summaryrefslogtreecommitdiff
path: root/gcc/struct-equiv.c
blob: 3658e87b748fe5b872bbcc3989f3e1f1db2a0198 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
/* Control flow optimization code for GNU compiler.
   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
   Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.  */

/* Try to match two basic blocks - or their ends - for structural equivalence.
   We scan the blocks from their ends backwards, and expect that insns are
   identical, except for certain cases involving registers.  A mismatch
   We scan the blocks from their ends backwards, hoping to find a match, I.e.
   insns are identical, except for certain cases involving registers.  A
   mismatch between register number RX (used in block X) and RY (used in the
   same way in block Y) can be handled in one of the following cases:
   1. RX and RY are local to their respective blocks; they are set there and
      die there.  If so, they can effectively be ignored.
   2. RX and RY die in their blocks, but live at the start.  If any path
      gets redirected through X instead of Y, the caller must emit
      compensation code to move RY to RX.  If there are overlapping inputs,
      the function resolve_input_conflict ensures that this can be done.
      Information about these registers are tracked in the X_LOCAL, Y_LOCAL,
      LOCAL_COUNT and LOCAL_RVALUE fields.
   3. RX and RY live throughout their blocks, including the start and the end.
      Either RX and RY must be identical, or we have to replace all uses in
      block X with a new pseudo, which is stored in the INPUT_REG field.  The
      caller can then use block X instead of block Y by copying RY to the new
      pseudo.

   The main entry point to this file is struct_equiv_block_eq.  This function
   uses a struct equiv_info to accept some of its inputs, to keep track of its
   internal state, to pass down to its helper functions, and to communicate
   some of the results back to the caller.

   Most scans will result in a failure to match a sufficient number of insns
   to make any optimization worth while, therefore the process is geared more
   to quick scanning rather than the ability to exactly backtrack when we
   find a mismatch.  The information gathered is still meaningful to make a
   preliminary decision if we want to do an optimization, we might only
   slightly overestimate the number of matchable insns, and underestimate
   the number of inputs an miss an input conflict.  Sufficient information
   is gathered so that when we make another pass, we won't have to backtrack
   at the same point.
   Another issue is that information in memory attributes and/or REG_NOTES
   might have to be merged or discarded to make a valid match.  We don't want
   to discard such information when we are not certain that we want to merge
   the two (partial) blocks.
   For these reasons, struct_equiv_block_eq has to be called first with the
   STRUCT_EQUIV_START bit set in the mode parameter.  This will calculate the
   number of matched insns and the number and types of inputs.  If the
   need_rerun field is set, the results are only tentative, and the caller
   has to call again with STRUCT_EQUIV_RERUN till need_rerun is false in
   order to get a reliable match.
   To install the changes necessary for the match, the function has to be
   called again with STRUCT_EQUIV_FINAL.

   While scanning an insn, we process first all the SET_DESTs, then the
   SET_SRCes, then the REG_NOTES, in order to keep the register liveness
   information consistent.
   If we were to mix up the order for sources / destinations in an insn where
   a source is also a destination, we'd end up being mistaken to think that
   the register is not live in the preceding insn.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "regs.h"
#include "output.h"
#include "insn-config.h"
#include "flags.h"
#include "recog.h"
#include "tm_p.h"
#include "target.h"
#include "emit-rtl.h"
#include "reload.h"
#include "df.h"

static void merge_memattrs (rtx, rtx);
static bool set_dest_equiv_p (rtx x, rtx y, struct equiv_info *info);
static bool set_dest_addr_equiv_p (rtx x, rtx y, struct equiv_info *info);
static void find_dying_inputs (struct equiv_info *info);
static bool resolve_input_conflict (struct equiv_info *info);

/* After reload, some moves, as indicated by SECONDARY_RELOAD_CLASS and
   SECONDARY_MEMORY_NEEDED, cannot be done directly.  For our purposes, we
   consider them impossible to generate after reload (even though some
   might be synthesized when you throw enough code at them).
   Since we don't know while processing a cross-jump if a local register
   that is currently live will eventually be live and thus be an input,
   we keep track of potential inputs that would require an impossible move
   by using a prohibitively high cost for them.
   This number, multiplied with the larger of STRUCT_EQUIV_MAX_LOCAL and
   FIRST_PSEUDO_REGISTER, must fit in the input_cost field of
   struct equiv_info.  */
#define IMPOSSIBLE_MOVE_FACTOR 20000



/* Removes the memory attributes of MEM expression
   if they are not equal.  */

void
merge_memattrs (rtx x, rtx y)
{
  int i;
  int j;
  enum rtx_code code;
  const char *fmt;

  if (x == y)
    return;
  if (x == 0 || y == 0)
    return;

  code = GET_CODE (x);

  if (code != GET_CODE (y))
    return;

  if (GET_MODE (x) != GET_MODE (y))
    return;

  if (code == MEM && MEM_ATTRS (x) != MEM_ATTRS (y))
    {
      if (! MEM_ATTRS (x))
	MEM_ATTRS (y) = 0;
      else if (! MEM_ATTRS (y))
	MEM_ATTRS (x) = 0;
      else
	{
	  rtx mem_size;

	  if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
	    {
	      set_mem_alias_set (x, 0);
	      set_mem_alias_set (y, 0);
	    }

	  if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
	    {
	      set_mem_expr (x, 0);
	      set_mem_expr (y, 0);
	      set_mem_offset (x, 0);
	      set_mem_offset (y, 0);
	    }
	  else if (MEM_OFFSET (x) != MEM_OFFSET (y))
	    {
	      set_mem_offset (x, 0);
	      set_mem_offset (y, 0);
	    }

	  if (!MEM_SIZE (x))
	    mem_size = NULL_RTX;
	  else if (!MEM_SIZE (y))
	    mem_size = NULL_RTX;
	  else
	    mem_size = GEN_INT (MAX (INTVAL (MEM_SIZE (x)),
				     INTVAL (MEM_SIZE (y))));
	  set_mem_size (x, mem_size);
	  set_mem_size (y, mem_size);

	  set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
	  set_mem_align (y, MEM_ALIGN (x));
	}
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      switch (fmt[i])
	{
	case 'E':
	  /* Two vectors must have the same length.  */
	  if (XVECLEN (x, i) != XVECLEN (y, i))
	    return;

	  for (j = 0; j < XVECLEN (x, i); j++)
	    merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));

	  break;

	case 'e':
	  merge_memattrs (XEXP (x, i), XEXP (y, i));
	}
    }
  return;
}

/* In SET, assign the bit for the register number of REG the value VALUE.
   If REG is a hard register, do so for all its constituent registers.
   Return the number of registers that have become included (as a positive
   number) or excluded (as a negative number).  */
static int
assign_reg_reg_set (regset set, rtx reg, int value)
{
  unsigned regno = REGNO (reg);
  int nregs, i, old;

  if (regno >= FIRST_PSEUDO_REGISTER)
    {
      gcc_assert (!reload_completed);
      nregs = 1;
    }
  else
    nregs = hard_regno_nregs[regno][GET_MODE (reg)];
  for (old = 0, i = nregs; --i >= 0; regno++)
    {
      if ((value != 0) == REGNO_REG_SET_P (set, regno))
	continue;
      if (value)
	old++, SET_REGNO_REG_SET (set, regno);
      else
	old--, CLEAR_REGNO_REG_SET (set, regno);
    }
  return old;
}

/* Record state about current inputs / local registers / liveness
   in *P.  */
static inline void
struct_equiv_make_checkpoint (struct struct_equiv_checkpoint *p,
			      struct equiv_info *info)
{
  *p = info->cur;
}

/* Call struct_equiv_make_checkpoint (P, INFO) if the current partial block
   is suitable to split off - i.e. there is no dangling cc0 user - and
   if the current cost of the common instructions, minus the cost for
   setting up the inputs, is higher than what has been recorded before
   in CHECKPOINT[N].  Also, if we do so, confirm or cancel any pending
   changes.  */
static void
struct_equiv_improve_checkpoint (struct struct_equiv_checkpoint *p,
				 struct equiv_info *info)
{
#ifdef HAVE_cc0
  if (reg_mentioned_p (cc0_rtx, info->cur.x_start)
      && !sets_cc0_p (info->cur.x_start))
    return;
#endif
  if (info->cur.input_count >= IMPOSSIBLE_MOVE_FACTOR)
    return;
  if (info->input_cost >= 0
      ? (COSTS_N_INSNS(info->cur.ninsns - p->ninsns)
	 > info->input_cost * (info->cur.input_count - p->input_count))
      : info->cur.ninsns > p->ninsns && !info->cur.input_count)
    {
      if (info->check_input_conflict && ! resolve_input_conflict (info))
	return;
      /* We have a profitable set of changes.  If this is the final pass,
	 commit them now.  Otherwise, we don't know yet if we can make any
	 change, so put the old code back for now.  */
      if (info->mode & STRUCT_EQUIV_FINAL)
	confirm_change_group ();
      else
	cancel_changes (0);
      struct_equiv_make_checkpoint (p, info);
    }
}

/* Restore state about current inputs / local registers / liveness
   from P.  */
static void
struct_equiv_restore_checkpoint (struct struct_equiv_checkpoint *p,
				 struct equiv_info *info)
{
  info->cur.ninsns = p->ninsns;
  info->cur.x_start = p->x_start;
  info->cur.y_start = p->y_start;
  info->cur.input_count = p->input_count;
  info->cur.input_valid = p->input_valid;
  while (info->cur.local_count > p->local_count)
    {
      info->cur.local_count--;
      info->cur.version--;
      if (REGNO_REG_SET_P (info->x_local_live,
			   REGNO (info->x_local[info->cur.local_count])))
	{
	  assign_reg_reg_set (info->x_local_live,
			      info->x_local[info->cur.local_count], 0);
	  assign_reg_reg_set (info->y_local_live,
			      info->y_local[info->cur.local_count], 0);
	  info->cur.version--;
	}
    }
  if (info->cur.version != p->version)
    info->need_rerun = true;
}


/* Update register liveness to reflect that X is now life (if rvalue is
   nonzero) or dead (if rvalue is zero) in INFO->x_block, and likewise Y
   in INFO->y_block.  Return the number of registers the liveness of which
   changed in each block (as a negative number if registers became dead).  */
static int
note_local_live (struct equiv_info *info, rtx x, rtx y, int rvalue)
{
  unsigned x_regno = REGNO (x);
  unsigned y_regno = REGNO (y);
  int x_nominal_nregs = (x_regno >= FIRST_PSEUDO_REGISTER
			 ? 1 : hard_regno_nregs[x_regno][GET_MODE (x)]);
  int y_nominal_nregs = (y_regno >= FIRST_PSEUDO_REGISTER
			 ? 1 : hard_regno_nregs[y_regno][GET_MODE (y)]);
  int x_change = assign_reg_reg_set (info->x_local_live, x, rvalue);
  int y_change = assign_reg_reg_set (info->y_local_live, y, rvalue);

  gcc_assert (x_nominal_nregs && y_nominal_nregs);
  gcc_assert (x_change * y_nominal_nregs == y_change * x_nominal_nregs);
  if (y_change)
    {
      if (reload_completed)
	{
	  unsigned x_regno ATTRIBUTE_UNUSED = REGNO (x);
	  unsigned y_regno = REGNO (y);
	  enum machine_mode x_mode = GET_MODE (x);

	  if (secondary_reload_class (0, REGNO_REG_CLASS (y_regno), x_mode, x)
	      != NO_REGS
#ifdef SECONDARY_MEMORY_NEEDED
	      || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (y_regno),
					  REGNO_REG_CLASS (x_regno), x_mode)
#endif
	      )
	  y_change *= IMPOSSIBLE_MOVE_FACTOR;
	}
      info->cur.input_count += y_change;
      info->cur.version++;
    }
  return x_change;
}

/* Check if *XP is equivalent to Y.  Until an unreconcilable difference is
   found, use in-group changes with validate_change on *XP to make register
   assignments agree.  It is the (not necessarily direct) callers
   responsibility to verify / confirm / cancel these changes, as appropriate.
   RVALUE indicates if the processed piece of rtl is used as a destination, in
   which case we can't have different registers being an input.  Returns
   nonzero if the two blocks have been identified as equivalent, zero otherwise.
   RVALUE == 0: destination
   RVALUE == 1: source
   RVALUE == -1: source, ignore SET_DEST of SET / clobber.  */
bool
rtx_equiv_p (rtx *xp, rtx y, int rvalue, struct equiv_info *info)
{
  rtx x = *xp;
  enum rtx_code code;
  int length;
  const char *format;
  int i;

  if (!y || !x)
    return x == y;
  code = GET_CODE (y);
  if (code != REG && x == y)
    return true;
  if (GET_CODE (x) != code
      || GET_MODE (x) != GET_MODE (y))
    return false;

  /* ??? could extend to allow CONST_INT inputs.  */
  switch (code)
    {
    case REG:
      {
	unsigned x_regno = REGNO (x);
	unsigned y_regno = REGNO (y);
	int x_common_live, y_common_live;

	if (reload_completed
	    && (x_regno >= FIRST_PSEUDO_REGISTER
		|| y_regno >= FIRST_PSEUDO_REGISTER))
	  {
	    /* We should only see this in REG_NOTEs.  */
	    gcc_assert (!info->live_update);
	    /* Returning false will cause us to remove the notes.  */
	    return false;
	  }
#ifdef STACK_REGS
	/* After reg-stack, can only accept literal matches of stack regs.  */
	if (info->mode & CLEANUP_POST_REGSTACK
	    && (IN_RANGE (x_regno, FIRST_STACK_REG, LAST_STACK_REG)
		|| IN_RANGE (y_regno, FIRST_STACK_REG, LAST_STACK_REG)))
	  return x_regno == y_regno;
#endif

	/* If the register is a locally live one in one block, the
	   corresponding one must be locally live in the other, too, and
	   match of identical regnos doesn't apply.  */
	if (REGNO_REG_SET_P (info->x_local_live, x_regno))
	  {
	    if (!REGNO_REG_SET_P (info->y_local_live, y_regno))
	      return false;
	  }
	else if (REGNO_REG_SET_P (info->y_local_live, y_regno))
	  return false;
	else if (x_regno == y_regno)
	  {
	    if (!rvalue && info->cur.input_valid
		&& (reg_overlap_mentioned_p (x, info->x_input)
		    || reg_overlap_mentioned_p (x, info->y_input)))
	      return false;

	    /* Update liveness information.  */
	    if (info->live_update
		&& assign_reg_reg_set (info->common_live, x, rvalue))
	      info->cur.version++;

	    return true;
	  }

	x_common_live = REGNO_REG_SET_P (info->common_live, x_regno);
	y_common_live = REGNO_REG_SET_P (info->common_live, y_regno);
	if (x_common_live != y_common_live)
	  return false;
	else if (x_common_live)
	  {
	    if (! rvalue || info->input_cost < 0 || no_new_pseudos)
	      return false;
	    /* If info->live_update is not set, we are processing notes.
	       We then allow a match with x_input / y_input found in a
	       previous pass.  */
	    if (info->live_update && !info->cur.input_valid)
	      {
		info->cur.input_valid = true;
		info->x_input = x;
		info->y_input = y;
		info->cur.input_count += optimize_size ? 2 : 1;
		if (info->input_reg
		    && GET_MODE (info->input_reg) != GET_MODE (info->x_input))
		  info->input_reg = NULL_RTX;
		if (!info->input_reg)
		  info->input_reg = gen_reg_rtx (GET_MODE (info->x_input));
	      }
	    else if ((info->live_update
		      ? ! info->cur.input_valid : ! info->x_input)
		     || ! rtx_equal_p (x, info->x_input)
		     || ! rtx_equal_p (y, info->y_input))
	      return false;
	    validate_change (info->cur.x_start, xp, info->input_reg, 1);
	  }
	else
	  {
	    int x_nregs = (x_regno >= FIRST_PSEUDO_REGISTER
			   ? 1 : hard_regno_nregs[x_regno][GET_MODE (x)]);
	    int y_nregs = (y_regno >= FIRST_PSEUDO_REGISTER
			   ? 1 : hard_regno_nregs[y_regno][GET_MODE (y)]);
	    int size = GET_MODE_SIZE (GET_MODE (x));
	    enum machine_mode x_mode = GET_MODE (x);
	    unsigned x_regno_i, y_regno_i;
	    int x_nregs_i, y_nregs_i, size_i;
	    int local_count = info->cur.local_count;

	    /* This might be a register local to each block.  See if we have
	       it already registered.  */
	    for (i = local_count - 1; i >= 0; i--)
	      {
		x_regno_i = REGNO (info->x_local[i]);
		x_nregs_i = (x_regno_i >= FIRST_PSEUDO_REGISTER
			     ? 1 : hard_regno_nregs[x_regno_i][GET_MODE (x)]);
		y_regno_i = REGNO (info->y_local[i]);
		y_nregs_i = (y_regno_i >= FIRST_PSEUDO_REGISTER
			     ? 1 : hard_regno_nregs[y_regno_i][GET_MODE (y)]);
		size_i = GET_MODE_SIZE (GET_MODE (info->x_local[i]));

		/* If we have a new pair of registers that is wider than an
		   old pair and enclosing it with matching offsets,
		   remove the old pair.  If we find a matching, wider, old
		   pair, use the old one.  If the width is the same, use the
		   old one if the modes match, but the new if they don't.
		   We don't want to get too fancy with subreg_regno_offset
		   here, so we just test two straightforward cases each.  */
		if (info->live_update
		    && (x_mode != GET_MODE (info->x_local[i])
			? size >= size_i : size > size_i))
		  {
		    /* If the new pair is fully enclosing a matching
		       existing pair, remove the old one.  N.B. because
		       we are removing one entry here, the check below
		       if we have space for a new entry will succeed.  */
		    if ((x_regno <= x_regno_i
			 && x_regno + x_nregs >= x_regno_i + x_nregs_i
			 && x_nregs == y_nregs && x_nregs_i == y_nregs_i
			 && x_regno - x_regno_i == y_regno - y_regno_i)
			|| (x_regno == x_regno_i && y_regno == y_regno_i
			    && x_nregs >= x_nregs_i && y_nregs >= y_nregs_i))
		      {
			info->cur.local_count = --local_count;
			info->x_local[i] = info->x_local[local_count];
			info->y_local[i] = info->y_local[local_count];
			continue;
		      }
		  }
		else
		  {

		    /* If the new pair is fully enclosed within a matching
		       existing pair, succeed.  */
		    if (x_regno >= x_regno_i
			&& x_regno + x_nregs <= x_regno_i + x_nregs_i
			&& x_nregs == y_nregs && x_nregs_i == y_nregs_i
			&& x_regno - x_regno_i == y_regno - y_regno_i)
		      break;
		    if (x_regno == x_regno_i && y_regno == y_regno_i
			&& x_nregs <= x_nregs_i && y_nregs <= y_nregs_i)
		      break;
		}

		/* Any other overlap causes a match failure.  */
		if (x_regno + x_nregs > x_regno_i
		    && x_regno_i + x_nregs_i > x_regno)
		  return false;
		if (y_regno + y_nregs > y_regno_i
		    && y_regno_i + y_nregs_i > y_regno)
		  return false;
	      }
	    if (i < 0)
	      {
		/* Not found.  Create a new entry if possible.  */
		if (!info->live_update
		    || info->cur.local_count >= STRUCT_EQUIV_MAX_LOCAL)
		  return false;
		info->x_local[info->cur.local_count] = x;
		info->y_local[info->cur.local_count] = y;
		info->cur.local_count++;
		info->cur.version++;
	      }
	    note_local_live (info, x, y, rvalue);
	  }
	return true;
      }
    case SET:
      gcc_assert (rvalue < 0);
      /* Ignore the destinations role as a destination.  Still, we have
	 to consider input registers embedded in the addresses of a MEM.
	 N.B., we process the rvalue aspect of STRICT_LOW_PART /
	 ZERO_EXTEND / SIGN_EXTEND along with their lvalue aspect.  */
      if(!set_dest_addr_equiv_p (SET_DEST (x), SET_DEST (y), info))
	return false;
      /* Process source.  */
      return rtx_equiv_p (&SET_SRC (x), SET_SRC (y), 1, info);
    case PRE_MODIFY:
      /* Process destination.  */
      if (!rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 0, info))
	return false;
      /* Process source.  */
      return rtx_equiv_p (&XEXP (x, 1), XEXP (y, 1), 1, info);
    case POST_MODIFY:
      {
	rtx x_dest0, x_dest1;

	/* Process destination.  */
	x_dest0 = XEXP (x, 0);
	gcc_assert (REG_P (x_dest0));
	if (!rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 0, info))
	  return false;
	x_dest1 = XEXP (x, 0);
	/* validate_change might have changed the destination.  Put it back
	   so that we can do a proper match for its role as an input.  */
	XEXP (x, 0) = x_dest0;
	if (!rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 1, info))
	  return false;
	gcc_assert (x_dest1 == XEXP (x, 0));
	/* Process source.  */
	return rtx_equiv_p (&XEXP (x, 1), XEXP (y, 1), 1, info);
      }
    case CLOBBER:
      gcc_assert (rvalue < 0);
      return true;
    /* Some special forms are also rvalues when they appear in lvalue
       positions.  However, we must ont try to match a register after we
       have already altered it with validate_change, consider the rvalue
       aspect while we process the lvalue.  */
    case STRICT_LOW_PART:
    case ZERO_EXTEND:
    case SIGN_EXTEND:
      {
	rtx x_inner, y_inner;
	enum rtx_code code;
	int change;

	if (rvalue)
	  break;
	x_inner = XEXP (x, 0);
	y_inner = XEXP (y, 0);
	if (GET_MODE (x_inner) != GET_MODE (y_inner))
	  return false;
	code = GET_CODE (x_inner);
	if (code != GET_CODE (y_inner))
	  return false;
	/* The address of a MEM is an input that will be processed during
	   rvalue == -1 processing.  */
	if (code == SUBREG)
	  {
	    if (SUBREG_BYTE (x_inner) != SUBREG_BYTE (y_inner))
	      return false;
	    x = x_inner;
	    x_inner = SUBREG_REG (x_inner);
	    y_inner = SUBREG_REG (y_inner);
	    if (GET_MODE (x_inner) != GET_MODE (y_inner))
	      return false;
	    code = GET_CODE (x_inner);
	    if (code != GET_CODE (y_inner))
	      return false;
	  }
	if (code == MEM)
	  return true;
	gcc_assert (code == REG);
	if (! rtx_equiv_p (&XEXP (x, 0), y_inner, rvalue, info))
	  return false;
	if (REGNO (x_inner) == REGNO (y_inner))
	  {
	    change = assign_reg_reg_set (info->common_live, x_inner, 1);
	    info->cur.version++;
	  }
	else
	  change = note_local_live (info, x_inner, y_inner, 1);
	gcc_assert (change);
	return true;
      }
    /* The AUTO_INC / POST_MODIFY / PRE_MODIFY sets are modelled to take
       place during input processing, however, that is benign, since they
       are paired with reads.  */
    case MEM:
      return !rvalue || rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), rvalue, info);
    case POST_INC: case POST_DEC: case PRE_INC: case PRE_DEC:
      return (rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 0, info)
	      && rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 1, info));
    case PARALLEL:
      /* If this is a top-level PATTERN PARALLEL, we expect the caller to 
	 have handled the SET_DESTs.  A complex or vector PARALLEL can be
	 identified by having a mode.  */
      gcc_assert (rvalue < 0 || GET_MODE (x) != VOIDmode);
      break;
    case LABEL_REF:
      /* Check special tablejump match case.  */
      if (XEXP (y, 0) == info->y_label)
	return (XEXP (x, 0) == info->x_label);
      /* We can't assume nonlocal labels have their following insns yet.  */
      if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
	return XEXP (x, 0) == XEXP (y, 0);

      /* Two label-refs are equivalent if they point at labels
	 in the same position in the instruction stream.  */
      return (next_real_insn (XEXP (x, 0))
	      == next_real_insn (XEXP (y, 0)));
    case SYMBOL_REF:
      return XSTR (x, 0) == XSTR (y, 0);
    /* Some rtl is guaranteed to be shared, or unique;  If we didn't match
       EQ equality above, they aren't the same.  */
    case CONST_INT:
    case CODE_LABEL:
      return false;
    default:
      break;
    }

  /* For commutative operations, the RTX match if the operands match in any
     order.  */
  if (targetm.commutative_p (x, UNKNOWN))
    return ((rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), rvalue, info)
	     && rtx_equiv_p (&XEXP (x, 1), XEXP (y, 1), rvalue, info))
	    || (rtx_equiv_p (&XEXP (x, 0), XEXP (y, 1), rvalue, info)
		&& rtx_equiv_p (&XEXP (x, 1), XEXP (y, 0), rvalue, info)));

  /* Process subexpressions - this is similar to rtx_equal_p.  */
  length = GET_RTX_LENGTH (code);
  format = GET_RTX_FORMAT (code);

  for (i = 0; i < length; ++i)
    {
      switch (format[i])
	{
	case 'w':
	  if (XWINT (x, i) != XWINT (y, i))
	    return false;
	  break;
	case 'n':
	case 'i':
	  if (XINT (x, i) != XINT (y, i))
	    return false;
	  break;
	case 'V':
	case 'E':
	  if (XVECLEN (x, i) != XVECLEN (y, i))
	    return false;
	  if (XVEC (x, i) != 0)
	    {
	      int j;
	      for (j = 0; j < XVECLEN (x, i); ++j)
		{
		  if (! rtx_equiv_p (&XVECEXP (x, i, j), XVECEXP (y, i, j),
				     rvalue, info))
		    return false;
		}
	    }
	  break;
	case 'e':
	  if (! rtx_equiv_p (&XEXP (x, i), XEXP (y, i), rvalue, info))
	    return false;
	  break;
	case 'S':
	case 's':
	  if ((XSTR (x, i) || XSTR (y, i))
	      && (! XSTR (x, i) || ! XSTR (y, i)
		  || strcmp (XSTR (x, i), XSTR (y, i))))
	    return false;
	  break;
	case 'u':
	  /* These are just backpointers, so they don't matter.  */
	  break;
	case '0':
	case 't':
	  break;
	  /* It is believed that rtx's at this level will never
	     contain anything but integers and other rtx's,
	     except for within LABEL_REFs and SYMBOL_REFs.  */
	default:
	  gcc_unreachable ();
	}
    }
  return true;
}

/* Do only the rtx_equiv_p SET_DEST processing for SETs and CLOBBERs.
   Since we are scanning backwards, this the first step in processing each
   insn.  Return true for success.  */
static bool
set_dest_equiv_p (rtx x, rtx y, struct equiv_info *info)
{
  if (!x || !y)
    return x == y;
  if (GET_CODE (x) != GET_CODE (y))
    return false;
  else if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
    return rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 0, info);
  else if (GET_CODE (x) == PARALLEL)
    {
      int j;

      if (XVECLEN (x, 0) != XVECLEN (y, 0))
	return false;
      for (j = 0; j < XVECLEN (x, 0); ++j)
	{
	  rtx xe = XVECEXP (x, 0, j);
	  rtx ye = XVECEXP (y, 0, j);

	  if (GET_CODE (xe) != GET_CODE (ye))
	    return false;
	  if ((GET_CODE (xe) == SET || GET_CODE (xe) == CLOBBER)
	      && ! rtx_equiv_p (&XEXP (xe, 0), XEXP (ye, 0), 0, info))
	    return false;
	}
    }
  return true;
}

/* Process MEMs in SET_DEST destinations.  We must not process this together
   with REG SET_DESTs, but must do it separately, lest when we see
   [(set (reg:SI foo) (bar))
    (set (mem:SI (reg:SI foo) (baz)))]
   struct_equiv_block_eq could get confused to assume that (reg:SI foo)
   is not live before this instruction.  */
static bool
set_dest_addr_equiv_p (rtx x, rtx y, struct equiv_info *info)
{
  enum rtx_code code = GET_CODE (x);
  int length;
  const char *format;
  int i;

  if (code != GET_CODE (y))
    return false;
  if (code == MEM)
    return rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 1, info);

  /* Process subexpressions.  */
  length = GET_RTX_LENGTH (code);
  format = GET_RTX_FORMAT (code);

  for (i = 0; i < length; ++i)
    {
      switch (format[i])
	{
	case 'V':
	case 'E':
	  if (XVECLEN (x, i) != XVECLEN (y, i))
	    return false;
	  if (XVEC (x, i) != 0)
	    {
	      int j;
	      for (j = 0; j < XVECLEN (x, i); ++j)
		{
		  if (! set_dest_addr_equiv_p (XVECEXP (x, i, j),
					       XVECEXP (y, i, j), info))
		    return false;
		}
	    }
	  break;
	case 'e':
	  if (! set_dest_addr_equiv_p (XEXP (x, i), XEXP (y, i), info))
	    return false;
	  break;
	default:
	  break;
	}
    }
  return true;
}

/* Check if the set of REG_DEAD notes attached to I1 and I2 allows us to
   go ahead with merging I1 and I2, which otherwise look fine.
   Inputs / local registers for the inputs of I1 and I2 have already been
   set up.  */
static bool
death_notes_match_p (rtx i1 ATTRIBUTE_UNUSED, rtx i2 ATTRIBUTE_UNUSED,
		     struct equiv_info *info ATTRIBUTE_UNUSED)
{
#ifdef STACK_REGS
  /* If cross_jump_death_matters is not 0, the insn's mode
     indicates whether or not the insn contains any stack-like regs.  */

  if ((info->mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
    {
      /* If register stack conversion has already been done, then
	 death notes must also be compared before it is certain that
	 the two instruction streams match.  */

      rtx note;
      HARD_REG_SET i1_regset, i2_regset;

      CLEAR_HARD_REG_SET (i1_regset);
      CLEAR_HARD_REG_SET (i2_regset);

      for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
	if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
	  SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));

      for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
	if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
	  {
	    unsigned regno = REGNO (XEXP (note, 0));
	    int i;

	    for (i = info->cur.local_count - 1; i >= 0; i--)
	      if (regno == REGNO (info->y_local[i]))
		{
		  regno = REGNO (info->x_local[i]);
		  break;
		}
	    SET_HARD_REG_BIT (i2_regset, regno);
	  }

      if (!hard_reg_set_equal_p (i1_regset, i2_regset))
	return false;
    }
#endif
  return true;
}

/* Return true if I1 and I2 are equivalent and thus can be crossjumped.  */

bool
insns_match_p (rtx i1, rtx i2, struct equiv_info *info)
{
  int rvalue_change_start;
  struct struct_equiv_checkpoint before_rvalue_change;

  /* Verify that I1 and I2 are equivalent.  */
  if (GET_CODE (i1) != GET_CODE (i2))
    return false;

  info->cur.x_start = i1;
  info->cur.y_start = i2;

  /* If this is a CALL_INSN, compare register usage information.
     If we don't check this on stack register machines, the two
     CALL_INSNs might be merged leaving reg-stack.c with mismatching
     numbers of stack registers in the same basic block.
     If we don't check this on machines with delay slots, a delay slot may
     be filled that clobbers a parameter expected by the subroutine.

     ??? We take the simple route for now and assume that if they're
     equal, they were constructed identically.  */

  if (CALL_P (i1))
    {
      if (SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2)
	  || ! set_dest_equiv_p (PATTERN (i1), PATTERN (i2), info)
	  || ! set_dest_equiv_p (CALL_INSN_FUNCTION_USAGE (i1),
				 CALL_INSN_FUNCTION_USAGE (i2), info)
	  || ! rtx_equiv_p (&CALL_INSN_FUNCTION_USAGE (i1),
			    CALL_INSN_FUNCTION_USAGE (i2), -1, info))
	{
	  cancel_changes (0);
	  return false;
	}
    }
  else if (INSN_P (i1))
    {
      if (! set_dest_equiv_p (PATTERN (i1), PATTERN (i2), info))
	{
	  cancel_changes (0);
	  return false;
	}
    }
  rvalue_change_start = num_validated_changes ();
  struct_equiv_make_checkpoint (&before_rvalue_change, info);
  /* Check death_notes_match_p *after* the inputs have been processed,
     so that local inputs will already have been set up.  */
  if (! INSN_P (i1)
      || (!bitmap_bit_p (info->equiv_used, info->cur.ninsns)
	  && rtx_equiv_p (&PATTERN (i1), PATTERN (i2), -1, info)
	  && death_notes_match_p (i1, i2, info)
	  && verify_changes (0)))
    return true;

  /* Do not do EQUIV substitution after reload.  First, we're undoing the
     work of reload_cse.  Second, we may be undoing the work of the post-
     reload splitting pass.  */
  /* ??? Possibly add a new phase switch variable that can be used by
     targets to disallow the troublesome insns after splitting.  */
  if (!reload_completed)
    {
      rtx equiv1, equiv2;

      cancel_changes (rvalue_change_start);
      struct_equiv_restore_checkpoint (&before_rvalue_change, info);

      /* The following code helps take care of G++ cleanups.  */
      equiv1 = find_reg_equal_equiv_note (i1);
      equiv2 = find_reg_equal_equiv_note (i2);
      if (equiv1 && equiv2
	  /* If the equivalences are not to a constant, they may
	     reference pseudos that no longer exist, so we can't
	     use them.  */
	  && (! reload_completed
	      || (CONSTANT_P (XEXP (equiv1, 0))
		  && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))))
	{
	  rtx s1 = single_set (i1);
	  rtx s2 = single_set (i2);

	  if (s1 != 0 && s2 != 0)
	    {
	      validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
	      validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
	      /* Only inspecting the new SET_SRC is not good enough,
		 because there may also be bare USEs in a single_set
		 PARALLEL.  */
	      if (rtx_equiv_p (&PATTERN (i1), PATTERN (i2), -1, info)
		  && death_notes_match_p (i1, i2, info)
		  && verify_changes (0))
		{
		  /* Mark this insn so that we'll use the equivalence in
		     all subsequent passes.  */
		  bitmap_set_bit (info->equiv_used, info->cur.ninsns);
		  return true;
		}
	    }
	}
    }

  cancel_changes (0);
  return false;
}

/* Set up mode and register information in INFO.  Return true for success.  */
bool
struct_equiv_init (int mode, struct equiv_info *info)
{
  if (!REG_SET_EQUAL_P (DF_LR_OUT (info->x_block),
			DF_LR_OUT (info->y_block)))
    {
#ifdef STACK_REGS
      unsigned rn;

      if (!(mode & CLEANUP_POST_REGSTACK))
	return false;
      /* After reg-stack.  Remove bogus live info about stack regs.  N.B.
	 these regs are not necessarily all dead - we swap random bogosity
	 against constant bogosity.  However, clearing these bits at
	 least makes the regsets comparable.  */
      for (rn = FIRST_STACK_REG; rn <= LAST_STACK_REG; rn++)
	{
	  CLEAR_REGNO_REG_SET (DF_LR_OUT (info->x_block), rn);
	  CLEAR_REGNO_REG_SET (DF_LR_OUT (info->y_block), rn);
	}
      if (!REG_SET_EQUAL_P (DF_LR_OUT (info->x_block),
			    DF_LR_OUT (info->y_block)))
#endif
	return false;
    }
  info->mode = mode;
  if (mode & STRUCT_EQUIV_START)
    {
      info->x_input = info->y_input = info->input_reg = NULL_RTX;
      info->equiv_used = ALLOC_REG_SET (&reg_obstack);
      info->check_input_conflict = false;
    }
  info->had_input_conflict = false;
  info->cur.ninsns = info->cur.version = 0;
  info->cur.local_count = info->cur.input_count = 0;
  info->cur.x_start = info->cur.y_start = NULL_RTX;
  info->x_label = info->y_label = NULL_RTX;
  info->need_rerun = false;
  info->live_update = true;
  info->cur.input_valid = false;
  info->common_live = ALLOC_REG_SET (&reg_obstack);
  info->x_local_live = ALLOC_REG_SET (&reg_obstack);
  info->y_local_live = ALLOC_REG_SET (&reg_obstack);
  COPY_REG_SET (info->common_live, DF_LR_OUT (info->x_block));
  struct_equiv_make_checkpoint (&info->best_match, info);
  return true;
}

/* Insns XI and YI have been matched.  Merge memory attributes and reg
   notes.  */
static void
struct_equiv_merge (rtx xi, rtx yi, struct equiv_info *info)
{
  rtx equiv1, equiv2;

  merge_memattrs (xi, yi);

  /* If the merged insns have different REG_EQUAL notes, then
     remove them.  */
  info->live_update = false;
  equiv1 = find_reg_equal_equiv_note (xi);
  equiv2 = find_reg_equal_equiv_note (yi);
  if (equiv1 && !equiv2)
    remove_note (xi, equiv1);
  else if (!equiv1 && equiv2)
    remove_note (yi, equiv2);
  else if (equiv1 && equiv2
  	 && !rtx_equiv_p (&XEXP (equiv1, 0), XEXP (equiv2, 0),
  			   1, info))
    {
      remove_note (xi, equiv1);
      remove_note (yi, equiv2);
    }
  info->live_update = true;
}

/* Return number of matched insns.
   This function must be called up to three times for a successful cross-jump
   match:
   first to find out which instructions do match.  While trying to match
   another instruction that doesn't match, we destroy information in info
   about the actual inputs.  So if there have been any before the last
   match attempt, we need to call this function again to recompute the
   actual inputs up to the actual start of the matching sequence.
   When we are then satisfied that the cross-jump is worthwhile, we
   call this function a third time to make any changes needed to make the
   sequences match: apply equivalences, remove non-matching
   notes and merge memory attributes.  */
int
struct_equiv_block_eq (int mode, struct equiv_info *info)
{
  rtx x_stop, y_stop;
  rtx xi, yi;
  int i;

  if (mode & STRUCT_EQUIV_START)
    {
      x_stop = BB_HEAD (info->x_block);
      y_stop = BB_HEAD (info->y_block);
      if (!x_stop || !y_stop)
	return 0;
    }
  else
    {
      x_stop = info->cur.x_start;
      y_stop = info->cur.y_start;
    }
  if (!struct_equiv_init (mode, info))
    gcc_unreachable ();

  /* Skip simple jumps at the end of the blocks.  Complex jumps still
     need to be compared for equivalence, which we'll do below.  */

  xi = BB_END (info->x_block);
  if (onlyjump_p (xi)
      || (returnjump_p (xi) && !side_effects_p (PATTERN (xi))))
    {
      info->cur.x_start = xi;
      xi = PREV_INSN (xi);
    }

  yi = BB_END (info->y_block);
  if (onlyjump_p (yi)
      || (returnjump_p (yi) && !side_effects_p (PATTERN (yi))))
    {
      info->cur.y_start = yi;
      /* Count everything except for unconditional jump as insn.  */
      /* ??? Is it right to count unconditional jumps with a clobber?
	 Should we count conditional returns?  */
      if (!simplejump_p (yi) && !returnjump_p (yi) && info->cur.x_start)
	info->cur.ninsns++;
      yi = PREV_INSN (yi);
    }

  if (mode & STRUCT_EQUIV_MATCH_JUMPS)
    {
      /* The caller is expected to have compared the jumps already, but we
	 need to match them again to get any local registers and inputs.  */
      gcc_assert (!info->cur.x_start == !info->cur.y_start);
      if (info->cur.x_start)
	{
	  if (any_condjump_p (info->cur.x_start)
	      ? !condjump_equiv_p (info, false)
	      : !insns_match_p (info->cur.x_start, info->cur.y_start, info))
	    gcc_unreachable ();
	}
      else if (any_condjump_p (xi) && any_condjump_p (yi))
	{
	  info->cur.x_start = xi;
	  info->cur.y_start = yi;
	  xi = PREV_INSN (xi);
	  yi = PREV_INSN (yi);
	  info->cur.ninsns++;
	  if (!condjump_equiv_p (info, false))
	    gcc_unreachable ();
	}
      if (info->cur.x_start && info->mode & STRUCT_EQUIV_FINAL)
	struct_equiv_merge (info->cur.x_start, info->cur.y_start, info);
    }

  struct_equiv_improve_checkpoint (&info->best_match, info);
  info->x_end = xi;
  info->y_end = yi;
  if (info->cur.x_start != x_stop)
    for (;;)
      {
	/* Ignore notes.  */
	while (!INSN_P (xi) && xi != x_stop)
	  xi = PREV_INSN (xi);

	while (!INSN_P (yi) && yi != y_stop)
	  yi = PREV_INSN (yi);

	if (!insns_match_p (xi, yi, info))
	  break;
	if (INSN_P (xi))
	  {
	    if (info->mode & STRUCT_EQUIV_FINAL)
	      struct_equiv_merge (xi, yi, info);
	    info->cur.ninsns++;
	    struct_equiv_improve_checkpoint (&info->best_match, info);
	  }
	if (xi == x_stop || yi == y_stop)
	  {
	    /* If we reached the start of at least one of the blocks, but
	       best_match hasn't been advanced back to the first valid insn
	       yet, represent the increased benefit of completing the block
	       as an increased instruction count.  */
	    if (info->best_match.x_start != info->cur.x_start
		&& (xi == BB_HEAD (info->x_block)
		    || yi == BB_HEAD (info->y_block)))
	      {
		info->cur.ninsns++;
		struct_equiv_improve_checkpoint (&info->best_match, info);
		info->cur.ninsns--;
		if (info->best_match.ninsns > info->cur.ninsns)
		  info->best_match.ninsns = info->cur.ninsns;
	      }
	    break;
	  }
	xi = PREV_INSN (xi);
	yi = PREV_INSN (yi);
      }

  /* If we failed to match an insn, but had some changes registered from
     trying to make the insns match, we need to cancel these changes now.  */
  cancel_changes (0);
  /* Restore to best_match to get the sequence with the best known-so-far
     cost-benefit difference.  */
  struct_equiv_restore_checkpoint (&info->best_match, info);

  /* Include preceding notes and labels in the cross-jump / if-conversion.
     One, this may bring us to the head of the blocks.
     Two, it keeps line number notes as matched as may be.  */
  if (info->cur.ninsns)
    {
      xi = info->cur.x_start;
      yi = info->cur.y_start;
      while (xi != x_stop && !INSN_P (PREV_INSN (xi)))
	xi = PREV_INSN (xi);

      while (yi != y_stop && !INSN_P (PREV_INSN (yi)))
	yi = PREV_INSN (yi);

      info->cur.x_start = xi;
      info->cur.y_start = yi;
    }

  if (!info->cur.input_valid)
    info->x_input = info->y_input = info->input_reg = NULL_RTX;
  if (!info->need_rerun)
    {
      find_dying_inputs (info);
      if (info->mode & STRUCT_EQUIV_FINAL)
	{
	  if (info->check_input_conflict && ! resolve_input_conflict (info))
	    gcc_unreachable ();
	}
      else
	{
	  bool input_conflict = info->had_input_conflict;

	  if (!input_conflict
	      && info->dying_inputs > 1
	      && bitmap_intersect_p (info->x_local_live, info->y_local_live))
	    {
	      regset_head clobbered_regs;

	      INIT_REG_SET (&clobbered_regs);
	      for (i = 0; i < info->cur.local_count; i++)
		{
		  if (assign_reg_reg_set (&clobbered_regs, info->y_local[i], 0))
		    {
		      input_conflict = true;
		      break;
		    }
		  assign_reg_reg_set (&clobbered_regs, info->x_local[i], 1);
		}
	      CLEAR_REG_SET (&clobbered_regs);
	    }
	  if (input_conflict && !info->check_input_conflict)
	    info->need_rerun = true;
	  info->check_input_conflict = input_conflict;
	}
    }

  if (info->mode & STRUCT_EQUIV_NEED_FULL_BLOCK
      && (info->cur.x_start != x_stop || info->cur.y_start != y_stop))
    return 0;
  return info->cur.ninsns;
}

/* For each local register, set info->local_rvalue to true iff the register
   is a dying input.  Store the total number of these in info->dying_inputs.  */
static void
find_dying_inputs (struct equiv_info *info)
{
  int i;

  info->dying_inputs = 0;
  for (i = info->cur.local_count-1; i >=0; i--)
    {
      rtx x = info->x_local[i];
      unsigned regno = REGNO (x);
      int nregs = (regno >= FIRST_PSEUDO_REGISTER
		   ? 1 : hard_regno_nregs[regno][GET_MODE (x)]);

      for (info->local_rvalue[i] = false; nregs > 0; regno++, --nregs)
	if (REGNO_REG_SET_P (info->x_local_live, regno))
	  {
	    info->dying_inputs++;
	    info->local_rvalue[i] = true;
	    break;
	  }
    }
}

/* For each local register that is a dying input, y_local[i] will be
   copied to x_local[i].  We'll do this in ascending order.  Try to
   re-order the locals to avoid conflicts like r3 = r2; r4 = r3; .
   Return true iff the re-ordering is successful, or not necessary.  */
static bool
resolve_input_conflict (struct equiv_info *info)
{
  int i, j, end;
  int nswaps = 0;
  rtx save_x_local[STRUCT_EQUIV_MAX_LOCAL];
  rtx save_y_local[STRUCT_EQUIV_MAX_LOCAL];

  find_dying_inputs (info);
  if (info->dying_inputs <= 1)
    return true;
  memcpy (save_x_local, info->x_local, sizeof save_x_local);
  memcpy (save_y_local, info->y_local, sizeof save_y_local);
  end = info->cur.local_count - 1;
  for (i = 0; i <= end; i++)
    {
      /* Cycle detection with regsets is expensive, so we just check that
	 we don't exceed the maximum number of swaps needed in the acyclic
	 case.  */
      int max_swaps = end - i;

      /* Check if x_local[i] will be clobbered.  */
      if (!info->local_rvalue[i])
	continue;
      /* Check if any later value needs to be copied earlier.  */
      for (j = i + 1; j <= end; j++)
	{
	  rtx tmp;

	  if (!info->local_rvalue[j])
	    continue;
	  if (!reg_overlap_mentioned_p (info->x_local[i], info->y_local[j]))
	    continue;
	  if (--max_swaps < 0)
	    {
	      memcpy (info->x_local, save_x_local, sizeof save_x_local);
	      memcpy (info->y_local, save_y_local, sizeof save_y_local);
	      return false;
	    }
	  nswaps++;
	  tmp = info->x_local[i];
	  info->x_local[i] = info->x_local[j];
	  info->x_local[j] = tmp;
	  tmp = info->y_local[i];
	  info->y_local[i] = info->y_local[j];
	  info->y_local[j] = tmp;
	  j = i;
	}
    }
  info->had_input_conflict = true;
  if (dump_file && nswaps)
    fprintf (dump_file, "Resolved input conflict, %d %s.\n",
	     nswaps, nswaps == 1 ? "swap" : "swaps");
  return true;
}