1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
|
/* Data references and dependences detectors.
Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
Contributed by Sebastian Pop <s.pop@laposte.net>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
/* This pass walks a given loop structure searching for array
references. The information about the array accesses is recorded
in DATA_REFERENCE structures.
The basic test for determining the dependences is:
given two access functions chrec1 and chrec2 to a same array, and
x and y two vectors from the iteration domain, the same element of
the array is accessed twice at iterations x and y if and only if:
| chrec1 (x) == chrec2 (y).
The goals of this analysis are:
- to determine the independence: the relation between two
independent accesses is qualified with the chrec_known (this
information allows a loop parallelization),
- when two data references access the same data, to qualify the
dependence relation with classic dependence representations:
- distance vectors
- direction vectors
- loop carried level dependence
- polyhedron dependence
or with the chains of recurrences based representation,
- to define a knowledge base for storing the data dependence
information,
- to define an interface to access this data.
Definitions:
- subscript: given two array accesses a subscript is the tuple
composed of the access functions for a given dimension. Example:
Given A[f1][f2][f3] and B[g1][g2][g3], there are three subscripts:
(f1, g1), (f2, g2), (f3, g3).
- Diophantine equation: an equation whose coefficients and
solutions are integer constants, for example the equation
| 3*x + 2*y = 1
has an integer solution x = 1 and y = -1.
References:
- "Advanced Compilation for High Performance Computing" by Randy
Allen and Ken Kennedy.
http://citeseer.ist.psu.edu/goff91practical.html
- "Loop Transformations for Restructuring Compilers - The Foundations"
by Utpal Banerjee.
*/
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
/* These RTL headers are needed for basic-block.h. */
#include "rtl.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "timevar.h"
#include "cfgloop.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "tree-pass.h"
/* This is the simplest data dependence test: determines whether the
data references A and B access the same array/region. Returns
false when the property is not computable at compile time.
Otherwise return true, and DIFFER_P will record the result. This
utility will not be necessary when alias_sets_conflict_p will be
less conservative. */
bool
array_base_name_differ_p (struct data_reference *a,
struct data_reference *b,
bool *differ_p)
{
tree base_a = DR_BASE_NAME (a);
tree base_b = DR_BASE_NAME (b);
if (!base_a || !base_b)
return false;
/* Determine if same base. Example: for the array accesses
a[i], b[i] or pointer accesses *a, *b, bases are a, b. */
if (base_a == base_b)
{
*differ_p = false;
return true;
}
/* For pointer based accesses, (*p)[i], (*q)[j], the bases are (*p)
and (*q) */
if (TREE_CODE (base_a) == INDIRECT_REF && TREE_CODE (base_b) == INDIRECT_REF
&& TREE_OPERAND (base_a, 0) == TREE_OPERAND (base_b, 0))
{
*differ_p = false;
return true;
}
/* Record/union based accesses - s.a[i], t.b[j]. bases are s.a,t.b. */
if (TREE_CODE (base_a) == COMPONENT_REF && TREE_CODE (base_b) == COMPONENT_REF
&& TREE_OPERAND (base_a, 0) == TREE_OPERAND (base_b, 0)
&& TREE_OPERAND (base_a, 1) == TREE_OPERAND (base_b, 1))
{
*differ_p = false;
return true;
}
/* Determine if different bases. */
/* At this point we know that base_a != base_b. However, pointer
accesses of the form x=(*p) and y=(*q), whose bases are p and q,
may still be pointing to the same base. In SSAed GIMPLE p and q will
be SSA_NAMES in this case. Therefore, here we check if they are
really two different declarations. */
if (TREE_CODE (base_a) == VAR_DECL && TREE_CODE (base_b) == VAR_DECL)
{
*differ_p = true;
return true;
}
/* Compare two record/union bases s.a and t.b: s != t or (a != b and
s and t are not unions). */
if (TREE_CODE (base_a) == COMPONENT_REF && TREE_CODE (base_b) == COMPONENT_REF
&& ((TREE_CODE (TREE_OPERAND (base_a, 0)) == VAR_DECL
&& TREE_CODE (TREE_OPERAND (base_b, 0)) == VAR_DECL
&& TREE_OPERAND (base_a, 0) != TREE_OPERAND (base_b, 0))
|| (TREE_CODE (TREE_TYPE (TREE_OPERAND (base_a, 0))) == RECORD_TYPE
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (base_b, 0))) == RECORD_TYPE
&& TREE_OPERAND (base_a, 1) != TREE_OPERAND (base_b, 1))))
{
*differ_p = true;
return true;
}
/* Compare a record/union access and an array access. */
if ((TREE_CODE (base_a) == VAR_DECL
&& (TREE_CODE (base_b) == COMPONENT_REF
&& TREE_CODE (TREE_OPERAND (base_b, 0)) == VAR_DECL))
|| (TREE_CODE (base_b) == VAR_DECL
&& (TREE_CODE (base_a) == COMPONENT_REF
&& TREE_CODE (TREE_OPERAND (base_a, 0)) == VAR_DECL)))
{
*differ_p = true;
return true;
}
return false;
}
/* Returns true iff A divides B. */
static inline bool
tree_fold_divides_p (tree type,
tree a,
tree b)
{
/* Determines whether (A == gcd (A, B)). */
return integer_zerop
(fold (build (MINUS_EXPR, type, a, tree_fold_gcd (a, b))));
}
/* Compute the greatest common denominator of two numbers using
Euclid's algorithm. */
static int
gcd (int a, int b)
{
int x, y, z;
x = abs (a);
y = abs (b);
while (x>0)
{
z = y % x;
y = x;
x = z;
}
return (y);
}
/* Returns true iff A divides B. */
static inline bool
int_divides_p (int a, int b)
{
return ((b % a) == 0);
}
/* Dump into FILE all the data references from DATAREFS. */
void
dump_data_references (FILE *file,
varray_type datarefs)
{
unsigned int i;
for (i = 0; i < VARRAY_ACTIVE_SIZE (datarefs); i++)
dump_data_reference (file, VARRAY_GENERIC_PTR (datarefs, i));
}
/* Dump into FILE all the dependence relations from DDR. */
void
dump_data_dependence_relations (FILE *file,
varray_type ddr)
{
unsigned int i;
for (i = 0; i < VARRAY_ACTIVE_SIZE (ddr); i++)
dump_data_dependence_relation (file, VARRAY_GENERIC_PTR (ddr, i));
}
/* Dump function for a DATA_REFERENCE structure. */
void
dump_data_reference (FILE *outf,
struct data_reference *dr)
{
unsigned int i;
fprintf (outf, "(Data Ref: \n stmt: ");
print_generic_stmt (outf, DR_STMT (dr), 0);
fprintf (outf, " ref: ");
print_generic_stmt (outf, DR_REF (dr), 0);
fprintf (outf, " base_name: ");
print_generic_stmt (outf, DR_BASE_NAME (dr), 0);
for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
{
fprintf (outf, " Access function %d: ", i);
print_generic_stmt (outf, DR_ACCESS_FN (dr, i), 0);
}
fprintf (outf, ")\n");
}
/* Dump function for a SUBSCRIPT structure. */
void
dump_subscript (FILE *outf, struct subscript *subscript)
{
tree chrec = SUB_CONFLICTS_IN_A (subscript);
fprintf (outf, "\n (subscript \n");
fprintf (outf, " iterations_that_access_an_element_twice_in_A: ");
print_generic_stmt (outf, chrec, 0);
if (chrec == chrec_known)
fprintf (outf, " (no dependence)\n");
else if (chrec_contains_undetermined (chrec))
fprintf (outf, " (don't know)\n");
else
{
tree last_iteration = SUB_LAST_CONFLICT (subscript);
fprintf (outf, " last_conflict: ");
print_generic_stmt (outf, last_iteration, 0);
}
chrec = SUB_CONFLICTS_IN_B (subscript);
fprintf (outf, " iterations_that_access_an_element_twice_in_B: ");
print_generic_stmt (outf, chrec, 0);
if (chrec == chrec_known)
fprintf (outf, " (no dependence)\n");
else if (chrec_contains_undetermined (chrec))
fprintf (outf, " (don't know)\n");
else
{
tree last_iteration = SUB_LAST_CONFLICT (subscript);
fprintf (outf, " last_conflict: ");
print_generic_stmt (outf, last_iteration, 0);
}
fprintf (outf, " (Subscript distance: ");
print_generic_stmt (outf, SUB_DISTANCE (subscript), 0);
fprintf (outf, " )\n");
fprintf (outf, " )\n");
}
/* Dump function for a DATA_DEPENDENCE_RELATION structure. */
void
dump_data_dependence_relation (FILE *outf,
struct data_dependence_relation *ddr)
{
struct data_reference *dra, *drb;
dra = DDR_A (ddr);
drb = DDR_B (ddr);
fprintf (outf, "(Data Dep: \n");
if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
fprintf (outf, " (don't know)\n");
else if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
fprintf (outf, " (no dependence)\n");
else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
{
unsigned int i;
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
{
fprintf (outf, " access_fn_A: ");
print_generic_stmt (outf, DR_ACCESS_FN (dra, i), 0);
fprintf (outf, " access_fn_B: ");
print_generic_stmt (outf, DR_ACCESS_FN (drb, i), 0);
dump_subscript (outf, DDR_SUBSCRIPT (ddr, i));
}
if (DDR_DIST_VECT (ddr))
{
fprintf (outf, " distance_vect: ");
print_lambda_vector (outf, DDR_DIST_VECT (ddr), DDR_SIZE_VECT (ddr));
}
if (DDR_DIR_VECT (ddr))
{
fprintf (outf, " direction_vect: ");
print_lambda_vector (outf, DDR_DIR_VECT (ddr), DDR_SIZE_VECT (ddr));
}
}
fprintf (outf, ")\n");
}
/* Dump function for a DATA_DEPENDENCE_DIRECTION structure. */
void
dump_data_dependence_direction (FILE *file,
enum data_dependence_direction dir)
{
switch (dir)
{
case dir_positive:
fprintf (file, "+");
break;
case dir_negative:
fprintf (file, "-");
break;
case dir_equal:
fprintf (file, "=");
break;
case dir_positive_or_negative:
fprintf (file, "+-");
break;
case dir_positive_or_equal:
fprintf (file, "+=");
break;
case dir_negative_or_equal:
fprintf (file, "-=");
break;
case dir_star:
fprintf (file, "*");
break;
default:
break;
}
}
/* Dumps the distance and direction vectors in FILE. DDRS contains
the dependence relations, and VECT_SIZE is the size of the
dependence vectors, or in other words the number of loops in the
considered nest. */
void
dump_dist_dir_vectors (FILE *file, varray_type ddrs)
{
unsigned int i;
for (i = 0; i < VARRAY_ACTIVE_SIZE (ddrs); i++)
{
struct data_dependence_relation *ddr =
(struct data_dependence_relation *)
VARRAY_GENERIC_PTR (ddrs, i);
if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE
&& DDR_AFFINE_P (ddr))
{
fprintf (file, "DISTANCE_V (");
print_lambda_vector (file, DDR_DIST_VECT (ddr), DDR_SIZE_VECT (ddr));
fprintf (file, ")\n");
fprintf (file, "DIRECTION_V (");
print_lambda_vector (file, DDR_DIR_VECT (ddr), DDR_SIZE_VECT (ddr));
fprintf (file, ")\n");
}
}
fprintf (file, "\n\n");
}
/* Dumps the data dependence relations DDRS in FILE. */
void
dump_ddrs (FILE *file, varray_type ddrs)
{
unsigned int i;
for (i = 0; i < VARRAY_ACTIVE_SIZE (ddrs); i++)
{
struct data_dependence_relation *ddr =
(struct data_dependence_relation *)
VARRAY_GENERIC_PTR (ddrs, i);
dump_data_dependence_relation (file, ddr);
}
fprintf (file, "\n\n");
}
/* Initialize LOOP->ESTIMATED_NB_ITERATIONS with the lowest safe
approximation of the number of iterations for LOOP. */
static void
compute_estimated_nb_iterations (struct loop *loop)
{
struct nb_iter_bound *bound;
for (bound = loop->bounds; bound; bound = bound->next)
if (TREE_CODE (bound->bound) == INTEGER_CST
/* Update only when there is no previous estimation. */
&& (chrec_contains_undetermined (loop->estimated_nb_iterations)
/* Or when the current estimation is smaller. */
|| tree_int_cst_lt (bound->bound, loop->estimated_nb_iterations)))
loop->estimated_nb_iterations = bound->bound;
}
/* Estimate the number of iterations from the size of the data and the
access functions. */
static void
estimate_niter_from_size_of_data (struct loop *loop,
tree opnd0,
tree access_fn,
tree stmt)
{
tree estimation;
tree array_size, data_size, element_size;
tree init, step;
init = initial_condition (access_fn);
step = evolution_part_in_loop_num (access_fn, loop->num);
array_size = TYPE_SIZE (TREE_TYPE (opnd0));
element_size = TYPE_SIZE (TREE_TYPE (TREE_TYPE (opnd0)));
if (array_size == NULL_TREE
|| TREE_CODE (array_size) != INTEGER_CST
|| TREE_CODE (element_size) != INTEGER_CST)
return;
data_size = fold (build2 (EXACT_DIV_EXPR, integer_type_node,
array_size, element_size));
if (init != NULL_TREE
&& step != NULL_TREE
&& TREE_CODE (init) == INTEGER_CST
&& TREE_CODE (step) == INTEGER_CST)
{
estimation = fold (build2 (CEIL_DIV_EXPR, integer_type_node,
fold (build2 (MINUS_EXPR, integer_type_node,
data_size, init)), step));
record_estimate (loop, estimation, boolean_true_node, stmt);
}
}
/* Given an ARRAY_REF node REF, records its access functions.
Example: given A[i][3], record in ACCESS_FNS the opnd1 function,
i.e. the constant "3", then recursively call the function on opnd0,
i.e. the ARRAY_REF "A[i]". The function returns the base name:
"A". */
static tree
analyze_array_indexes (struct loop *loop,
VEC(tree,heap) **access_fns,
tree ref, tree stmt)
{
tree opnd0, opnd1;
tree access_fn;
opnd0 = TREE_OPERAND (ref, 0);
opnd1 = TREE_OPERAND (ref, 1);
/* The detection of the evolution function for this data access is
postponed until the dependence test. This lazy strategy avoids
the computation of access functions that are of no interest for
the optimizers. */
access_fn = instantiate_parameters
(loop, analyze_scalar_evolution (loop, opnd1));
if (chrec_contains_undetermined (loop->estimated_nb_iterations))
estimate_niter_from_size_of_data (loop, opnd0, access_fn, stmt);
VEC_safe_push (tree, heap, *access_fns, access_fn);
/* Recursively record other array access functions. */
if (TREE_CODE (opnd0) == ARRAY_REF)
return analyze_array_indexes (loop, access_fns, opnd0, stmt);
/* Return the base name of the data access. */
else
return opnd0;
}
/* For a data reference REF contained in the statement STMT, initialize
a DATA_REFERENCE structure, and return it. IS_READ flag has to be
set to true when REF is in the right hand side of an
assignment. */
struct data_reference *
analyze_array (tree stmt, tree ref, bool is_read)
{
struct data_reference *res;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "(analyze_array \n");
fprintf (dump_file, " (ref = ");
print_generic_stmt (dump_file, ref, 0);
fprintf (dump_file, ")\n");
}
res = xmalloc (sizeof (struct data_reference));
DR_STMT (res) = stmt;
DR_REF (res) = ref;
DR_ACCESS_FNS (res) = VEC_alloc (tree, heap, 3);
DR_BASE_NAME (res) = analyze_array_indexes
(loop_containing_stmt (stmt), &(DR_ACCESS_FNS (res)), ref, stmt);
DR_IS_READ (res) = is_read;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, ")\n");
return res;
}
/* For a data reference REF contained in the statement STMT, initialize
a DATA_REFERENCE structure, and return it. */
struct data_reference *
init_data_ref (tree stmt,
tree ref,
tree base,
tree access_fn,
bool is_read)
{
struct data_reference *res;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "(init_data_ref \n");
fprintf (dump_file, " (ref = ");
print_generic_stmt (dump_file, ref, 0);
fprintf (dump_file, ")\n");
}
res = xmalloc (sizeof (struct data_reference));
DR_STMT (res) = stmt;
DR_REF (res) = ref;
DR_ACCESS_FNS (res) = VEC_alloc (tree, heap, 5);
DR_BASE_NAME (res) = base;
VEC_quick_push (tree, DR_ACCESS_FNS (res), access_fn);
DR_IS_READ (res) = is_read;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, ")\n");
return res;
}
/* Returns true when all the functions of a tree_vec CHREC are the
same. */
static bool
all_chrecs_equal_p (tree chrec)
{
int j;
for (j = 0; j < TREE_VEC_LENGTH (chrec) - 1; j++)
{
tree chrec_j = TREE_VEC_ELT (chrec, j);
tree chrec_j_1 = TREE_VEC_ELT (chrec, j + 1);
if (!integer_zerop
(chrec_fold_minus
(integer_type_node, chrec_j, chrec_j_1)))
return false;
}
return true;
}
/* Determine for each subscript in the data dependence relation DDR
the distance. */
void
compute_subscript_distance (struct data_dependence_relation *ddr)
{
if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
{
unsigned int i;
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
{
tree conflicts_a, conflicts_b, difference;
struct subscript *subscript;
subscript = DDR_SUBSCRIPT (ddr, i);
conflicts_a = SUB_CONFLICTS_IN_A (subscript);
conflicts_b = SUB_CONFLICTS_IN_B (subscript);
if (TREE_CODE (conflicts_a) == TREE_VEC)
{
if (!all_chrecs_equal_p (conflicts_a))
{
SUB_DISTANCE (subscript) = chrec_dont_know;
return;
}
else
conflicts_a = TREE_VEC_ELT (conflicts_a, 0);
}
if (TREE_CODE (conflicts_b) == TREE_VEC)
{
if (!all_chrecs_equal_p (conflicts_b))
{
SUB_DISTANCE (subscript) = chrec_dont_know;
return;
}
else
conflicts_b = TREE_VEC_ELT (conflicts_b, 0);
}
difference = chrec_fold_minus
(integer_type_node, conflicts_b, conflicts_a);
if (evolution_function_is_constant_p (difference))
SUB_DISTANCE (subscript) = difference;
else
SUB_DISTANCE (subscript) = chrec_dont_know;
}
}
}
/* Initialize a ddr. */
struct data_dependence_relation *
initialize_data_dependence_relation (struct data_reference *a,
struct data_reference *b)
{
struct data_dependence_relation *res;
bool differ_p;
res = xmalloc (sizeof (struct data_dependence_relation));
DDR_A (res) = a;
DDR_B (res) = b;
if (a == NULL || b == NULL
|| DR_BASE_NAME (a) == NULL_TREE
|| DR_BASE_NAME (b) == NULL_TREE)
DDR_ARE_DEPENDENT (res) = chrec_dont_know;
/* When the dimensions of A and B differ, we directly initialize
the relation to "there is no dependence": chrec_known. */
else if (DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b)
|| (array_base_name_differ_p (a, b, &differ_p) && differ_p))
DDR_ARE_DEPENDENT (res) = chrec_known;
else
{
unsigned int i;
DDR_AFFINE_P (res) = true;
DDR_ARE_DEPENDENT (res) = NULL_TREE;
DDR_SUBSCRIPTS_VECTOR_INIT (res, DR_NUM_DIMENSIONS (a));
DDR_SIZE_VECT (res) = 0;
DDR_DIST_VECT (res) = NULL;
DDR_DIR_VECT (res) = NULL;
for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
{
struct subscript *subscript;
subscript = xmalloc (sizeof (struct subscript));
SUB_CONFLICTS_IN_A (subscript) = chrec_dont_know;
SUB_CONFLICTS_IN_B (subscript) = chrec_dont_know;
SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
SUB_DISTANCE (subscript) = chrec_dont_know;
VARRAY_PUSH_GENERIC_PTR (DDR_SUBSCRIPTS (res), subscript);
}
}
return res;
}
/* Set DDR_ARE_DEPENDENT to CHREC and finalize the subscript overlap
description. */
static inline void
finalize_ddr_dependent (struct data_dependence_relation *ddr,
tree chrec)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "(dependence classified: ");
print_generic_expr (dump_file, chrec, 0);
fprintf (dump_file, ")\n");
}
DDR_ARE_DEPENDENT (ddr) = chrec;
varray_clear (DDR_SUBSCRIPTS (ddr));
}
/* The dependence relation DDR cannot be represented by a distance
vector. */
static inline void
non_affine_dependence_relation (struct data_dependence_relation *ddr)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "(Dependence relation cannot be represented by distance vector.) \n");
DDR_AFFINE_P (ddr) = false;
}
/* This section contains the classic Banerjee tests. */
/* Returns true iff CHREC_A and CHREC_B are not dependent on any index
variables, i.e., if the ZIV (Zero Index Variable) test is true. */
static inline bool
ziv_subscript_p (tree chrec_a,
tree chrec_b)
{
return (evolution_function_is_constant_p (chrec_a)
&& evolution_function_is_constant_p (chrec_b));
}
/* Returns true iff CHREC_A and CHREC_B are dependent on an index
variable, i.e., if the SIV (Single Index Variable) test is true. */
static bool
siv_subscript_p (tree chrec_a,
tree chrec_b)
{
if ((evolution_function_is_constant_p (chrec_a)
&& evolution_function_is_univariate_p (chrec_b))
|| (evolution_function_is_constant_p (chrec_b)
&& evolution_function_is_univariate_p (chrec_a)))
return true;
if (evolution_function_is_univariate_p (chrec_a)
&& evolution_function_is_univariate_p (chrec_b))
{
switch (TREE_CODE (chrec_a))
{
case POLYNOMIAL_CHREC:
switch (TREE_CODE (chrec_b))
{
case POLYNOMIAL_CHREC:
if (CHREC_VARIABLE (chrec_a) != CHREC_VARIABLE (chrec_b))
return false;
default:
return true;
}
default:
return true;
}
}
return false;
}
/* Analyze a ZIV (Zero Index Variable) subscript. *OVERLAPS_A and
*OVERLAPS_B are initialized to the functions that describe the
relation between the elements accessed twice by CHREC_A and
CHREC_B. For k >= 0, the following property is verified:
CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
static void
analyze_ziv_subscript (tree chrec_a,
tree chrec_b,
tree *overlaps_a,
tree *overlaps_b,
tree *last_conflicts)
{
tree difference;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "(analyze_ziv_subscript \n");
difference = chrec_fold_minus (integer_type_node, chrec_a, chrec_b);
switch (TREE_CODE (difference))
{
case INTEGER_CST:
if (integer_zerop (difference))
{
/* The difference is equal to zero: the accessed index
overlaps for each iteration in the loop. */
*overlaps_a = integer_zero_node;
*overlaps_b = integer_zero_node;
*last_conflicts = chrec_dont_know;
}
else
{
/* The accesses do not overlap. */
*overlaps_a = chrec_known;
*overlaps_b = chrec_known;
*last_conflicts = integer_zero_node;
}
break;
default:
/* We're not sure whether the indexes overlap. For the moment,
conservatively answer "don't know". */
*overlaps_a = chrec_dont_know;
*overlaps_b = chrec_dont_know;
*last_conflicts = chrec_dont_know;
break;
}
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, ")\n");
}
/* Analyze a SIV (Single Index Variable) subscript where CHREC_A is a
constant, and CHREC_B is an affine function. *OVERLAPS_A and
*OVERLAPS_B are initialized to the functions that describe the
relation between the elements accessed twice by CHREC_A and
CHREC_B. For k >= 0, the following property is verified:
CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
static void
analyze_siv_subscript_cst_affine (tree chrec_a,
tree chrec_b,
tree *overlaps_a,
tree *overlaps_b,
tree *last_conflicts)
{
bool value0, value1, value2;
tree difference = chrec_fold_minus
(integer_type_node, CHREC_LEFT (chrec_b), chrec_a);
if (!chrec_is_positive (initial_condition (difference), &value0))
{
*overlaps_a = chrec_dont_know;
*overlaps_b = chrec_dont_know;
*last_conflicts = chrec_dont_know;
return;
}
else
{
if (value0 == false)
{
if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value1))
{
*overlaps_a = chrec_dont_know;
*overlaps_b = chrec_dont_know;
*last_conflicts = chrec_dont_know;
return;
}
else
{
if (value1 == true)
{
/* Example:
chrec_a = 12
chrec_b = {10, +, 1}
*/
if (tree_fold_divides_p
(integer_type_node, CHREC_RIGHT (chrec_b), difference))
{
*overlaps_a = integer_zero_node;
*overlaps_b = fold
(build (EXACT_DIV_EXPR, integer_type_node,
fold (build1 (ABS_EXPR, integer_type_node, difference)),
CHREC_RIGHT (chrec_b)));
*last_conflicts = integer_one_node;
return;
}
/* When the step does not divides the difference, there are
no overlaps. */
else
{
*overlaps_a = chrec_known;
*overlaps_b = chrec_known;
*last_conflicts = integer_zero_node;
return;
}
}
else
{
/* Example:
chrec_a = 12
chrec_b = {10, +, -1}
In this case, chrec_a will not overlap with chrec_b. */
*overlaps_a = chrec_known;
*overlaps_b = chrec_known;
*last_conflicts = integer_zero_node;
return;
}
}
}
else
{
if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value2))
{
*overlaps_a = chrec_dont_know;
*overlaps_b = chrec_dont_know;
*last_conflicts = chrec_dont_know;
return;
}
else
{
if (value2 == false)
{
/* Example:
chrec_a = 3
chrec_b = {10, +, -1}
*/
if (tree_fold_divides_p
(integer_type_node, CHREC_RIGHT (chrec_b), difference))
{
*overlaps_a = integer_zero_node;
*overlaps_b = fold
(build (EXACT_DIV_EXPR, integer_type_node, difference,
CHREC_RIGHT (chrec_b)));
*last_conflicts = integer_one_node;
return;
}
/* When the step does not divides the difference, there
are no overlaps. */
else
{
*overlaps_a = chrec_known;
*overlaps_b = chrec_known;
*last_conflicts = integer_zero_node;
return;
}
}
else
{
/* Example:
chrec_a = 3
chrec_b = {4, +, 1}
In this case, chrec_a will not overlap with chrec_b. */
*overlaps_a = chrec_known;
*overlaps_b = chrec_known;
*last_conflicts = integer_zero_node;
return;
}
}
}
}
}
/* Helper recursive function for initializing the matrix A. Returns
the initial value of CHREC. */
static int
initialize_matrix_A (lambda_matrix A, tree chrec, unsigned index, int mult)
{
gcc_assert (chrec);
if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
return int_cst_value (chrec);
A[index][0] = mult * int_cst_value (CHREC_RIGHT (chrec));
return initialize_matrix_A (A, CHREC_LEFT (chrec), index + 1, mult);
}
#define FLOOR_DIV(x,y) ((x) / (y))
/* Solves the special case of the Diophantine equation:
| {0, +, STEP_A}_x (OVERLAPS_A) = {0, +, STEP_B}_y (OVERLAPS_B)
Computes the descriptions OVERLAPS_A and OVERLAPS_B. NITER is the
number of iterations that loops X and Y run. The overlaps will be
constructed as evolutions in dimension DIM. */
static void
compute_overlap_steps_for_affine_univar (int niter, int step_a, int step_b,
tree *overlaps_a, tree *overlaps_b,
tree *last_conflicts, int dim)
{
if (((step_a > 0 && step_b > 0)
|| (step_a < 0 && step_b < 0)))
{
int step_overlaps_a, step_overlaps_b;
int gcd_steps_a_b, last_conflict, tau2;
gcd_steps_a_b = gcd (step_a, step_b);
step_overlaps_a = step_b / gcd_steps_a_b;
step_overlaps_b = step_a / gcd_steps_a_b;
tau2 = FLOOR_DIV (niter, step_overlaps_a);
tau2 = MIN (tau2, FLOOR_DIV (niter, step_overlaps_b));
last_conflict = tau2;
*overlaps_a = build_polynomial_chrec
(dim, integer_zero_node,
build_int_cst (NULL_TREE, step_overlaps_a));
*overlaps_b = build_polynomial_chrec
(dim, integer_zero_node,
build_int_cst (NULL_TREE, step_overlaps_b));
*last_conflicts = build_int_cst (NULL_TREE, last_conflict);
}
else
{
*overlaps_a = integer_zero_node;
*overlaps_b = integer_zero_node;
*last_conflicts = integer_zero_node;
}
}
/* Solves the special case of a Diophantine equation where CHREC_A is
an affine bivariate function, and CHREC_B is an affine univariate
function. For example,
| {{0, +, 1}_x, +, 1335}_y = {0, +, 1336}_z
has the following overlapping functions:
| x (t, u, v) = {{0, +, 1336}_t, +, 1}_v
| y (t, u, v) = {{0, +, 1336}_u, +, 1}_v
| z (t, u, v) = {{{0, +, 1}_t, +, 1335}_u, +, 1}_v
FORNOW: This is a specialized implementation for a case occurring in
a common benchmark. Implement the general algorithm. */
static void
compute_overlap_steps_for_affine_1_2 (tree chrec_a, tree chrec_b,
tree *overlaps_a, tree *overlaps_b,
tree *last_conflicts)
{
bool xz_p, yz_p, xyz_p;
int step_x, step_y, step_z;
int niter_x, niter_y, niter_z, niter;
tree numiter_x, numiter_y, numiter_z;
tree overlaps_a_xz, overlaps_b_xz, last_conflicts_xz;
tree overlaps_a_yz, overlaps_b_yz, last_conflicts_yz;
tree overlaps_a_xyz, overlaps_b_xyz, last_conflicts_xyz;
step_x = int_cst_value (CHREC_RIGHT (CHREC_LEFT (chrec_a)));
step_y = int_cst_value (CHREC_RIGHT (chrec_a));
step_z = int_cst_value (CHREC_RIGHT (chrec_b));
numiter_x = number_of_iterations_in_loop
(current_loops->parray[CHREC_VARIABLE (CHREC_LEFT (chrec_a))]);
numiter_y = number_of_iterations_in_loop
(current_loops->parray[CHREC_VARIABLE (chrec_a)]);
numiter_z = number_of_iterations_in_loop
(current_loops->parray[CHREC_VARIABLE (chrec_b)]);
if (TREE_CODE (numiter_x) != INTEGER_CST)
numiter_x = current_loops->parray[CHREC_VARIABLE (CHREC_LEFT (chrec_a))]
->estimated_nb_iterations;
if (TREE_CODE (numiter_y) != INTEGER_CST)
numiter_y = current_loops->parray[CHREC_VARIABLE (chrec_a)]
->estimated_nb_iterations;
if (TREE_CODE (numiter_z) != INTEGER_CST)
numiter_z = current_loops->parray[CHREC_VARIABLE (chrec_b)]
->estimated_nb_iterations;
if (chrec_contains_undetermined (numiter_x)
|| chrec_contains_undetermined (numiter_y)
|| chrec_contains_undetermined (numiter_z)
|| TREE_CODE (numiter_x) != INTEGER_CST
|| TREE_CODE (numiter_y) != INTEGER_CST
|| TREE_CODE (numiter_z) != INTEGER_CST)
{
*overlaps_a = chrec_dont_know;
*overlaps_b = chrec_dont_know;
*last_conflicts = chrec_dont_know;
return;
}
niter_x = int_cst_value (numiter_x);
niter_y = int_cst_value (numiter_y);
niter_z = int_cst_value (numiter_z);
niter = MIN (niter_x, niter_z);
compute_overlap_steps_for_affine_univar (niter, step_x, step_z,
&overlaps_a_xz,
&overlaps_b_xz,
&last_conflicts_xz, 1);
niter = MIN (niter_y, niter_z);
compute_overlap_steps_for_affine_univar (niter, step_y, step_z,
&overlaps_a_yz,
&overlaps_b_yz,
&last_conflicts_yz, 2);
niter = MIN (niter_x, niter_z);
niter = MIN (niter_y, niter);
compute_overlap_steps_for_affine_univar (niter, step_x + step_y, step_z,
&overlaps_a_xyz,
&overlaps_b_xyz,
&last_conflicts_xyz, 3);
xz_p = !integer_zerop (last_conflicts_xz);
yz_p = !integer_zerop (last_conflicts_yz);
xyz_p = !integer_zerop (last_conflicts_xyz);
if (xz_p || yz_p || xyz_p)
{
*overlaps_a = make_tree_vec (2);
TREE_VEC_ELT (*overlaps_a, 0) = integer_zero_node;
TREE_VEC_ELT (*overlaps_a, 1) = integer_zero_node;
*overlaps_b = integer_zero_node;
if (xz_p)
{
TREE_VEC_ELT (*overlaps_a, 0) =
chrec_fold_plus (integer_type_node, TREE_VEC_ELT (*overlaps_a, 0),
overlaps_a_xz);
*overlaps_b =
chrec_fold_plus (integer_type_node, *overlaps_b, overlaps_b_xz);
*last_conflicts = last_conflicts_xz;
}
if (yz_p)
{
TREE_VEC_ELT (*overlaps_a, 1) =
chrec_fold_plus (integer_type_node, TREE_VEC_ELT (*overlaps_a, 1),
overlaps_a_yz);
*overlaps_b =
chrec_fold_plus (integer_type_node, *overlaps_b, overlaps_b_yz);
*last_conflicts = last_conflicts_yz;
}
if (xyz_p)
{
TREE_VEC_ELT (*overlaps_a, 0) =
chrec_fold_plus (integer_type_node, TREE_VEC_ELT (*overlaps_a, 0),
overlaps_a_xyz);
TREE_VEC_ELT (*overlaps_a, 1) =
chrec_fold_plus (integer_type_node, TREE_VEC_ELT (*overlaps_a, 1),
overlaps_a_xyz);
*overlaps_b =
chrec_fold_plus (integer_type_node, *overlaps_b, overlaps_b_xyz);
*last_conflicts = last_conflicts_xyz;
}
}
else
{
*overlaps_a = integer_zero_node;
*overlaps_b = integer_zero_node;
*last_conflicts = integer_zero_node;
}
}
/* Determines the overlapping elements due to accesses CHREC_A and
CHREC_B, that are affine functions. This is a part of the
subscript analyzer. */
static void
analyze_subscript_affine_affine (tree chrec_a,
tree chrec_b,
tree *overlaps_a,
tree *overlaps_b,
tree *last_conflicts)
{
unsigned nb_vars_a, nb_vars_b, dim;
int init_a, init_b, gamma, gcd_alpha_beta;
int tau1, tau2;
lambda_matrix A, U, S;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "(analyze_subscript_affine_affine \n");
/* For determining the initial intersection, we have to solve a
Diophantine equation. This is the most time consuming part.
For answering to the question: "Is there a dependence?" we have
to prove that there exists a solution to the Diophantine
equation, and that the solution is in the iteration domain,
i.e. the solution is positive or zero, and that the solution
happens before the upper bound loop.nb_iterations. Otherwise
there is no dependence. This function outputs a description of
the iterations that hold the intersections. */
nb_vars_a = nb_vars_in_chrec (chrec_a);
nb_vars_b = nb_vars_in_chrec (chrec_b);
dim = nb_vars_a + nb_vars_b;
U = lambda_matrix_new (dim, dim);
A = lambda_matrix_new (dim, 1);
S = lambda_matrix_new (dim, 1);
init_a = initialize_matrix_A (A, chrec_a, 0, 1);
init_b = initialize_matrix_A (A, chrec_b, nb_vars_a, -1);
gamma = init_b - init_a;
/* Don't do all the hard work of solving the Diophantine equation
when we already know the solution: for example,
| {3, +, 1}_1
| {3, +, 4}_2
| gamma = 3 - 3 = 0.
Then the first overlap occurs during the first iterations:
| {3, +, 1}_1 ({0, +, 4}_x) = {3, +, 4}_2 ({0, +, 1}_x)
*/
if (gamma == 0)
{
if (nb_vars_a == 1 && nb_vars_b == 1)
{
int step_a, step_b;
int niter, niter_a, niter_b;
tree numiter_a, numiter_b;
numiter_a = number_of_iterations_in_loop
(current_loops->parray[CHREC_VARIABLE (chrec_a)]);
numiter_b = number_of_iterations_in_loop
(current_loops->parray[CHREC_VARIABLE (chrec_b)]);
if (TREE_CODE (numiter_a) != INTEGER_CST)
numiter_a = current_loops->parray[CHREC_VARIABLE (chrec_a)]
->estimated_nb_iterations;
if (TREE_CODE (numiter_b) != INTEGER_CST)
numiter_b = current_loops->parray[CHREC_VARIABLE (chrec_b)]
->estimated_nb_iterations;
if (chrec_contains_undetermined (numiter_a)
|| chrec_contains_undetermined (numiter_b)
|| TREE_CODE (numiter_a) != INTEGER_CST
|| TREE_CODE (numiter_b) != INTEGER_CST)
{
*overlaps_a = chrec_dont_know;
*overlaps_b = chrec_dont_know;
*last_conflicts = chrec_dont_know;
return;
}
niter_a = int_cst_value (numiter_a);
niter_b = int_cst_value (numiter_b);
niter = MIN (niter_a, niter_b);
step_a = int_cst_value (CHREC_RIGHT (chrec_a));
step_b = int_cst_value (CHREC_RIGHT (chrec_b));
compute_overlap_steps_for_affine_univar (niter, step_a, step_b,
overlaps_a, overlaps_b,
last_conflicts, 1);
}
else if (nb_vars_a == 2 && nb_vars_b == 1)
compute_overlap_steps_for_affine_1_2
(chrec_a, chrec_b, overlaps_a, overlaps_b, last_conflicts);
else if (nb_vars_a == 1 && nb_vars_b == 2)
compute_overlap_steps_for_affine_1_2
(chrec_b, chrec_a, overlaps_b, overlaps_a, last_conflicts);
else
{
*overlaps_a = chrec_dont_know;
*overlaps_b = chrec_dont_know;
*last_conflicts = chrec_dont_know;
}
return;
}
/* U.A = S */
lambda_matrix_right_hermite (A, dim, 1, S, U);
if (S[0][0] < 0)
{
S[0][0] *= -1;
lambda_matrix_row_negate (U, dim, 0);
}
gcd_alpha_beta = S[0][0];
/* The classic "gcd-test". */
if (!int_divides_p (gcd_alpha_beta, gamma))
{
/* The "gcd-test" has determined that there is no integer
solution, i.e. there is no dependence. */
*overlaps_a = chrec_known;
*overlaps_b = chrec_known;
*last_conflicts = integer_zero_node;
}
/* Both access functions are univariate. This includes SIV and MIV cases. */
else if (nb_vars_a == 1 && nb_vars_b == 1)
{
/* Both functions should have the same evolution sign. */
if (((A[0][0] > 0 && -A[1][0] > 0)
|| (A[0][0] < 0 && -A[1][0] < 0)))
{
/* The solutions are given by:
|
| [GAMMA/GCD_ALPHA_BETA t].[u11 u12] = [x0]
| [u21 u22] [y0]
For a given integer t. Using the following variables,
| i0 = u11 * gamma / gcd_alpha_beta
| j0 = u12 * gamma / gcd_alpha_beta
| i1 = u21
| j1 = u22
the solutions are:
| x0 = i0 + i1 * t,
| y0 = j0 + j1 * t. */
int i0, j0, i1, j1;
/* X0 and Y0 are the first iterations for which there is a
dependence. X0, Y0 are two solutions of the Diophantine
equation: chrec_a (X0) = chrec_b (Y0). */
int x0, y0;
int niter, niter_a, niter_b;
tree numiter_a, numiter_b;
numiter_a = number_of_iterations_in_loop
(current_loops->parray[CHREC_VARIABLE (chrec_a)]);
numiter_b = number_of_iterations_in_loop
(current_loops->parray[CHREC_VARIABLE (chrec_b)]);
if (TREE_CODE (numiter_a) != INTEGER_CST)
numiter_a = current_loops->parray[CHREC_VARIABLE (chrec_a)]
->estimated_nb_iterations;
if (TREE_CODE (numiter_b) != INTEGER_CST)
numiter_b = current_loops->parray[CHREC_VARIABLE (chrec_b)]
->estimated_nb_iterations;
if (chrec_contains_undetermined (numiter_a)
|| chrec_contains_undetermined (numiter_b)
|| TREE_CODE (numiter_a) != INTEGER_CST
|| TREE_CODE (numiter_b) != INTEGER_CST)
{
*overlaps_a = chrec_dont_know;
*overlaps_b = chrec_dont_know;
*last_conflicts = chrec_dont_know;
return;
}
niter_a = int_cst_value (numiter_a);
niter_b = int_cst_value (numiter_b);
niter = MIN (niter_a, niter_b);
i0 = U[0][0] * gamma / gcd_alpha_beta;
j0 = U[0][1] * gamma / gcd_alpha_beta;
i1 = U[1][0];
j1 = U[1][1];
if ((i1 == 0 && i0 < 0)
|| (j1 == 0 && j0 < 0))
{
/* There is no solution.
FIXME: The case "i0 > nb_iterations, j0 > nb_iterations"
falls in here, but for the moment we don't look at the
upper bound of the iteration domain. */
*overlaps_a = chrec_known;
*overlaps_b = chrec_known;
*last_conflicts = integer_zero_node;
}
else
{
if (i1 > 0)
{
tau1 = CEIL (-i0, i1);
tau2 = FLOOR_DIV (niter - i0, i1);
if (j1 > 0)
{
int last_conflict, min_multiple;
tau1 = MAX (tau1, CEIL (-j0, j1));
tau2 = MIN (tau2, FLOOR_DIV (niter - j0, j1));
x0 = i1 * tau1 + i0;
y0 = j1 * tau1 + j0;
/* At this point (x0, y0) is one of the
solutions to the Diophantine equation. The
next step has to compute the smallest
positive solution: the first conflicts. */
min_multiple = MIN (x0 / i1, y0 / j1);
x0 -= i1 * min_multiple;
y0 -= j1 * min_multiple;
tau1 = (x0 - i0)/i1;
last_conflict = tau2 - tau1;
*overlaps_a = build_polynomial_chrec
(1,
build_int_cst (NULL_TREE, x0),
build_int_cst (NULL_TREE, i1));
*overlaps_b = build_polynomial_chrec
(1,
build_int_cst (NULL_TREE, y0),
build_int_cst (NULL_TREE, j1));
*last_conflicts = build_int_cst (NULL_TREE, last_conflict);
}
else
{
/* FIXME: For the moment, the upper bound of the
iteration domain for j is not checked. */
*overlaps_a = chrec_dont_know;
*overlaps_b = chrec_dont_know;
*last_conflicts = chrec_dont_know;
}
}
else
{
/* FIXME: For the moment, the upper bound of the
iteration domain for i is not checked. */
*overlaps_a = chrec_dont_know;
*overlaps_b = chrec_dont_know;
*last_conflicts = chrec_dont_know;
}
}
}
else
{
*overlaps_a = chrec_dont_know;
*overlaps_b = chrec_dont_know;
*last_conflicts = chrec_dont_know;
}
}
else
{
*overlaps_a = chrec_dont_know;
*overlaps_b = chrec_dont_know;
*last_conflicts = chrec_dont_know;
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " (overlaps_a = ");
print_generic_expr (dump_file, *overlaps_a, 0);
fprintf (dump_file, ")\n (overlaps_b = ");
print_generic_expr (dump_file, *overlaps_b, 0);
fprintf (dump_file, ")\n");
}
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, ")\n");
}
/* Analyze a SIV (Single Index Variable) subscript. *OVERLAPS_A and
*OVERLAPS_B are initialized to the functions that describe the
relation between the elements accessed twice by CHREC_A and
CHREC_B. For k >= 0, the following property is verified:
CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
static void
analyze_siv_subscript (tree chrec_a,
tree chrec_b,
tree *overlaps_a,
tree *overlaps_b,
tree *last_conflicts)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "(analyze_siv_subscript \n");
if (evolution_function_is_constant_p (chrec_a)
&& evolution_function_is_affine_p (chrec_b))
analyze_siv_subscript_cst_affine (chrec_a, chrec_b,
overlaps_a, overlaps_b, last_conflicts);
else if (evolution_function_is_affine_p (chrec_a)
&& evolution_function_is_constant_p (chrec_b))
analyze_siv_subscript_cst_affine (chrec_b, chrec_a,
overlaps_b, overlaps_a, last_conflicts);
else if (evolution_function_is_affine_p (chrec_a)
&& evolution_function_is_affine_p (chrec_b))
analyze_subscript_affine_affine (chrec_a, chrec_b,
overlaps_a, overlaps_b, last_conflicts);
else
{
*overlaps_a = chrec_dont_know;
*overlaps_b = chrec_dont_know;
*last_conflicts = chrec_dont_know;
}
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, ")\n");
}
/* Return true when the evolution steps of an affine CHREC divide the
constant CST. */
static bool
chrec_steps_divide_constant_p (tree chrec,
tree cst)
{
switch (TREE_CODE (chrec))
{
case POLYNOMIAL_CHREC:
return (tree_fold_divides_p (integer_type_node, CHREC_RIGHT (chrec), cst)
&& chrec_steps_divide_constant_p (CHREC_LEFT (chrec), cst));
default:
/* On the initial condition, return true. */
return true;
}
}
/* Analyze a MIV (Multiple Index Variable) subscript. *OVERLAPS_A and
*OVERLAPS_B are initialized to the functions that describe the
relation between the elements accessed twice by CHREC_A and
CHREC_B. For k >= 0, the following property is verified:
CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
static void
analyze_miv_subscript (tree chrec_a,
tree chrec_b,
tree *overlaps_a,
tree *overlaps_b,
tree *last_conflicts)
{
/* FIXME: This is a MIV subscript, not yet handled.
Example: (A[{1, +, 1}_1] vs. A[{1, +, 1}_2]) that comes from
(A[i] vs. A[j]).
In the SIV test we had to solve a Diophantine equation with two
variables. In the MIV case we have to solve a Diophantine
equation with 2*n variables (if the subscript uses n IVs).
*/
tree difference;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "(analyze_miv_subscript \n");
difference = chrec_fold_minus (integer_type_node, chrec_a, chrec_b);
if (chrec_zerop (difference))
{
/* Access functions are the same: all the elements are accessed
in the same order. */
*overlaps_a = integer_zero_node;
*overlaps_b = integer_zero_node;
*last_conflicts = number_of_iterations_in_loop
(current_loops->parray[CHREC_VARIABLE (chrec_a)]);
}
else if (evolution_function_is_constant_p (difference)
/* For the moment, the following is verified:
evolution_function_is_affine_multivariate_p (chrec_a) */
&& !chrec_steps_divide_constant_p (chrec_a, difference))
{
/* testsuite/.../ssa-chrec-33.c
{{21, +, 2}_1, +, -2}_2 vs. {{20, +, 2}_1, +, -2}_2
The difference is 1, and the evolution steps are equal to 2,
consequently there are no overlapping elements. */
*overlaps_a = chrec_known;
*overlaps_b = chrec_known;
*last_conflicts = integer_zero_node;
}
else if (evolution_function_is_affine_multivariate_p (chrec_a)
&& evolution_function_is_affine_multivariate_p (chrec_b))
{
/* testsuite/.../ssa-chrec-35.c
{0, +, 1}_2 vs. {0, +, 1}_3
the overlapping elements are respectively located at iterations:
{0, +, 1}_x and {0, +, 1}_x,
in other words, we have the equality:
{0, +, 1}_2 ({0, +, 1}_x) = {0, +, 1}_3 ({0, +, 1}_x)
Other examples:
{{0, +, 1}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y) =
{0, +, 1}_1 ({{0, +, 1}_x, +, 2}_y)
{{0, +, 2}_1, +, 3}_2 ({0, +, 1}_y, {0, +, 1}_x) =
{{0, +, 3}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y)
*/
analyze_subscript_affine_affine (chrec_a, chrec_b,
overlaps_a, overlaps_b, last_conflicts);
}
else
{
/* When the analysis is too difficult, answer "don't know". */
*overlaps_a = chrec_dont_know;
*overlaps_b = chrec_dont_know;
*last_conflicts = chrec_dont_know;
}
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, ")\n");
}
/* Determines the iterations for which CHREC_A is equal to CHREC_B.
OVERLAP_ITERATIONS_A and OVERLAP_ITERATIONS_B are initialized with
two functions that describe the iterations that contain conflicting
elements.
Remark: For an integer k >= 0, the following equality is true:
CHREC_A (OVERLAP_ITERATIONS_A (k)) == CHREC_B (OVERLAP_ITERATIONS_B (k)).
*/
static void
analyze_overlapping_iterations (tree chrec_a,
tree chrec_b,
tree *overlap_iterations_a,
tree *overlap_iterations_b,
tree *last_conflicts)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "(analyze_overlapping_iterations \n");
fprintf (dump_file, " (chrec_a = ");
print_generic_expr (dump_file, chrec_a, 0);
fprintf (dump_file, ")\n chrec_b = ");
print_generic_expr (dump_file, chrec_b, 0);
fprintf (dump_file, ")\n");
}
if (chrec_a == NULL_TREE
|| chrec_b == NULL_TREE
|| chrec_contains_undetermined (chrec_a)
|| chrec_contains_undetermined (chrec_b)
|| chrec_contains_symbols (chrec_a)
|| chrec_contains_symbols (chrec_b))
{
*overlap_iterations_a = chrec_dont_know;
*overlap_iterations_b = chrec_dont_know;
}
else if (ziv_subscript_p (chrec_a, chrec_b))
analyze_ziv_subscript (chrec_a, chrec_b,
overlap_iterations_a, overlap_iterations_b,
last_conflicts);
else if (siv_subscript_p (chrec_a, chrec_b))
analyze_siv_subscript (chrec_a, chrec_b,
overlap_iterations_a, overlap_iterations_b,
last_conflicts);
else
analyze_miv_subscript (chrec_a, chrec_b,
overlap_iterations_a, overlap_iterations_b,
last_conflicts);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " (overlap_iterations_a = ");
print_generic_expr (dump_file, *overlap_iterations_a, 0);
fprintf (dump_file, ")\n (overlap_iterations_b = ");
print_generic_expr (dump_file, *overlap_iterations_b, 0);
fprintf (dump_file, ")\n");
}
}
/* This section contains the affine functions dependences detector. */
/* Computes the conflicting iterations, and initialize DDR. */
static void
subscript_dependence_tester (struct data_dependence_relation *ddr)
{
unsigned int i;
struct data_reference *dra = DDR_A (ddr);
struct data_reference *drb = DDR_B (ddr);
tree last_conflicts;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "(subscript_dependence_tester \n");
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
{
tree overlaps_a, overlaps_b;
struct subscript *subscript = DDR_SUBSCRIPT (ddr, i);
analyze_overlapping_iterations (DR_ACCESS_FN (dra, i),
DR_ACCESS_FN (drb, i),
&overlaps_a, &overlaps_b,
&last_conflicts);
if (chrec_contains_undetermined (overlaps_a)
|| chrec_contains_undetermined (overlaps_b))
{
finalize_ddr_dependent (ddr, chrec_dont_know);
break;
}
else if (overlaps_a == chrec_known
|| overlaps_b == chrec_known)
{
finalize_ddr_dependent (ddr, chrec_known);
break;
}
else
{
SUB_CONFLICTS_IN_A (subscript) = overlaps_a;
SUB_CONFLICTS_IN_B (subscript) = overlaps_b;
SUB_LAST_CONFLICT (subscript) = last_conflicts;
}
}
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, ")\n");
}
/* Compute the classic per loop distance vector.
DDR is the data dependence relation to build a vector from.
NB_LOOPS is the total number of loops we are considering.
FIRST_LOOP_DEPTH is the loop->depth of the first loop in the analyzed
loop nest.
Return FALSE if the dependence relation is outside of the loop nest
starting at FIRST_LOOP_DEPTH.
Return TRUE otherwise. */
bool
build_classic_dist_vector (struct data_dependence_relation *ddr,
int nb_loops, int first_loop_depth)
{
unsigned i;
lambda_vector dist_v, init_v;
dist_v = lambda_vector_new (nb_loops);
init_v = lambda_vector_new (nb_loops);
lambda_vector_clear (dist_v, nb_loops);
lambda_vector_clear (init_v, nb_loops);
if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE)
return true;
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
{
tree access_fn_a, access_fn_b;
struct subscript *subscript = DDR_SUBSCRIPT (ddr, i);
if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
{
non_affine_dependence_relation (ddr);
return true;
}
access_fn_a = DR_ACCESS_FN (DDR_A (ddr), i);
access_fn_b = DR_ACCESS_FN (DDR_B (ddr), i);
if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC
&& TREE_CODE (access_fn_b) == POLYNOMIAL_CHREC)
{
int dist, loop_nb, loop_depth;
int loop_nb_a = CHREC_VARIABLE (access_fn_a);
int loop_nb_b = CHREC_VARIABLE (access_fn_b);
struct loop *loop_a = current_loops->parray[loop_nb_a];
struct loop *loop_b = current_loops->parray[loop_nb_b];
/* If the loop for either variable is at a lower depth than
the first_loop's depth, then we can't possibly have a
dependency at this level of the loop. */
if (loop_a->depth < first_loop_depth
|| loop_b->depth < first_loop_depth)
return false;
if (loop_nb_a != loop_nb_b
&& !flow_loop_nested_p (loop_a, loop_b)
&& !flow_loop_nested_p (loop_b, loop_a))
{
/* Example: when there are two consecutive loops,
| loop_1
| A[{0, +, 1}_1]
| endloop_1
| loop_2
| A[{0, +, 1}_2]
| endloop_2
the dependence relation cannot be captured by the
distance abstraction. */
non_affine_dependence_relation (ddr);
return true;
}
/* The dependence is carried by the outermost loop. Example:
| loop_1
| A[{4, +, 1}_1]
| loop_2
| A[{5, +, 1}_2]
| endloop_2
| endloop_1
In this case, the dependence is carried by loop_1. */
loop_nb = loop_nb_a < loop_nb_b ? loop_nb_a : loop_nb_b;
loop_depth = current_loops->parray[loop_nb]->depth - first_loop_depth;
/* If the loop number is still greater than the number of
loops we've been asked to analyze, or negative,
something is borked. */
gcc_assert (loop_depth >= 0);
gcc_assert (loop_depth < nb_loops);
if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
{
non_affine_dependence_relation (ddr);
return true;
}
dist = int_cst_value (SUB_DISTANCE (subscript));
/* This is the subscript coupling test.
| loop i = 0, N, 1
| T[i+1][i] = ...
| ... = T[i][i]
| endloop
There is no dependence. */
if (init_v[loop_depth] != 0
&& dist_v[loop_depth] != dist)
{
finalize_ddr_dependent (ddr, chrec_known);
return true;
}
dist_v[loop_depth] = dist;
init_v[loop_depth] = 1;
}
}
/* There is a distance of 1 on all the outer loops:
Example: there is a dependence of distance 1 on loop_1 for the array A.
| loop_1
| A[5] = ...
| endloop
*/
{
struct loop *lca, *loop_a, *loop_b;
struct data_reference *a = DDR_A (ddr);
struct data_reference *b = DDR_B (ddr);
int lca_depth;
loop_a = loop_containing_stmt (DR_STMT (a));
loop_b = loop_containing_stmt (DR_STMT (b));
/* Get the common ancestor loop. */
lca = find_common_loop (loop_a, loop_b);
lca_depth = lca->depth;
lca_depth -= first_loop_depth;
gcc_assert (lca_depth >= 0);
gcc_assert (lca_depth < nb_loops);
/* For each outer loop where init_v is not set, the accesses are
in dependence of distance 1 in the loop. */
if (lca != loop_a
&& lca != loop_b
&& init_v[lca_depth] == 0)
dist_v[lca_depth] = 1;
lca = lca->outer;
if (lca)
{
lca_depth = lca->depth - first_loop_depth;
while (lca->depth != 0)
{
/* If we're considering just a sub-nest, then don't record
any information on the outer loops. */
if (lca_depth < 0)
break;
gcc_assert (lca_depth < nb_loops);
if (init_v[lca_depth] == 0)
dist_v[lca_depth] = 1;
lca = lca->outer;
lca_depth = lca->depth - first_loop_depth;
}
}
}
DDR_DIST_VECT (ddr) = dist_v;
DDR_SIZE_VECT (ddr) = nb_loops;
return true;
}
/* Compute the classic per loop direction vector.
DDR is the data dependence relation to build a vector from.
NB_LOOPS is the total number of loops we are considering.
FIRST_LOOP_DEPTH is the loop->depth of the first loop in the analyzed
loop nest.
Return FALSE if the dependence relation is outside of the loop nest
at FIRST_LOOP_DEPTH.
Return TRUE otherwise. */
static bool
build_classic_dir_vector (struct data_dependence_relation *ddr,
int nb_loops, int first_loop_depth)
{
unsigned i;
lambda_vector dir_v, init_v;
dir_v = lambda_vector_new (nb_loops);
init_v = lambda_vector_new (nb_loops);
lambda_vector_clear (dir_v, nb_loops);
lambda_vector_clear (init_v, nb_loops);
if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE)
return true;
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
{
tree access_fn_a, access_fn_b;
struct subscript *subscript = DDR_SUBSCRIPT (ddr, i);
if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
{
non_affine_dependence_relation (ddr);
return true;
}
access_fn_a = DR_ACCESS_FN (DDR_A (ddr), i);
access_fn_b = DR_ACCESS_FN (DDR_B (ddr), i);
if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC
&& TREE_CODE (access_fn_b) == POLYNOMIAL_CHREC)
{
int dist, loop_nb, loop_depth;
enum data_dependence_direction dir = dir_star;
int loop_nb_a = CHREC_VARIABLE (access_fn_a);
int loop_nb_b = CHREC_VARIABLE (access_fn_b);
struct loop *loop_a = current_loops->parray[loop_nb_a];
struct loop *loop_b = current_loops->parray[loop_nb_b];
/* If the loop for either variable is at a lower depth than
the first_loop's depth, then we can't possibly have a
dependency at this level of the loop. */
if (loop_a->depth < first_loop_depth
|| loop_b->depth < first_loop_depth)
return false;
if (loop_nb_a != loop_nb_b
&& !flow_loop_nested_p (loop_a, loop_b)
&& !flow_loop_nested_p (loop_b, loop_a))
{
/* Example: when there are two consecutive loops,
| loop_1
| A[{0, +, 1}_1]
| endloop_1
| loop_2
| A[{0, +, 1}_2]
| endloop_2
the dependence relation cannot be captured by the
distance abstraction. */
non_affine_dependence_relation (ddr);
return true;
}
/* The dependence is carried by the outermost loop. Example:
| loop_1
| A[{4, +, 1}_1]
| loop_2
| A[{5, +, 1}_2]
| endloop_2
| endloop_1
In this case, the dependence is carried by loop_1. */
loop_nb = loop_nb_a < loop_nb_b ? loop_nb_a : loop_nb_b;
loop_depth = current_loops->parray[loop_nb]->depth - first_loop_depth;
/* If the loop number is still greater than the number of
loops we've been asked to analyze, or negative,
something is borked. */
gcc_assert (loop_depth >= 0);
gcc_assert (loop_depth < nb_loops);
if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
{
non_affine_dependence_relation (ddr);
return true;
}
dist = int_cst_value (SUB_DISTANCE (subscript));
if (dist == 0)
dir = dir_equal;
else if (dist > 0)
dir = dir_positive;
else if (dist < 0)
dir = dir_negative;
/* This is the subscript coupling test.
| loop i = 0, N, 1
| T[i+1][i] = ...
| ... = T[i][i]
| endloop
There is no dependence. */
if (init_v[loop_depth] != 0
&& dir != dir_star
&& (enum data_dependence_direction) dir_v[loop_depth] != dir
&& (enum data_dependence_direction) dir_v[loop_depth] != dir_star)
{
finalize_ddr_dependent (ddr, chrec_known);
return true;
}
dir_v[loop_depth] = dir;
init_v[loop_depth] = 1;
}
}
/* There is a distance of 1 on all the outer loops:
Example: there is a dependence of distance 1 on loop_1 for the array A.
| loop_1
| A[5] = ...
| endloop
*/
{
struct loop *lca, *loop_a, *loop_b;
struct data_reference *a = DDR_A (ddr);
struct data_reference *b = DDR_B (ddr);
int lca_depth;
loop_a = loop_containing_stmt (DR_STMT (a));
loop_b = loop_containing_stmt (DR_STMT (b));
/* Get the common ancestor loop. */
lca = find_common_loop (loop_a, loop_b);
lca_depth = lca->depth - first_loop_depth;
gcc_assert (lca_depth >= 0);
gcc_assert (lca_depth < nb_loops);
/* For each outer loop where init_v is not set, the accesses are
in dependence of distance 1 in the loop. */
if (lca != loop_a
&& lca != loop_b
&& init_v[lca_depth] == 0)
dir_v[lca_depth] = dir_positive;
lca = lca->outer;
if (lca)
{
lca_depth = lca->depth - first_loop_depth;
while (lca->depth != 0)
{
/* If we're considering just a sub-nest, then don't record
any information on the outer loops. */
if (lca_depth < 0)
break;
gcc_assert (lca_depth < nb_loops);
if (init_v[lca_depth] == 0)
dir_v[lca_depth] = dir_positive;
lca = lca->outer;
lca_depth = lca->depth - first_loop_depth;
}
}
}
DDR_DIR_VECT (ddr) = dir_v;
DDR_SIZE_VECT (ddr) = nb_loops;
return true;
}
/* Returns true when all the access functions of A are affine or
constant. */
static bool
access_functions_are_affine_or_constant_p (struct data_reference *a)
{
unsigned int i;
VEC(tree,heap) **fns = &DR_ACCESS_FNS (a);
tree t;
for (i = 0; VEC_iterate (tree, *fns, i, t); i++)
if (!evolution_function_is_constant_p (t)
&& !evolution_function_is_affine_multivariate_p (t))
return false;
return true;
}
/* This computes the affine dependence relation between A and B.
CHREC_KNOWN is used for representing the independence between two
accesses, while CHREC_DONT_KNOW is used for representing the unknown
relation.
Note that it is possible to stop the computation of the dependence
relation the first time we detect a CHREC_KNOWN element for a given
subscript. */
void
compute_affine_dependence (struct data_dependence_relation *ddr)
{
struct data_reference *dra = DDR_A (ddr);
struct data_reference *drb = DDR_B (ddr);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "(compute_affine_dependence\n");
fprintf (dump_file, " (stmt_a = \n");
print_generic_expr (dump_file, DR_STMT (dra), 0);
fprintf (dump_file, ")\n (stmt_b = \n");
print_generic_expr (dump_file, DR_STMT (drb), 0);
fprintf (dump_file, ")\n");
}
/* Analyze only when the dependence relation is not yet known. */
if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
{
if (access_functions_are_affine_or_constant_p (dra)
&& access_functions_are_affine_or_constant_p (drb))
subscript_dependence_tester (ddr);
/* As a last case, if the dependence cannot be determined, or if
the dependence is considered too difficult to determine, answer
"don't know". */
else
finalize_ddr_dependent (ddr, chrec_dont_know);
}
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, ")\n");
}
/* This computes the dependence relation for the same data
reference into DDR. */
static void
compute_self_dependence (struct data_dependence_relation *ddr)
{
unsigned int i;
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
{
struct subscript *subscript = DDR_SUBSCRIPT (ddr, i);
/* The accessed index overlaps for each iteration. */
SUB_CONFLICTS_IN_A (subscript) = integer_zero_node;
SUB_CONFLICTS_IN_B (subscript) = integer_zero_node;
SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
}
}
typedef struct data_dependence_relation *ddr_p;
DEF_VEC_P(ddr_p);
DEF_VEC_ALLOC_P(ddr_p,heap);
/* Compute a subset of the data dependence relation graph. Don't
compute read-read relations, and avoid the computation of the
opposite relation, i.e. when AB has been computed, don't compute BA.
DATAREFS contains a list of data references, and the result is set
in DEPENDENCE_RELATIONS. */
static void
compute_all_dependences (varray_type datarefs,
VEC(ddr_p,heap) **dependence_relations)
{
unsigned int i, j, N;
N = VARRAY_ACTIVE_SIZE (datarefs);
/* Note that we specifically skip i == j because it's a self dependence, and
use compute_self_dependence below. */
for (i = 0; i < N; i++)
for (j = i + 1; j < N; j++)
{
struct data_reference *a, *b;
struct data_dependence_relation *ddr;
a = VARRAY_GENERIC_PTR (datarefs, i);
b = VARRAY_GENERIC_PTR (datarefs, j);
ddr = initialize_data_dependence_relation (a, b);
VEC_safe_push (ddr_p, heap, *dependence_relations, ddr);
compute_affine_dependence (ddr);
compute_subscript_distance (ddr);
}
/* Compute self dependence relation of each dataref to itself. */
for (i = 0; i < N; i++)
{
struct data_reference *a, *b;
struct data_dependence_relation *ddr;
a = VARRAY_GENERIC_PTR (datarefs, i);
b = VARRAY_GENERIC_PTR (datarefs, i);
ddr = initialize_data_dependence_relation (a, b);
VEC_safe_push (ddr_p, heap, *dependence_relations, ddr);
compute_self_dependence (ddr);
compute_subscript_distance (ddr);
}
}
/* Search the data references in LOOP, and record the information into
DATAREFS. Returns chrec_dont_know when failing to analyze a
difficult case, returns NULL_TREE otherwise.
TODO: This function should be made smarter so that it can handle address
arithmetic as if they were array accesses, etc. */
tree
find_data_references_in_loop (struct loop *loop, varray_type *datarefs)
{
basic_block bb, *bbs;
unsigned int i;
block_stmt_iterator bsi;
bbs = get_loop_body (loop);
for (i = 0; i < loop->num_nodes; i++)
{
bb = bbs[i];
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
{
tree stmt = bsi_stmt (bsi);
/* ASM_EXPR and CALL_EXPR may embed arbitrary side effects.
Calls have side-effects, except those to const or pure
functions. */
if ((TREE_CODE (stmt) == CALL_EXPR
&& !(call_expr_flags (stmt) & (ECF_CONST | ECF_PURE)))
|| (TREE_CODE (stmt) == ASM_EXPR
&& ASM_VOLATILE_P (stmt)))
goto insert_dont_know_node;
if (ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
continue;
switch (TREE_CODE (stmt))
{
case MODIFY_EXPR:
if (TREE_CODE (TREE_OPERAND (stmt, 0)) == ARRAY_REF)
VARRAY_PUSH_GENERIC_PTR
(*datarefs, analyze_array (stmt, TREE_OPERAND (stmt, 0),
false));
if (TREE_CODE (TREE_OPERAND (stmt, 1)) == ARRAY_REF)
VARRAY_PUSH_GENERIC_PTR
(*datarefs, analyze_array (stmt, TREE_OPERAND (stmt, 1),
true));
if (TREE_CODE (TREE_OPERAND (stmt, 0)) != ARRAY_REF
&& TREE_CODE (TREE_OPERAND (stmt, 1)) != ARRAY_REF)
goto insert_dont_know_node;
break;
case CALL_EXPR:
{
tree args;
bool one_inserted = false;
for (args = TREE_OPERAND (stmt, 1); args; args = TREE_CHAIN (args))
if (TREE_CODE (TREE_VALUE (args)) == ARRAY_REF)
{
VARRAY_PUSH_GENERIC_PTR
(*datarefs, analyze_array (stmt, TREE_VALUE (args), true));
one_inserted = true;
}
if (!one_inserted)
goto insert_dont_know_node;
break;
}
default:
{
struct data_reference *res;
insert_dont_know_node:;
res = xmalloc (sizeof (struct data_reference));
DR_STMT (res) = NULL_TREE;
DR_REF (res) = NULL_TREE;
DR_ACCESS_FNS (res) = NULL;
DR_BASE_NAME (res) = NULL;
DR_IS_READ (res) = false;
VARRAY_PUSH_GENERIC_PTR (*datarefs, res);
free (bbs);
return chrec_dont_know;
}
}
/* When there are no defs in the loop, the loop is parallel. */
if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_VIRTUAL_DEFS))
loop->parallel_p = false;
}
if (chrec_contains_undetermined (loop->estimated_nb_iterations))
compute_estimated_nb_iterations (loop);
}
free (bbs);
return NULL_TREE;
}
/* This section contains all the entry points. */
/* Given a loop nest LOOP, the following vectors are returned:
*DATAREFS is initialized to all the array elements contained in this loop,
*DEPENDENCE_RELATIONS contains the relations between the data references. */
void
compute_data_dependences_for_loop (unsigned nb_loops,
struct loop *loop,
varray_type *datarefs,
varray_type *dependence_relations)
{
unsigned int i;
VEC(ddr_p,heap) *allrelations;
struct data_dependence_relation *ddr;
/* If one of the data references is not computable, give up without
spending time to compute other dependences. */
if (find_data_references_in_loop (loop, datarefs) == chrec_dont_know)
{
struct data_dependence_relation *ddr;
/* Insert a single relation into dependence_relations:
chrec_dont_know. */
ddr = initialize_data_dependence_relation (NULL, NULL);
VARRAY_PUSH_GENERIC_PTR (*dependence_relations, ddr);
build_classic_dist_vector (ddr, nb_loops, loop->depth);
build_classic_dir_vector (ddr, nb_loops, loop->depth);
return;
}
allrelations = NULL;
compute_all_dependences (*datarefs, &allrelations);
for (i = 0; VEC_iterate (ddr_p, allrelations, i, ddr); i++)
{
if (build_classic_dist_vector (ddr, nb_loops, loop->depth))
{
VARRAY_PUSH_GENERIC_PTR (*dependence_relations, ddr);
build_classic_dir_vector (ddr, nb_loops, loop->depth);
}
}
}
/* Entry point (for testing only). Analyze all the data references
and the dependence relations.
The data references are computed first.
A relation on these nodes is represented by a complete graph. Some
of the relations could be of no interest, thus the relations can be
computed on demand.
In the following function we compute all the relations. This is
just a first implementation that is here for:
- for showing how to ask for the dependence relations,
- for the debugging the whole dependence graph,
- for the dejagnu testcases and maintenance.
It is possible to ask only for a part of the graph, avoiding to
compute the whole dependence graph. The computed dependences are
stored in a knowledge base (KB) such that later queries don't
recompute the same information. The implementation of this KB is
transparent to the optimizer, and thus the KB can be changed with a
more efficient implementation, or the KB could be disabled. */
void
analyze_all_data_dependences (struct loops *loops)
{
unsigned int i;
varray_type datarefs;
varray_type dependence_relations;
int nb_data_refs = 10;
VARRAY_GENERIC_PTR_INIT (datarefs, nb_data_refs, "datarefs");
VARRAY_GENERIC_PTR_INIT (dependence_relations,
nb_data_refs * nb_data_refs,
"dependence_relations");
/* Compute DDs on the whole function. */
compute_data_dependences_for_loop (loops->num, loops->parray[0],
&datarefs, &dependence_relations);
if (dump_file)
{
dump_data_dependence_relations (dump_file, dependence_relations);
fprintf (dump_file, "\n\n");
if (dump_flags & TDF_DETAILS)
dump_dist_dir_vectors (dump_file, dependence_relations);
if (dump_flags & TDF_STATS)
{
unsigned nb_top_relations = 0;
unsigned nb_bot_relations = 0;
unsigned nb_basename_differ = 0;
unsigned nb_chrec_relations = 0;
for (i = 0; i < VARRAY_ACTIVE_SIZE (dependence_relations); i++)
{
struct data_dependence_relation *ddr;
ddr = VARRAY_GENERIC_PTR (dependence_relations, i);
if (chrec_contains_undetermined (DDR_ARE_DEPENDENT (ddr)))
nb_top_relations++;
else if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
{
struct data_reference *a = DDR_A (ddr);
struct data_reference *b = DDR_B (ddr);
bool differ_p;
if (DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b)
|| (array_base_name_differ_p (a, b, &differ_p) && differ_p))
nb_basename_differ++;
else
nb_bot_relations++;
}
else
nb_chrec_relations++;
}
gather_stats_on_scev_database ();
}
}
free_dependence_relations (dependence_relations);
free_data_refs (datarefs);
}
/* Free the memory used by a data dependence relation DDR. */
void
free_dependence_relation (struct data_dependence_relation *ddr)
{
if (ddr == NULL)
return;
if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE && DDR_SUBSCRIPTS (ddr))
varray_clear (DDR_SUBSCRIPTS (ddr));
free (ddr);
}
/* Free the memory used by the data dependence relations from
DEPENDENCE_RELATIONS. */
void
free_dependence_relations (varray_type dependence_relations)
{
unsigned int i;
if (dependence_relations == NULL)
return;
for (i = 0; i < VARRAY_ACTIVE_SIZE (dependence_relations); i++)
free_dependence_relation (VARRAY_GENERIC_PTR (dependence_relations, i));
varray_clear (dependence_relations);
}
/* Free the memory used by the data references from DATAREFS. */
void
free_data_refs (varray_type datarefs)
{
unsigned int i;
if (datarefs == NULL)
return;
for (i = 0; i < VARRAY_ACTIVE_SIZE (datarefs); i++)
{
struct data_reference *dr = (struct data_reference *)
VARRAY_GENERIC_PTR (datarefs, i);
if (dr)
{
VEC_free (tree, heap, DR_ACCESS_FNS (dr));
free (dr);
}
}
varray_clear (datarefs);
}
|