependence_relation *ddr,
struct loop *loop_nest)
{
bool init_b = false;
int index_carry = DDR_NB_LOOPS (ddr);
lambda_vector dist_v;
if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE)
return false;
if (same_access_functions (ddr))
{
/* Save the 0 vector. */
dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
save_dist_v (ddr, dist_v);
if (constant_access_functions (ddr))
add_distance_for_zero_overlaps (ddr);
if (DDR_NB_LOOPS (ddr) > 1)
add_other_self_distances (ddr);
return true;
}
dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
if (!build_classic_dist_vector_1 (ddr, DDR_A (ddr), DDR_B (ddr),
dist_v, &init_b, &index_carry))
return false;
/* Save the distance vector if we initialized one. */
if (init_b)
{
/* Verify a basic constraint: classic distance vectors should
always be lexicographically positive.
Data references are collected in the order of execution of
the program, thus for the following loop
| for (i = 1; i < 100; i++)
| for (j = 1; j < 100; j++)
| {
| t = T[j+1][i-1]; // A
| T[j][i] = t + 2; // B
| }
references are collected following the direction of the wind:
A then B. The data dependence tests are performed also
following this order, such that we're looking at the distance
separating the elements accessed by A from the elements later
accessed by B. But in this example, the distance returned by
test_dep (A, B) is lexicographically negative (-1, 1), that
means that the access A occurs later than B with respect to
the outer loop, ie. we're actually looking upwind. In this
case we solve test_dep (B, A) looking downwind to the
lexicographically positive solution, that returns the
distance vector (1, -1). */
if (!lambda_vector_lexico_pos (dist_v, DDR_NB_LOOPS (ddr)))
{
lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr), DDR_A (ddr),
loop_nest))
return false;
compute_subscript_distance (ddr);
if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
save_v, &init_b, &index_carry))
return false;
save_dist_v (ddr, save_v);
DDR_REVERSED_P (ddr) = true;
/* In this case there is a dependence forward for all the
outer loops:
| for (k = 1; k < 100; k++)
| for (i = 1; i < 100; i++)
| for (j = 1; j < 100; j++)
| {
| t = T[j+1][i-1]; // A
| T[j][i] = t + 2; // B
| }
the vectors are:
(0, 1, -1)
(1, 1, -1)
(1, -1, 1)
*/
if (DDR_NB_LOOPS (ddr) > 1)
{
add_outer_distances (ddr, save_v, index_carry);
add_outer_distances (ddr, dist_v, index_carry);
}
}
else
{
lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
if (DDR_NB_LOOPS (ddr) > 1)
{
lambda_vector opposite_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr),
DDR_A (ddr), loop_nest))
return false;
compute_subscript_distance (ddr);
if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
opposite_v, &init_b,
&index_carry))
return false;
save_dist_v (ddr, save_v);
add_outer_distances (ddr, dist_v, index_carry);
add_outer_distances (ddr, opposite_v, index_carry);
}
else
save_dist_v (ddr, save_v);
}
}
else
{
/* There is a distance of 1 on all the outer loops: Example:
there is a dependence of distance 1 on loop_1 for the array A.
| loop_1
| A[5] = ...
| endloop
*/
add_outer_distances (ddr, dist_v,
lambda_vector_first_nz (dist_v,
DDR_NB_LOOPS (ddr), 0));
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
unsigned i;
fprintf (dump_file, "(build_classic_dist_vector\n");
for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
{
fprintf (dump_file, " dist_vector = (");
print_lambda_vector (dump_file, DDR_DIST_VECT (ddr, i),
DDR_NB_LOOPS (ddr));
fprintf (dump_file, " )\n");
}
fprintf (dump_file, ")\n");
}
return true;
}
/* Return the direction for a given distance.
FIXME: Computing dir this way is suboptimal, since dir can catch
cases that dist is unable to represent. */
static inline enum data_dependence_direction
dir_from_dist (int dist)
{
if (dist > 0)
return dir_positive;
else if (dist < 0)
return dir_negative;
else
return dir_equal;
}
/* Compute the classic per loop direction vector. DDR is the data
dependence relation to build a vector from. */
static void
build_classic_dir_vector (struct data_dependence_relation *ddr)
{
unsigned i, j;
lambda_vector dist_v;
FOR_EACH_VEC_ELT (lambda_vector, DDR_DIST_VECTS (ddr), i, dist_v)
{
lambda_vector dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
for (j = 0; j < DDR_NB_LOOPS (ddr); j++)
dir_v[j] = dir_from_dist (dist_v[j]);
save_dir_v (ddr, dir_v);
}
}
/* Helper function. Returns true when there is a dependence between
data references DRA and DRB. */
static bool
subscript_dependence_tester_1 (struct data_dependence_relation *ddr,
struct data_reference *dra,
struct data_reference *drb,
struct loop *loop_nest)
{
unsigned int i;
tree last_conflicts;
struct subscript *subscript;
for (i = 0; VEC_iterate (subscript_p, DDR_SUBSCRIPTS (ddr), i, subscript);
i++)
{
conflict_function *overlaps_a, *overlaps_b;
analyze_overlapping_iterations (DR_ACCESS_FN (dra, i),
DR_ACCESS_FN (drb, i),
&overlaps_a, &overlaps_b,
&last_conflicts, loop_nest);
if (CF_NOT_KNOWN_P (overlaps_a)
|| CF_NOT_KNOWN_P (overlaps_b))
{
finalize_ddr_dependent (ddr, chrec_dont_know);
dependence_stats.num_dependence_undetermined++;
free_conflict_function (overlaps_a);
free_conflict_function (overlaps_b);
return false;
}
else if (CF_NO_DEPENDENCE_P (overlaps_a)
|| CF_NO_DEPENDENCE_P (overlaps_b))
{
finalize_ddr_dependent (ddr, chrec_known);
dependence_stats.num_dependence_independent++;
free_conflict_function (overlaps_a);
free_conflict_function (overlaps_b);
return false;
}
else
{
if (SUB_CONFLICTS_IN_A (subscript))
free_conflict_function (SUB_CONFLICTS_IN_A (subscript));
if (SUB_CONFLICTS_IN_B (subscript))
free_conflict_function (SUB_CONFLICTS_IN_B (subscript));
SUB_CONFLICTS_IN_A (subscript) = overlaps_a;
SUB_CONFLICTS_IN_B (subscript) = overlaps_b;
SUB_LAST_CONFLICT (subscript) = last_conflicts;
}
}
return true;
}
/* Computes the conflicting iterations in LOOP_NEST, and initialize DDR. */
static void
subscript_dependence_tester (struct data_dependence_relation *ddr,
struct loop *loop_nest)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "(subscript_dependence_tester \n");
if (subscript_dependence_tester_1 (ddr, DDR_A (ddr), DDR_B (ddr), loop_nest))
dependence_stats.num_dependence_dependent++;
compute_subscript_distance (ddr);
if (build_classic_dist_vector (ddr, loop_nest))
build_classic_dir_vector (ddr);
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, ")\n");
}
/* Returns true when all the access functions of A are affine or
constant with respect to LOOP_NEST. */
static bool
access_functions_are_affine_or_constant_p (const struct data_reference *a,
const struct loop *loop_nest)
{
unsigned int i;
VEC(tree,heap) *fns = DR_ACCESS_FNS (a);
tree t;
FOR_EACH_VEC_ELT (tree, fns, i, t)
if (!evolution_function_is_invariant_p (t, loop_nest->num)
&& !evolution_function_is_affine_multivariate_p (t, loop_nest->num))
return false;
return true;
}
/* Initializes an equation for an OMEGA problem using the information
contained in the ACCESS_FUN. Returns true when the operation
succeeded.
PB is the omega constraint system.
EQ is the number of the equation to be initialized.
OFFSET is used for shifting the variables names in the constraints:
a constrain is composed of 2 * the number of variables surrounding
dependence accesses. OFFSET is set either to 0 for the first n variables,
then it is set to n.
ACCESS_FUN is expected to be an affine chrec. */
static bool
init_omega_eq_with_af (omega_pb pb, unsigned eq,
unsigned int offset, tree access_fun,
struct data_dependence_relation *ddr)
{
switch (TREE_CODE (access_fun))
{
case POLYNOMIAL_CHREC:
{
tree left = CHREC_LEFT (access_fun);
tree right = CHREC_RIGHT (access_fun);
int var = CHREC_VARIABLE (access_fun);
unsigned var_idx;
if (TREE_CODE (right) != INTEGER_CST)
return false;
var_idx = index_in_loop_nest (var, DDR_LOOP_NEST (ddr));
pb->eqs[eq].coef[offset + var_idx + 1] = int_cst_value (right);
/* Compute the innermost loop index. */
DDR_INNER_LOOP (ddr) = MAX (DDR_INNER_LOOP (ddr), var_idx);
if (offset == 0)
pb->eqs[eq].coef[var_idx + DDR_NB_LOOPS (ddr) + 1]
+= int_cst_value (right);
switch (TREE_CODE (left))
{
case POLYNOMIAL_CHREC:
return init_omega_eq_with_af (pb, eq, offset, left, ddr);
case INTEGER_CST:
pb->eqs[eq].coef[0] += int_cst_value (left);
return true;
default:
return false;
}
}
case INTEGER_CST:
pb->eqs[eq].coef[0] += int_cst_value (access_fun);
return true;
default:
return false;
}
}
/* As explained in the comments preceding init_omega_for_ddr, we have
to set up a system for each loop level, setting outer loops
variation to zero, and current loop variation to positive or zero.
Save each lexico positive distance vector. */
static void
omega_extract_distance_vectors (omega_pb pb,
struct data_dependence_relation *ddr)
{
int eq, geq;
unsigned i, j;
struct loop *loopi, *loopj;
enum omega_result res;
/* Set a new problem for each loop in the nest. The basis is the
problem that we have initialized until now. On top of this we
add new constraints. */
for (i = 0; i <= DDR_INNER_LOOP (ddr)
&& VEC_iterate (loop_p, DDR_LOOP_NEST (ddr), i, loopi); i++)
{
int dist = 0;
omega_pb copy = omega_alloc_problem (2 * DDR_NB_LOOPS (ddr),
DDR_NB_LOOPS (ddr));
omega_copy_problem (copy, pb);
/* For all the outer loops "loop_j", add "dj = 0". */
for (j = 0;
j < i && VEC_iterate (loop_p, DDR_LOOP_NEST (ddr), j, loopj); j++)
{
eq = omega_add_zero_eq (copy, omega_black);
copy->eqs[eq].coef[j + 1] = 1;
}
/* For "loop_i", add "0 <= di". */
geq = omega_add_zero_geq (copy, omega_black);
copy->geqs[geq].coef[i + 1] = 1;
/* Reduce the constraint system, and test that the current
problem is feasible. */
res = omega_simplify_problem (copy);
if (res == omega_false
|| res == omega_unknown
|| copy->num_geqs > (int) DDR_NB_LOOPS (ddr))
goto next_problem;
for (eq = 0; eq < copy->num_subs; eq++)
if (copy->subs[eq].key == (int) i + 1)
{
dist = copy->subs[eq].coef[0];
goto found_dist;
}
if (dist == 0)
{
/* Reinitialize problem... */
omega_copy_problem (copy, pb);
for (j = 0;
j < i && VEC_iterate (loop_p, DDR_LOOP_NEST (ddr), j, loopj); j++)
{
eq = omega_add_zero_eq (copy, omega_black);
copy->eqs[eq].coef[j + 1] = 1;
}
/* ..., but this time "di = 1". */
eq = omega_add_zero_eq (copy, omega_black);
copy->eqs[eq].coef[i + 1] = 1;
copy->eqs[eq].coef[0] = -1;
res = omega_simplify_problem (copy);
if (res == omega_false
|| res == omega_unknown
|| copy->num_geqs > (int) DDR_NB_LOOPS (ddr))
goto next_problem;
for (eq = 0; eq < copy->num_subs; eq++)
if (copy->subs[eq].key == (int) i + 1)
{
dist = copy->subs[eq].coef[0];
goto found_dist;
}
}
found_dist:;
/* Save the lexicographically positive distance vector. */
if (dist >= 0)
{
lambda_vector dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
lambda_vector dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
dist_v[i] = dist;
for (eq = 0; eq < copy->num_subs; eq++)
if (copy->subs[eq].key > 0)
{
dist = copy->subs[eq].coef[0];
dist_v[copy->subs[eq].key - 1] = dist;
}
for (j = 0; j < DDR_NB_LOOPS (ddr); j++)
dir_v[j] = dir_from_dist (dist_v[j]);
save_dist_v (ddr, dist_v);
save_dir_v (ddr, dir_v);
}
next_problem:;
omega_free_problem (copy);
}
}
/* This is called for each subscript of a tuple of data references:
insert an equality for representing the conflicts. */
static bool
omega_setup_subscript (tree access_fun_a, tree access_fun_b,
struct data_dependence_relation *ddr,
omega_pb pb, bool *maybe_dependent)
{
int eq;
tree type = signed_type_for_types (TREE_TYPE (access_fun_a),
TREE_TYPE (access_fun_b));
tree fun_a = chrec_convert (type, access_fun_a, NULL);
tree fun_b = chrec_convert (type, access_fun_b, NULL);
tree difference = chrec_fold_minus (type, fun_a, fun_b);
tree minus_one;
/* When the fun_a - fun_b is not constant, the dependence is not
captured by the classic distance vector representation. */
if (TREE_CODE (difference) != INTEGER_CST)
return false;
/* ZIV test. */
if (ziv_subscript_p (fun_a, fun_b) && !integer_zerop (difference))
{
/* There is no dependence. */
*maybe_dependent = false;
return true;
}
minus_one = build_int_cst (type, -1);
fun_b = chrec_fold_multiply (type, fun_b, minus_one);
eq = omega_add_zero_eq (pb, omega_black);
if (!init_omega_eq_with_af (pb, eq, DDR_NB_LOOPS (ddr), fun_a, ddr)
|| !init_omega_eq_with_af (pb, eq, 0, fun_b, ddr))
/* There is probably a dependence, but the system of
constraints cannot be built: answer "don't know". */
return false;
/* GCD test. */
if (DDR_NB_LOOPS (ddr) != 0 && pb->eqs[eq].coef[0]
&& !int_divides_p (lambda_vector_gcd
((lambda_vector) &(pb->eqs[eq].coef[1]),
2 * DDR_NB_LOOPS (ddr)),
pb->eqs[eq].coef[0]))
{
/* There is no dependence. */
*maybe_dependent = false;
return true;
}
return true;
}
/* Helper function, same as init_omega_for_ddr but specialized for
data references A and B. */
static bool
init_omega_for_ddr_1 (struct data_reference *dra, struct data_reference *drb,
struct data_dependence_relation *ddr,
omega_pb pb, bool *maybe_dependent)
{
unsigned i;
int ineq;
struct loop *loopi;
unsigned nb_loops = DDR_NB_LOOPS (ddr);
/* Insert an equality per subscript. */
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
{
if (!omega_setup_subscript (DR_ACCESS_FN (dra, i), DR_ACCESS_FN (drb, i),
ddr, pb, maybe_dependent))
return false;
else if (*maybe_dependent == false)
{
/* There is no dependence. */
DDR_ARE_DEPENDENT (ddr) = chrec_known;
return true;
}
}
/* Insert inequalities: constraints corresponding to the iteration
domain, i.e. the loops surrounding the references "loop_x" and
the distance variables "dx". The layout of the OMEGA
representation is as follows:
- coef[0] is the constant
- coef[1..nb_loops] are the protected variables that will not be
removed by the solver: the "dx"
- coef[nb_loops + 1, 2*nb_loops] are the loop variables: "loop_x".
*/
for (i = 0; i <= DDR_INNER_LOOP (ddr)
&& VEC_iterate (loop_p, DDR_LOOP_NEST (ddr), i, loopi); i++)
{
HOST_WIDE_INT nbi = max_stmt_executions_int (loopi, true);
/* 0 <= loop_x */
ineq = omega_add_zero_geq (pb, omega_black);
pb->geqs[ineq].coef[i + nb_loops + 1] = 1;
/* 0 <= loop_x + dx */
ineq = omega_add_zero_geq (pb, omega_black);
pb->geqs[ineq].coef[i + nb_loops + 1] = 1;
pb->geqs[ineq].coef[i + 1] = 1;
if (nbi != -1)
{
/* loop_x <= nb_iters */
ineq = omega_add_zero_geq (pb, omega_black);
pb->geqs[ineq].coef[i + nb_loops + 1] = -1;
pb->geqs[ineq].coef[0] = nbi;
/* loop_x + dx <= nb_iters */
ineq = omega_add_zero_geq (pb, omega_black);
pb->geqs[ineq].coef[i + nb_loops + 1] = -1;
pb->geqs[ineq].coef[i + 1] = -1;
pb->geqs[ineq].coef[0] = nbi;
/* A step "dx" bigger than nb_iters is not feasible, so
add "0 <= nb_iters + dx", */
ineq = omega_add_zero_geq (pb, omega_black);
pb->geqs[ineq].coef[i + 1] = 1;
pb->geqs[ineq].coef[0] = nbi;
/* and "dx <= nb_iters". */
ineq = omega_add_zero_geq (pb, omega_black);
pb->geqs[ineq].coef[i + 1] = -1;
pb->geqs[ineq].coef[0] = nbi;
}
}
omega_extract_distance_vectors (pb, ddr);
return true;
}
/* Sets up the Omega dependence problem for the data dependence
relation DDR. Returns false when the constraint system cannot be
built, ie. when the test answers "don't know". Returns true
otherwise, and when independence has been proved (using one of the
trivial dependence test), set MAYBE_DEPENDENT to false, otherwise
set MAYBE_DEPENDENT to true.
Example: for setting up the dependence system corresponding to the
conflicting accesses
| loop_i
| loop_j
| A[i, i+1] = ...
| ... A[2*j, 2*(i + j)]
| endloop_j
| endloop_i
the following constraints come from the iteration domain:
0 <= i <= Ni
0 <= i + di <= Ni
0 <= j <= Nj
0 <= j + dj <= Nj
where di, dj are the distance variables. The constraints
representing the conflicting elements are:
i = 2 * (j + dj)
i + 1 = 2 * (i + di + j + dj)
For asking that the resulting distance vector (di, dj) be
lexicographically positive, we insert the constraint "di >= 0". If
"di = 0" in the solution, we fix that component to zero, and we
look at the inner loops: we set a new problem where all the outer
loop distances are zero, and fix this inner component to be
positive. When one of the components is positive, we save that
distance, and set a new problem where the distance on this loop is
zero, searching for other distances in the inner loops. Here is
the classic example that illustrates that we have to set for each
inner loop a new problem:
| loop_1
| loop_2
| A[10]
| endloop_2
| endloop_1
we have to save two distances (1, 0) and (0, 1).
Given two array references, refA and refB, we have to set the
dependence problem twice, refA vs. refB and refB vs. refA, and we
cannot do a single test, as refB might occur before refA in the
inner loops, and the contrary when considering outer loops: ex.
| loop_0
| loop_1
| loop_2
| T[{1,+,1}_2][{1,+,1}_1] // refA
| T[{2,+,1}_2][{0,+,1}_1] // refB
| endloop_2
| endloop_1
| endloop_0
refB touches the elements in T before refA, and thus for the same
loop_0 refB precedes refA: ie. the distance vector (0, 1, -1)
but for successive loop_0 iterations, we have (1, -1, 1)
The Omega solver expects the distance variables ("di" in the
previous example) to come first in the constraint system (as
variables to be protected, or "safe" variables), the constraint
system is built using the following layout:
"cst | distance vars | index vars".
*/
static bool
init_omega_for_ddr (struct data_dependence_relation *ddr,
bool *maybe_dependent)
{
omega_pb pb;
bool res = false;
*maybe_dependent = true;
if (same_access_functions (ddr))
{
unsigned j;
lambda_vector dir_v;
/* Save the 0 vector. */
save_dist_v (ddr, lambda_vector_new (DDR_NB_LOOPS (ddr)));
dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
for (j = 0; j < DDR_NB_LOOPS (ddr); j++)
dir_v[j] = dir_equal;
save_dir_v (ddr, dir_v);
/* Save the dependences carried by outer loops. */
pb = omega_alloc_problem (2 * DDR_NB_LOOPS (ddr), DDR_NB_LOOPS (ddr));
res = init_omega_for_ddr_1 (DDR_A (ddr), DDR_B (ddr), ddr, pb,
maybe_dependent);
omega_free_problem (pb);
return res;
}
/* Omega expects the protected variables (those that have to be kept
after elimination) to appear first in the constraint system.
These variables are the distance variables. In the following
initialization we declare NB_LOOPS safe variables, and the total
number of variables for the constraint system is 2*NB_LOOPS. */
pb = omega_alloc_problem (2 * DDR_NB_LOOPS (ddr), DDR_NB_LOOPS (ddr));
res = init_omega_for_ddr_1 (DDR_A (ddr), DDR_B (ddr), ddr, pb,
maybe_dependent);
omega_free_problem (pb);
/* Stop computation if not decidable, or no dependence. */
if (res == false || *maybe_dependent == false)
return res;
pb = omega_alloc_problem (2 * DDR_NB_LOOPS (ddr), DDR_NB_LOOPS (ddr));
res = init_omega_for_ddr_1 (DDR_B (ddr), DDR_A (ddr), ddr, pb,
maybe_dependent);
omega_free_problem (pb);
return res;
}
/* Return true when DDR contains the same information as that stored
in DIR_VECTS and in DIST_VECTS, return false otherwise. */
static bool
ddr_consistent_p (FILE *file,
struct data_dependence_relation *ddr,
VEC (lambda_vector, heap) *dist_vects,
VEC (lambda_vector, heap) *dir_vects)
{
unsigned int i, j;
/* If dump_file is set, output there. */
if (dump_file && (dump_flags & TDF_DETAILS))
file = dump_file;
if (VEC_length (lambda_vector, dist_vects) != DDR_NUM_DIST_VECTS (ddr))
{
lambda_vector b_dist_v;
fprintf (file, "\n(Number of distance vectors differ: Banerjee has %d, Omega has %d.\n",
VEC_length (lambda_vector, dist_vects),
DDR_NUM_DIST_VECTS (ddr));
fprintf (file, "Banerjee dist vectors:\n");
FOR_EACH_VEC_ELT (lambda_vector, dist_vects, i, b_dist_v)
print_lambda_vector (file, b_dist_v, DDR_NB_LOOPS (ddr));
fprintf (file, "Omega dist vectors:\n");
for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
print_lambda_vector (file, DDR_DIST_VECT (ddr, i), DDR_NB_LOOPS (ddr));
fprintf (file, "data dependence relation:\n");
dump_data_dependence_relation (file, ddr);
fprintf (file, ")\n");
return false;
}
if (VEC_length (lambda_vector, dir_vects) != DDR_NUM_DIR_VECTS (ddr))
{
fprintf (file, "\n(Number of direction vectors differ: Banerjee has %d, Omega has %d.)\n",
VEC_length (lambda_vector, dir_vects),
DDR_NUM_DIR_VECTS (ddr));
return false;
}
for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
{
lambda_vector a_dist_v;
lambda_vector b_dist_v = DDR_DIST_VECT (ddr, i);
/* Distance vectors are not ordered in the same way in the DDR
and in the DIST_VECTS: search for a matching vector. */
FOR_EACH_VEC_ELT (lambda_vector, dist_vects, j, a_dist_v)
if (lambda_vector_equal (a_dist_v, b_dist_v, DDR_NB_LOOPS (ddr)))
break;
if (j == VEC_length (lambda_vector, dist_vects))
{
fprintf (file, "\n(Dist vectors from the first dependence analyzer:\n");
print_dist_vectors (file, dist_vects, DDR_NB_LOOPS (ddr));
fprintf (file, "not found in Omega dist vectors:\n");
print_dist_vectors (file, DDR_DIST_VECTS (ddr), DDR_NB_LOOPS (ddr));
fprintf (file, "data dependence relation:\n");
dump_data_dependence_relation (file, ddr);
fprintf (file, ")\n");
}
}
for (i = 0; i < DDR_NUM_DIR_VECTS (ddr); i++)
{
lambda_vector a_dir_v;
lambda_vector b_dir_v = DDR_DIR_VECT (ddr, i);
/* Direction vectors are not ordered in the same way in the DDR
and in the DIR_VECTS: search for a matching vector. */
FOR_EACH_VEC_ELT (lambda_vector, dir_vects, j, a_dir_v)
if (lambda_vector_equal (a_dir_v, b_dir_v, DDR_NB_LOOPS (ddr)))
break;
if (j == VEC_length (lambda_vector, dist_vects))
{
fprintf (file, "\n(Dir vectors from the first dependence analyzer:\n");
print_dir_vectors (file, dir_vects, DDR_NB_LOOPS (ddr));
fprintf (file, "not found in Omega dir vectors:\n");
print_dir_vectors (file, DDR_DIR_VECTS (ddr), DDR_NB_LOOPS (ddr));
fprintf (file, "data dependence relation:\n");
dump_data_dependence_relation (file, ddr);
fprintf (file, ")\n");
}
}
return true;
}
/* This computes the affine dependence relation between A and B with
respect to LOOP_NEST. CHREC_KNOWN is used for representing the
independence between two accesses, while CHREC_DONT_KNOW is used
for representing the unknown relation.
Note that it is possible to stop the computation of the dependence
relation the first time we detect a CHREC_KNOWN element for a given
subscript. */
static void
compute_affine_dependence (struct data_dependence_relation *ddr,
struct loop *loop_nest)
{
struct data_reference *dra = DDR_A (ddr);
struct data_reference *drb = DDR_B (ddr);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "(compute_affine_dependence\n");
fprintf (dump_file, " (stmt_a = \n");
print_gimple_stmt (dump_file, DR_STMT (dra), 0, 0);
fprintf (dump_file, ")\n (stmt_b = \n");
print_gimple_stmt (dump_file, DR_STMT (drb), 0, 0);
fprintf (dump_file, ")\n");
}
/* Analyze only when the dependence relation is not yet known. */
if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE
&& !DDR_SELF_REFERENCE (ddr))
{
dependence_stats.num_dependence_tests++;
if (access_functions_are_affine_or_constant_p (dra, loop_nest)
&& access_functions_are_affine_or_constant_p (drb, loop_nest))
{
if (flag_check_data_deps)
{
/* Compute the dependences using the first algorithm. */
subscript_dependence_tester (ddr, loop_nest);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\n\nBanerjee Analyzer\n");
dump_data_dependence_relation (dump_file, ddr);
}
if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
{
bool maybe_dependent;
VEC (lambda_vector, heap) *dir_vects, *dist_vects;
/* Save the result of the first DD analyzer. */
dist_vects = DDR_DIST_VECTS (ddr);
dir_vects = DDR_DIR_VECTS (ddr);
/* Reset the information. */
DDR_DIST_VECTS (ddr) = NULL;
DDR_DIR_VECTS (ddr) = NULL;
/* Compute the same information using Omega. */
if (!init_omega_for_ddr (ddr, &maybe_dependent))
goto csys_dont_know;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Omega Analyzer\n");
dump_data_dependence_relation (dump_file, ddr);
}
/* Check that we get the same information. */
if (maybe_dependent)
gcc_assert (ddr_consistent_p (stderr, ddr, dist_vects,
dir_vects));
}
}
else
subscript_dependence_tester (ddr, loop_nest);
}
/* As a last case, if the dependence cannot be determined, or if
the dependence is considered too difficult to determine, answer
"don't know". */
else
{
csys_dont_know:;
dependence_stats.num_dependence_undetermined++;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Data ref a:\n");
dump_data_reference (dump_file, dra);
fprintf (dump_file, "Data ref b:\n");
dump_data_reference (dump_file, drb);
fprintf (dump_file, "affine dependence test not usable: access function not affine or constant.\n");
}
finalize_ddr_dependent (ddr, chrec_dont_know);
}
}
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, ")\n");
}
/* This computes the dependence relation for the same data
reference into DDR. */
static void
compute_self_dependence (struct data_dependence_relation *ddr)
{
unsigned int i;
struct subscript *subscript;
if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE)
return;
for (i = 0; VEC_iterate (subscript_p, DDR_SUBSCRIPTS (ddr), i, subscript);
i++)
{
if (SUB_CONFLICTS_IN_A (subscript))
free_conflict_function (SUB_CONFLICTS_IN_A (subscript));
if (SUB_CONFLICTS_IN_B (subscript))
free_conflict_function (SUB_CONFLICTS_IN_B (subscript));
/* The accessed index overlaps for each iteration. */
SUB_CONFLICTS_IN_A (subscript)
= conflict_fn (1, affine_fn_cst (integer_zero_node));
SUB_CONFLICTS_IN_B (subscript)
= conflict_fn (1, affine_fn_cst (integer_zero_node));
SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
}
/* The distance vector is the zero vector. */
save_dist_v (ddr, lambda_vector_new (DDR_NB_LOOPS (ddr)));
save_dir_v (ddr, lambda_vector_new (DDR_NB_LOOPS (ddr)));
}
/* Compute in DEPENDENCE_RELATIONS the data dependence graph for all
the data references in DATAREFS, in the LOOP_NEST. When
COMPUTE_SELF_AND_RR is FALSE, don't compute read-read and self
relations. */
void
compute_all_dependences (VEC (data_reference_p, heap) *datarefs,
VEC (ddr_p, heap) **dependence_relations,
VEC (loop_p, heap) *loop_nest,
bool compute_self_and_rr)
{
struct data_dependence_relation *ddr;
struct data_reference *a, *b;
unsigned int i, j;
FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, a)
for (j = i + 1; VEC_iterate (data_reference_p, datarefs, j, b); j++)
if (DR_IS_WRITE (a) || DR_IS_WRITE (b) || compute_self_and_rr)
{
ddr = initialize_data_dependence_relation (a, b, loop_nest);
VEC_safe_push (ddr_p, heap, *dependence_relations, ddr);
if (loop_nest)
compute_affine_dependence (ddr, VEC_index (loop_p, loop_nest, 0));
}
if (compute_self_and_rr)
FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, a)
{
ddr = initialize_data_dependence_relation (a, a, loop_nest);
VEC_safe_push (ddr_p, heap, *dependence_relations, ddr);
compute_self_dependence (ddr);
}
}
/* Stores the locations of memory references in STMT to REFERENCES. Returns
true if STMT clobbers memory, false otherwise. */
bool
get_references_in_stmt (gimple stmt, VEC (data_ref_loc, heap) **references)
{
bool clobbers_memory = false;
data_ref_loc *ref;
tree *op0, *op1;
enum gimple_code stmt_code = gimple_code (stmt);
*references = NULL;
/* ASM_EXPR and CALL_EXPR may embed arbitrary side effects.
Calls have side-effects, except those to const or pure
functions. */
if ((stmt_code == GIMPLE_CALL
&& !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
|| (stmt_code == GIMPLE_ASM
&& gimple_asm_volatile_p (stmt)))
clobbers_memory = true;
if (!gimple_vuse (stmt))
return clobbers_memory;
if (stmt_code == GIMPLE_ASSIGN)
{
tree base;
op0 = gimple_assign_lhs_ptr (stmt);
op1 = gimple_assign_rhs1_ptr (stmt);
if (DECL_P (*op1)
|| (REFERENCE_CLASS_P (*op1)
&& (base = get_base_address (*op1))
&& TREE_CODE (base) != SSA_NAME))
{
ref = VEC_safe_push (data_ref_loc, heap, *references, NULL);
ref->pos = op1;
ref->is_read = true;
}
if (DECL_P (*op0)
|| (REFERENCE_CLASS_P (*op0) && get_base_address (*op0)))
{
ref = VEC_safe_push (data_ref_loc, heap, *references, NULL);
ref->pos = op0;
ref->is_read = false;
}
}
else if (stmt_code == GIMPLE_CALL)
{
unsigned i, n = gimple_call_num_args (stmt);
for (i = 0; i < n; i++)
{
op0 = gimple_call_arg_ptr (stmt, i);
if (DECL_P (*op0)
|| (REFERENCE_CLASS_P (*op0) && get_base_address (*op0)))
{
ref = VEC_safe_push (data_ref_loc, heap, *references, NULL);
ref->pos = op0;
ref->is_read = true;
}
}
}
return clobbers_memory;
}
/* Stores the data references in STMT to DATAREFS. If there is an unanalyzable
reference, returns false, otherwise returns true. NEST is the outermost
loop of the loop nest in which the references should be analyzed. */
bool
find_data_references_in_stmt (struct loop *nest, gimple stmt,
VEC (data_reference_p, heap) **datarefs)
{
unsigned i;
VEC (data_ref_loc, heap) *references;
data_ref_loc *ref;
bool ret = true;
data_reference_p dr;
if (get_references_in_stmt (stmt, &references))
{
VEC_free (data_ref_loc, heap, references);
return false;
}
FOR_EACH_VEC_ELT (data_ref_loc, references, i, ref)
{
dr = create_data_ref (nest, loop_containing_stmt (stmt),
*ref->pos, stmt, ref->is_read);
gcc_assert (dr != NULL);
/* FIXME -- data dependence analysis does not work correctly for objects
with invariant addresses in loop nests. Let us fail here until the
problem is fixed. */
if (dr_address_invariant_p (dr) && nest)
{
free_data_ref (dr);
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "\tFAILED as dr address is invariant\n");
ret = false;
break;
}
VEC_safe_push (data_reference_p, heap, *datarefs, dr);
}
VEC_free (data_ref_loc, heap, references);
return ret;
}
/* Stores the data references in STMT to DATAREFS. If there is an
unanalyzable reference, returns false, otherwise returns true.
NEST is the outermost loop of the loop nest in which the references
should be instantiated, LOOP is the loop in which the references
should be analyzed. */
bool
graphite_find_data_references_in_stmt (loop_p nest, loop_p loop, gimple stmt,
VEC (data_reference_p, heap) **datarefs)
{
unsigned i;
VEC (data_ref_loc, heap) *references;
data_ref_loc *ref;
bool ret = true;
data_reference_p dr;
if (get_references_in_stmt (stmt, &references))
{
VEC_free (data_ref_loc, heap, references);
return false;
}
FOR_EACH_VEC_ELT (data_ref_loc, references, i, ref)
{
dr = create_data_ref (nest, loop, *ref->pos, stmt, ref->is_read);
gcc_assert (dr != NULL);
VEC_safe_push (data_reference_p, heap, *datarefs, dr);
}
VEC_free (data_ref_loc, heap, references);
return ret;
}
/* Search the data references in LOOP, and record the information into
DATAREFS. Returns chrec_dont_know when failing to analyze a
difficult case, returns NULL_TREE otherwise. */
tree
find_data_references_in_bb (struct loop *loop, basic_block bb,
VEC (data_reference_p, heap) **datarefs)
{
gimple_stmt_iterator bsi;
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
{
gimple stmt = gsi_stmt (bsi);
if (!find_data_references_in_stmt (loop, stmt, datarefs))
{
struct data_reference *res;
res = XCNEW (struct data_reference);
VEC_safe_push (data_reference_p, heap, *datarefs, res);
return chrec_dont_know;
}
}
return NULL_TREE;
}
/* Search the data references in LOOP, and record the information into
DATAREFS. Returns chrec_dont_know when failing to analyze a
difficult case, returns NULL_TREE otherwise.
TODO: This function should be made smarter so that it can handle address
arithmetic as if they were array accesses, etc. */
tree
find_data_references_in_loop (struct loop *loop,
VEC (data_reference_p, heap) **datarefs)
{
basic_block bb, *bbs;
unsigned int i;
bbs = get_loop_body_in_dom_order (loop);
for (i = 0; i < loop->num_nodes; i++)
{
bb = bbs[i];
if (find_data_references_in_bb (loop, bb, datarefs) == chrec_dont_know)
{
free (bbs);
return chrec_dont_know;
}
}
free (bbs);
return NULL_TREE;
}
/* Recursive helper function. */
static bool
find_loop_nest_1 (struct loop *loop, VEC (loop_p, heap) **loop_nest)
{
/* Inner loops of the nest should not contain siblings. Example:
when there are two consecutive loops,
| loop_0
| loop_1
| A[{0, +, 1}_1]
| endloop_1
| loop_2
| A[{0, +, 1}_2]
| endloop_2
| endloop_0
the dependence relation cannot be captured by the distance
abstraction. */
if (loop->next)
return false;
VEC_safe_push (loop_p, heap, *loop_nest, loop);
if (loop->inner)
return find_loop_nest_1 (loop->inner, loop_nest);
return true;
}
/* Return false when the LOOP is not well nested. Otherwise return
true and insert in LOOP_NEST the loops of the nest. LOOP_NEST will
contain the loops from the outermost to the innermost, as they will
appear in the classic distance vector. */
bool
find_loop_nest (struct loop *loop, VEC (loop_p, heap) **loop_nest)
{
VEC_safe_push (loop_p, heap, *loop_nest, loop);
if (loop->inner)
return find_loop_nest_1 (loop->inner, loop_nest);
return true;
}
/* Returns true when the data dependences have been computed, false otherwise.
Given a loop nest LOOP, the following vectors are returned:
DATAREFS is initialized to all the array elements contained in this loop,
DEPENDENCE_RELATIONS contains the relations between the data references.
Compute read-read and self relations if
COMPUTE_SELF_AND_READ_READ_DEPENDENCES is TRUE. */
bool
compute_data_dependences_for_loop (struct loop *loop,
bool compute_self_and_read_read_dependences,
VEC (loop_p, heap) **loop_nest,
VEC (data_reference_p, heap) **datarefs,
VEC (ddr_p, heap) **dependence_relations)
{
bool res = true;
memset (&dependence_stats, 0, sizeof (dependence_stats));
/* If the loop nest is not well formed, or one of the data references
is not computable, give up without spending time to compute other
dependences. */
if (!loop
|| !find_loop_nest (loop, loop_nest)
|| find_data_references_in_loop (loop, datarefs) == chrec_dont_know)
{
struct data_dependence_relation *ddr;
/* Insert a single relation into dependence_relations:
chrec_dont_know. */
ddr = initialize_data_dependence_relation (NULL, NULL, *loop_nest);
VEC_safe_push (ddr_p, heap, *dependence_relations, ddr);
res = false;
}
else
compute_all_dependences (*datarefs, dependence_relations, *loop_nest,
compute_self_and_read_read_dependences);
if (dump_file && (dump_flags & TDF_STATS))
{
fprintf (dump_file, "Dependence tester statistics:\n");
fprintf (dump_file, "Number of dependence tests: %d\n",
dependence_stats.num_dependence_tests);
fprintf (dump_file, "Number of dependence tests classified dependent: %d\n",
dependence_stats.num_dependence_dependent);
fprintf (dump_file, "Number of dependence tests classified independent: %d\n",
dependence_stats.num_dependence_independent);
fprintf (dump_file, "Number of undetermined dependence tests: %d\n",
dependence_stats.num_dependence_undetermined);
fprintf (dump_file, "Number of subscript tests: %d\n",
dependence_stats.num_subscript_tests);
fprintf (dump_file, "Number of undetermined subscript tests: %d\n",
dependence_stats.num_subscript_undetermined);
fprintf (dump_file, "Number of same subscript function: %d\n",
dependence_stats.num_same_subscript_function);
fprintf (dump_file, "Number of ziv tests: %d\n",
dependence_stats.num_ziv);
fprintf (dump_file, "Number of ziv tests returning dependent: %d\n",
dependence_stats.num_ziv_dependent);
fprintf (dump_file, "Number of ziv tests returning independent: %d\n",
dependence_stats.num_ziv_independent);
fprintf (dump_file, "Number of ziv tests unimplemented: %d\n",
dependence_stats.num_ziv_unimplemented);
fprintf (dump_file, "Number of siv tests: %d\n",
dependence_stats.num_siv);
fprintf (dump_file, "Number of siv tests returning dependent: %d\n",
dependence_stats.num_siv_dependent);
fprintf (dump_file, "Number of siv tests returning independent: %d\n",
dependence_stats.num_siv_independent);
fprintf (dump_file, "Number of siv tests unimplemented: %d\n",
dependence_stats.num_siv_unimplemented);
fprintf (dump_file, "Number of miv tests: %d\n",
dependence_stats.num_miv);
fprintf (dump_file, "Number of miv tests returning dependent: %d\n",
dependence_stats.num_miv_dependent);
fprintf (dump_file, "Number of miv tests returning independent: %d\n",
dependence_stats.num_miv_independent);
fprintf (dump_file, "Number of miv tests unimplemented: %d\n",
dependence_stats.num_miv_unimplemented);
}
return res;
}
/* Returns true when the data dependences for the basic block BB have been
computed, false otherwise.
DATAREFS is initialized to all the array elements contained in this basic
block, DEPENDENCE_RELATIONS contains the relations between the data
references. Compute read-read and self relations if
COMPUTE_SELF_AND_READ_READ_DEPENDENCES is TRUE. */
bool
compute_data_dependences_for_bb (basic_block bb,
bool compute_self_and_read_read_dependences,
VEC (data_reference_p, heap) **datarefs,
VEC (ddr_p, heap) **dependence_relations)
{
if (find_data_references_in_bb (NULL, bb, datarefs) == chrec_dont_know)
return false;
compute_all_dependences (*datarefs, dependence_relations, NULL,
compute_self_and_read_read_dependences);
return true;
}
/* Entry point (for testing only). Analyze all the data references
and the dependence relations in LOOP.
The data references are computed first.
A relation on these nodes is represented by a complete graph. Some
of the relations could be of no interest, thus the relations can be
computed on demand.
In the following function we compute all the relations. This is
just a first implementation that is here for:
- for showing how to ask for the dependence relations,
- for the debugging the whole dependence graph,
- for the dejagnu testcases and maintenance.
It is possible to ask only for a part of the graph, avoiding to
compute the whole dependence graph. The computed dependences are
stored in a knowledge base (KB) such that later queries don't
recompute the same information. The implementation of this KB is
transparent to the optimizer, and thus the KB can be changed with a
more efficient implementation, or the KB could be disabled. */
static void
analyze_all_data_dependences (struct loop *loop)
{
unsigned int i;
int nb_data_refs = 10;
VEC (data_reference_p, heap) *datarefs =
VEC_alloc (data_reference_p, heap, nb_data_refs);
VEC (ddr_p, heap) *dependence_relations =
VEC_alloc (ddr_p, heap, nb_data_refs * nb_data_refs);
VEC (loop_p, heap) *loop_nest = VEC_alloc (loop_p, heap, 3);
/* Compute DDs on the whole function. */
compute_data_dependences_for_loop (loop, false, &loop_nest, &datarefs,
&dependence_relations);
if (dump_file)
{
dump_data_dependence_relations (dump_file, dependence_relations);
fprintf (dump_file, "\n\n");
if (dump_flags & TDF_DETAILS)
dump_dist_dir_vectors (dump_file, dependence_relations);
if (dump_flags & TDF_STATS)
{
unsigned nb_top_relations = 0;
unsigned nb_bot_relations = 0;
unsigned nb_chrec_relations = 0;
struct data_dependence_relation *ddr;
FOR_EACH_VEC_ELT (ddr_p, dependence_relations, i, ddr)
{
if (chrec_contains_undetermined (DDR_ARE_DEPENDENT (ddr)))
nb_top_relations++;
else if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
nb_bot_relations++;
else
nb_chrec_relations++;
}
gather_stats_on_scev_database ();
}
}
VEC_free (loop_p, heap, loop_nest);
free_dependence_relations (dependence_relations);
free_data_refs (datarefs);
}
/* Computes all the data dependences and check that the results of
several analyzers are the same. */
void
tree_check_data_deps (void)
{
loop_iterator li;
struct loop *loop_nest;
FOR_EACH_LOOP (li, loop_nest, 0)
analyze_all_data_dependences (loop_nest);
}
/* Free the memory used by a data dependence relation DDR. */
void
free_dependence_relation (struct data_dependence_relation *ddr)
{
if (ddr == NULL)
return;
if (DDR_SUBSCRIPTS (ddr))
free_subscripts (DDR_SUBSCRIPTS (ddr));
if (DDR_DIST_VECTS (ddr))
VEC_free (lambda_vector, heap, DDR_DIST_VECTS (ddr));
if (DDR_DIR_VECTS (ddr))
VEC_free (lambda_vector, heap, DDR_DIR_VECTS (ddr));
free (ddr);
}
/* Free the memory used by the data dependence relations from
DEPENDENCE_RELATIONS. */
void
free_dependence_relations (VEC (ddr_p, heap) *dependence_relations)
{
unsigned int i;
struct data_dependence_relation *ddr;
FOR_EACH_VEC_ELT (ddr_p, dependence_relations, i, ddr)
if (ddr)
free_dependence_relation (ddr);
VEC_free (ddr_p, heap, dependence_relations);
}
/* Free the memory used by the data references from DATAREFS. */
void
free_data_refs (VEC (data_reference_p, heap) *datarefs)
{
unsigned int i;
struct data_reference *dr;
FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
free_data_ref (dr);
VEC_free (data_reference_p, heap, datarefs);
}
/* Dump vertex I in RDG to FILE. */
void
dump_rdg_vertex (FILE *file, struct graph *rdg, int i)
{
struct vertex *v = &(rdg->vertices[i]);
struct graph_edge *e;
fprintf (file, "(vertex %d: (%s%s) (in:", i,
RDG_MEM_WRITE_STMT (rdg, i) ? "w" : "",
RDG_MEM_READS_STMT (rdg, i) ? "r" : "");
if (v->pred)
for (e = v->pred; e; e = e->pred_next)
fprintf (file, " %d", e->src);
fprintf (file, ") (out:");
if (v->succ)
for (e = v->succ; e; e = e->succ_next)
fprintf (file, " %d", e->dest);
fprintf (file, ")\n");
print_gimple_stmt (file, RDGV_STMT (v), 0, TDF_VOPS|TDF_MEMSYMS);
fprintf (file, ")\n");
}
/* Call dump_rdg_vertex on stderr. */
DEBUG_FUNCTION void
debug_rdg_vertex (struct graph *rdg, int i)
{
dump_rdg_vertex (stderr, rdg, i);
}
/* Dump component C of RDG to FILE. If DUMPED is non-null, set the
dumped vertices to that bitmap. */
void dump_rdg_component (FILE *file, struct graph *rdg, int c, bitmap dumped)
{
int i;
fprintf (file, "(%d\n", c);
for (i = 0; i < rdg->n_vertices; i++)
if (rdg->vertices[i].component == c)
{
if (dumped)
bitmap_set_bit (dumped, i);
dump_rdg_vertex (file, rdg, i);
}
fprintf (file, ")\n");
}
/* Call dump_rdg_vertex on stderr. */
DEBUG_FUNCTION void
debug_rdg_component (struct graph *rdg, int c)
{
dump_rdg_component (stderr, rdg, c, NULL);
}
/* Dump the reduced dependence graph RDG to FILE. */
void
dump_rdg (FILE *file, struct graph *rdg)
{
int i;
bitmap dumped = BITMAP_ALLOC (NULL);
fprintf (file, "(rdg\n");
for (i = 0; i < rdg->n_vertices; i++)
if (!bitmap_bit_p (dumped, i))
dump_rdg_component (file, rdg, rdg->vertices[i].component, dumped);
fprintf (file, ")\n");
BITMAP_FREE (dumped);
}
/* Call dump_rdg on stderr. */
DEBUG_FUNCTION void
debug_rdg (struct graph *rdg)
{
dump_rdg (stderr, rdg);
}
static void
dot_rdg_1 (FILE *file, struct graph *rdg)
{
int i;
fprintf (file, "digraph RDG {\n");
for (i = 0; i < rdg->n_vertices; i++)
{
struct vertex *v = &(rdg->vertices[i]);
struct graph_edge *e;
/* Highlight reads from memory. */
if (RDG_MEM_READS_STMT (rdg, i))
fprintf (file, "%d [style=filled, fillcolor=green]\n", i);
/* Highlight stores to memory. */
if (RDG_MEM_WRITE_STMT (rdg, i))
fprintf (file, "%d [style=filled, fillcolor=red]\n", i);
if (v->succ)
for (e = v->succ; e; e = e->succ_next)
switch (RDGE_TYPE (e))
{
case input_dd:
fprintf (file, "%d -> %d [label=input] \n", i, e->dest);
break;
case output_dd:
fprintf (file, "%d -> %d [label=output] \n", i, e->dest);
break;
case flow_dd:
/* These are the most common dependences: don't print these. */
fprintf (file, "%d -> %d \n", i, e->dest);
break;
case anti_dd:
fprintf (file, "%d -> %d [label=anti] \n", i, e->dest);
break;
default:
gcc_unreachable ();
}
}
fprintf (file, "}\n\n");
}
/* Display the Reduced Dependence Graph using dotty. */
extern void dot_rdg (struct graph *);
DEBUG_FUNCTION void
dot_rdg (struct graph *rdg)
{
/* When debugging, enable the following code. This cannot be used
in production compilers because it calls "system". */
#if 0
FILE *file = fopen ("/tmp/rdg.dot", "w");
gcc_assert (file != NULL);
dot_rdg_1 (file, rdg);
fclose (file);
system ("dotty /tmp/rdg.dot &");
#else
dot_rdg_1 (stderr, rdg);
#endif
}
/* This structure is used for recording the mapping statement index in
the RDG. */
struct GTY(()) rdg_vertex_info
{
gimple stmt;
int index;
};
/* Returns the index of STMT in RDG. */
int
rdg_vertex_for_stmt (struct graph *rdg, gimple stmt)
{
struct rdg_vertex_info rvi, *slot;
rvi.stmt = stmt;
slot = (struct rdg_vertex_info *) htab_find (rdg->indices, &rvi);
if (!slot)
return -1;
return slot->index;
}
/* Creates an edge in RDG for each distance vector from DDR. The
order that we keep track of in the RDG is the order in which
statements have to be executed. */
static void
create_rdg_edge_for_ddr (struct graph *rdg, ddr_p ddr)
{
struct graph_edge *e;
int va, vb;
data_reference_p dra = DDR_A (ddr);
data_reference_p drb = DDR_B (ddr);
unsigned level = ddr_dependence_level (ddr);
/* For non scalar dependences, when the dependence is REVERSED,
statement B has to be executed before statement A. */
if (level > 0
&& !DDR_REVERSED_P (ddr))
{
data_reference_p tmp = dra;
dra = drb;
drb = tmp;
}
va = rdg_vertex_for_stmt (rdg, DR_STMT (dra));
vb = rdg_vertex_for_stmt (rdg, DR_STMT (drb));
if (va < 0 || vb < 0)
return;
e = add_edge (rdg, va, vb);
e->data = XNEW (struct rdg_edge);
RDGE_LEVEL (e) = level;
RDGE_RELATION (e) = ddr;
/* Determines the type of the data dependence. */
if (DR_IS_READ (dra) && DR_IS_READ (drb))
RDGE_TYPE (e) = input_dd;
else if (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))
RDGE_TYPE (e) = output_dd;
else if (DR_IS_WRITE (dra) && DR_IS_READ (drb))
RDGE_TYPE (e) = flow_dd;
else if (DR_IS_READ (dra) && DR_IS_WRITE (drb))
RDGE_TYPE (e) = anti_dd;
}
/* Creates dependence edges in RDG for all the uses of DEF. IDEF is
the index of DEF in RDG. */
static void
create_rdg_edges_for_scalar (struct graph *rdg, tree def, int idef)
{
use_operand_p imm_use_p;
imm_use_iterator iterator;
FOR_EACH_IMM_USE_FAST (imm_use_p, iterator, def)
{
struct graph_edge *e;
int use = rdg_vertex_for_stmt (rdg, USE_STMT (imm_use_p));
if (use < 0)
continue;
e = add_edge (rdg, idef, use);
e->data = XNEW (struct rdg_edge);
RDGE_TYPE (e) = flow_dd;
RDGE_RELATION (e) = NULL;
}
}
/* Creates the edges of the reduced dependence graph RDG. */
static void
create_rdg_edges (struct graph *rdg, VEC (ddr_p, heap) *ddrs)
{
int i;
struct data_dependence_relation *ddr;
def_operand_p def_p;
ssa_op_iter iter;
FOR_EACH_VEC_ELT (ddr_p, ddrs, i, ddr)
if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
create_rdg_edge_for_ddr (rdg, ddr);
for (i = 0; i < rdg->n_vertices; i++)
FOR_EACH_PHI_OR_STMT_DEF (def_p, RDG_STMT (rdg, i),
iter, SSA_OP_DEF)
create_rdg_edges_for_scalar (rdg, DEF_FROM_PTR (def_p), i);
}
/* Build the vertices of the reduced dependence graph RDG. */
void
create_rdg_vertices (struct graph *rdg, VEC (gimple, heap) *stmts)
{
int i, j;
gimple stmt;
FOR_EACH_VEC_ELT (gimple, stmts, i, stmt)
{
VEC (data_ref_loc, heap) *references;
data_ref_loc *ref;
struct vertex *v = &(rdg->vertices[i]);
struct rdg_vertex_info *rvi = XNEW (struct rdg_vertex_info);
struct rdg_vertex_info **slot;
rvi->stmt = stmt;
rvi->index = i;
slot = (struct rdg_vertex_info **) htab_find_slot (rdg->indices, rvi, INSERT);
if (!*slot)
*slot = rvi;
else
free (rvi);
v->data = XNEW (struct rdg_vertex);
RDG_STMT (rdg, i) = stmt;
RDG_MEM_WRITE_STMT (rdg, i) = false;
RDG_MEM_READS_STMT (rdg, i) = false;
if (gimple_code (stmt) == GIMPLE_PHI)
continue;
get_references_in_stmt (stmt, &references);
FOR_EACH_VEC_ELT (data_ref_loc, references, j, ref)
if (!ref->is_read)
RDG_MEM_WRITE_STMT (rdg, i) = true;
else
RDG_MEM_READS_STMT (rdg, i) = true;
VEC_free (data_ref_loc, heap, references);
}
}
/* Initialize STMTS with all the statements of LOOP. When
INCLUDE_PHIS is true, include also the PHI nodes. The order in
which we discover statements is important as
generate_loops_for_partition is using the same traversal for
identifying statements. */
static void
stmts_from_loop (struct loop *loop, VEC (gimple, heap) **stmts)
{
unsigned int i;
basic_block *bbs = get_loop_body_in_dom_order (loop);
for (i = 0; i < loop->num_nodes; i++)
{
basic_block bb = bbs[i];
gimple_stmt_iterator bsi;
gimple stmt;
for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
VEC_safe_push (gimple, heap, *stmts, gsi_stmt (bsi));
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
{
stmt = gsi_stmt (bsi);
if (gimple_code (stmt) != GIMPLE_LABEL && !is_gimple_debug (stmt))
VEC_safe_push (gimple, heap, *stmts, stmt);
}
}
free (bbs);
}
/* Returns true when all the dependences are computable. */
static bool
known_dependences_p (VEC (ddr_p, heap) *dependence_relations)
{
ddr_p ddr;
unsigned int i;
FOR_EACH_VEC_ELT (ddr_p, dependence_relations, i, ddr)
if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
return false;
return true;
}
/* Computes a hash function for element ELT. */
static hashval_t
hash_stmt_vertex_info (const void *elt)
{
const struct rdg_vertex_info *const rvi =
(const struct rdg_vertex_info *) elt;
gimple stmt = rvi->stmt;
return htab_hash_pointer (stmt);
}
/* Compares database elements E1 and E2. */
static int
eq_stmt_vertex_info (const void *e1, const void *e2)
{
const struct rdg_vertex_info *elt1 = (const struct rdg_vertex_info *) e1;
const struct rdg_vertex_info *elt2 = (const struct rdg_vertex_info *) e2;
return elt1->stmt == elt2->stmt;
}
/* Free the element E. */
static void
hash_stmt_vertex_del (void *e)
{
free (e);
}
/* Build the Reduced Dependence Graph (RDG) with one vertex per
statement of the loop nest, and one edge per data dependence or
scalar dependence. */
struct graph *
build_empty_rdg (int n_stmts)
{
int nb_data_refs = 10;
struct graph *rdg = new_graph (n_stmts);
rdg->indices = htab_create (nb_data_refs, hash_stmt_vertex_info,
eq_stmt_vertex_info, hash_stmt_vertex_del);
return rdg;
}
/* Build the Reduced Dependence Graph (RDG) with one vertex per
statement of the loop nest, and one edge per data dependence or
scalar dependence. */
struct graph *
build_rdg (struct loop *loop,
VEC (loop_p, heap) **loop_nest,
VEC (ddr_p, heap) **dependence_relations,
VEC (data_reference_p, heap) **datarefs)
{
struct graph *rdg = NULL;
VEC (gimple, heap) *stmts = VEC_alloc (gimple, heap, 10);
compute_data_dependences_for_loop (loop, false, loop_nest, datarefs,
dependence_relations);
if (known_dependences_p (*dependence_relations))
{
stmts_from_loop (loop, &stmts);
rdg = build_empty_rdg (VEC_length (gimple, stmts));
create_rdg_vertices (rdg, stmts);
create_rdg_edges (rdg, *dependence_relations);
}
VEC_free (gimple, heap, stmts);
return rdg;
}
/* Free the reduced dependence graph RDG. */
void
free_rdg (struct graph *rdg)
{
int i;
for (i = 0; i < rdg->n_vertices; i++)
{
struct vertex *v = &(rdg->vertices[i]);
struct graph_edge *e;
for (e = v->succ; e; e = e->succ_next)
free (e->data);
free (v->data);
}
htab_delete (rdg->indices);
free_graph (rdg);
}
/* Initialize STMTS with all the statements of LOOP that contain a
store to memory. */
void
stores_from_loop (struct loop *loop, VEC (gimple, heap) **stmts)
{
unsigned int i;
basic_block *bbs = get_loop_body_in_dom_order (loop);
for (i = 0; i < loop->num_nodes; i++)
{
basic_block bb = bbs[i];
gimple_stmt_iterator bsi;
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
if (gimple_vdef (gsi_stmt (bsi)))
VEC_safe_push (gimple, heap, *stmts, gsi_stmt (bsi));
}
free (bbs);
}
/* Returns true when the statement at STMT is of the form "A[i] = 0"
that contains a data reference on its LHS with a stride of the same
size as its unit type. */
bool
stmt_with_adjacent_zero_store_dr_p (gimple stmt)
{
tree op0, op1;
bool res;
struct data_reference *dr;
if (!stmt
|| !gimple_vdef (stmt)
|| !is_gimple_assign (stmt)
|| !gimple_assign_single_p (stmt)
|| !(op1 = gimple_assign_rhs1 (stmt))
|| !(integer_zerop (op1) || real_zerop (op1)))
return false;
dr = XCNEW (struct data_reference);
op0 = gimple_assign_lhs (stmt);
DR_STMT (dr) = stmt;
DR_REF (dr) = op0;
res = dr_analyze_innermost (dr)
&& stride_of_unit_type_p (DR_STEP (dr), TREE_TYPE (op0));
free_data_ref (dr);
return res;
}
/* Initialize STMTS with all the statements of LOOP that contain a
store to memory of the form "A[i] = 0". */
void
stores_zero_from_loop (struct loop *loop, VEC (gimple, heap) **stmts)
{
unsigned int i;
basic_block bb;
gimple_stmt_iterator si;
gimple stmt;
basic_block *bbs = get_loop_body_in_dom_order (loop);
for (i = 0; i < loop->num_nodes; i++)
for (bb = bbs[i], si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
if ((stmt = gsi_stmt (si))
&& stmt_with_adjacent_zero_store_dr_p (stmt))
VEC_safe_push (gimple, heap, *stmts, gsi_stmt (si));
free (bbs);
}
/* For a data reference REF, return the declaration of its base
address or NULL_TREE if the base is not determined. */
static inline tree
ref_base_address (gimple stmt, data_ref_loc *ref)
{
tree base = NULL_TREE;
tree base_address;
struct data_reference *dr = XCNEW (struct data_reference);
DR_STMT (dr) = stmt;
DR_REF (dr) = *ref->pos;
dr_analyze_innermost (dr);
base_address = DR_BASE_ADDRESS (dr);
if (!base_address)
goto end;
switch (TREE_CODE (base_address))
{
case ADDR_EXPR:
base = TREE_OPERAND (base_address, 0);
break;
default:
base = base_address;
break;
}
end:
free_data_ref (dr);
return base;
}
/* Determines whether the statement from vertex V of the RDG has a
definition used outside the loop that contains this statement. */
bool
rdg_defs_used_in_other_loops_p (struct graph *rdg, int v)
{
gimple stmt = RDG_STMT (rdg, v);
struct loop *loop = loop_containing_stmt (stmt);
use_operand_p imm_use_p;
imm_use_iterator iterator;
ssa_op_iter it;
def_operand_p def_p;
if (!loop)
return true;
FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, it, SSA_OP_DEF)
{
FOR_EACH_IMM_USE_FAST (imm_use_p, iterator, DEF_FROM_PTR (def_p))
{
if (loop_containing_stmt (USE_STMT (imm_use_p)) != loop)
return true;
}
}
return false;
}
/* Determines whether statements S1 and S2 access to similar memory
locations. Two memory accesses are considered similar when they
have the same base address declaration, i.e. when their
ref_base_address is the same. */
bool
have_similar_memory_accesses (gimple s1, gimple s2)
{
bool res = false;
unsigned i, j;
VEC (data_ref_loc, heap) *refs1, *refs2;
data_ref_loc *ref1, *ref2;
get_references_in_stmt (s1, &refs1);
get_references_in_stmt (s2, &refs2);
FOR_EACH_VEC_ELT (data_ref_loc, refs1, i, ref1)
{
tree base1 = ref_base_address (s1, ref1);
if (base1)
FOR_EACH_VEC_ELT (data_ref_loc, refs2, j, ref2)
if (base1 == ref_base_address (s2, ref2))
{
res = true;
goto end;
}
}
end:
VEC_free (data_ref_loc, heap, refs1);
VEC_free (data_ref_loc, heap, refs2);
return res;
}
/* Helper function for the hashtab. */
static int
have_similar_memory_accesses_1 (const void *s1, const void *s2)
{
return have_similar_memory_accesses (CONST_CAST_GIMPLE ((const_gimple) s1),
CONST_CAST_GIMPLE ((const_gimple) s2));
}
/* Helper function for the hashtab. */
static hashval_t
ref_base_address_1 (const void *s)
{
gimple stmt = CONST_CAST_GIMPLE ((const_gimple) s);
unsigned i;
VEC (data_ref_loc, heap) *refs;
data_ref_loc *ref;
hashval_t res = 0;
get_references_in_stmt (stmt, &refs);
FOR_EACH_VEC_ELT (data_ref_loc, refs, i, ref)
if (!ref->is_read)
{
res = htab_hash_pointer (ref_base_address (stmt, ref));
break;
}
VEC_free (data_ref_loc, heap, refs);
return res;
}
/* Try to remove duplicated write data references from STMTS. */
void
remove_similar_memory_refs (VEC (gimple, heap) **stmts)
{
unsigned i;
gimple stmt;
htab_t seen = htab_create (VEC_length (gimple, *stmts), ref_base_address_1,
have_similar_memory_accesses_1, NULL);
for (i = 0; VEC_iterate (gimple, *stmts, i, stmt); )
{
void **slot;
slot = htab_find_slot (seen, stmt, INSERT);
if (*slot)
VEC_ordered_remove (gimple, *stmts, i);
else
{
*slot = (void *) stmt;
i++;
}
}
htab_delete (seen);
}
/* Returns the index of PARAMETER in the parameters vector of the
ACCESS_MATRIX. If PARAMETER does not exist return -1. */
int
access_matrix_get_index_for_parameter (tree parameter,
struct access_matrix *access_matrix)
{
int i;
VEC (tree,heap) *lambda_parameters = AM_PARAMETERS (access_matrix);
tree lambda_parameter;
FOR_EACH_VEC_ELT (tree, lambda_parameters, i, lambda_parameter)
if (lambda_parameter == parameter)
return i + AM_NB_INDUCTION_VARS (access_matrix);
return -1;
}
|