summaryrefslogtreecommitdiff
path: root/gcc/tree-chrec.c
blob: 8edc5b9bbec0803354f9e2057d77d5c704b21ca5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
/* Chains of recurrences.
   Copyright (C) 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
   Contributed by Sebastian Pop <pop@cri.ensmp.fr>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.  */

/* This file implements operations on chains of recurrences.  Chains
   of recurrences are used for modeling evolution functions of scalar
   variables.
*/

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "real.h"
#include "diagnostic.h"
#include "varray.h"
#include "cfgloop.h"
#include "tree-flow.h"
#include "tree-chrec.h"
#include "tree-pass.h"
#include "params.h"
#include "tree-scalar-evolution.h"



/* Extended folder for chrecs.  */

/* Determines whether CST is not a constant evolution.  */

static inline bool
is_not_constant_evolution (tree cst)
{
  return (TREE_CODE (cst) == POLYNOMIAL_CHREC);
}

/* Fold CODE for a polynomial function and a constant.  */

static inline tree 
chrec_fold_poly_cst (enum tree_code code, 
		     tree type, 
		     tree poly, 
		     tree cst)
{
  gcc_assert (poly);
  gcc_assert (cst);
  gcc_assert (TREE_CODE (poly) == POLYNOMIAL_CHREC);
  gcc_assert (!is_not_constant_evolution (cst));
  
  switch (code)
    {
    case PLUS_EXPR:
      return build_polynomial_chrec 
	(CHREC_VARIABLE (poly), 
	 chrec_fold_plus (type, CHREC_LEFT (poly), cst),
	 CHREC_RIGHT (poly));
      
    case MINUS_EXPR:
      return build_polynomial_chrec 
	(CHREC_VARIABLE (poly), 
	 chrec_fold_minus (type, CHREC_LEFT (poly), cst),
	 CHREC_RIGHT (poly));
      
    case MULT_EXPR:
      return build_polynomial_chrec 
	(CHREC_VARIABLE (poly), 
	 chrec_fold_multiply (type, CHREC_LEFT (poly), cst),
	 chrec_fold_multiply (type, CHREC_RIGHT (poly), cst));
      
    default:
      return chrec_dont_know;
    }
}

/* Fold the addition of two polynomial functions.  */

static inline tree 
chrec_fold_plus_poly_poly (enum tree_code code, 
			   tree type, 
			   tree poly0, 
			   tree poly1)
{
  tree left, right;

  gcc_assert (poly0);
  gcc_assert (poly1);
  gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
  gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
  
  /*
    {a, +, b}_1 + {c, +, d}_2  ->  {{a, +, b}_1 + c, +, d}_2,
    {a, +, b}_2 + {c, +, d}_1  ->  {{c, +, d}_1 + a, +, b}_2,
    {a, +, b}_x + {c, +, d}_x  ->  {a+c, +, b+d}_x.  */
  if (CHREC_VARIABLE (poly0) < CHREC_VARIABLE (poly1))
    {
      if (code == PLUS_EXPR)
	return build_polynomial_chrec 
	  (CHREC_VARIABLE (poly1), 
	   chrec_fold_plus (type, poly0, CHREC_LEFT (poly1)),
	   CHREC_RIGHT (poly1));
      else
	return build_polynomial_chrec 
	  (CHREC_VARIABLE (poly1), 
	   chrec_fold_minus (type, poly0, CHREC_LEFT (poly1)),
	   chrec_fold_multiply (type, CHREC_RIGHT (poly1), 
				SCALAR_FLOAT_TYPE_P (type)
				? build_real (type, dconstm1)
				: build_int_cst_type (type, -1)));
    }
  
  if (CHREC_VARIABLE (poly0) > CHREC_VARIABLE (poly1))
    {
      if (code == PLUS_EXPR)
	return build_polynomial_chrec 
	  (CHREC_VARIABLE (poly0), 
	   chrec_fold_plus (type, CHREC_LEFT (poly0), poly1),
	   CHREC_RIGHT (poly0));
      else
	return build_polynomial_chrec 
	  (CHREC_VARIABLE (poly0), 
	   chrec_fold_minus (type, CHREC_LEFT (poly0), poly1),
	   CHREC_RIGHT (poly0));
    }
  
  if (code == PLUS_EXPR)
    {
      left = chrec_fold_plus 
	(type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
      right = chrec_fold_plus 
	(type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
    }
  else
    {
      left = chrec_fold_minus 
	(type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
      right = chrec_fold_minus 
	(type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
    }

  if (chrec_zerop (right))
    return left;
  else
    return build_polynomial_chrec 
      (CHREC_VARIABLE (poly0), left, right); 
}



/* Fold the multiplication of two polynomial functions.  */

static inline tree 
chrec_fold_multiply_poly_poly (tree type, 
			       tree poly0, 
			       tree poly1)
{
  tree t0, t1, t2;
  int var;

  gcc_assert (poly0);
  gcc_assert (poly1);
  gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
  gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
  
  /* {a, +, b}_1 * {c, +, d}_2  ->  {c*{a, +, b}_1, +, d}_2,
     {a, +, b}_2 * {c, +, d}_1  ->  {a*{c, +, d}_1, +, b}_2,
     {a, +, b}_x * {c, +, d}_x  ->  {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x.  */
  if (CHREC_VARIABLE (poly0) < CHREC_VARIABLE (poly1))
    /* poly0 is a constant wrt. poly1.  */
    return build_polynomial_chrec 
      (CHREC_VARIABLE (poly1), 
       chrec_fold_multiply (type, CHREC_LEFT (poly1), poly0),
       CHREC_RIGHT (poly1));
  
  if (CHREC_VARIABLE (poly1) < CHREC_VARIABLE (poly0))
    /* poly1 is a constant wrt. poly0.  */
    return build_polynomial_chrec 
      (CHREC_VARIABLE (poly0), 
       chrec_fold_multiply (type, CHREC_LEFT (poly0), poly1),
       CHREC_RIGHT (poly0));
  
  /* poly0 and poly1 are two polynomials in the same variable,
     {a, +, b}_x * {c, +, d}_x  ->  {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x.  */
      
  /* "a*c".  */
  t0 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));

  /* "a*d + b*c + b*d".  */
  t1 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_RIGHT (poly1));
  t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
						       CHREC_RIGHT (poly0),
						       CHREC_LEFT (poly1)));
  t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
						       CHREC_RIGHT (poly0),
						       CHREC_RIGHT (poly1)));
  /* "2*b*d".  */
  t2 = chrec_fold_multiply (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
  t2 = chrec_fold_multiply (type, SCALAR_FLOAT_TYPE_P (type)
			    ? build_real (type, dconst2)
			    : build_int_cst_type (type, 2), t2);

  var = CHREC_VARIABLE (poly0);
  return build_polynomial_chrec (var, t0,
				 build_polynomial_chrec (var, t1, t2));
}

/* When the operands are automatically_generated_chrec_p, the fold has
   to respect the semantics of the operands.  */

static inline tree 
chrec_fold_automatically_generated_operands (tree op0, 
					     tree op1)
{
  if (op0 == chrec_dont_know
      || op1 == chrec_dont_know)
    return chrec_dont_know;
  
  if (op0 == chrec_known
      || op1 == chrec_known)
    return chrec_known;
  
  if (op0 == chrec_not_analyzed_yet
      || op1 == chrec_not_analyzed_yet)
    return chrec_not_analyzed_yet;
  
  /* The default case produces a safe result.  */
  return chrec_dont_know;
}

/* Fold the addition of two chrecs.  */

static tree
chrec_fold_plus_1 (enum tree_code code, 
		   tree type, 
		   tree op0,
		   tree op1)
{
  if (automatically_generated_chrec_p (op0)
      || automatically_generated_chrec_p (op1))
    return chrec_fold_automatically_generated_operands (op0, op1);
  
  switch (TREE_CODE (op0))
    {
    case POLYNOMIAL_CHREC:
      switch (TREE_CODE (op1))
	{
	case POLYNOMIAL_CHREC:
	  return chrec_fold_plus_poly_poly (code, type, op0, op1);

	default:
	  if (code == PLUS_EXPR)
	    return build_polynomial_chrec 
	      (CHREC_VARIABLE (op0), 
	       chrec_fold_plus (type, CHREC_LEFT (op0), op1),
	       CHREC_RIGHT (op0));
	  else
	    return build_polynomial_chrec 
	      (CHREC_VARIABLE (op0), 
	       chrec_fold_minus (type, CHREC_LEFT (op0), op1),
	       CHREC_RIGHT (op0));
	}

    default:
      switch (TREE_CODE (op1))
	{
	case POLYNOMIAL_CHREC:
	  if (code == PLUS_EXPR)
	    return build_polynomial_chrec 
	      (CHREC_VARIABLE (op1), 
	       chrec_fold_plus (type, op0, CHREC_LEFT (op1)),
	       CHREC_RIGHT (op1));
	  else
	    return build_polynomial_chrec 
	      (CHREC_VARIABLE (op1), 
	       chrec_fold_minus (type, op0, CHREC_LEFT (op1)),
	       chrec_fold_multiply (type, CHREC_RIGHT (op1), 
				    SCALAR_FLOAT_TYPE_P (type)
				    ? build_real (type, dconstm1)
				    : build_int_cst_type (type, -1)));

	default:
	  {
	    int size = 0;
	    if ((tree_contains_chrecs (op0, &size)
		 || tree_contains_chrecs (op1, &size))
		&& size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
	      return build2 (code, type, op0, op1);
	    else if (size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
	      return fold_build2 (code, type,
				  fold_convert (type, op0),
				  fold_convert (type, op1));
	    else
	      return chrec_dont_know;
	  }
	}
    }
}

/* Fold the addition of two chrecs.  */

tree
chrec_fold_plus (tree type, 
		 tree op0,
		 tree op1)
{
  if (integer_zerop (op0))
    return op1;
  if (integer_zerop (op1))
    return op0;
  
  return chrec_fold_plus_1 (PLUS_EXPR, type, op0, op1);
}

/* Fold the subtraction of two chrecs.  */

tree 
chrec_fold_minus (tree type, 
		  tree op0, 
		  tree op1)
{
  if (integer_zerop (op1))
    return op0;
  
  return chrec_fold_plus_1 (MINUS_EXPR, type, op0, op1);
}

/* Fold the multiplication of two chrecs.  */

tree
chrec_fold_multiply (tree type, 
		     tree op0,
		     tree op1)
{
  if (automatically_generated_chrec_p (op0)
      || automatically_generated_chrec_p (op1))
    return chrec_fold_automatically_generated_operands (op0, op1);
  
  switch (TREE_CODE (op0))
    {
    case POLYNOMIAL_CHREC:
      switch (TREE_CODE (op1))
	{
	case POLYNOMIAL_CHREC:
	  return chrec_fold_multiply_poly_poly (type, op0, op1);
	  
	default:
	  if (integer_onep (op1))
	    return op0;
	  if (integer_zerop (op1))
	    return build_int_cst_type (type, 0);
	  
	  return build_polynomial_chrec 
	    (CHREC_VARIABLE (op0), 
	     chrec_fold_multiply (type, CHREC_LEFT (op0), op1),
	     chrec_fold_multiply (type, CHREC_RIGHT (op0), op1));
	}
      
    default:
      if (integer_onep (op0))
	return op1;
      
      if (integer_zerop (op0))
    	return build_int_cst_type (type, 0);
      
      switch (TREE_CODE (op1))
	{
	case POLYNOMIAL_CHREC:
	  return build_polynomial_chrec 
	    (CHREC_VARIABLE (op1), 
	     chrec_fold_multiply (type, CHREC_LEFT (op1), op0),
	     chrec_fold_multiply (type, CHREC_RIGHT (op1), op0));
	  
	default:
	  if (integer_onep (op1))
	    return op0;
	  if (integer_zerop (op1))
	    return build_int_cst_type (type, 0);
	  return fold_build2 (MULT_EXPR, type, op0, op1);
	}
    }
}



/* Operations.  */

/* Evaluate the binomial coefficient.  Return NULL_TREE if the intermediate
   calculation overflows, otherwise return C(n,k) with type TYPE.  */

static tree 
tree_fold_binomial (tree type, tree n, unsigned int k)
{
  unsigned HOST_WIDE_INT lidx, lnum, ldenom, lres, ldum;
  HOST_WIDE_INT hidx, hnum, hdenom, hres, hdum;
  unsigned int i;
  tree res;

  /* Handle the most frequent cases.  */
  if (k == 0)
    return build_int_cst (type, 1);
  if (k == 1)
    return fold_convert (type, n);

  /* Check that k <= n.  */
  if (TREE_INT_CST_HIGH (n) == 0
      && TREE_INT_CST_LOW (n) < k)
    return NULL_TREE;

  /* Numerator = n.  */
  lnum = TREE_INT_CST_LOW (n);
  hnum = TREE_INT_CST_HIGH (n);

  /* Denominator = 2.  */
  ldenom = 2;
  hdenom = 0;

  /* Index = Numerator-1.  */
  if (lnum == 0)
    {
      hidx = hnum - 1;
      lidx = ~ (unsigned HOST_WIDE_INT) 0;
    }
  else
    {
      hidx = hnum;
      lidx = lnum - 1;
    }

  /* Numerator = Numerator*Index = n*(n-1).  */
  if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
    return NULL_TREE;

  for (i = 3; i <= k; i++)
    {
      /* Index--.  */
      if (lidx == 0)
	{
	  hidx--;
	  lidx = ~ (unsigned HOST_WIDE_INT) 0;
	}
      else
        lidx--;

      /* Numerator *= Index.  */
      if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
	return NULL_TREE;

      /* Denominator *= i.  */
      mul_double (ldenom, hdenom, i, 0, &ldenom, &hdenom);
    }

  /* Result = Numerator / Denominator.  */
  div_and_round_double (EXACT_DIV_EXPR, 1, lnum, hnum, ldenom, hdenom,
			&lres, &hres, &ldum, &hdum);

  res = build_int_cst_wide (type, lres, hres);
  return int_fits_type_p (res, type) ? res : NULL_TREE;
}

/* Helper function.  Use the Newton's interpolating formula for
   evaluating the value of the evolution function.  */

static tree 
chrec_evaluate (unsigned var, tree chrec, tree n, unsigned int k)
{
  tree arg0, arg1, binomial_n_k;
  tree type = TREE_TYPE (chrec);

  while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
	 && CHREC_VARIABLE (chrec) > var)
    chrec = CHREC_LEFT (chrec);

  if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
      && CHREC_VARIABLE (chrec) == var)
    {
      arg0 = chrec_evaluate (var, CHREC_RIGHT (chrec), n, k + 1);
      if (arg0 == chrec_dont_know)
	return chrec_dont_know;
      binomial_n_k = tree_fold_binomial (type, n, k);
      if (!binomial_n_k)
	return chrec_dont_know;
      arg1 = fold_build2 (MULT_EXPR, type,
			  CHREC_LEFT (chrec), binomial_n_k);
      return chrec_fold_plus (type, arg0, arg1);
    }

  binomial_n_k = tree_fold_binomial (type, n, k);
  if (!binomial_n_k)
    return chrec_dont_know;
  
  return fold_build2 (MULT_EXPR, type, chrec, binomial_n_k);
}

/* Evaluates "CHREC (X)" when the varying variable is VAR.  
   Example:  Given the following parameters, 
   
   var = 1
   chrec = {3, +, 4}_1
   x = 10
   
   The result is given by the Newton's interpolating formula: 
   3 * \binom{10}{0} + 4 * \binom{10}{1}.
*/

tree 
chrec_apply (unsigned var,
	     tree chrec, 
	     tree x)
{
  tree type = chrec_type (chrec);
  tree res = chrec_dont_know;

  if (automatically_generated_chrec_p (chrec)
      || automatically_generated_chrec_p (x)

      /* When the symbols are defined in an outer loop, it is possible
	 to symbolically compute the apply, since the symbols are
	 constants with respect to the varying loop.  */
      || chrec_contains_symbols_defined_in_loop (chrec, var))
    return chrec_dont_know;
 
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "(chrec_apply \n");

  if (TREE_CODE (x) == INTEGER_CST && SCALAR_FLOAT_TYPE_P (type))
    x = build_real_from_int_cst (type, x);

  if (evolution_function_is_affine_p (chrec))
    {
      /* "{a, +, b} (x)"  ->  "a + b*x".  */
      x = chrec_convert (type, x, NULL_TREE);
      res = chrec_fold_multiply (type, CHREC_RIGHT (chrec), x);
      if (!integer_zerop (CHREC_LEFT (chrec)))
	res = chrec_fold_plus (type, CHREC_LEFT (chrec), res);
    }
  
  else if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
    res = chrec;
  
  else if (TREE_CODE (x) == INTEGER_CST
	   && tree_int_cst_sgn (x) == 1)
    /* testsuite/.../ssa-chrec-38.c.  */
    res = chrec_evaluate (var, chrec, x, 0);
  else
    res = chrec_dont_know;
  
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "  (varying_loop = %d\n", var);
      fprintf (dump_file, ")\n  (chrec = ");
      print_generic_expr (dump_file, chrec, 0);
      fprintf (dump_file, ")\n  (x = ");
      print_generic_expr (dump_file, x, 0);
      fprintf (dump_file, ")\n  (res = ");
      print_generic_expr (dump_file, res, 0);
      fprintf (dump_file, "))\n");
    }
  
  return res;
}

/* Replaces the initial condition in CHREC with INIT_COND.  */

tree 
chrec_replace_initial_condition (tree chrec, 
				 tree init_cond)
{
  if (automatically_generated_chrec_p (chrec))
    return chrec;
  
  switch (TREE_CODE (chrec))
    {
    case POLYNOMIAL_CHREC:
      return build_polynomial_chrec 
	(CHREC_VARIABLE (chrec),
	 chrec_replace_initial_condition (CHREC_LEFT (chrec), init_cond),
	 CHREC_RIGHT (chrec));
      
    default:
      return init_cond;
    }
}

/* Returns the initial condition of a given CHREC.  */

tree 
initial_condition (tree chrec)
{
  if (automatically_generated_chrec_p (chrec))
    return chrec;
  
  if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
    return initial_condition (CHREC_LEFT (chrec));
  else
    return chrec;
}

/* Returns a univariate function that represents the evolution in
   LOOP_NUM.  Mask the evolution of any other loop.  */

tree 
hide_evolution_in_other_loops_than_loop (tree chrec, 
					 unsigned loop_num)
{
  if (automatically_generated_chrec_p (chrec))
    return chrec;
  
  switch (TREE_CODE (chrec))
    {
    case POLYNOMIAL_CHREC:
      if (CHREC_VARIABLE (chrec) == loop_num)
	return build_polynomial_chrec 
	  (loop_num, 
	   hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec), 
						    loop_num), 
	   CHREC_RIGHT (chrec));
      
      else if (CHREC_VARIABLE (chrec) < loop_num)
	/* There is no evolution in this loop.  */
	return initial_condition (chrec);
      
      else
	return hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec), 
							loop_num);
      
    default:
      return chrec;
    }
}

/* Returns the evolution part of CHREC in LOOP_NUM when RIGHT is
   true, otherwise returns the initial condition in LOOP_NUM.  */

static tree 
chrec_component_in_loop_num (tree chrec, 
			     unsigned loop_num,
			     bool right)
{
  tree component;

  if (automatically_generated_chrec_p (chrec))
    return chrec;
  
  switch (TREE_CODE (chrec))
    {
    case POLYNOMIAL_CHREC:
      if (CHREC_VARIABLE (chrec) == loop_num)
	{
	  if (right)
	    component = CHREC_RIGHT (chrec);
	  else
	    component = CHREC_LEFT (chrec);

	  if (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
	      || CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec))
	    return component;
	  
	  else
	    return build_polynomial_chrec
	      (loop_num, 
	       chrec_component_in_loop_num (CHREC_LEFT (chrec), 
					    loop_num, 
					    right), 
	       component);
	}
      
      else if (CHREC_VARIABLE (chrec) < loop_num)
	/* There is no evolution part in this loop.  */
	return NULL_TREE;
      
      else
	return chrec_component_in_loop_num (CHREC_LEFT (chrec), 
					    loop_num, 
					    right);
      
     default:
      if (right)
	return NULL_TREE;
      else
	return chrec;
    }
}

/* Returns the evolution part in LOOP_NUM.  Example: the call
   evolution_part_in_loop_num ({{0, +, 1}_1, +, 2}_1, 1) returns 
   {1, +, 2}_1  */

tree 
evolution_part_in_loop_num (tree chrec, 
			    unsigned loop_num)
{
  return chrec_component_in_loop_num (chrec, loop_num, true);
}

/* Returns the initial condition in LOOP_NUM.  Example: the call
   initial_condition_in_loop_num ({{0, +, 1}_1, +, 2}_2, 2) returns 
   {0, +, 1}_1  */

tree 
initial_condition_in_loop_num (tree chrec, 
			       unsigned loop_num)
{
  return chrec_component_in_loop_num (chrec, loop_num, false);
}

/* Set or reset the evolution of CHREC to NEW_EVOL in loop LOOP_NUM.
   This function is essentially used for setting the evolution to
   chrec_dont_know, for example after having determined that it is
   impossible to say how many times a loop will execute.  */

tree 
reset_evolution_in_loop (unsigned loop_num,
			 tree chrec, 
			 tree new_evol)
{
  if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
      && CHREC_VARIABLE (chrec) > loop_num)
    {
      tree left = reset_evolution_in_loop (loop_num, CHREC_LEFT (chrec),
					   new_evol);
      tree right = reset_evolution_in_loop (loop_num, CHREC_RIGHT (chrec),
					    new_evol);
      return build3 (POLYNOMIAL_CHREC, TREE_TYPE (left),
		     build_int_cst (NULL_TREE, CHREC_VARIABLE (chrec)),
		     left, right);
    }

  while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
	 && CHREC_VARIABLE (chrec) == loop_num)
    chrec = CHREC_LEFT (chrec);
  
  return build_polynomial_chrec (loop_num, chrec, new_evol);
}

/* Merges two evolution functions that were found by following two
   alternate paths of a conditional expression.  */

tree
chrec_merge (tree chrec1, 
	     tree chrec2)
{
  if (chrec1 == chrec_dont_know
      || chrec2 == chrec_dont_know)
    return chrec_dont_know;

  if (chrec1 == chrec_known 
      || chrec2 == chrec_known)
    return chrec_known;

  if (chrec1 == chrec_not_analyzed_yet)
    return chrec2;
  if (chrec2 == chrec_not_analyzed_yet)
    return chrec1;

  if (operand_equal_p (chrec1, chrec2, 0))
    return chrec1;

  return chrec_dont_know;
}



/* Observers.  */

/* Helper function for is_multivariate_chrec.  */

static bool 
is_multivariate_chrec_rec (tree chrec, unsigned int rec_var)
{
  if (chrec == NULL_TREE)
    return false;
  
  if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
    {
      if (CHREC_VARIABLE (chrec) != rec_var)
	return true;
      else
	return (is_multivariate_chrec_rec (CHREC_LEFT (chrec), rec_var) 
		|| is_multivariate_chrec_rec (CHREC_RIGHT (chrec), rec_var));
    }
  else
    return false;
}

/* Determine whether the given chrec is multivariate or not.  */

bool 
is_multivariate_chrec (tree chrec)
{
  if (chrec == NULL_TREE)
    return false;
  
  if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
    return (is_multivariate_chrec_rec (CHREC_LEFT (chrec), 
				       CHREC_VARIABLE (chrec))
	    || is_multivariate_chrec_rec (CHREC_RIGHT (chrec), 
					  CHREC_VARIABLE (chrec)));
  else
    return false;
}

/* Determines whether the chrec contains symbolic names or not.  */

bool 
chrec_contains_symbols (tree chrec)
{
  if (chrec == NULL_TREE)
    return false;
  
  if (TREE_CODE (chrec) == SSA_NAME
      || TREE_CODE (chrec) == VAR_DECL
      || TREE_CODE (chrec) == PARM_DECL
      || TREE_CODE (chrec) == FUNCTION_DECL
      || TREE_CODE (chrec) == LABEL_DECL
      || TREE_CODE (chrec) == RESULT_DECL
      || TREE_CODE (chrec) == FIELD_DECL)
    return true;
  
  switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
    {
    case 3:
      if (chrec_contains_symbols (TREE_OPERAND (chrec, 2)))
	return true;
      
    case 2:
      if (chrec_contains_symbols (TREE_OPERAND (chrec, 1)))
	return true;
      
    case 1:
      if (chrec_contains_symbols (TREE_OPERAND (chrec, 0)))
	return true;
      
    default:
      return false;
    }
}

/* Determines whether the chrec contains undetermined coefficients.  */

bool 
chrec_contains_undetermined (tree chrec)
{
  if (chrec == chrec_dont_know
      || chrec == chrec_not_analyzed_yet
      || chrec == NULL_TREE)
    return true;
  
  switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
    {
    case 3:
      if (chrec_contains_undetermined (TREE_OPERAND (chrec, 2)))
	return true;
      
    case 2:
      if (chrec_contains_undetermined (TREE_OPERAND (chrec, 1)))
	return true;
      
    case 1:
      if (chrec_contains_undetermined (TREE_OPERAND (chrec, 0)))
	return true;
      
    default:
      return false;
    }
}

/* Determines whether the tree EXPR contains chrecs, and increment
   SIZE if it is not a NULL pointer by an estimation of the depth of
   the tree.  */

bool
tree_contains_chrecs (tree expr, int *size)
{
  if (expr == NULL_TREE)
    return false;

  if (size)
    (*size)++;
  
  if (tree_is_chrec (expr))
    return true;

  switch (TREE_CODE_LENGTH (TREE_CODE (expr)))
    {
    case 3:
      if (tree_contains_chrecs (TREE_OPERAND (expr, 2), size))
	return true;
      
    case 2:
      if (tree_contains_chrecs (TREE_OPERAND (expr, 1), size))
	return true;
      
    case 1:
      if (tree_contains_chrecs (TREE_OPERAND (expr, 0), size))
	return true;
      
    default:
      return false;
    }
}

/* Recursive helper function.  */

static bool
evolution_function_is_invariant_rec_p (tree chrec, int loopnum)
{
  if (evolution_function_is_constant_p (chrec))
    return true;

  if (TREE_CODE (chrec) == SSA_NAME 
      && expr_invariant_in_loop_p (current_loops->parray[loopnum],
				   chrec))
    return true;

  if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
    {
      if (CHREC_VARIABLE (chrec) == (unsigned) loopnum
	  || !evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec),
						     loopnum)
	  || !evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec),
						     loopnum))
	return false;
      return true;
    }

  switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
    {
    case 2:
      if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 1),
						  loopnum))
	return false;
      
    case 1:
      if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 0),
						  loopnum))
	return false;
      return true;

    default:
      return false;
    }

  return false;
}

/* Return true if CHREC is invariant in loop LOOPNUM, false otherwise. */

bool
evolution_function_is_invariant_p (tree chrec, int loopnum)
{
  if (evolution_function_is_constant_p (chrec))
    return true;
  
  if (current_loops != NULL)
    return evolution_function_is_invariant_rec_p (chrec, loopnum);

  return false;
}

/* Determine whether the given tree is an affine multivariate
   evolution.  */

bool 
evolution_function_is_affine_multivariate_p (tree chrec)
{
  if (chrec == NULL_TREE)
    return false;
  
  switch (TREE_CODE (chrec))
    {
    case POLYNOMIAL_CHREC:
      if (evolution_function_is_constant_p (CHREC_LEFT (chrec)))
	{
	  if (evolution_function_is_constant_p (CHREC_RIGHT (chrec)))
	    return true;
	  else
	    {
	      if (TREE_CODE (CHREC_RIGHT (chrec)) == POLYNOMIAL_CHREC
		  && CHREC_VARIABLE (CHREC_RIGHT (chrec)) 
		     != CHREC_VARIABLE (chrec)
		  && evolution_function_is_affine_multivariate_p 
		  (CHREC_RIGHT (chrec)))
		return true;
	      else
		return false;
	    }
	}
      else
	{
	  if (evolution_function_is_constant_p (CHREC_RIGHT (chrec))
	      && TREE_CODE (CHREC_LEFT (chrec)) == POLYNOMIAL_CHREC
	      && CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec)
	      && evolution_function_is_affine_multivariate_p 
	      (CHREC_LEFT (chrec)))
	    return true;
	  else
	    return false;
	}
      
    default:
      return false;
    }
}

/* Determine whether the given tree is a function in zero or one 
   variables.  */

bool
evolution_function_is_univariate_p (tree chrec)
{
  if (chrec == NULL_TREE)
    return true;
  
  switch (TREE_CODE (chrec))
    {
    case POLYNOMIAL_CHREC:
      switch (TREE_CODE (CHREC_LEFT (chrec)))
	{
	case POLYNOMIAL_CHREC:
	  if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_LEFT (chrec)))
	    return false;
	  if (!evolution_function_is_univariate_p (CHREC_LEFT (chrec)))
	    return false;
	  break;
	  
	default:
	  break;
	}
      
      switch (TREE_CODE (CHREC_RIGHT (chrec)))
	{
	case POLYNOMIAL_CHREC:
	  if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_RIGHT (chrec)))
	    return false;
	  if (!evolution_function_is_univariate_p (CHREC_RIGHT (chrec)))
	    return false;
	  break;
	  
	default:
	  break;	  
	}
      
    default:
      return true;
    }
}

/* Returns the number of variables of CHREC.  Example: the call
   nb_vars_in_chrec ({{0, +, 1}_5, +, 2}_6) returns 2.  */

unsigned 
nb_vars_in_chrec (tree chrec)
{
  if (chrec == NULL_TREE)
    return 0;

  switch (TREE_CODE (chrec))
    {
    case POLYNOMIAL_CHREC:
      return 1 + nb_vars_in_chrec 
	(initial_condition_in_loop_num (chrec, CHREC_VARIABLE (chrec)));

    default:
      return 0;
    }
}



/* Convert CHREC to TYPE.  When the analyzer knows the context in
   which the CHREC is built, it sets AT_STMT to the statement that
   contains the definition of the analyzed variable, otherwise the
   conversion is less accurate: the information is used for
   determining a more accurate estimation of the number of iterations.
   By default AT_STMT could be safely set to NULL_TREE.

   The following rule is always true: TREE_TYPE (chrec) ==
   TREE_TYPE (CHREC_LEFT (chrec)) == TREE_TYPE (CHREC_RIGHT (chrec)).
   An example of what could happen when adding two chrecs and the type
   of the CHREC_RIGHT is different than CHREC_LEFT is:
   
   {(uint) 0, +, (uchar) 10} +
   {(uint) 0, +, (uchar) 250}
   
   that would produce a wrong result if CHREC_RIGHT is not (uint):
   
   {(uint) 0, +, (uchar) 4}

   instead of

   {(uint) 0, +, (uint) 260}
*/

tree 
chrec_convert (tree type, tree chrec, tree at_stmt)
{
  tree ct, res;

  if (automatically_generated_chrec_p (chrec))
    return chrec;
  
  ct = chrec_type (chrec);
  if (ct == type)
    return chrec;

  if (evolution_function_is_affine_p (chrec))
    {
      tree base, step;
      bool dummy;
      struct loop *loop = current_loops->parray[CHREC_VARIABLE (chrec)];

      base = instantiate_parameters (loop, CHREC_LEFT (chrec));
      step = instantiate_parameters (loop, CHREC_RIGHT (chrec));

      /* Avoid conversion of (signed char) {(uchar)1, +, (uchar)1}_x
	 when it is not possible to prove that the scev does not wrap.
	 See PR22236, where a sequence 1, 2, ..., 255 has to be
	 converted to signed char, but this would wrap: 
	 1, 2, ..., 127, -128, ...  The result should not be
	 {(schar)1, +, (schar)1}_x, but instead, we should keep the
	 conversion: (schar) {(uchar)1, +, (uchar)1}_x.  */
      if (scev_probably_wraps_p (type, base, step, at_stmt, loop,
				 &dummy, &dummy))
	goto failed_to_convert;

      step = convert_step (loop, type, base, step, at_stmt);
      if (!step)
 	{
	failed_to_convert:;
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "(failed conversion:");
	      fprintf (dump_file, "\n  type: ");
	      print_generic_expr (dump_file, type, 0);
	      fprintf (dump_file, "\n  base: ");
	      print_generic_expr (dump_file, base, 0);
	      fprintf (dump_file, "\n  step: ");
	      print_generic_expr (dump_file, step, 0);
	      fprintf (dump_file, "\n  estimated_nb_iterations: ");
	      print_generic_expr (dump_file, loop->estimated_nb_iterations, 0);
	      fprintf (dump_file, "\n)\n");
	    }

	  return fold_convert (type, chrec);
	}

      return build_polynomial_chrec (CHREC_VARIABLE (chrec),
 				     chrec_convert (type, CHREC_LEFT (chrec),
 						    at_stmt),
 				     step);
    }

  if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
    return chrec_dont_know;

  res = fold_convert (type, chrec);

  /* Don't propagate overflows.  */
  if (CONSTANT_CLASS_P (res))
    {
      TREE_CONSTANT_OVERFLOW (res) = 0;
      TREE_OVERFLOW (res) = 0;
    }

  /* But reject constants that don't fit in their type after conversion.
     This can happen if TYPE_MIN_VALUE or TYPE_MAX_VALUE are not the
     natural values associated with TYPE_PRECISION and TYPE_UNSIGNED,
     and can cause problems later when computing niters of loops.  Note
     that we don't do the check before converting because we don't want
     to reject conversions of negative chrecs to unsigned types.  */
  if (TREE_CODE (res) == INTEGER_CST
      && TREE_CODE (type) == INTEGER_TYPE
      && !int_fits_type_p (res, type))
    res = chrec_dont_know;

  return res;
}

/* Convert CHREC to TYPE, without regard to signed overflows.  Returns the new
   chrec if something else than what chrec_convert would do happens, NULL_TREE
   otherwise.  */

tree
chrec_convert_aggressive (tree type, tree chrec)
{
  tree inner_type, left, right, lc, rc;

  if (automatically_generated_chrec_p (chrec)
      || TREE_CODE (chrec) != POLYNOMIAL_CHREC)
    return NULL_TREE;

  inner_type = TREE_TYPE (chrec);
  if (TYPE_PRECISION (type) > TYPE_PRECISION (inner_type))
    return NULL_TREE;

  left = CHREC_LEFT (chrec);
  right = CHREC_RIGHT (chrec);
  lc = chrec_convert_aggressive (type, left);
  if (!lc)
    lc = chrec_convert (type, left, NULL_TREE);
  rc = chrec_convert_aggressive (type, right);
  if (!rc)
    rc = chrec_convert (type, right, NULL_TREE);

  /* Ada creates sub-types where TYPE_MIN_VALUE/TYPE_MAX_VALUE do not
     cover the entire range of values allowed by TYPE_PRECISION.

     We do not want to optimize away conversions to such types.  Long
     term I'd rather see the Ada front-end fixed.  */
  if (INTEGRAL_TYPE_P (type))
    {
      tree t;

      t = upper_bound_in_type (type, inner_type);
      if (! TYPE_MAX_VALUE (type)
	  || ! operand_equal_p (TYPE_MAX_VALUE (type), t, 0))
	return NULL_TREE;

      t = lower_bound_in_type (type, inner_type);
      if (! TYPE_MIN_VALUE (type)
	  || ! operand_equal_p (TYPE_MIN_VALUE (type), t, 0))
	return NULL_TREE;
    }
  
  return build_polynomial_chrec (CHREC_VARIABLE (chrec), lc, rc);
}

/* Returns the type of the chrec.  */

tree 
chrec_type (tree chrec)
{
  if (automatically_generated_chrec_p (chrec))
    return NULL_TREE;
  
  return TREE_TYPE (chrec);
}

/* Returns true when CHREC0 == CHREC1.  */

bool 
eq_evolutions_p (tree chrec0, 
		 tree chrec1)
{
  if (chrec0 == NULL_TREE
      || chrec1 == NULL_TREE
      || TREE_CODE (chrec0) != TREE_CODE (chrec1))
    return false;

  if (chrec0 == chrec1)
    return true;

  switch (TREE_CODE (chrec0))
    {
    case INTEGER_CST:
      return integer_zerop (fold (build2 (MINUS_EXPR, TREE_TYPE (chrec0), 
					 chrec0, chrec1)));
    case POLYNOMIAL_CHREC:
      return (CHREC_VARIABLE (chrec0) == CHREC_VARIABLE (chrec1)
	      && eq_evolutions_p (CHREC_LEFT (chrec0), CHREC_LEFT (chrec1))
	      && eq_evolutions_p (CHREC_RIGHT (chrec0), CHREC_RIGHT (chrec1)));
    default:
      return false;
    }  
}