summaryrefslogtreecommitdiff
path: root/gcc/stor-layout.c
blob: 5a4bcf1d6640354451de3fb72e11089f9c703821 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
/* C-compiler utilities for types and variables storage layout
   Copyright (C) 1987-2016 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */


#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "target.h"
#include "function.h"
#include "rtl.h"
#include "tree.h"
#include "memmodel.h"
#include "tm_p.h"
#include "stringpool.h"
#include "regs.h"
#include "emit-rtl.h"
#include "cgraph.h"
#include "diagnostic-core.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "varasm.h"
#include "print-tree.h"
#include "langhooks.h"
#include "tree-inline.h"
#include "tree-dump.h"
#include "gimplify.h"
#include "debug.h"

/* Data type for the expressions representing sizes of data types.
   It is the first integer type laid out.  */
tree sizetype_tab[(int) stk_type_kind_last];

/* If nonzero, this is an upper limit on alignment of structure fields.
   The value is measured in bits.  */
unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;

static tree self_referential_size (tree);
static void finalize_record_size (record_layout_info);
static void finalize_type_size (tree);
static void place_union_field (record_layout_info, tree);
static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
			     HOST_WIDE_INT, tree);
extern void debug_rli (record_layout_info);

/* Given a size SIZE that may not be a constant, return a SAVE_EXPR
   to serve as the actual size-expression for a type or decl.  */

tree
variable_size (tree size)
{
  /* Obviously.  */
  if (TREE_CONSTANT (size))
    return size;

  /* If the size is self-referential, we can't make a SAVE_EXPR (see
     save_expr for the rationale).  But we can do something else.  */
  if (CONTAINS_PLACEHOLDER_P (size))
    return self_referential_size (size);

  /* If we are in the global binding level, we can't make a SAVE_EXPR
     since it may end up being shared across functions, so it is up
     to the front-end to deal with this case.  */
  if (lang_hooks.decls.global_bindings_p ())
    return size;

  return save_expr (size);
}

/* An array of functions used for self-referential size computation.  */
static GTY(()) vec<tree, va_gc> *size_functions;

/* Return true if T is a self-referential component reference.  */

static bool
self_referential_component_ref_p (tree t)
{
  if (TREE_CODE (t) != COMPONENT_REF)
    return false;

  while (REFERENCE_CLASS_P (t))
    t = TREE_OPERAND (t, 0);

  return (TREE_CODE (t) == PLACEHOLDER_EXPR);
}

/* Similar to copy_tree_r but do not copy component references involving
   PLACEHOLDER_EXPRs.  These nodes are spotted in find_placeholder_in_expr
   and substituted in substitute_in_expr.  */

static tree
copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
{
  enum tree_code code = TREE_CODE (*tp);

  /* Stop at types, decls, constants like copy_tree_r.  */
  if (TREE_CODE_CLASS (code) == tcc_type
      || TREE_CODE_CLASS (code) == tcc_declaration
      || TREE_CODE_CLASS (code) == tcc_constant)
    {
      *walk_subtrees = 0;
      return NULL_TREE;
    }

  /* This is the pattern built in ada/make_aligning_type.  */
  else if (code == ADDR_EXPR
	   && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
    {
      *walk_subtrees = 0;
      return NULL_TREE;
    }

  /* Default case: the component reference.  */
  else if (self_referential_component_ref_p (*tp))
    {
      *walk_subtrees = 0;
      return NULL_TREE;
    }

  /* We're not supposed to have them in self-referential size trees
     because we wouldn't properly control when they are evaluated.
     However, not creating superfluous SAVE_EXPRs requires accurate
     tracking of readonly-ness all the way down to here, which we
     cannot always guarantee in practice.  So punt in this case.  */
  else if (code == SAVE_EXPR)
    return error_mark_node;

  else if (code == STATEMENT_LIST)
    gcc_unreachable ();

  return copy_tree_r (tp, walk_subtrees, data);
}

/* Given a SIZE expression that is self-referential, return an equivalent
   expression to serve as the actual size expression for a type.  */

static tree
self_referential_size (tree size)
{
  static unsigned HOST_WIDE_INT fnno = 0;
  vec<tree> self_refs = vNULL;
  tree param_type_list = NULL, param_decl_list = NULL;
  tree t, ref, return_type, fntype, fnname, fndecl;
  unsigned int i;
  char buf[128];
  vec<tree, va_gc> *args = NULL;

  /* Do not factor out simple operations.  */
  t = skip_simple_constant_arithmetic (size);
  if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
    return size;

  /* Collect the list of self-references in the expression.  */
  find_placeholder_in_expr (size, &self_refs);
  gcc_assert (self_refs.length () > 0);

  /* Obtain a private copy of the expression.  */
  t = size;
  if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
    return size;
  size = t;

  /* Build the parameter and argument lists in parallel; also
     substitute the former for the latter in the expression.  */
  vec_alloc (args, self_refs.length ());
  FOR_EACH_VEC_ELT (self_refs, i, ref)
    {
      tree subst, param_name, param_type, param_decl;

      if (DECL_P (ref))
	{
	  /* We shouldn't have true variables here.  */
	  gcc_assert (TREE_READONLY (ref));
	  subst = ref;
	}
      /* This is the pattern built in ada/make_aligning_type.  */
      else if (TREE_CODE (ref) == ADDR_EXPR)
        subst = ref;
      /* Default case: the component reference.  */
      else
	subst = TREE_OPERAND (ref, 1);

      sprintf (buf, "p%d", i);
      param_name = get_identifier (buf);
      param_type = TREE_TYPE (ref);
      param_decl
	= build_decl (input_location, PARM_DECL, param_name, param_type);
      DECL_ARG_TYPE (param_decl) = param_type;
      DECL_ARTIFICIAL (param_decl) = 1;
      TREE_READONLY (param_decl) = 1;

      size = substitute_in_expr (size, subst, param_decl);

      param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
      param_decl_list = chainon (param_decl, param_decl_list);
      args->quick_push (ref);
    }

  self_refs.release ();

  /* Append 'void' to indicate that the number of parameters is fixed.  */
  param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);

  /* The 3 lists have been created in reverse order.  */
  param_type_list = nreverse (param_type_list);
  param_decl_list = nreverse (param_decl_list);

  /* Build the function type.  */
  return_type = TREE_TYPE (size);
  fntype = build_function_type (return_type, param_type_list);

  /* Build the function declaration.  */
  sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
  fnname = get_file_function_name (buf);
  fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
  for (t = param_decl_list; t; t = DECL_CHAIN (t))
    DECL_CONTEXT (t) = fndecl;
  DECL_ARGUMENTS (fndecl) = param_decl_list;
  DECL_RESULT (fndecl)
    = build_decl (input_location, RESULT_DECL, 0, return_type);
  DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;

  /* The function has been created by the compiler and we don't
     want to emit debug info for it.  */
  DECL_ARTIFICIAL (fndecl) = 1;
  DECL_IGNORED_P (fndecl) = 1;

  /* It is supposed to be "const" and never throw.  */
  TREE_READONLY (fndecl) = 1;
  TREE_NOTHROW (fndecl) = 1;

  /* We want it to be inlined when this is deemed profitable, as
     well as discarded if every call has been integrated.  */
  DECL_DECLARED_INLINE_P (fndecl) = 1;

  /* It is made up of a unique return statement.  */
  DECL_INITIAL (fndecl) = make_node (BLOCK);
  BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
  t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
  DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
  TREE_STATIC (fndecl) = 1;

  /* Put it onto the list of size functions.  */
  vec_safe_push (size_functions, fndecl);

  /* Replace the original expression with a call to the size function.  */
  return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
}

/* Take, queue and compile all the size functions.  It is essential that
   the size functions be gimplified at the very end of the compilation
   in order to guarantee transparent handling of self-referential sizes.
   Otherwise the GENERIC inliner would not be able to inline them back
   at each of their call sites, thus creating artificial non-constant
   size expressions which would trigger nasty problems later on.  */

void
finalize_size_functions (void)
{
  unsigned int i;
  tree fndecl;

  for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
    {
      allocate_struct_function (fndecl, false);
      set_cfun (NULL);
      dump_function (TDI_original, fndecl);

      /* As these functions are used to describe the layout of variable-length
         structures, debug info generation needs their implementation.  */
      debug_hooks->size_function (fndecl);
      gimplify_function_tree (fndecl);
      cgraph_node::finalize_function (fndecl, false);
    }

  vec_free (size_functions);
}

/* Return the machine mode to use for a nonscalar of SIZE bits.  The
   mode must be in class MCLASS, and have exactly that many value bits;
   it may have padding as well.  If LIMIT is nonzero, modes of wider
   than MAX_FIXED_MODE_SIZE will not be used.  */

machine_mode
mode_for_size (unsigned int size, enum mode_class mclass, int limit)
{
  machine_mode mode;
  int i;

  if (limit && size > MAX_FIXED_MODE_SIZE)
    return BLKmode;

  /* Get the first mode which has this size, in the specified class.  */
  for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
    if (GET_MODE_PRECISION (mode) == size)
      return mode;

  if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
    for (i = 0; i < NUM_INT_N_ENTS; i ++)
      if (int_n_data[i].bitsize == size
	  && int_n_enabled_p[i])
	return int_n_data[i].m;

  return BLKmode;
}

/* Similar, except passed a tree node.  */

machine_mode
mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
{
  unsigned HOST_WIDE_INT uhwi;
  unsigned int ui;

  if (!tree_fits_uhwi_p (size))
    return BLKmode;
  uhwi = tree_to_uhwi (size);
  ui = uhwi;
  if (uhwi != ui)
    return BLKmode;
  return mode_for_size (ui, mclass, limit);
}

/* Similar, but never return BLKmode; return the narrowest mode that
   contains at least the requested number of value bits.  */

machine_mode
smallest_mode_for_size (unsigned int size, enum mode_class mclass)
{
  machine_mode mode = VOIDmode;
  int i;

  /* Get the first mode which has at least this size, in the
     specified class.  */
  for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
    if (GET_MODE_PRECISION (mode) >= size)
      break;

  if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
    for (i = 0; i < NUM_INT_N_ENTS; i ++)
      if (int_n_data[i].bitsize >= size
	  && int_n_data[i].bitsize < GET_MODE_PRECISION (mode)
	  && int_n_enabled_p[i])
	mode = int_n_data[i].m;

  if (mode == VOIDmode)
    gcc_unreachable ();

  return mode;
}

/* Find an integer mode of the exact same size, or BLKmode on failure.  */

machine_mode
int_mode_for_mode (machine_mode mode)
{
  switch (GET_MODE_CLASS (mode))
    {
    case MODE_INT:
    case MODE_PARTIAL_INT:
      break;

    case MODE_COMPLEX_INT:
    case MODE_COMPLEX_FLOAT:
    case MODE_FLOAT:
    case MODE_DECIMAL_FLOAT:
    case MODE_VECTOR_INT:
    case MODE_VECTOR_FLOAT:
    case MODE_FRACT:
    case MODE_ACCUM:
    case MODE_UFRACT:
    case MODE_UACCUM:
    case MODE_VECTOR_FRACT:
    case MODE_VECTOR_ACCUM:
    case MODE_VECTOR_UFRACT:
    case MODE_VECTOR_UACCUM:
    case MODE_POINTER_BOUNDS:
      mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
      break;

    case MODE_RANDOM:
      if (mode == BLKmode)
	break;

      /* fall through */

    case MODE_CC:
    default:
      gcc_unreachable ();
    }

  return mode;
}

/* Find a mode that can be used for efficient bitwise operations on MODE.
   Return BLKmode if no such mode exists.  */

machine_mode
bitwise_mode_for_mode (machine_mode mode)
{
  /* Quick exit if we already have a suitable mode.  */
  unsigned int bitsize = GET_MODE_BITSIZE (mode);
  if (SCALAR_INT_MODE_P (mode) && bitsize <= MAX_FIXED_MODE_SIZE)
    return mode;

  /* Reuse the sanity checks from int_mode_for_mode.  */
  gcc_checking_assert ((int_mode_for_mode (mode), true));

  /* Try to replace complex modes with complex modes.  In general we
     expect both components to be processed independently, so we only
     care whether there is a register for the inner mode.  */
  if (COMPLEX_MODE_P (mode))
    {
      machine_mode trial = mode;
      if (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT)
	trial = mode_for_size (bitsize, MODE_COMPLEX_INT, false);
      if (trial != BLKmode
	  && have_regs_of_mode[GET_MODE_INNER (trial)])
	return trial;
    }

  /* Try to replace vector modes with vector modes.  Also try using vector
     modes if an integer mode would be too big.  */
  if (VECTOR_MODE_P (mode) || bitsize > MAX_FIXED_MODE_SIZE)
    {
      machine_mode trial = mode;
      if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
	trial = mode_for_size (bitsize, MODE_VECTOR_INT, 0);
      if (trial != BLKmode
	  && have_regs_of_mode[trial]
	  && targetm.vector_mode_supported_p (trial))
	return trial;
    }

  /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE.  */
  return mode_for_size (bitsize, MODE_INT, true);
}

/* Find a type that can be used for efficient bitwise operations on MODE.
   Return null if no such mode exists.  */

tree
bitwise_type_for_mode (machine_mode mode)
{
  mode = bitwise_mode_for_mode (mode);
  if (mode == BLKmode)
    return NULL_TREE;

  unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
  tree inner_type = build_nonstandard_integer_type (inner_size, true);

  if (VECTOR_MODE_P (mode))
    return build_vector_type_for_mode (inner_type, mode);

  if (COMPLEX_MODE_P (mode))
    return build_complex_type (inner_type);

  gcc_checking_assert (GET_MODE_INNER (mode) == mode);
  return inner_type;
}

/* Find a mode that is suitable for representing a vector with
   NUNITS elements of mode INNERMODE.  Returns BLKmode if there
   is no suitable mode.  */

machine_mode
mode_for_vector (machine_mode innermode, unsigned nunits)
{
  machine_mode mode;

  /* First, look for a supported vector type.  */
  if (SCALAR_FLOAT_MODE_P (innermode))
    mode = MIN_MODE_VECTOR_FLOAT;
  else if (SCALAR_FRACT_MODE_P (innermode))
    mode = MIN_MODE_VECTOR_FRACT;
  else if (SCALAR_UFRACT_MODE_P (innermode))
    mode = MIN_MODE_VECTOR_UFRACT;
  else if (SCALAR_ACCUM_MODE_P (innermode))
    mode = MIN_MODE_VECTOR_ACCUM;
  else if (SCALAR_UACCUM_MODE_P (innermode))
    mode = MIN_MODE_VECTOR_UACCUM;
  else
    mode = MIN_MODE_VECTOR_INT;

  /* Do not check vector_mode_supported_p here.  We'll do that
     later in vector_type_mode.  */
  for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
    if (GET_MODE_NUNITS (mode) == nunits
	&& GET_MODE_INNER (mode) == innermode)
      break;

  /* For integers, try mapping it to a same-sized scalar mode.  */
  if (mode == VOIDmode
      && GET_MODE_CLASS (innermode) == MODE_INT)
    mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
			  MODE_INT, 0);

  if (mode == VOIDmode
      || (GET_MODE_CLASS (mode) == MODE_INT
	  && !have_regs_of_mode[mode]))
    return BLKmode;

  return mode;
}

/* Return the alignment of MODE. This will be bounded by 1 and
   BIGGEST_ALIGNMENT.  */

unsigned int
get_mode_alignment (machine_mode mode)
{
  return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
}

/* Return the natural mode of an array, given that it is SIZE bytes in
   total and has elements of type ELEM_TYPE.  */

static machine_mode
mode_for_array (tree elem_type, tree size)
{
  tree elem_size;
  unsigned HOST_WIDE_INT int_size, int_elem_size;
  bool limit_p;

  /* One-element arrays get the component type's mode.  */
  elem_size = TYPE_SIZE (elem_type);
  if (simple_cst_equal (size, elem_size))
    return TYPE_MODE (elem_type);

  limit_p = true;
  if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
    {
      int_size = tree_to_uhwi (size);
      int_elem_size = tree_to_uhwi (elem_size);
      if (int_elem_size > 0
	  && int_size % int_elem_size == 0
	  && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
					     int_size / int_elem_size))
	limit_p = false;
    }
  return mode_for_size_tree (size, MODE_INT, limit_p);
}

/* Subroutine of layout_decl: Force alignment required for the data type.
   But if the decl itself wants greater alignment, don't override that.  */

static inline void
do_type_align (tree type, tree decl)
{
  if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
    {
      SET_DECL_ALIGN (decl, TYPE_ALIGN (type));
      if (TREE_CODE (decl) == FIELD_DECL)
	DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
    }
}

/* Set the size, mode and alignment of a ..._DECL node.
   TYPE_DECL does need this for C++.
   Note that LABEL_DECL and CONST_DECL nodes do not need this,
   and FUNCTION_DECL nodes have them set up in a special (and simple) way.
   Don't call layout_decl for them.

   KNOWN_ALIGN is the amount of alignment we can assume this
   decl has with no special effort.  It is relevant only for FIELD_DECLs
   and depends on the previous fields.
   All that matters about KNOWN_ALIGN is which powers of 2 divide it.
   If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
   the record will be aligned to suit.  */

void
layout_decl (tree decl, unsigned int known_align)
{
  tree type = TREE_TYPE (decl);
  enum tree_code code = TREE_CODE (decl);
  rtx rtl = NULL_RTX;
  location_t loc = DECL_SOURCE_LOCATION (decl);

  if (code == CONST_DECL)
    return;

  gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
	      || code == TYPE_DECL || code == FIELD_DECL);

  rtl = DECL_RTL_IF_SET (decl);

  if (type == error_mark_node)
    type = void_type_node;

  /* Usually the size and mode come from the data type without change,
     however, the front-end may set the explicit width of the field, so its
     size may not be the same as the size of its type.  This happens with
     bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
     also happens with other fields.  For example, the C++ front-end creates
     zero-sized fields corresponding to empty base classes, and depends on
     layout_type setting DECL_FIELD_BITPOS correctly for the field.  Set the
     size in bytes from the size in bits.  If we have already set the mode,
     don't set it again since we can be called twice for FIELD_DECLs.  */

  DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
  if (DECL_MODE (decl) == VOIDmode)
    SET_DECL_MODE (decl, TYPE_MODE (type));

  if (DECL_SIZE (decl) == 0)
    {
      DECL_SIZE (decl) = TYPE_SIZE (type);
      DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
    }
  else if (DECL_SIZE_UNIT (decl) == 0)
    DECL_SIZE_UNIT (decl)
      = fold_convert_loc (loc, sizetype,
			  size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
					  bitsize_unit_node));

  if (code != FIELD_DECL)
    /* For non-fields, update the alignment from the type.  */
    do_type_align (type, decl);
  else
    /* For fields, it's a bit more complicated...  */
    {
      bool old_user_align = DECL_USER_ALIGN (decl);
      bool zero_bitfield = false;
      bool packed_p = DECL_PACKED (decl);
      unsigned int mfa;

      if (DECL_BIT_FIELD (decl))
	{
	  DECL_BIT_FIELD_TYPE (decl) = type;

	  /* A zero-length bit-field affects the alignment of the next
	     field.  In essence such bit-fields are not influenced by
	     any packing due to #pragma pack or attribute packed.  */
	  if (integer_zerop (DECL_SIZE (decl))
	      && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
	    {
	      zero_bitfield = true;
	      packed_p = false;
	      if (PCC_BITFIELD_TYPE_MATTERS)
		do_type_align (type, decl);
	      else
		{
#ifdef EMPTY_FIELD_BOUNDARY
		  if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
		    {
		      SET_DECL_ALIGN (decl, EMPTY_FIELD_BOUNDARY);
		      DECL_USER_ALIGN (decl) = 0;
		    }
#endif
		}
	    }

	  /* See if we can use an ordinary integer mode for a bit-field.
	     Conditions are: a fixed size that is correct for another mode,
	     occupying a complete byte or bytes on proper boundary.  */
	  if (TYPE_SIZE (type) != 0
	      && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
	      && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
	    {
	      machine_mode xmode
		= mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
	      unsigned int xalign = GET_MODE_ALIGNMENT (xmode);

	      if (xmode != BLKmode
		  && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
		  && (known_align == 0 || known_align >= xalign))
		{
		  SET_DECL_ALIGN (decl, MAX (xalign, DECL_ALIGN (decl)));
		  SET_DECL_MODE (decl, xmode);
		  DECL_BIT_FIELD (decl) = 0;
		}
	    }

	  /* Turn off DECL_BIT_FIELD if we won't need it set.  */
	  if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
	      && known_align >= TYPE_ALIGN (type)
	      && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
	    DECL_BIT_FIELD (decl) = 0;
	}
      else if (packed_p && DECL_USER_ALIGN (decl))
	/* Don't touch DECL_ALIGN.  For other packed fields, go ahead and
	   round up; we'll reduce it again below.  We want packing to
	   supersede USER_ALIGN inherited from the type, but defer to
	   alignment explicitly specified on the field decl.  */;
      else
	do_type_align (type, decl);

      /* If the field is packed and not explicitly aligned, give it the
	 minimum alignment.  Note that do_type_align may set
	 DECL_USER_ALIGN, so we need to check old_user_align instead.  */
      if (packed_p
	  && !old_user_align)
	SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), BITS_PER_UNIT));

      if (! packed_p && ! DECL_USER_ALIGN (decl))
	{
	  /* Some targets (i.e. i386, VMS) limit struct field alignment
	     to a lower boundary than alignment of variables unless
	     it was overridden by attribute aligned.  */
#ifdef BIGGEST_FIELD_ALIGNMENT
	  SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl),
				     (unsigned) BIGGEST_FIELD_ALIGNMENT));
#endif
#ifdef ADJUST_FIELD_ALIGN
	  SET_DECL_ALIGN (decl, ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl)));
#endif
	}

      if (zero_bitfield)
        mfa = initial_max_fld_align * BITS_PER_UNIT;
      else
	mfa = maximum_field_alignment;
      /* Should this be controlled by DECL_USER_ALIGN, too?  */
      if (mfa != 0)
	SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), mfa));
    }

  /* Evaluate nonconstant size only once, either now or as soon as safe.  */
  if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
    DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
  if (DECL_SIZE_UNIT (decl) != 0
      && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
    DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));

  /* If requested, warn about definitions of large data objects.  */
  if (warn_larger_than
      && (code == VAR_DECL || code == PARM_DECL)
      && ! DECL_EXTERNAL (decl))
    {
      tree size = DECL_SIZE_UNIT (decl);

      if (size != 0 && TREE_CODE (size) == INTEGER_CST
	  && compare_tree_int (size, larger_than_size) > 0)
	{
	  int size_as_int = TREE_INT_CST_LOW (size);

	  if (compare_tree_int (size, size_as_int) == 0)
	    warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
	  else
	    warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
                     decl, larger_than_size);
	}
    }

  /* If the RTL was already set, update its mode and mem attributes.  */
  if (rtl)
    {
      PUT_MODE (rtl, DECL_MODE (decl));
      SET_DECL_RTL (decl, 0);
      if (MEM_P (rtl))
	set_mem_attributes (rtl, decl, 1);
      SET_DECL_RTL (decl, rtl);
    }
}

/* Given a VAR_DECL, PARM_DECL, RESULT_DECL, or FIELD_DECL, clears the
   results of a previous call to layout_decl and calls it again.  */

void
relayout_decl (tree decl)
{
  DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
  SET_DECL_MODE (decl, VOIDmode);
  if (!DECL_USER_ALIGN (decl))
    SET_DECL_ALIGN (decl, 0);
  if (DECL_RTL_SET_P (decl))
    SET_DECL_RTL (decl, 0);

  layout_decl (decl, 0);
}

/* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
   QUAL_UNION_TYPE.  Return a pointer to a struct record_layout_info which
   is to be passed to all other layout functions for this record.  It is the
   responsibility of the caller to call `free' for the storage returned.
   Note that garbage collection is not permitted until we finish laying
   out the record.  */

record_layout_info
start_record_layout (tree t)
{
  record_layout_info rli = XNEW (struct record_layout_info_s);

  rli->t = t;

  /* If the type has a minimum specified alignment (via an attribute
     declaration, for example) use it -- otherwise, start with a
     one-byte alignment.  */
  rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
  rli->unpacked_align = rli->record_align;
  rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);

#ifdef STRUCTURE_SIZE_BOUNDARY
  /* Packed structures don't need to have minimum size.  */
  if (! TYPE_PACKED (t))
    {
      unsigned tmp;

      /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY.  */
      tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
      if (maximum_field_alignment != 0)
	tmp = MIN (tmp, maximum_field_alignment);
      rli->record_align = MAX (rli->record_align, tmp);
    }
#endif

  rli->offset = size_zero_node;
  rli->bitpos = bitsize_zero_node;
  rli->prev_field = 0;
  rli->pending_statics = 0;
  rli->packed_maybe_necessary = 0;
  rli->remaining_in_alignment = 0;

  return rli;
}

/* Return the combined bit position for the byte offset OFFSET and the
   bit position BITPOS.

   These functions operate on byte and bit positions present in FIELD_DECLs
   and assume that these expressions result in no (intermediate) overflow.
   This assumption is necessary to fold the expressions as much as possible,
   so as to avoid creating artificially variable-sized types in languages
   supporting variable-sized types like Ada.  */

tree
bit_from_pos (tree offset, tree bitpos)
{
  if (TREE_CODE (offset) == PLUS_EXPR)
    offset = size_binop (PLUS_EXPR,
			 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
			 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
  else
    offset = fold_convert (bitsizetype, offset);
  return size_binop (PLUS_EXPR, bitpos,
		     size_binop (MULT_EXPR, offset, bitsize_unit_node));
}

/* Return the combined truncated byte position for the byte offset OFFSET and
   the bit position BITPOS.  */

tree
byte_from_pos (tree offset, tree bitpos)
{
  tree bytepos;
  if (TREE_CODE (bitpos) == MULT_EXPR
      && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
    bytepos = TREE_OPERAND (bitpos, 0);
  else
    bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
  return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
}

/* Split the bit position POS into a byte offset *POFFSET and a bit
   position *PBITPOS with the byte offset aligned to OFF_ALIGN bits.  */

void
pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
	      tree pos)
{
  tree toff_align = bitsize_int (off_align);
  if (TREE_CODE (pos) == MULT_EXPR
      && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
    {
      *poffset = size_binop (MULT_EXPR,
			     fold_convert (sizetype, TREE_OPERAND (pos, 0)),
			     size_int (off_align / BITS_PER_UNIT));
      *pbitpos = bitsize_zero_node;
    }
  else
    {
      *poffset = size_binop (MULT_EXPR,
			     fold_convert (sizetype,
					   size_binop (FLOOR_DIV_EXPR, pos,
						       toff_align)),
			     size_int (off_align / BITS_PER_UNIT));
      *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
    }
}

/* Given a pointer to bit and byte offsets and an offset alignment,
   normalize the offsets so they are within the alignment.  */

void
normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
{
  /* If the bit position is now larger than it should be, adjust it
     downwards.  */
  if (compare_tree_int (*pbitpos, off_align) >= 0)
    {
      tree offset, bitpos;
      pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
      *poffset = size_binop (PLUS_EXPR, *poffset, offset);
      *pbitpos = bitpos;
    }
}

/* Print debugging information about the information in RLI.  */

DEBUG_FUNCTION void
debug_rli (record_layout_info rli)
{
  print_node_brief (stderr, "type", rli->t, 0);
  print_node_brief (stderr, "\noffset", rli->offset, 0);
  print_node_brief (stderr, " bitpos", rli->bitpos, 0);

  fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
	   rli->record_align, rli->unpacked_align,
	   rli->offset_align);

  /* The ms_struct code is the only that uses this.  */
  if (targetm.ms_bitfield_layout_p (rli->t))
    fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);

  if (rli->packed_maybe_necessary)
    fprintf (stderr, "packed may be necessary\n");

  if (!vec_safe_is_empty (rli->pending_statics))
    {
      fprintf (stderr, "pending statics:\n");
      debug_vec_tree (rli->pending_statics);
    }
}

/* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
   BITPOS if necessary to keep BITPOS below OFFSET_ALIGN.  */

void
normalize_rli (record_layout_info rli)
{
  normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
}

/* Returns the size in bytes allocated so far.  */

tree
rli_size_unit_so_far (record_layout_info rli)
{
  return byte_from_pos (rli->offset, rli->bitpos);
}

/* Returns the size in bits allocated so far.  */

tree
rli_size_so_far (record_layout_info rli)
{
  return bit_from_pos (rli->offset, rli->bitpos);
}

/* FIELD is about to be added to RLI->T.  The alignment (in bits) of
   the next available location within the record is given by KNOWN_ALIGN.
   Update the variable alignment fields in RLI, and return the alignment
   to give the FIELD.  */

unsigned int
update_alignment_for_field (record_layout_info rli, tree field,
			    unsigned int known_align)
{
  /* The alignment required for FIELD.  */
  unsigned int desired_align;
  /* The type of this field.  */
  tree type = TREE_TYPE (field);
  /* True if the field was explicitly aligned by the user.  */
  bool user_align;
  bool is_bitfield;

  /* Do not attempt to align an ERROR_MARK node */
  if (TREE_CODE (type) == ERROR_MARK)
    return 0;

  /* Lay out the field so we know what alignment it needs.  */
  layout_decl (field, known_align);
  desired_align = DECL_ALIGN (field);
  user_align = DECL_USER_ALIGN (field);

  is_bitfield = (type != error_mark_node
		 && DECL_BIT_FIELD_TYPE (field)
		 && ! integer_zerop (TYPE_SIZE (type)));

  /* Record must have at least as much alignment as any field.
     Otherwise, the alignment of the field within the record is
     meaningless.  */
  if (targetm.ms_bitfield_layout_p (rli->t))
    {
      /* Here, the alignment of the underlying type of a bitfield can
	 affect the alignment of a record; even a zero-sized field
	 can do this.  The alignment should be to the alignment of
	 the type, except that for zero-size bitfields this only
	 applies if there was an immediately prior, nonzero-size
	 bitfield.  (That's the way it is, experimentally.) */
      if ((!is_bitfield && !DECL_PACKED (field))
	  || ((DECL_SIZE (field) == NULL_TREE
	       || !integer_zerop (DECL_SIZE (field)))
	      ? !DECL_PACKED (field)
	      : (rli->prev_field
		 && DECL_BIT_FIELD_TYPE (rli->prev_field)
		 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
	{
	  unsigned int type_align = TYPE_ALIGN (type);
	  type_align = MAX (type_align, desired_align);
	  if (maximum_field_alignment != 0)
	    type_align = MIN (type_align, maximum_field_alignment);
	  rli->record_align = MAX (rli->record_align, type_align);
	  rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
	}
    }
  else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
    {
      /* Named bit-fields cause the entire structure to have the
	 alignment implied by their type.  Some targets also apply the same
	 rules to unnamed bitfields.  */
      if (DECL_NAME (field) != 0
	  || targetm.align_anon_bitfield ())
	{
	  unsigned int type_align = TYPE_ALIGN (type);

#ifdef ADJUST_FIELD_ALIGN
	  if (! TYPE_USER_ALIGN (type))
	    type_align = ADJUST_FIELD_ALIGN (field, type_align);
#endif

	  /* Targets might chose to handle unnamed and hence possibly
	     zero-width bitfield.  Those are not influenced by #pragmas
	     or packed attributes.  */
	  if (integer_zerop (DECL_SIZE (field)))
	    {
	      if (initial_max_fld_align)
	        type_align = MIN (type_align,
				  initial_max_fld_align * BITS_PER_UNIT);
	    }
	  else if (maximum_field_alignment != 0)
	    type_align = MIN (type_align, maximum_field_alignment);
	  else if (DECL_PACKED (field))
	    type_align = MIN (type_align, BITS_PER_UNIT);

	  /* The alignment of the record is increased to the maximum
	     of the current alignment, the alignment indicated on the
	     field (i.e., the alignment specified by an __aligned__
	     attribute), and the alignment indicated by the type of
	     the field.  */
	  rli->record_align = MAX (rli->record_align, desired_align);
	  rli->record_align = MAX (rli->record_align, type_align);

	  if (warn_packed)
	    rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
	  user_align |= TYPE_USER_ALIGN (type);
	}
    }
  else
    {
      rli->record_align = MAX (rli->record_align, desired_align);
      rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
    }

  TYPE_USER_ALIGN (rli->t) |= user_align;

  return desired_align;
}

/* Called from place_field to handle unions.  */

static void
place_union_field (record_layout_info rli, tree field)
{
  update_alignment_for_field (rli, field, /*known_align=*/0);

  DECL_FIELD_OFFSET (field) = size_zero_node;
  DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
  SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);

  /* If this is an ERROR_MARK return *after* having set the
     field at the start of the union. This helps when parsing
     invalid fields. */
  if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
    return;

  /* We assume the union's size will be a multiple of a byte so we don't
     bother with BITPOS.  */
  if (TREE_CODE (rli->t) == UNION_TYPE)
    rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
  else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
    rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
			       DECL_SIZE_UNIT (field), rli->offset);
}

/* A bitfield of SIZE with a required access alignment of ALIGN is allocated
   at BYTE_OFFSET / BIT_OFFSET.  Return nonzero if the field would span more
   units of alignment than the underlying TYPE.  */
static int
excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
		  HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
{
  /* Note that the calculation of OFFSET might overflow; we calculate it so
     that we still get the right result as long as ALIGN is a power of two.  */
  unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;

  offset = offset % align;
  return ((offset + size + align - 1) / align
	  > tree_to_uhwi (TYPE_SIZE (type)) / align);
}

/* RLI contains information about the layout of a RECORD_TYPE.  FIELD
   is a FIELD_DECL to be added after those fields already present in
   T.  (FIELD is not actually added to the TYPE_FIELDS list here;
   callers that desire that behavior must manually perform that step.)  */

void
place_field (record_layout_info rli, tree field)
{
  /* The alignment required for FIELD.  */
  unsigned int desired_align;
  /* The alignment FIELD would have if we just dropped it into the
     record as it presently stands.  */
  unsigned int known_align;
  unsigned int actual_align;
  /* The type of this field.  */
  tree type = TREE_TYPE (field);

  gcc_assert (TREE_CODE (field) != ERROR_MARK);

  /* If FIELD is static, then treat it like a separate variable, not
     really like a structure field.  If it is a FUNCTION_DECL, it's a
     method.  In both cases, all we do is lay out the decl, and we do
     it *after* the record is laid out.  */
  if (VAR_P (field))
    {
      vec_safe_push (rli->pending_statics, field);
      return;
    }

  /* Enumerators and enum types which are local to this class need not
     be laid out.  Likewise for initialized constant fields.  */
  else if (TREE_CODE (field) != FIELD_DECL)
    return;

  /* Unions are laid out very differently than records, so split
     that code off to another function.  */
  else if (TREE_CODE (rli->t) != RECORD_TYPE)
    {
      place_union_field (rli, field);
      return;
    }

  else if (TREE_CODE (type) == ERROR_MARK)
    {
      /* Place this field at the current allocation position, so we
	 maintain monotonicity.  */
      DECL_FIELD_OFFSET (field) = rli->offset;
      DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
      SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
      return;
    }

  /* Work out the known alignment so far.  Note that A & (-A) is the
     value of the least-significant bit in A that is one.  */
  if (! integer_zerop (rli->bitpos))
    known_align = least_bit_hwi (tree_to_uhwi (rli->bitpos));
  else if (integer_zerop (rli->offset))
    known_align = 0;
  else if (tree_fits_uhwi_p (rli->offset))
    known_align = (BITS_PER_UNIT
		   * least_bit_hwi (tree_to_uhwi (rli->offset)));
  else
    known_align = rli->offset_align;

  desired_align = update_alignment_for_field (rli, field, known_align);
  if (known_align == 0)
    known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);

  if (warn_packed && DECL_PACKED (field))
    {
      if (known_align >= TYPE_ALIGN (type))
	{
	  if (TYPE_ALIGN (type) > desired_align)
	    {
	      if (STRICT_ALIGNMENT)
		warning (OPT_Wattributes, "packed attribute causes "
                         "inefficient alignment for %q+D", field);
	      /* Don't warn if DECL_PACKED was set by the type.  */
	      else if (!TYPE_PACKED (rli->t))
		warning (OPT_Wattributes, "packed attribute is "
			 "unnecessary for %q+D", field);
	    }
	}
      else
	rli->packed_maybe_necessary = 1;
    }

  /* Does this field automatically have alignment it needs by virtue
     of the fields that precede it and the record's own alignment?  */
  if (known_align < desired_align)
    {
      /* No, we need to skip space before this field.
	 Bump the cumulative size to multiple of field alignment.  */

      if (!targetm.ms_bitfield_layout_p (rli->t)
          && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
	warning (OPT_Wpadded, "padding struct to align %q+D", field);

      /* If the alignment is still within offset_align, just align
	 the bit position.  */
      if (desired_align < rli->offset_align)
	rli->bitpos = round_up (rli->bitpos, desired_align);
      else
	{
	  /* First adjust OFFSET by the partial bits, then align.  */
	  rli->offset
	    = size_binop (PLUS_EXPR, rli->offset,
			  fold_convert (sizetype,
					size_binop (CEIL_DIV_EXPR, rli->bitpos,
						    bitsize_unit_node)));
	  rli->bitpos = bitsize_zero_node;

	  rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
	}

      if (! TREE_CONSTANT (rli->offset))
	rli->offset_align = desired_align;
      if (targetm.ms_bitfield_layout_p (rli->t))
	rli->prev_field = NULL;
    }

  /* Handle compatibility with PCC.  Note that if the record has any
     variable-sized fields, we need not worry about compatibility.  */
  if (PCC_BITFIELD_TYPE_MATTERS
      && ! targetm.ms_bitfield_layout_p (rli->t)
      && TREE_CODE (field) == FIELD_DECL
      && type != error_mark_node
      && DECL_BIT_FIELD (field)
      && (! DECL_PACKED (field)
	  /* Enter for these packed fields only to issue a warning.  */
	  || TYPE_ALIGN (type) <= BITS_PER_UNIT)
      && maximum_field_alignment == 0
      && ! integer_zerop (DECL_SIZE (field))
      && tree_fits_uhwi_p (DECL_SIZE (field))
      && tree_fits_uhwi_p (rli->offset)
      && tree_fits_uhwi_p (TYPE_SIZE (type)))
    {
      unsigned int type_align = TYPE_ALIGN (type);
      tree dsize = DECL_SIZE (field);
      HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
      HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
      HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);

#ifdef ADJUST_FIELD_ALIGN
      if (! TYPE_USER_ALIGN (type))
	type_align = ADJUST_FIELD_ALIGN (field, type_align);
#endif

      /* A bit field may not span more units of alignment of its type
	 than its type itself.  Advance to next boundary if necessary.  */
      if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
	{
	  if (DECL_PACKED (field))
	    {
	      if (warn_packed_bitfield_compat == 1)
		inform
		  (input_location,
		   "offset of packed bit-field %qD has changed in GCC 4.4",
		   field);
	    }
	  else
	    rli->bitpos = round_up (rli->bitpos, type_align);
	}

      if (! DECL_PACKED (field))
	TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
    }

#ifdef BITFIELD_NBYTES_LIMITED
  if (BITFIELD_NBYTES_LIMITED
      && ! targetm.ms_bitfield_layout_p (rli->t)
      && TREE_CODE (field) == FIELD_DECL
      && type != error_mark_node
      && DECL_BIT_FIELD_TYPE (field)
      && ! DECL_PACKED (field)
      && ! integer_zerop (DECL_SIZE (field))
      && tree_fits_uhwi_p (DECL_SIZE (field))
      && tree_fits_uhwi_p (rli->offset)
      && tree_fits_uhwi_p (TYPE_SIZE (type)))
    {
      unsigned int type_align = TYPE_ALIGN (type);
      tree dsize = DECL_SIZE (field);
      HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
      HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
      HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);

#ifdef ADJUST_FIELD_ALIGN
      if (! TYPE_USER_ALIGN (type))
	type_align = ADJUST_FIELD_ALIGN (field, type_align);
#endif

      if (maximum_field_alignment != 0)
	type_align = MIN (type_align, maximum_field_alignment);
      /* ??? This test is opposite the test in the containing if
	 statement, so this code is unreachable currently.  */
      else if (DECL_PACKED (field))
	type_align = MIN (type_align, BITS_PER_UNIT);

      /* A bit field may not span the unit of alignment of its type.
	 Advance to next boundary if necessary.  */
      if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
	rli->bitpos = round_up (rli->bitpos, type_align);

      TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
    }
#endif

  /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
     A subtlety:
	When a bit field is inserted into a packed record, the whole
	size of the underlying type is used by one or more same-size
	adjacent bitfields.  (That is, if its long:3, 32 bits is
	used in the record, and any additional adjacent long bitfields are
	packed into the same chunk of 32 bits. However, if the size
	changes, a new field of that size is allocated.)  In an unpacked
	record, this is the same as using alignment, but not equivalent
	when packing.

     Note: for compatibility, we use the type size, not the type alignment
     to determine alignment, since that matches the documentation */

  if (targetm.ms_bitfield_layout_p (rli->t))
    {
      tree prev_saved = rli->prev_field;
      tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;

      /* This is a bitfield if it exists.  */
      if (rli->prev_field)
	{
	  /* If both are bitfields, nonzero, and the same size, this is
	     the middle of a run.  Zero declared size fields are special
	     and handled as "end of run". (Note: it's nonzero declared
	     size, but equal type sizes!) (Since we know that both
	     the current and previous fields are bitfields by the
	     time we check it, DECL_SIZE must be present for both.) */
	  if (DECL_BIT_FIELD_TYPE (field)
	      && !integer_zerop (DECL_SIZE (field))
	      && !integer_zerop (DECL_SIZE (rli->prev_field))
	      && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
	      && tree_fits_uhwi_p (TYPE_SIZE (type))
	      && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
	    {
	      /* We're in the middle of a run of equal type size fields; make
		 sure we realign if we run out of bits.  (Not decl size,
		 type size!) */
	      HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));

	      if (rli->remaining_in_alignment < bitsize)
		{
		  HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));

		  /* out of bits; bump up to next 'word'.  */
		  rli->bitpos
		    = size_binop (PLUS_EXPR, rli->bitpos,
				  bitsize_int (rli->remaining_in_alignment));
		  rli->prev_field = field;
		  if (typesize < bitsize)
		    rli->remaining_in_alignment = 0;
		  else
		    rli->remaining_in_alignment = typesize - bitsize;
		}
	      else
		rli->remaining_in_alignment -= bitsize;
	    }
	  else
	    {
	      /* End of a run: if leaving a run of bitfields of the same type
		 size, we have to "use up" the rest of the bits of the type
		 size.

		 Compute the new position as the sum of the size for the prior
		 type and where we first started working on that type.
		 Note: since the beginning of the field was aligned then
		 of course the end will be too.  No round needed.  */

	      if (!integer_zerop (DECL_SIZE (rli->prev_field)))
		{
		  rli->bitpos
		    = size_binop (PLUS_EXPR, rli->bitpos,
				  bitsize_int (rli->remaining_in_alignment));
		}
	      else
		/* We "use up" size zero fields; the code below should behave
		   as if the prior field was not a bitfield.  */
		prev_saved = NULL;

	      /* Cause a new bitfield to be captured, either this time (if
		 currently a bitfield) or next time we see one.  */
	      if (!DECL_BIT_FIELD_TYPE (field)
		  || integer_zerop (DECL_SIZE (field)))
		rli->prev_field = NULL;
	    }

	  normalize_rli (rli);
        }

      /* If we're starting a new run of same type size bitfields
	 (or a run of non-bitfields), set up the "first of the run"
	 fields.

	 That is, if the current field is not a bitfield, or if there
	 was a prior bitfield the type sizes differ, or if there wasn't
	 a prior bitfield the size of the current field is nonzero.

	 Note: we must be sure to test ONLY the type size if there was
	 a prior bitfield and ONLY for the current field being zero if
	 there wasn't.  */

      if (!DECL_BIT_FIELD_TYPE (field)
	  || (prev_saved != NULL
	      ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
	      : !integer_zerop (DECL_SIZE (field)) ))
	{
	  /* Never smaller than a byte for compatibility.  */
	  unsigned int type_align = BITS_PER_UNIT;

	  /* (When not a bitfield), we could be seeing a flex array (with
	     no DECL_SIZE).  Since we won't be using remaining_in_alignment
	     until we see a bitfield (and come by here again) we just skip
	     calculating it.  */
	  if (DECL_SIZE (field) != NULL
	      && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
	      && tree_fits_uhwi_p (DECL_SIZE (field)))
	    {
	      unsigned HOST_WIDE_INT bitsize
		= tree_to_uhwi (DECL_SIZE (field));
	      unsigned HOST_WIDE_INT typesize
		= tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));

	      if (typesize < bitsize)
		rli->remaining_in_alignment = 0;
	      else
		rli->remaining_in_alignment = typesize - bitsize;
	    }

	  /* Now align (conventionally) for the new type.  */
	  type_align = TYPE_ALIGN (TREE_TYPE (field));

	  if (maximum_field_alignment != 0)
	    type_align = MIN (type_align, maximum_field_alignment);

	  rli->bitpos = round_up (rli->bitpos, type_align);

          /* If we really aligned, don't allow subsequent bitfields
	     to undo that.  */
	  rli->prev_field = NULL;
	}
    }

  /* Offset so far becomes the position of this field after normalizing.  */
  normalize_rli (rli);
  DECL_FIELD_OFFSET (field) = rli->offset;
  DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
  SET_DECL_OFFSET_ALIGN (field, rli->offset_align);

  /* Evaluate nonconstant offsets only once, either now or as soon as safe.  */
  if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
    DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));

  /* If this field ended up more aligned than we thought it would be (we
     approximate this by seeing if its position changed), lay out the field
     again; perhaps we can use an integral mode for it now.  */
  if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
    actual_align = least_bit_hwi (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
  else if (integer_zerop (DECL_FIELD_OFFSET (field)))
    actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
  else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
    actual_align = (BITS_PER_UNIT
		    * least_bit_hwi (tree_to_uhwi (DECL_FIELD_OFFSET (field))));
  else
    actual_align = DECL_OFFSET_ALIGN (field);
  /* ACTUAL_ALIGN is still the actual alignment *within the record* .
     store / extract bit field operations will check the alignment of the
     record against the mode of bit fields.  */

  if (known_align != actual_align)
    layout_decl (field, actual_align);

  if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
    rli->prev_field = field;

  /* Now add size of this field to the size of the record.  If the size is
     not constant, treat the field as being a multiple of bytes and just
     adjust the offset, resetting the bit position.  Otherwise, apportion the
     size amongst the bit position and offset.  First handle the case of an
     unspecified size, which can happen when we have an invalid nested struct
     definition, such as struct j { struct j { int i; } }.  The error message
     is printed in finish_struct.  */
  if (DECL_SIZE (field) == 0)
    /* Do nothing.  */;
  else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
	   || TREE_OVERFLOW (DECL_SIZE (field)))
    {
      rli->offset
	= size_binop (PLUS_EXPR, rli->offset,
		      fold_convert (sizetype,
				    size_binop (CEIL_DIV_EXPR, rli->bitpos,
						bitsize_unit_node)));
      rli->offset
	= size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
      rli->bitpos = bitsize_zero_node;
      rli->offset_align = MIN (rli->offset_align, desired_align);
    }
  else if (targetm.ms_bitfield_layout_p (rli->t))
    {
      rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));

      /* If we ended a bitfield before the full length of the type then
	 pad the struct out to the full length of the last type.  */
      if ((DECL_CHAIN (field) == NULL
	   || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
	  && DECL_BIT_FIELD_TYPE (field)
	  && !integer_zerop (DECL_SIZE (field)))
	rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
				  bitsize_int (rli->remaining_in_alignment));

      normalize_rli (rli);
    }
  else
    {
      rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
      normalize_rli (rli);
    }
}

/* Assuming that all the fields have been laid out, this function uses
   RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
   indicated by RLI.  */

static void
finalize_record_size (record_layout_info rli)
{
  tree unpadded_size, unpadded_size_unit;

  /* Now we want just byte and bit offsets, so set the offset alignment
     to be a byte and then normalize.  */
  rli->offset_align = BITS_PER_UNIT;
  normalize_rli (rli);

  /* Determine the desired alignment.  */
#ifdef ROUND_TYPE_ALIGN
  SET_TYPE_ALIGN (rli->t, ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
					    rli->record_align));
#else
  SET_TYPE_ALIGN (rli->t, MAX (TYPE_ALIGN (rli->t), rli->record_align));
#endif

  /* Compute the size so far.  Be sure to allow for extra bits in the
     size in bytes.  We have guaranteed above that it will be no more
     than a single byte.  */
  unpadded_size = rli_size_so_far (rli);
  unpadded_size_unit = rli_size_unit_so_far (rli);
  if (! integer_zerop (rli->bitpos))
    unpadded_size_unit
      = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);

  /* Round the size up to be a multiple of the required alignment.  */
  TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
  TYPE_SIZE_UNIT (rli->t)
    = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));

  if (TREE_CONSTANT (unpadded_size)
      && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
      && input_location != BUILTINS_LOCATION)
    warning (OPT_Wpadded, "padding struct size to alignment boundary");

  if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
      && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
      && TREE_CONSTANT (unpadded_size))
    {
      tree unpacked_size;

#ifdef ROUND_TYPE_ALIGN
      rli->unpacked_align
	= ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
#else
      rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
#endif

      unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
      if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
	{
	  if (TYPE_NAME (rli->t))
	    {
	      tree name;

	      if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
		name = TYPE_NAME (rli->t);
	      else
		name = DECL_NAME (TYPE_NAME (rli->t));

	      if (STRICT_ALIGNMENT)
		warning (OPT_Wpacked, "packed attribute causes inefficient "
			 "alignment for %qE", name);
	      else
		warning (OPT_Wpacked,
			 "packed attribute is unnecessary for %qE", name);
	    }
	  else
	    {
	      if (STRICT_ALIGNMENT)
		warning (OPT_Wpacked,
			 "packed attribute causes inefficient alignment");
	      else
		warning (OPT_Wpacked, "packed attribute is unnecessary");
	    }
	}
    }
}

/* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE).  */

void
compute_record_mode (tree type)
{
  tree field;
  machine_mode mode = VOIDmode;

  /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
     However, if possible, we use a mode that fits in a register
     instead, in order to allow for better optimization down the
     line.  */
  SET_TYPE_MODE (type, BLKmode);

  if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
    return;

  /* A record which has any BLKmode members must itself be
     BLKmode; it can't go in a register.  Unless the member is
     BLKmode only because it isn't aligned.  */
  for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
    {
      if (TREE_CODE (field) != FIELD_DECL)
	continue;

      if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
	  || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
	      && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
	      && !(TYPE_SIZE (TREE_TYPE (field)) != 0
		   && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
	  || ! tree_fits_uhwi_p (bit_position (field))
	  || DECL_SIZE (field) == 0
	  || ! tree_fits_uhwi_p (DECL_SIZE (field)))
	return;

      /* If this field is the whole struct, remember its mode so
	 that, say, we can put a double in a class into a DF
	 register instead of forcing it to live in the stack.  */
      if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
	mode = DECL_MODE (field);

      /* With some targets, it is sub-optimal to access an aligned
	 BLKmode structure as a scalar.  */
      if (targetm.member_type_forces_blk (field, mode))
	return;
    }

  /* If we only have one real field; use its mode if that mode's size
     matches the type's size.  This only applies to RECORD_TYPE.  This
     does not apply to unions.  */
  if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
      && tree_fits_uhwi_p (TYPE_SIZE (type))
      && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
    SET_TYPE_MODE (type, mode);
  else
    SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));

  /* If structure's known alignment is less than what the scalar
     mode would need, and it matters, then stick with BLKmode.  */
  if (TYPE_MODE (type) != BLKmode
      && STRICT_ALIGNMENT
      && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
	    || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
    {
      /* If this is the only reason this type is BLKmode, then
	 don't force containing types to be BLKmode.  */
      TYPE_NO_FORCE_BLK (type) = 1;
      SET_TYPE_MODE (type, BLKmode);
    }
}

/* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
   out.  */

static void
finalize_type_size (tree type)
{
  /* Normally, use the alignment corresponding to the mode chosen.
     However, where strict alignment is not required, avoid
     over-aligning structures, since most compilers do not do this
     alignment.  */
  if (TYPE_MODE (type) != BLKmode
      && TYPE_MODE (type) != VOIDmode
      && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
    {
      unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));

      /* Don't override a larger alignment requirement coming from a user
	 alignment of one of the fields.  */
      if (mode_align >= TYPE_ALIGN (type))
	{
	  SET_TYPE_ALIGN (type, mode_align);
	  TYPE_USER_ALIGN (type) = 0;
	}
    }

  /* Do machine-dependent extra alignment.  */
#ifdef ROUND_TYPE_ALIGN
  SET_TYPE_ALIGN (type,
                  ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT));
#endif

  /* If we failed to find a simple way to calculate the unit size
     of the type, find it by division.  */
  if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
    /* TYPE_SIZE (type) is computed in bitsizetype.  After the division, the
       result will fit in sizetype.  We will get more efficient code using
       sizetype, so we force a conversion.  */
    TYPE_SIZE_UNIT (type)
      = fold_convert (sizetype,
		      size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
				  bitsize_unit_node));

  if (TYPE_SIZE (type) != 0)
    {
      TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
      TYPE_SIZE_UNIT (type)
	= round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
    }

  /* Evaluate nonconstant sizes only once, either now or as soon as safe.  */
  if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
    TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
  if (TYPE_SIZE_UNIT (type) != 0
      && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
    TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));

  /* Also layout any other variants of the type.  */
  if (TYPE_NEXT_VARIANT (type)
      || type != TYPE_MAIN_VARIANT (type))
    {
      tree variant;
      /* Record layout info of this variant.  */
      tree size = TYPE_SIZE (type);
      tree size_unit = TYPE_SIZE_UNIT (type);
      unsigned int align = TYPE_ALIGN (type);
      unsigned int precision = TYPE_PRECISION (type);
      unsigned int user_align = TYPE_USER_ALIGN (type);
      machine_mode mode = TYPE_MODE (type);

      /* Copy it into all variants.  */
      for (variant = TYPE_MAIN_VARIANT (type);
	   variant != 0;
	   variant = TYPE_NEXT_VARIANT (variant))
	{
	  TYPE_SIZE (variant) = size;
	  TYPE_SIZE_UNIT (variant) = size_unit;
	  unsigned valign = align;
	  if (TYPE_USER_ALIGN (variant))
	    valign = MAX (valign, TYPE_ALIGN (variant));
	  else
	    TYPE_USER_ALIGN (variant) = user_align;
	  SET_TYPE_ALIGN (variant, valign);
	  TYPE_PRECISION (variant) = precision;
	  SET_TYPE_MODE (variant, mode);
	}
    }
}

/* Return a new underlying object for a bitfield started with FIELD.  */

static tree
start_bitfield_representative (tree field)
{
  tree repr = make_node (FIELD_DECL);
  DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
  /* Force the representative to begin at a BITS_PER_UNIT aligned
     boundary - C++ may use tail-padding of a base object to
     continue packing bits so the bitfield region does not start
     at bit zero (see g++.dg/abi/bitfield5.C for example).
     Unallocated bits may happen for other reasons as well,
     for example Ada which allows explicit bit-granular structure layout.  */
  DECL_FIELD_BIT_OFFSET (repr)
    = size_binop (BIT_AND_EXPR,
		  DECL_FIELD_BIT_OFFSET (field),
		  bitsize_int (~(BITS_PER_UNIT - 1)));
  SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
  DECL_SIZE (repr) = DECL_SIZE (field);
  DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
  DECL_PACKED (repr) = DECL_PACKED (field);
  DECL_CONTEXT (repr) = DECL_CONTEXT (field);
  /* There are no indirect accesses to this field.  If we introduce
     some then they have to use the record alias set.  This makes
     sure to properly conflict with [indirect] accesses to addressable
     fields of the bitfield group.  */
  DECL_NONADDRESSABLE_P (repr) = 1;
  return repr;
}

/* Finish up a bitfield group that was started by creating the underlying
   object REPR with the last field in the bitfield group FIELD.  */

static void
finish_bitfield_representative (tree repr, tree field)
{
  unsigned HOST_WIDE_INT bitsize, maxbitsize;
  machine_mode mode;
  tree nextf, size;

  size = size_diffop (DECL_FIELD_OFFSET (field),
		      DECL_FIELD_OFFSET (repr));
  while (TREE_CODE (size) == COMPOUND_EXPR)
    size = TREE_OPERAND (size, 1);
  gcc_assert (tree_fits_uhwi_p (size));
  bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
	     + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
	     - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
	     + tree_to_uhwi (DECL_SIZE (field)));

  /* Round up bitsize to multiples of BITS_PER_UNIT.  */
  bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);

  /* Now nothing tells us how to pad out bitsize ...  */
  nextf = DECL_CHAIN (field);
  while (nextf && TREE_CODE (nextf) != FIELD_DECL)
    nextf = DECL_CHAIN (nextf);
  if (nextf)
    {
      tree maxsize;
      /* If there was an error, the field may be not laid out
         correctly.  Don't bother to do anything.  */
      if (TREE_TYPE (nextf) == error_mark_node)
	return;
      maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
			     DECL_FIELD_OFFSET (repr));
      if (tree_fits_uhwi_p (maxsize))
	{
	  maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
			+ tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
			- tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
	  /* If the group ends within a bitfield nextf does not need to be
	     aligned to BITS_PER_UNIT.  Thus round up.  */
	  maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
	}
      else
	maxbitsize = bitsize;
    }
  else
    {
      /* ???  If you consider that tail-padding of this struct might be
         re-used when deriving from it we cannot really do the following
	 and thus need to set maxsize to bitsize?  Also we cannot
	 generally rely on maxsize to fold to an integer constant, so
	 use bitsize as fallback for this case.  */
      tree maxsize = size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field)),
				  DECL_FIELD_OFFSET (repr));
      if (tree_fits_uhwi_p (maxsize))
	maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
		      - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
      else
	maxbitsize = bitsize;
    }

  /* Only if we don't artificially break up the representative in
     the middle of a large bitfield with different possibly
     overlapping representatives.  And all representatives start
     at byte offset.  */
  gcc_assert (maxbitsize % BITS_PER_UNIT == 0);

  /* Find the smallest nice mode to use.  */
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
    if (GET_MODE_BITSIZE (mode) >= bitsize)
      break;
  if (mode != VOIDmode
      && (GET_MODE_BITSIZE (mode) > maxbitsize
	  || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
    mode = VOIDmode;

  if (mode == VOIDmode)
    {
      /* We really want a BLKmode representative only as a last resort,
         considering the member b in
	   struct { int a : 7; int b : 17; int c; } __attribute__((packed));
	 Otherwise we simply want to split the representative up
	 allowing for overlaps within the bitfield region as required for
	   struct { int a : 7; int b : 7;
		    int c : 10; int d; } __attribute__((packed));
	 [0, 15] HImode for a and b, [8, 23] HImode for c.  */
      DECL_SIZE (repr) = bitsize_int (bitsize);
      DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
      SET_DECL_MODE (repr, BLKmode);
      TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
						 bitsize / BITS_PER_UNIT);
    }
  else
    {
      unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
      DECL_SIZE (repr) = bitsize_int (modesize);
      DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
      SET_DECL_MODE (repr, mode);
      TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
    }

  /* Remember whether the bitfield group is at the end of the
     structure or not.  */
  DECL_CHAIN (repr) = nextf;
}

/* Compute and set FIELD_DECLs for the underlying objects we should
   use for bitfield access for the structure T.  */

void
finish_bitfield_layout (tree t)
{
  tree field, prev;
  tree repr = NULL_TREE;

  /* Unions would be special, for the ease of type-punning optimizations
     we could use the underlying type as hint for the representative
     if the bitfield would fit and the representative would not exceed
     the union in size.  */
  if (TREE_CODE (t) != RECORD_TYPE)
    return;

  for (prev = NULL_TREE, field = TYPE_FIELDS (t);
       field; field = DECL_CHAIN (field))
    {
      if (TREE_CODE (field) != FIELD_DECL)
	continue;

      /* In the C++ memory model, consecutive bit fields in a structure are
	 considered one memory location and updating a memory location
	 may not store into adjacent memory locations.  */
      if (!repr
	  && DECL_BIT_FIELD_TYPE (field))
	{
	  /* Start new representative.  */
	  repr = start_bitfield_representative (field);
	}
      else if (repr
	       && ! DECL_BIT_FIELD_TYPE (field))
	{
	  /* Finish off new representative.  */
	  finish_bitfield_representative (repr, prev);
	  repr = NULL_TREE;
	}
      else if (DECL_BIT_FIELD_TYPE (field))
	{
	  gcc_assert (repr != NULL_TREE);

	  /* Zero-size bitfields finish off a representative and
	     do not have a representative themselves.  This is
	     required by the C++ memory model.  */
	  if (integer_zerop (DECL_SIZE (field)))
	    {
	      finish_bitfield_representative (repr, prev);
	      repr = NULL_TREE;
	    }

	  /* We assume that either DECL_FIELD_OFFSET of the representative
	     and each bitfield member is a constant or they are equal.
	     This is because we need to be able to compute the bit-offset
	     of each field relative to the representative in get_bit_range
	     during RTL expansion.
	     If these constraints are not met, simply force a new
	     representative to be generated.  That will at most
	     generate worse code but still maintain correctness with
	     respect to the C++ memory model.  */
	  else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
		      && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
		     || operand_equal_p (DECL_FIELD_OFFSET (repr),
					 DECL_FIELD_OFFSET (field), 0)))
	    {
	      finish_bitfield_representative (repr, prev);
	      repr = start_bitfield_representative (field);
	    }
	}
      else
	continue;

      if (repr)
	DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;

      prev = field;
    }

  if (repr)
    finish_bitfield_representative (repr, prev);
}

/* Do all of the work required to layout the type indicated by RLI,
   once the fields have been laid out.  This function will call `free'
   for RLI, unless FREE_P is false.  Passing a value other than false
   for FREE_P is bad practice; this option only exists to support the
   G++ 3.2 ABI.  */

void
finish_record_layout (record_layout_info rli, int free_p)
{
  tree variant;

  /* Compute the final size.  */
  finalize_record_size (rli);

  /* Compute the TYPE_MODE for the record.  */
  compute_record_mode (rli->t);

  /* Perform any last tweaks to the TYPE_SIZE, etc.  */
  finalize_type_size (rli->t);

  /* Compute bitfield representatives.  */
  finish_bitfield_layout (rli->t);

  /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
     With C++ templates, it is too early to do this when the attribute
     is being parsed.  */
  for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
       variant = TYPE_NEXT_VARIANT (variant))
    {
      TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
      TYPE_REVERSE_STORAGE_ORDER (variant)
	= TYPE_REVERSE_STORAGE_ORDER (rli->t);
    }

  /* Lay out any static members.  This is done now because their type
     may use the record's type.  */
  while (!vec_safe_is_empty (rli->pending_statics))
    layout_decl (rli->pending_statics->pop (), 0);

  /* Clean up.  */
  if (free_p)
    {
      vec_free (rli->pending_statics);
      free (rli);
    }
}


/* Finish processing a builtin RECORD_TYPE type TYPE.  It's name is
   NAME, its fields are chained in reverse on FIELDS.

   If ALIGN_TYPE is non-null, it is given the same alignment as
   ALIGN_TYPE.  */

void
finish_builtin_struct (tree type, const char *name, tree fields,
		       tree align_type)
{
  tree tail, next;

  for (tail = NULL_TREE; fields; tail = fields, fields = next)
    {
      DECL_FIELD_CONTEXT (fields) = type;
      next = DECL_CHAIN (fields);
      DECL_CHAIN (fields) = tail;
    }
  TYPE_FIELDS (type) = tail;

  if (align_type)
    {
      SET_TYPE_ALIGN (type, TYPE_ALIGN (align_type));
      TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
    }

  layout_type (type);
#if 0 /* not yet, should get fixed properly later */
  TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
#else
  TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
				 TYPE_DECL, get_identifier (name), type);
#endif
  TYPE_STUB_DECL (type) = TYPE_NAME (type);
  layout_decl (TYPE_NAME (type), 0);
}

/* Calculate the mode, size, and alignment for TYPE.
   For an array type, calculate the element separation as well.
   Record TYPE on the chain of permanent or temporary types
   so that dbxout will find out about it.

   TYPE_SIZE of a type is nonzero if the type has been laid out already.
   layout_type does nothing on such a type.

   If the type is incomplete, its TYPE_SIZE remains zero.  */

void
layout_type (tree type)
{
  gcc_assert (type);

  if (type == error_mark_node)
    return;

  /* We don't want finalize_type_size to copy an alignment attribute to
     variants that don't have it.  */
  type = TYPE_MAIN_VARIANT (type);

  /* Do nothing if type has been laid out before.  */
  if (TYPE_SIZE (type))
    return;

  switch (TREE_CODE (type))
    {
    case LANG_TYPE:
      /* This kind of type is the responsibility
	 of the language-specific code.  */
      gcc_unreachable ();

    case BOOLEAN_TYPE:
    case INTEGER_TYPE:
    case ENUMERAL_TYPE:
      SET_TYPE_MODE (type,
		     smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
      TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
      /* Don't set TYPE_PRECISION here, as it may be set by a bitfield.  */
      TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
      break;

    case REAL_TYPE:
      /* Allow the caller to choose the type mode, which is how decimal
	 floats are distinguished from binary ones.  */
      if (TYPE_MODE (type) == VOIDmode)
	SET_TYPE_MODE (type,
		       mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
      TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
      TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
      break;

   case FIXED_POINT_TYPE:
     /* TYPE_MODE (type) has been set already.  */
     TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
     TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
     break;

    case COMPLEX_TYPE:
      TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
      SET_TYPE_MODE (type,
		     GET_MODE_COMPLEX_MODE (TYPE_MODE (TREE_TYPE (type))));

      TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
      TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
      break;

    case VECTOR_TYPE:
      {
	int nunits = TYPE_VECTOR_SUBPARTS (type);
	tree innertype = TREE_TYPE (type);

	gcc_assert (!(nunits & (nunits - 1)));

	/* Find an appropriate mode for the vector type.  */
	if (TYPE_MODE (type) == VOIDmode)
	  SET_TYPE_MODE (type,
			 mode_for_vector (TYPE_MODE (innertype), nunits));

	TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
        TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
	/* Several boolean vector elements may fit in a single unit.  */
	if (VECTOR_BOOLEAN_TYPE_P (type)
	    && type->type_common.mode != BLKmode)
	  TYPE_SIZE_UNIT (type)
	    = size_int (GET_MODE_SIZE (type->type_common.mode));
	else
	  TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
						   TYPE_SIZE_UNIT (innertype),
						   size_int (nunits));
	TYPE_SIZE (type) = int_const_binop (MULT_EXPR,
					    TYPE_SIZE (innertype),
					    bitsize_int (nunits));

	/* For vector types, we do not default to the mode's alignment.
	   Instead, query a target hook, defaulting to natural alignment.
	   This prevents ABI changes depending on whether or not native
	   vector modes are supported.  */
	SET_TYPE_ALIGN (type, targetm.vector_alignment (type));

	/* However, if the underlying mode requires a bigger alignment than
	   what the target hook provides, we cannot use the mode.  For now,
	   simply reject that case.  */
	gcc_assert (TYPE_ALIGN (type)
		    >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
        break;
      }

    case VOID_TYPE:
      /* This is an incomplete type and so doesn't have a size.  */
      SET_TYPE_ALIGN (type, 1);
      TYPE_USER_ALIGN (type) = 0;
      SET_TYPE_MODE (type, VOIDmode);
      break;

    case POINTER_BOUNDS_TYPE:
      TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
      TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
      break;

    case OFFSET_TYPE:
      TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
      TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
      /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
	 integral, which may be an __intN.  */
      SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
      TYPE_PRECISION (type) = POINTER_SIZE;
      break;

    case FUNCTION_TYPE:
    case METHOD_TYPE:
      /* It's hard to see what the mode and size of a function ought to
	 be, but we do know the alignment is FUNCTION_BOUNDARY, so
	 make it consistent with that.  */
      SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
      TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
      TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
      break;

    case POINTER_TYPE:
    case REFERENCE_TYPE:
      {
	machine_mode mode = TYPE_MODE (type);
	TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
	TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
	TYPE_UNSIGNED (type) = 1;
	TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
      }
      break;

    case ARRAY_TYPE:
      {
	tree index = TYPE_DOMAIN (type);
	tree element = TREE_TYPE (type);

	/* We need to know both bounds in order to compute the size.  */
	if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
	    && TYPE_SIZE (element))
	  {
	    tree ub = TYPE_MAX_VALUE (index);
	    tree lb = TYPE_MIN_VALUE (index);
	    tree element_size = TYPE_SIZE (element);
	    tree length;

	    /* Make sure that an array of zero-sized element is zero-sized
	       regardless of its extent.  */
	    if (integer_zerop (element_size))
	      length = size_zero_node;

	    /* The computation should happen in the original signedness so
	       that (possible) negative values are handled appropriately
	       when determining overflow.  */
	    else
	      {
		/* ???  When it is obvious that the range is signed
		   represent it using ssizetype.  */
		if (TREE_CODE (lb) == INTEGER_CST
		    && TREE_CODE (ub) == INTEGER_CST
		    && TYPE_UNSIGNED (TREE_TYPE (lb))
		    && tree_int_cst_lt (ub, lb))
		  {
		    lb = wide_int_to_tree (ssizetype,
					   offset_int::from (lb, SIGNED));
		    ub = wide_int_to_tree (ssizetype,
					   offset_int::from (ub, SIGNED));
		  }
		length
		  = fold_convert (sizetype,
				  size_binop (PLUS_EXPR,
					      build_int_cst (TREE_TYPE (lb), 1),
					      size_binop (MINUS_EXPR, ub, lb)));
	      }

	    /* ??? We have no way to distinguish a null-sized array from an
	       array spanning the whole sizetype range, so we arbitrarily
	       decide that [0, -1] is the only valid representation.  */
	    if (integer_zerop (length)
	        && TREE_OVERFLOW (length)
		&& integer_zerop (lb))
	      length = size_zero_node;

	    TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
					   fold_convert (bitsizetype,
							 length));

	    /* If we know the size of the element, calculate the total size
	       directly, rather than do some division thing below.  This
	       optimization helps Fortran assumed-size arrays (where the
	       size of the array is determined at runtime) substantially.  */
	    if (TYPE_SIZE_UNIT (element))
	      TYPE_SIZE_UNIT (type)
		= size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
	  }

	/* Now round the alignment and size,
	   using machine-dependent criteria if any.  */

	unsigned align = TYPE_ALIGN (element);
	if (TYPE_USER_ALIGN (type))
	  align = MAX (align, TYPE_ALIGN (type));
	else
	  TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
#ifdef ROUND_TYPE_ALIGN
	align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
#else
	align = MAX (align, BITS_PER_UNIT);
#endif
	SET_TYPE_ALIGN (type, align);
	SET_TYPE_MODE (type, BLKmode);
	if (TYPE_SIZE (type) != 0
	    && ! targetm.member_type_forces_blk (type, VOIDmode)
	    /* BLKmode elements force BLKmode aggregate;
	       else extract/store fields may lose.  */
	    && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
		|| TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
	  {
	    SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
						 TYPE_SIZE (type)));
	    if (TYPE_MODE (type) != BLKmode
		&& STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
		&& TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
	      {
		TYPE_NO_FORCE_BLK (type) = 1;
		SET_TYPE_MODE (type, BLKmode);
	      }
	  }
	/* When the element size is constant, check that it is at least as
	   large as the element alignment.  */
	if (TYPE_SIZE_UNIT (element)
	    && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
	    /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
	       TYPE_ALIGN_UNIT.  */
	    && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
	    && !integer_zerop (TYPE_SIZE_UNIT (element))
	    && compare_tree_int (TYPE_SIZE_UNIT (element),
			  	 TYPE_ALIGN_UNIT (element)) < 0)
	  error ("alignment of array elements is greater than element size");
	break;
      }

    case RECORD_TYPE:
    case UNION_TYPE:
    case QUAL_UNION_TYPE:
      {
	tree field;
	record_layout_info rli;

	/* Initialize the layout information.  */
	rli = start_record_layout (type);

	/* If this is a QUAL_UNION_TYPE, we want to process the fields
	   in the reverse order in building the COND_EXPR that denotes
	   its size.  We reverse them again later.  */
	if (TREE_CODE (type) == QUAL_UNION_TYPE)
	  TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));

	/* Place all the fields.  */
	for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
	  place_field (rli, field);

	if (TREE_CODE (type) == QUAL_UNION_TYPE)
	  TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));

	/* Finish laying out the record.  */
	finish_record_layout (rli, /*free_p=*/true);
      }
      break;

    default:
      gcc_unreachable ();
    }

  /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE.  For
     records and unions, finish_record_layout already called this
     function.  */
  if (!RECORD_OR_UNION_TYPE_P (type))
    finalize_type_size (type);

  /* We should never see alias sets on incomplete aggregates.  And we
     should not call layout_type on not incomplete aggregates.  */
  if (AGGREGATE_TYPE_P (type))
    gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
}

/* Return the least alignment required for type TYPE.  */

unsigned int
min_align_of_type (tree type)
{
  unsigned int align = TYPE_ALIGN (type);
  if (!TYPE_USER_ALIGN (type))
    {
      align = MIN (align, BIGGEST_ALIGNMENT);
#ifdef BIGGEST_FIELD_ALIGNMENT
      align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
#endif
      unsigned int field_align = align;
#ifdef ADJUST_FIELD_ALIGN
      tree field = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE, type);
      field_align = ADJUST_FIELD_ALIGN (field, field_align);
      ggc_free (field);
#endif
      align = MIN (align, field_align);
    }
  return align / BITS_PER_UNIT;
}

/* Vector types need to re-check the target flags each time we report
   the machine mode.  We need to do this because attribute target can
   change the result of vector_mode_supported_p and have_regs_of_mode
   on a per-function basis.  Thus the TYPE_MODE of a VECTOR_TYPE can
   change on a per-function basis.  */
/* ??? Possibly a better solution is to run through all the types
   referenced by a function and re-compute the TYPE_MODE once, rather
   than make the TYPE_MODE macro call a function.  */

machine_mode
vector_type_mode (const_tree t)
{
  machine_mode mode;

  gcc_assert (TREE_CODE (t) == VECTOR_TYPE);

  mode = t->type_common.mode;
  if (VECTOR_MODE_P (mode)
      && (!targetm.vector_mode_supported_p (mode)
	  || !have_regs_of_mode[mode]))
    {
      machine_mode innermode = TREE_TYPE (t)->type_common.mode;

      /* For integers, try mapping it to a same-sized scalar mode.  */
      if (GET_MODE_CLASS (innermode) == MODE_INT)
	{
	  mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
				* GET_MODE_BITSIZE (innermode), MODE_INT, 0);

	  if (mode != VOIDmode && have_regs_of_mode[mode])
	    return mode;
	}

      return BLKmode;
    }

  return mode;
}

/* Create and return a type for signed integers of PRECISION bits.  */

tree
make_signed_type (int precision)
{
  tree type = make_node (INTEGER_TYPE);

  TYPE_PRECISION (type) = precision;

  fixup_signed_type (type);
  return type;
}

/* Create and return a type for unsigned integers of PRECISION bits.  */

tree
make_unsigned_type (int precision)
{
  tree type = make_node (INTEGER_TYPE);

  TYPE_PRECISION (type) = precision;

  fixup_unsigned_type (type);
  return type;
}

/* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
   and SATP.  */

tree
make_fract_type (int precision, int unsignedp, int satp)
{
  tree type = make_node (FIXED_POINT_TYPE);

  TYPE_PRECISION (type) = precision;

  if (satp)
    TYPE_SATURATING (type) = 1;

  /* Lay out the type: set its alignment, size, etc.  */
  if (unsignedp)
    {
      TYPE_UNSIGNED (type) = 1;
      SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
    }
  else
    SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
  layout_type (type);

  return type;
}

/* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
   and SATP.  */

tree
make_accum_type (int precision, int unsignedp, int satp)
{
  tree type = make_node (FIXED_POINT_TYPE);

  TYPE_PRECISION (type) = precision;

  if (satp)
    TYPE_SATURATING (type) = 1;

  /* Lay out the type: set its alignment, size, etc.  */
  if (unsignedp)
    {
      TYPE_UNSIGNED (type) = 1;
      SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
    }
  else
    SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
  layout_type (type);

  return type;
}

/* Initialize sizetypes so layout_type can use them.  */

void
initialize_sizetypes (void)
{
  int precision, bprecision;

  /* Get sizetypes precision from the SIZE_TYPE target macro.  */
  if (strcmp (SIZETYPE, "unsigned int") == 0)
    precision = INT_TYPE_SIZE;
  else if (strcmp (SIZETYPE, "long unsigned int") == 0)
    precision = LONG_TYPE_SIZE;
  else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
    precision = LONG_LONG_TYPE_SIZE;
  else if (strcmp (SIZETYPE, "short unsigned int") == 0)
    precision = SHORT_TYPE_SIZE;
  else
    {
      int i;

      precision = -1;
      for (i = 0; i < NUM_INT_N_ENTS; i++)
	if (int_n_enabled_p[i])
	  {
	    char name[50];
	    sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);

	    if (strcmp (name, SIZETYPE) == 0)
	      {
		precision = int_n_data[i].bitsize;
	      }
	  }
      if (precision == -1)
	gcc_unreachable ();
    }

  bprecision
    = MIN (precision + LOG2_BITS_PER_UNIT + 1, MAX_FIXED_MODE_SIZE);
  bprecision
    = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
  if (bprecision > HOST_BITS_PER_DOUBLE_INT)
    bprecision = HOST_BITS_PER_DOUBLE_INT;

  /* Create stubs for sizetype and bitsizetype so we can create constants.  */
  sizetype = make_node (INTEGER_TYPE);
  TYPE_NAME (sizetype) = get_identifier ("sizetype");
  TYPE_PRECISION (sizetype) = precision;
  TYPE_UNSIGNED (sizetype) = 1;
  bitsizetype = make_node (INTEGER_TYPE);
  TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
  TYPE_PRECISION (bitsizetype) = bprecision;
  TYPE_UNSIGNED (bitsizetype) = 1;

  /* Now layout both types manually.  */
  SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
  SET_TYPE_ALIGN (sizetype, GET_MODE_ALIGNMENT (TYPE_MODE (sizetype)));
  TYPE_SIZE (sizetype) = bitsize_int (precision);
  TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
  set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);

  SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
  SET_TYPE_ALIGN (bitsizetype, GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype)));
  TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
  TYPE_SIZE_UNIT (bitsizetype)
    = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
  set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);

  /* Create the signed variants of *sizetype.  */
  ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
  TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
  sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
  TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
}

/* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
   or BOOLEAN_TYPE.  Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
   for TYPE, based on the PRECISION and whether or not the TYPE
   IS_UNSIGNED.  PRECISION need not correspond to a width supported
   natively by the hardware; for example, on a machine with 8-bit,
   16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
   61.  */

void
set_min_and_max_values_for_integral_type (tree type,
					  int precision,
					  signop sgn)
{
  /* For bitfields with zero width we end up creating integer types
     with zero precision.  Don't assign any minimum/maximum values
     to those types, they don't have any valid value.  */
  if (precision < 1)
    return;

  TYPE_MIN_VALUE (type)
    = wide_int_to_tree (type, wi::min_value (precision, sgn));
  TYPE_MAX_VALUE (type)
    = wide_int_to_tree (type, wi::max_value (precision, sgn));
}

/* Set the extreme values of TYPE based on its precision in bits,
   then lay it out.  Used when make_signed_type won't do
   because the tree code is not INTEGER_TYPE.
   E.g. for Pascal, when the -fsigned-char option is given.  */

void
fixup_signed_type (tree type)
{
  int precision = TYPE_PRECISION (type);

  set_min_and_max_values_for_integral_type (type, precision, SIGNED);

  /* Lay out the type: set its alignment, size, etc.  */
  layout_type (type);
}

/* Set the extreme values of TYPE based on its precision in bits,
   then lay it out.  This is used both in `make_unsigned_type'
   and for enumeral types.  */

void
fixup_unsigned_type (tree type)
{
  int precision = TYPE_PRECISION (type);

  TYPE_UNSIGNED (type) = 1;

  set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);

  /* Lay out the type: set its alignment, size, etc.  */
  layout_type (type);
}

/* Construct an iterator for a bitfield that spans BITSIZE bits,
   starting at BITPOS.

   BITREGION_START is the bit position of the first bit in this
   sequence of bit fields.  BITREGION_END is the last bit in this
   sequence.  If these two fields are non-zero, we should restrict the
   memory access to that range.  Otherwise, we are allowed to touch
   any adjacent non bit-fields.

   ALIGN is the alignment of the underlying object in bits.
   VOLATILEP says whether the bitfield is volatile.  */

bit_field_mode_iterator
::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
			   HOST_WIDE_INT bitregion_start,
			   HOST_WIDE_INT bitregion_end,
			   unsigned int align, bool volatilep)
: m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT)), m_bitsize (bitsize),
  m_bitpos (bitpos), m_bitregion_start (bitregion_start),
  m_bitregion_end (bitregion_end), m_align (align),
  m_volatilep (volatilep), m_count (0)
{
  if (!m_bitregion_end)
    {
      /* We can assume that any aligned chunk of ALIGN bits that overlaps
	 the bitfield is mapped and won't trap, provided that ALIGN isn't
	 too large.  The cap is the biggest required alignment for data,
	 or at least the word size.  And force one such chunk at least.  */
      unsigned HOST_WIDE_INT units
	= MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
      if (bitsize <= 0)
	bitsize = 1;
      m_bitregion_end = bitpos + bitsize + units - 1;
      m_bitregion_end -= m_bitregion_end % units + 1;
    }
}

/* Calls to this function return successively larger modes that can be used
   to represent the bitfield.  Return true if another bitfield mode is
   available, storing it in *OUT_MODE if so.  */

bool
bit_field_mode_iterator::next_mode (machine_mode *out_mode)
{
  for (; m_mode != VOIDmode; m_mode = GET_MODE_WIDER_MODE (m_mode))
    {
      unsigned int unit = GET_MODE_BITSIZE (m_mode);

      /* Skip modes that don't have full precision.  */
      if (unit != GET_MODE_PRECISION (m_mode))
	continue;

      /* Stop if the mode is too wide to handle efficiently.  */
      if (unit > MAX_FIXED_MODE_SIZE)
	break;

      /* Don't deliver more than one multiword mode; the smallest one
	 should be used.  */
      if (m_count > 0 && unit > BITS_PER_WORD)
	break;

      /* Skip modes that are too small.  */
      unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
      unsigned HOST_WIDE_INT subend = substart + m_bitsize;
      if (subend > unit)
	continue;

      /* Stop if the mode goes outside the bitregion.  */
      HOST_WIDE_INT start = m_bitpos - substart;
      if (m_bitregion_start && start < m_bitregion_start)
	break;
      HOST_WIDE_INT end = start + unit;
      if (end > m_bitregion_end + 1)
	break;

      /* Stop if the mode requires too much alignment.  */
      if (GET_MODE_ALIGNMENT (m_mode) > m_align
	  && SLOW_UNALIGNED_ACCESS (m_mode, m_align))
	break;

      *out_mode = m_mode;
      m_mode = GET_MODE_WIDER_MODE (m_mode);
      m_count++;
      return true;
    }
  return false;
}

/* Return true if smaller modes are generally preferred for this kind
   of bitfield.  */

bool
bit_field_mode_iterator::prefer_smaller_modes ()
{
  return (m_volatilep
	  ? targetm.narrow_volatile_bitfield ()
	  : !SLOW_BYTE_ACCESS);
}

/* Find the best machine mode to use when referencing a bit field of length
   BITSIZE bits starting at BITPOS.

   BITREGION_START is the bit position of the first bit in this
   sequence of bit fields.  BITREGION_END is the last bit in this
   sequence.  If these two fields are non-zero, we should restrict the
   memory access to that range.  Otherwise, we are allowed to touch
   any adjacent non bit-fields.

   The underlying object is known to be aligned to a boundary of ALIGN bits.
   If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
   larger than LARGEST_MODE (usually SImode).

   If no mode meets all these conditions, we return VOIDmode.

   If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
   smallest mode meeting these conditions.

   If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
   largest mode (but a mode no wider than UNITS_PER_WORD) that meets
   all the conditions.

   If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
   decide which of the above modes should be used.  */

machine_mode
get_best_mode (int bitsize, int bitpos,
	       unsigned HOST_WIDE_INT bitregion_start,
	       unsigned HOST_WIDE_INT bitregion_end,
	       unsigned int align,
	       machine_mode largest_mode, bool volatilep)
{
  bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
				bitregion_end, align, volatilep);
  machine_mode widest_mode = VOIDmode;
  machine_mode mode;
  while (iter.next_mode (&mode)
	 /* ??? For historical reasons, reject modes that would normally
	    receive greater alignment, even if unaligned accesses are
	    acceptable.  This has both advantages and disadvantages.
	    Removing this check means that something like:

	       struct s { unsigned int x; unsigned int y; };
	       int f (struct s *s) { return s->x == 0 && s->y == 0; }

	    can be implemented using a single load and compare on
	    64-bit machines that have no alignment restrictions.
	    For example, on powerpc64-linux-gnu, we would generate:

		    ld 3,0(3)
		    cntlzd 3,3
		    srdi 3,3,6
		    blr

	    rather than:

		    lwz 9,0(3)
		    cmpwi 7,9,0
		    bne 7,.L3
		    lwz 3,4(3)
		    cntlzw 3,3
		    srwi 3,3,5
		    extsw 3,3
		    blr
		    .p2align 4,,15
	    .L3:
		    li 3,0
		    blr

	    However, accessing more than one field can make life harder
	    for the gimple optimizers.  For example, gcc.dg/vect/bb-slp-5.c
	    has a series of unsigned short copies followed by a series of
	    unsigned short comparisons.  With this check, both the copies
	    and comparisons remain 16-bit accesses and FRE is able
	    to eliminate the latter.  Without the check, the comparisons
	    can be done using 2 64-bit operations, which FRE isn't able
	    to handle in the same way.

	    Either way, it would probably be worth disabling this check
	    during expand.  One particular example where removing the
	    check would help is the get_best_mode call in store_bit_field.
	    If we are given a memory bitregion of 128 bits that is aligned
	    to a 64-bit boundary, and the bitfield we want to modify is
	    in the second half of the bitregion, this check causes
	    store_bitfield to turn the memory into a 64-bit reference
	    to the _first_ half of the region.  We later use
	    adjust_bitfield_address to get a reference to the correct half,
	    but doing so looks to adjust_bitfield_address as though we are
	    moving past the end of the original object, so it drops the
	    associated MEM_EXPR and MEM_OFFSET.  Removing the check
	    causes store_bit_field to keep a 128-bit memory reference,
	    so that the final bitfield reference still has a MEM_EXPR
	    and MEM_OFFSET.  */
	 && GET_MODE_ALIGNMENT (mode) <= align
	 && (largest_mode == VOIDmode
	     || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
    {
      widest_mode = mode;
      if (iter.prefer_smaller_modes ())
	break;
    }
  return widest_mode;
}

/* Gets minimal and maximal values for MODE (signed or unsigned depending on
   SIGN).  The returned constants are made to be usable in TARGET_MODE.  */

void
get_mode_bounds (machine_mode mode, int sign,
		 machine_mode target_mode,
		 rtx *mmin, rtx *mmax)
{
  unsigned size = GET_MODE_PRECISION (mode);
  unsigned HOST_WIDE_INT min_val, max_val;

  gcc_assert (size <= HOST_BITS_PER_WIDE_INT);

  /* Special case BImode, which has values 0 and STORE_FLAG_VALUE.  */
  if (mode == BImode)
    {
      if (STORE_FLAG_VALUE < 0)
	{
	  min_val = STORE_FLAG_VALUE;
	  max_val = 0;
	}
      else
	{
	  min_val = 0;
	  max_val = STORE_FLAG_VALUE;
	}
    }
  else if (sign)
    {
      min_val = -(HOST_WIDE_INT_1U << (size - 1));
      max_val = (HOST_WIDE_INT_1U << (size - 1)) - 1;
    }
  else
    {
      min_val = 0;
      max_val = (HOST_WIDE_INT_1U << (size - 1) << 1) - 1;
    }

  *mmin = gen_int_mode (min_val, target_mode);
  *mmax = gen_int_mode (max_val, target_mode);
}

#include "gt-stor-layout.h"