1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
|
/* Expands front end tree to back end RTL for GCC
Copyright (C) 1987-2013 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* This file handles the generation of rtl code from tree structure
above the level of expressions, using subroutines in exp*.c and emit-rtl.c.
The functions whose names start with `expand_' are called by the
expander to generate RTL instructions for various kinds of constructs. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "hard-reg-set.h"
#include "tree.h"
#include "varasm.h"
#include "stor-layout.h"
#include "tm_p.h"
#include "flags.h"
#include "except.h"
#include "function.h"
#include "insn-config.h"
#include "expr.h"
#include "libfuncs.h"
#include "recog.h"
#include "machmode.h"
#include "diagnostic-core.h"
#include "output.h"
#include "langhooks.h"
#include "predict.h"
#include "optabs.h"
#include "target.h"
#include "pointer-set.h"
#include "basic-block.h"
#include "tree-ssa-alias.h"
#include "internal-fn.h"
#include "gimple-expr.h"
#include "is-a.h"
#include "gimple.h"
#include "regs.h"
#include "alloc-pool.h"
#include "pretty-print.h"
#include "params.h"
#include "dumpfile.h"
/* Functions and data structures for expanding case statements. */
/* Case label structure, used to hold info on labels within case
statements. We handle "range" labels; for a single-value label
as in C, the high and low limits are the same.
We start with a vector of case nodes sorted in ascending order, and
the default label as the last element in the vector. Before expanding
to RTL, we transform this vector into a list linked via the RIGHT
fields in the case_node struct. Nodes with higher case values are
later in the list.
Switch statements can be output in three forms. A branch table is
used if there are more than a few labels and the labels are dense
within the range between the smallest and largest case value. If a
branch table is used, no further manipulations are done with the case
node chain.
The alternative to the use of a branch table is to generate a series
of compare and jump insns. When that is done, we use the LEFT, RIGHT,
and PARENT fields to hold a binary tree. Initially the tree is
totally unbalanced, with everything on the right. We balance the tree
with nodes on the left having lower case values than the parent
and nodes on the right having higher values. We then output the tree
in order.
For very small, suitable switch statements, we can generate a series
of simple bit test and branches instead. */
struct case_node
{
struct case_node *left; /* Left son in binary tree */
struct case_node *right; /* Right son in binary tree; also node chain */
struct case_node *parent; /* Parent of node in binary tree */
tree low; /* Lowest index value for this label */
tree high; /* Highest index value for this label */
tree code_label; /* Label to jump to when node matches */
int prob; /* Probability of taking this case. */
/* Probability of reaching subtree rooted at this node */
int subtree_prob;
};
typedef struct case_node case_node;
typedef struct case_node *case_node_ptr;
extern basic_block label_to_block_fn (struct function *, tree);
static bool check_unique_operand_names (tree, tree, tree);
static char *resolve_operand_name_1 (char *, tree, tree, tree);
static void balance_case_nodes (case_node_ptr *, case_node_ptr);
static int node_has_low_bound (case_node_ptr, tree);
static int node_has_high_bound (case_node_ptr, tree);
static int node_is_bounded (case_node_ptr, tree);
static void emit_case_nodes (rtx, case_node_ptr, rtx, int, tree);
/* Return the rtx-label that corresponds to a LABEL_DECL,
creating it if necessary. */
rtx
label_rtx (tree label)
{
gcc_assert (TREE_CODE (label) == LABEL_DECL);
if (!DECL_RTL_SET_P (label))
{
rtx r = gen_label_rtx ();
SET_DECL_RTL (label, r);
if (FORCED_LABEL (label) || DECL_NONLOCAL (label))
LABEL_PRESERVE_P (r) = 1;
}
return DECL_RTL (label);
}
/* As above, but also put it on the forced-reference list of the
function that contains it. */
rtx
force_label_rtx (tree label)
{
rtx ref = label_rtx (label);
tree function = decl_function_context (label);
gcc_assert (function);
forced_labels = gen_rtx_EXPR_LIST (VOIDmode, ref, forced_labels);
return ref;
}
/* Add an unconditional jump to LABEL as the next sequential instruction. */
void
emit_jump (rtx label)
{
do_pending_stack_adjust ();
emit_jump_insn (gen_jump (label));
emit_barrier ();
}
/* Handle goto statements and the labels that they can go to. */
/* Specify the location in the RTL code of a label LABEL,
which is a LABEL_DECL tree node.
This is used for the kind of label that the user can jump to with a
goto statement, and for alternatives of a switch or case statement.
RTL labels generated for loops and conditionals don't go through here;
they are generated directly at the RTL level, by other functions below.
Note that this has nothing to do with defining label *names*.
Languages vary in how they do that and what that even means. */
void
expand_label (tree label)
{
rtx label_r = label_rtx (label);
do_pending_stack_adjust ();
emit_label (label_r);
if (DECL_NAME (label))
LABEL_NAME (DECL_RTL (label)) = IDENTIFIER_POINTER (DECL_NAME (label));
if (DECL_NONLOCAL (label))
{
expand_builtin_setjmp_receiver (NULL);
nonlocal_goto_handler_labels
= gen_rtx_EXPR_LIST (VOIDmode, label_r,
nonlocal_goto_handler_labels);
}
if (FORCED_LABEL (label))
forced_labels = gen_rtx_EXPR_LIST (VOIDmode, label_r, forced_labels);
if (DECL_NONLOCAL (label) || FORCED_LABEL (label))
maybe_set_first_label_num (label_r);
}
/* Parse the output constraint pointed to by *CONSTRAINT_P. It is the
OPERAND_NUMth output operand, indexed from zero. There are NINPUTS
inputs and NOUTPUTS outputs to this extended-asm. Upon return,
*ALLOWS_MEM will be TRUE iff the constraint allows the use of a
memory operand. Similarly, *ALLOWS_REG will be TRUE iff the
constraint allows the use of a register operand. And, *IS_INOUT
will be true if the operand is read-write, i.e., if it is used as
an input as well as an output. If *CONSTRAINT_P is not in
canonical form, it will be made canonical. (Note that `+' will be
replaced with `=' as part of this process.)
Returns TRUE if all went well; FALSE if an error occurred. */
bool
parse_output_constraint (const char **constraint_p, int operand_num,
int ninputs, int noutputs, bool *allows_mem,
bool *allows_reg, bool *is_inout)
{
const char *constraint = *constraint_p;
const char *p;
/* Assume the constraint doesn't allow the use of either a register
or memory. */
*allows_mem = false;
*allows_reg = false;
/* Allow the `=' or `+' to not be at the beginning of the string,
since it wasn't explicitly documented that way, and there is a
large body of code that puts it last. Swap the character to
the front, so as not to uglify any place else. */
p = strchr (constraint, '=');
if (!p)
p = strchr (constraint, '+');
/* If the string doesn't contain an `=', issue an error
message. */
if (!p)
{
error ("output operand constraint lacks %<=%>");
return false;
}
/* If the constraint begins with `+', then the operand is both read
from and written to. */
*is_inout = (*p == '+');
/* Canonicalize the output constraint so that it begins with `='. */
if (p != constraint || *is_inout)
{
char *buf;
size_t c_len = strlen (constraint);
if (p != constraint)
warning (0, "output constraint %qc for operand %d "
"is not at the beginning",
*p, operand_num);
/* Make a copy of the constraint. */
buf = XALLOCAVEC (char, c_len + 1);
strcpy (buf, constraint);
/* Swap the first character and the `=' or `+'. */
buf[p - constraint] = buf[0];
/* Make sure the first character is an `='. (Until we do this,
it might be a `+'.) */
buf[0] = '=';
/* Replace the constraint with the canonicalized string. */
*constraint_p = ggc_alloc_string (buf, c_len);
constraint = *constraint_p;
}
/* Loop through the constraint string. */
for (p = constraint + 1; *p; p += CONSTRAINT_LEN (*p, p))
switch (*p)
{
case '+':
case '=':
error ("operand constraint contains incorrectly positioned "
"%<+%> or %<=%>");
return false;
case '%':
if (operand_num + 1 == ninputs + noutputs)
{
error ("%<%%%> constraint used with last operand");
return false;
}
break;
case 'V': case TARGET_MEM_CONSTRAINT: case 'o':
*allows_mem = true;
break;
case '?': case '!': case '*': case '&': case '#':
case 'E': case 'F': case 'G': case 'H':
case 's': case 'i': case 'n':
case 'I': case 'J': case 'K': case 'L': case 'M':
case 'N': case 'O': case 'P': case ',':
break;
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
case '[':
error ("matching constraint not valid in output operand");
return false;
case '<': case '>':
/* ??? Before flow, auto inc/dec insns are not supposed to exist,
excepting those that expand_call created. So match memory
and hope. */
*allows_mem = true;
break;
case 'g': case 'X':
*allows_reg = true;
*allows_mem = true;
break;
case 'p': case 'r':
*allows_reg = true;
break;
default:
if (!ISALPHA (*p))
break;
if (REG_CLASS_FROM_CONSTRAINT (*p, p) != NO_REGS)
*allows_reg = true;
#ifdef EXTRA_CONSTRAINT_STR
else if (EXTRA_ADDRESS_CONSTRAINT (*p, p))
*allows_reg = true;
else if (EXTRA_MEMORY_CONSTRAINT (*p, p))
*allows_mem = true;
else
{
/* Otherwise we can't assume anything about the nature of
the constraint except that it isn't purely registers.
Treat it like "g" and hope for the best. */
*allows_reg = true;
*allows_mem = true;
}
#endif
break;
}
return true;
}
/* Similar, but for input constraints. */
bool
parse_input_constraint (const char **constraint_p, int input_num,
int ninputs, int noutputs, int ninout,
const char * const * constraints,
bool *allows_mem, bool *allows_reg)
{
const char *constraint = *constraint_p;
const char *orig_constraint = constraint;
size_t c_len = strlen (constraint);
size_t j;
bool saw_match = false;
/* Assume the constraint doesn't allow the use of either
a register or memory. */
*allows_mem = false;
*allows_reg = false;
/* Make sure constraint has neither `=', `+', nor '&'. */
for (j = 0; j < c_len; j += CONSTRAINT_LEN (constraint[j], constraint+j))
switch (constraint[j])
{
case '+': case '=': case '&':
if (constraint == orig_constraint)
{
error ("input operand constraint contains %qc", constraint[j]);
return false;
}
break;
case '%':
if (constraint == orig_constraint
&& input_num + 1 == ninputs - ninout)
{
error ("%<%%%> constraint used with last operand");
return false;
}
break;
case 'V': case TARGET_MEM_CONSTRAINT: case 'o':
*allows_mem = true;
break;
case '<': case '>':
case '?': case '!': case '*': case '#':
case 'E': case 'F': case 'G': case 'H':
case 's': case 'i': case 'n':
case 'I': case 'J': case 'K': case 'L': case 'M':
case 'N': case 'O': case 'P': case ',':
break;
/* Whether or not a numeric constraint allows a register is
decided by the matching constraint, and so there is no need
to do anything special with them. We must handle them in
the default case, so that we don't unnecessarily force
operands to memory. */
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
{
char *end;
unsigned long match;
saw_match = true;
match = strtoul (constraint + j, &end, 10);
if (match >= (unsigned long) noutputs)
{
error ("matching constraint references invalid operand number");
return false;
}
/* Try and find the real constraint for this dup. Only do this
if the matching constraint is the only alternative. */
if (*end == '\0'
&& (j == 0 || (j == 1 && constraint[0] == '%')))
{
constraint = constraints[match];
*constraint_p = constraint;
c_len = strlen (constraint);
j = 0;
/* ??? At the end of the loop, we will skip the first part of
the matched constraint. This assumes not only that the
other constraint is an output constraint, but also that
the '=' or '+' come first. */
break;
}
else
j = end - constraint;
/* Anticipate increment at end of loop. */
j--;
}
/* Fall through. */
case 'p': case 'r':
*allows_reg = true;
break;
case 'g': case 'X':
*allows_reg = true;
*allows_mem = true;
break;
default:
if (! ISALPHA (constraint[j]))
{
error ("invalid punctuation %qc in constraint", constraint[j]);
return false;
}
if (REG_CLASS_FROM_CONSTRAINT (constraint[j], constraint + j)
!= NO_REGS)
*allows_reg = true;
#ifdef EXTRA_CONSTRAINT_STR
else if (EXTRA_ADDRESS_CONSTRAINT (constraint[j], constraint + j))
*allows_reg = true;
else if (EXTRA_MEMORY_CONSTRAINT (constraint[j], constraint + j))
*allows_mem = true;
else
{
/* Otherwise we can't assume anything about the nature of
the constraint except that it isn't purely registers.
Treat it like "g" and hope for the best. */
*allows_reg = true;
*allows_mem = true;
}
#endif
break;
}
if (saw_match && !*allows_reg)
warning (0, "matching constraint does not allow a register");
return true;
}
/* Return DECL iff there's an overlap between *REGS and DECL, where DECL
can be an asm-declared register. Called via walk_tree. */
static tree
decl_overlaps_hard_reg_set_p (tree *declp, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data)
{
tree decl = *declp;
const HARD_REG_SET *const regs = (const HARD_REG_SET *) data;
if (TREE_CODE (decl) == VAR_DECL)
{
if (DECL_HARD_REGISTER (decl)
&& REG_P (DECL_RTL (decl))
&& REGNO (DECL_RTL (decl)) < FIRST_PSEUDO_REGISTER)
{
rtx reg = DECL_RTL (decl);
if (overlaps_hard_reg_set_p (*regs, GET_MODE (reg), REGNO (reg)))
return decl;
}
walk_subtrees = 0;
}
else if (TYPE_P (decl) || TREE_CODE (decl) == PARM_DECL)
walk_subtrees = 0;
return NULL_TREE;
}
/* If there is an overlap between *REGS and DECL, return the first overlap
found. */
tree
tree_overlaps_hard_reg_set (tree decl, HARD_REG_SET *regs)
{
return walk_tree (&decl, decl_overlaps_hard_reg_set_p, regs, NULL);
}
/* A subroutine of expand_asm_operands. Check that all operand names
are unique. Return true if so. We rely on the fact that these names
are identifiers, and so have been canonicalized by get_identifier,
so all we need are pointer comparisons. */
static bool
check_unique_operand_names (tree outputs, tree inputs, tree labels)
{
tree i, j, i_name = NULL_TREE;
for (i = outputs; i ; i = TREE_CHAIN (i))
{
i_name = TREE_PURPOSE (TREE_PURPOSE (i));
if (! i_name)
continue;
for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
goto failure;
}
for (i = inputs; i ; i = TREE_CHAIN (i))
{
i_name = TREE_PURPOSE (TREE_PURPOSE (i));
if (! i_name)
continue;
for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
goto failure;
for (j = outputs; j ; j = TREE_CHAIN (j))
if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
goto failure;
}
for (i = labels; i ; i = TREE_CHAIN (i))
{
i_name = TREE_PURPOSE (i);
if (! i_name)
continue;
for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
if (simple_cst_equal (i_name, TREE_PURPOSE (j)))
goto failure;
for (j = inputs; j ; j = TREE_CHAIN (j))
if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
goto failure;
}
return true;
failure:
error ("duplicate asm operand name %qs", TREE_STRING_POINTER (i_name));
return false;
}
/* A subroutine of expand_asm_operands. Resolve the names of the operands
in *POUTPUTS and *PINPUTS to numbers, and replace the name expansions in
STRING and in the constraints to those numbers. */
tree
resolve_asm_operand_names (tree string, tree outputs, tree inputs, tree labels)
{
char *buffer;
char *p;
const char *c;
tree t;
check_unique_operand_names (outputs, inputs, labels);
/* Substitute [<name>] in input constraint strings. There should be no
named operands in output constraints. */
for (t = inputs; t ; t = TREE_CHAIN (t))
{
c = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
if (strchr (c, '[') != NULL)
{
p = buffer = xstrdup (c);
while ((p = strchr (p, '[')) != NULL)
p = resolve_operand_name_1 (p, outputs, inputs, NULL);
TREE_VALUE (TREE_PURPOSE (t))
= build_string (strlen (buffer), buffer);
free (buffer);
}
}
/* Now check for any needed substitutions in the template. */
c = TREE_STRING_POINTER (string);
while ((c = strchr (c, '%')) != NULL)
{
if (c[1] == '[')
break;
else if (ISALPHA (c[1]) && c[2] == '[')
break;
else
{
c += 1 + (c[1] == '%');
continue;
}
}
if (c)
{
/* OK, we need to make a copy so we can perform the substitutions.
Assume that we will not need extra space--we get to remove '['
and ']', which means we cannot have a problem until we have more
than 999 operands. */
buffer = xstrdup (TREE_STRING_POINTER (string));
p = buffer + (c - TREE_STRING_POINTER (string));
while ((p = strchr (p, '%')) != NULL)
{
if (p[1] == '[')
p += 1;
else if (ISALPHA (p[1]) && p[2] == '[')
p += 2;
else
{
p += 1 + (p[1] == '%');
continue;
}
p = resolve_operand_name_1 (p, outputs, inputs, labels);
}
string = build_string (strlen (buffer), buffer);
free (buffer);
}
return string;
}
/* A subroutine of resolve_operand_names. P points to the '[' for a
potential named operand of the form [<name>]. In place, replace
the name and brackets with a number. Return a pointer to the
balance of the string after substitution. */
static char *
resolve_operand_name_1 (char *p, tree outputs, tree inputs, tree labels)
{
char *q;
int op;
tree t;
/* Collect the operand name. */
q = strchr (++p, ']');
if (!q)
{
error ("missing close brace for named operand");
return strchr (p, '\0');
}
*q = '\0';
/* Resolve the name to a number. */
for (op = 0, t = outputs; t ; t = TREE_CHAIN (t), op++)
{
tree name = TREE_PURPOSE (TREE_PURPOSE (t));
if (name && strcmp (TREE_STRING_POINTER (name), p) == 0)
goto found;
}
for (t = inputs; t ; t = TREE_CHAIN (t), op++)
{
tree name = TREE_PURPOSE (TREE_PURPOSE (t));
if (name && strcmp (TREE_STRING_POINTER (name), p) == 0)
goto found;
}
for (t = labels; t ; t = TREE_CHAIN (t), op++)
{
tree name = TREE_PURPOSE (t);
if (name && strcmp (TREE_STRING_POINTER (name), p) == 0)
goto found;
}
error ("undefined named operand %qs", identifier_to_locale (p));
op = 0;
found:
/* Replace the name with the number. Unfortunately, not all libraries
get the return value of sprintf correct, so search for the end of the
generated string by hand. */
sprintf (--p, "%d", op);
p = strchr (p, '\0');
/* Verify the no extra buffer space assumption. */
gcc_assert (p <= q);
/* Shift the rest of the buffer down to fill the gap. */
memmove (p, q + 1, strlen (q + 1) + 1);
return p;
}
/* Generate RTL to return directly from the current function.
(That is, we bypass any return value.) */
void
expand_naked_return (void)
{
rtx end_label;
clear_pending_stack_adjust ();
do_pending_stack_adjust ();
end_label = naked_return_label;
if (end_label == 0)
end_label = naked_return_label = gen_label_rtx ();
emit_jump (end_label);
}
/* Generate code to jump to LABEL if OP0 and OP1 are equal in mode MODE. PROB
is the probability of jumping to LABEL. */
static void
do_jump_if_equal (enum machine_mode mode, rtx op0, rtx op1, rtx label,
int unsignedp, int prob)
{
gcc_assert (prob <= REG_BR_PROB_BASE);
do_compare_rtx_and_jump (op0, op1, EQ, unsignedp, mode,
NULL_RTX, NULL_RTX, label, prob);
}
/* Do the insertion of a case label into case_list. The labels are
fed to us in descending order from the sorted vector of case labels used
in the tree part of the middle end. So the list we construct is
sorted in ascending order.
LABEL is the case label to be inserted. LOW and HIGH are the bounds
against which the index is compared to jump to LABEL and PROB is the
estimated probability LABEL is reached from the switch statement. */
static struct case_node *
add_case_node (struct case_node *head, tree low, tree high,
tree label, int prob, alloc_pool case_node_pool)
{
struct case_node *r;
gcc_checking_assert (low);
gcc_checking_assert (high && (TREE_TYPE (low) == TREE_TYPE (high)));
/* Add this label to the chain. */
r = (struct case_node *) pool_alloc (case_node_pool);
r->low = low;
r->high = high;
r->code_label = label;
r->parent = r->left = NULL;
r->prob = prob;
r->subtree_prob = prob;
r->right = head;
return r;
}
/* Dump ROOT, a list or tree of case nodes, to file. */
static void
dump_case_nodes (FILE *f, struct case_node *root,
int indent_step, int indent_level)
{
HOST_WIDE_INT low, high;
if (root == 0)
return;
indent_level++;
dump_case_nodes (f, root->left, indent_step, indent_level);
low = tree_to_shwi (root->low);
high = tree_to_shwi (root->high);
fputs (";; ", f);
if (high == low)
fprintf (f, "%*s" HOST_WIDE_INT_PRINT_DEC,
indent_step * indent_level, "", low);
else
fprintf (f, "%*s" HOST_WIDE_INT_PRINT_DEC " ... " HOST_WIDE_INT_PRINT_DEC,
indent_step * indent_level, "", low, high);
fputs ("\n", f);
dump_case_nodes (f, root->right, indent_step, indent_level);
}
#ifndef HAVE_casesi
#define HAVE_casesi 0
#endif
#ifndef HAVE_tablejump
#define HAVE_tablejump 0
#endif
/* Return the smallest number of different values for which it is best to use a
jump-table instead of a tree of conditional branches. */
static unsigned int
case_values_threshold (void)
{
unsigned int threshold = PARAM_VALUE (PARAM_CASE_VALUES_THRESHOLD);
if (threshold == 0)
threshold = targetm.case_values_threshold ();
return threshold;
}
/* Return true if a switch should be expanded as a decision tree.
RANGE is the difference between highest and lowest case.
UNIQ is number of unique case node targets, not counting the default case.
COUNT is the number of comparisons needed, not counting the default case. */
static bool
expand_switch_as_decision_tree_p (tree range,
unsigned int uniq ATTRIBUTE_UNUSED,
unsigned int count)
{
int max_ratio;
/* If neither casesi or tablejump is available, or flag_jump_tables
over-ruled us, we really have no choice. */
if (!HAVE_casesi && !HAVE_tablejump)
return true;
if (!flag_jump_tables)
return true;
#ifndef ASM_OUTPUT_ADDR_DIFF_ELT
if (flag_pic)
return true;
#endif
/* If the switch is relatively small such that the cost of one
indirect jump on the target are higher than the cost of a
decision tree, go with the decision tree.
If range of values is much bigger than number of values,
or if it is too large to represent in a HOST_WIDE_INT,
make a sequence of conditional branches instead of a dispatch.
The definition of "much bigger" depends on whether we are
optimizing for size or for speed. If the former, the maximum
ratio range/count = 3, because this was found to be the optimal
ratio for size on i686-pc-linux-gnu, see PR11823. The ratio
10 is much older, and was probably selected after an extensive
benchmarking investigation on numerous platforms. Or maybe it
just made sense to someone at some point in the history of GCC,
who knows... */
max_ratio = optimize_insn_for_size_p () ? 3 : 10;
if (count < case_values_threshold ()
|| ! tree_fits_uhwi_p (range)
|| compare_tree_int (range, max_ratio * count) > 0)
return true;
return false;
}
/* Generate a decision tree, switching on INDEX_EXPR and jumping to
one of the labels in CASE_LIST or to the DEFAULT_LABEL.
DEFAULT_PROB is the estimated probability that it jumps to
DEFAULT_LABEL.
We generate a binary decision tree to select the appropriate target
code. This is done as follows:
If the index is a short or char that we do not have
an insn to handle comparisons directly, convert it to
a full integer now, rather than letting each comparison
generate the conversion.
Load the index into a register.
The list of cases is rearranged into a binary tree,
nearly optimal assuming equal probability for each case.
The tree is transformed into RTL, eliminating redundant
test conditions at the same time.
If program flow could reach the end of the decision tree
an unconditional jump to the default code is emitted.
The above process is unaware of the CFG. The caller has to fix up
the CFG itself. This is done in cfgexpand.c. */
static void
emit_case_decision_tree (tree index_expr, tree index_type,
struct case_node *case_list, rtx default_label,
int default_prob)
{
rtx index = expand_normal (index_expr);
if (GET_MODE_CLASS (GET_MODE (index)) == MODE_INT
&& ! have_insn_for (COMPARE, GET_MODE (index)))
{
int unsignedp = TYPE_UNSIGNED (index_type);
enum machine_mode wider_mode;
for (wider_mode = GET_MODE (index); wider_mode != VOIDmode;
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
if (have_insn_for (COMPARE, wider_mode))
{
index = convert_to_mode (wider_mode, index, unsignedp);
break;
}
}
do_pending_stack_adjust ();
if (MEM_P (index))
{
index = copy_to_reg (index);
if (TREE_CODE (index_expr) == SSA_NAME)
set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (index_expr), index);
}
balance_case_nodes (&case_list, NULL);
if (dump_file && (dump_flags & TDF_DETAILS))
{
int indent_step = ceil_log2 (TYPE_PRECISION (index_type)) + 2;
fprintf (dump_file, ";; Expanding GIMPLE switch as decision tree:\n");
dump_case_nodes (dump_file, case_list, indent_step, 0);
}
emit_case_nodes (index, case_list, default_label, default_prob, index_type);
if (default_label)
emit_jump (default_label);
}
/* Return the sum of probabilities of outgoing edges of basic block BB. */
static int
get_outgoing_edge_probs (basic_block bb)
{
edge e;
edge_iterator ei;
int prob_sum = 0;
if (!bb)
return 0;
FOR_EACH_EDGE (e, ei, bb->succs)
prob_sum += e->probability;
return prob_sum;
}
/* Computes the conditional probability of jumping to a target if the branch
instruction is executed.
TARGET_PROB is the estimated probability of jumping to a target relative
to some basic block BB.
BASE_PROB is the probability of reaching the branch instruction relative
to the same basic block BB. */
static inline int
conditional_probability (int target_prob, int base_prob)
{
if (base_prob > 0)
{
gcc_assert (target_prob >= 0);
gcc_assert (target_prob <= base_prob);
return GCOV_COMPUTE_SCALE (target_prob, base_prob);
}
return -1;
}
/* Generate a dispatch tabler, switching on INDEX_EXPR and jumping to
one of the labels in CASE_LIST or to the DEFAULT_LABEL.
MINVAL, MAXVAL, and RANGE are the extrema and range of the case
labels in CASE_LIST. STMT_BB is the basic block containing the statement.
First, a jump insn is emitted. First we try "casesi". If that
fails, try "tablejump". A target *must* have one of them (or both).
Then, a table with the target labels is emitted.
The process is unaware of the CFG. The caller has to fix up
the CFG itself. This is done in cfgexpand.c. */
static void
emit_case_dispatch_table (tree index_expr, tree index_type,
struct case_node *case_list, rtx default_label,
tree minval, tree maxval, tree range,
basic_block stmt_bb)
{
int i, ncases;
struct case_node *n;
rtx *labelvec;
rtx fallback_label = label_rtx (case_list->code_label);
rtx table_label = gen_label_rtx ();
bool has_gaps = false;
edge default_edge = stmt_bb ? EDGE_SUCC (stmt_bb, 0) : NULL;
int default_prob = default_edge ? default_edge->probability : 0;
int base = get_outgoing_edge_probs (stmt_bb);
bool try_with_tablejump = false;
int new_default_prob = conditional_probability (default_prob,
base);
if (! try_casesi (index_type, index_expr, minval, range,
table_label, default_label, fallback_label,
new_default_prob))
{
/* Index jumptables from zero for suitable values of minval to avoid
a subtraction. For the rationale see:
"http://gcc.gnu.org/ml/gcc-patches/2001-10/msg01234.html". */
if (optimize_insn_for_speed_p ()
&& compare_tree_int (minval, 0) > 0
&& compare_tree_int (minval, 3) < 0)
{
minval = build_int_cst (index_type, 0);
range = maxval;
has_gaps = true;
}
try_with_tablejump = true;
}
/* Get table of labels to jump to, in order of case index. */
ncases = tree_to_shwi (range) + 1;
labelvec = XALLOCAVEC (rtx, ncases);
memset (labelvec, 0, ncases * sizeof (rtx));
for (n = case_list; n; n = n->right)
{
/* Compute the low and high bounds relative to the minimum
value since that should fit in a HOST_WIDE_INT while the
actual values may not. */
HOST_WIDE_INT i_low
= tree_to_uhwi (fold_build2 (MINUS_EXPR, index_type,
n->low, minval));
HOST_WIDE_INT i_high
= tree_to_uhwi (fold_build2 (MINUS_EXPR, index_type,
n->high, minval));
HOST_WIDE_INT i;
for (i = i_low; i <= i_high; i ++)
labelvec[i]
= gen_rtx_LABEL_REF (Pmode, label_rtx (n->code_label));
}
/* Fill in the gaps with the default. We may have gaps at
the beginning if we tried to avoid the minval subtraction,
so substitute some label even if the default label was
deemed unreachable. */
if (!default_label)
default_label = fallback_label;
for (i = 0; i < ncases; i++)
if (labelvec[i] == 0)
{
has_gaps = true;
labelvec[i] = gen_rtx_LABEL_REF (Pmode, default_label);
}
if (has_gaps)
{
/* There is at least one entry in the jump table that jumps
to default label. The default label can either be reached
through the indirect jump or the direct conditional jump
before that. Split the probability of reaching the
default label among these two jumps. */
new_default_prob = conditional_probability (default_prob/2,
base);
default_prob /= 2;
base -= default_prob;
}
else
{
base -= default_prob;
default_prob = 0;
}
if (default_edge)
default_edge->probability = default_prob;
/* We have altered the probability of the default edge. So the probabilities
of all other edges need to be adjusted so that it sums up to
REG_BR_PROB_BASE. */
if (base)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, stmt_bb->succs)
e->probability = GCOV_COMPUTE_SCALE (e->probability, base);
}
if (try_with_tablejump)
{
bool ok = try_tablejump (index_type, index_expr, minval, range,
table_label, default_label, new_default_prob);
gcc_assert (ok);
}
/* Output the table. */
emit_label (table_label);
if (CASE_VECTOR_PC_RELATIVE || flag_pic)
emit_jump_table_data (gen_rtx_ADDR_DIFF_VEC (CASE_VECTOR_MODE,
gen_rtx_LABEL_REF (Pmode,
table_label),
gen_rtvec_v (ncases, labelvec),
const0_rtx, const0_rtx));
else
emit_jump_table_data (gen_rtx_ADDR_VEC (CASE_VECTOR_MODE,
gen_rtvec_v (ncases, labelvec)));
/* Record no drop-through after the table. */
emit_barrier ();
}
/* Reset the aux field of all outgoing edges of basic block BB. */
static inline void
reset_out_edges_aux (basic_block bb)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->succs)
e->aux = (void *)0;
}
/* Compute the number of case labels that correspond to each outgoing edge of
STMT. Record this information in the aux field of the edge. */
static inline void
compute_cases_per_edge (gimple stmt)
{
basic_block bb = gimple_bb (stmt);
reset_out_edges_aux (bb);
int ncases = gimple_switch_num_labels (stmt);
for (int i = ncases - 1; i >= 1; --i)
{
tree elt = gimple_switch_label (stmt, i);
tree lab = CASE_LABEL (elt);
basic_block case_bb = label_to_block_fn (cfun, lab);
edge case_edge = find_edge (bb, case_bb);
case_edge->aux = (void *)((intptr_t)(case_edge->aux) + 1);
}
}
/* Terminate a case (Pascal/Ada) or switch (C) statement
in which ORIG_INDEX is the expression to be tested.
If ORIG_TYPE is not NULL, it is the original ORIG_INDEX
type as given in the source before any compiler conversions.
Generate the code to test it and jump to the right place. */
void
expand_case (gimple stmt)
{
tree minval = NULL_TREE, maxval = NULL_TREE, range = NULL_TREE;
rtx default_label = NULL_RTX;
unsigned int count, uniq;
int i;
int ncases = gimple_switch_num_labels (stmt);
tree index_expr = gimple_switch_index (stmt);
tree index_type = TREE_TYPE (index_expr);
tree elt;
basic_block bb = gimple_bb (stmt);
/* A list of case labels; it is first built as a list and it may then
be rearranged into a nearly balanced binary tree. */
struct case_node *case_list = 0;
/* A pool for case nodes. */
alloc_pool case_node_pool;
/* An ERROR_MARK occurs for various reasons including invalid data type.
??? Can this still happen, with GIMPLE and all? */
if (index_type == error_mark_node)
return;
/* cleanup_tree_cfg removes all SWITCH_EXPR with their index
expressions being INTEGER_CST. */
gcc_assert (TREE_CODE (index_expr) != INTEGER_CST);
case_node_pool = create_alloc_pool ("struct case_node pool",
sizeof (struct case_node),
100);
do_pending_stack_adjust ();
/* Find the default case target label. */
default_label = label_rtx (CASE_LABEL (gimple_switch_default_label (stmt)));
edge default_edge = EDGE_SUCC (bb, 0);
int default_prob = default_edge->probability;
/* Get upper and lower bounds of case values. */
elt = gimple_switch_label (stmt, 1);
minval = fold_convert (index_type, CASE_LOW (elt));
elt = gimple_switch_label (stmt, ncases - 1);
if (CASE_HIGH (elt))
maxval = fold_convert (index_type, CASE_HIGH (elt));
else
maxval = fold_convert (index_type, CASE_LOW (elt));
/* Compute span of values. */
range = fold_build2 (MINUS_EXPR, index_type, maxval, minval);
/* Listify the labels queue and gather some numbers to decide
how to expand this switch(). */
uniq = 0;
count = 0;
struct pointer_set_t *seen_labels = pointer_set_create ();
compute_cases_per_edge (stmt);
for (i = ncases - 1; i >= 1; --i)
{
elt = gimple_switch_label (stmt, i);
tree low = CASE_LOW (elt);
gcc_assert (low);
tree high = CASE_HIGH (elt);
gcc_assert (! high || tree_int_cst_lt (low, high));
tree lab = CASE_LABEL (elt);
/* Count the elements.
A range counts double, since it requires two compares. */
count++;
if (high)
count++;
/* If we have not seen this label yet, then increase the
number of unique case node targets seen. */
if (!pointer_set_insert (seen_labels, lab))
uniq++;
/* The bounds on the case range, LOW and HIGH, have to be converted
to case's index type TYPE. Note that the original type of the
case index in the source code is usually "lost" during
gimplification due to type promotion, but the case labels retain the
original type. Make sure to drop overflow flags. */
low = fold_convert (index_type, low);
if (TREE_OVERFLOW (low))
low = build_int_cst_wide (index_type,
TREE_INT_CST_LOW (low),
TREE_INT_CST_HIGH (low));
/* The canonical from of a case label in GIMPLE is that a simple case
has an empty CASE_HIGH. For the casesi and tablejump expanders,
the back ends want simple cases to have high == low. */
if (! high)
high = low;
high = fold_convert (index_type, high);
if (TREE_OVERFLOW (high))
high = build_int_cst_wide (index_type,
TREE_INT_CST_LOW (high),
TREE_INT_CST_HIGH (high));
basic_block case_bb = label_to_block_fn (cfun, lab);
edge case_edge = find_edge (bb, case_bb);
case_list = add_case_node (
case_list, low, high, lab,
case_edge->probability / (intptr_t)(case_edge->aux),
case_node_pool);
}
pointer_set_destroy (seen_labels);
reset_out_edges_aux (bb);
/* cleanup_tree_cfg removes all SWITCH_EXPR with a single
destination, such as one with a default case only.
It also removes cases that are out of range for the switch
type, so we should never get a zero here. */
gcc_assert (count > 0);
rtx before_case = get_last_insn ();
/* Decide how to expand this switch.
The two options at this point are a dispatch table (casesi or
tablejump) or a decision tree. */
if (expand_switch_as_decision_tree_p (range, uniq, count))
emit_case_decision_tree (index_expr, index_type,
case_list, default_label,
default_prob);
else
emit_case_dispatch_table (index_expr, index_type,
case_list, default_label,
minval, maxval, range, bb);
reorder_insns (NEXT_INSN (before_case), get_last_insn (), before_case);
free_temp_slots ();
free_alloc_pool (case_node_pool);
}
/* Expand the dispatch to a short decrement chain if there are few cases
to dispatch to. Likewise if neither casesi nor tablejump is available,
or if flag_jump_tables is set. Otherwise, expand as a casesi or a
tablejump. The index mode is always the mode of integer_type_node.
Trap if no case matches the index.
DISPATCH_INDEX is the index expression to switch on. It should be a
memory or register operand.
DISPATCH_TABLE is a set of case labels. The set should be sorted in
ascending order, be contiguous, starting with value 0, and contain only
single-valued case labels. */
void
expand_sjlj_dispatch_table (rtx dispatch_index,
vec<tree> dispatch_table)
{
tree index_type = integer_type_node;
enum machine_mode index_mode = TYPE_MODE (index_type);
int ncases = dispatch_table.length ();
do_pending_stack_adjust ();
rtx before_case = get_last_insn ();
/* Expand as a decrement-chain if there are 5 or fewer dispatch
labels. This covers more than 98% of the cases in libjava,
and seems to be a reasonable compromise between the "old way"
of expanding as a decision tree or dispatch table vs. the "new
way" with decrement chain or dispatch table. */
if (dispatch_table.length () <= 5
|| (!HAVE_casesi && !HAVE_tablejump)
|| !flag_jump_tables)
{
/* Expand the dispatch as a decrement chain:
"switch(index) {case 0: do_0; case 1: do_1; ...; case N: do_N;}"
==>
if (index == 0) do_0; else index--;
if (index == 0) do_1; else index--;
...
if (index == 0) do_N; else index--;
This is more efficient than a dispatch table on most machines.
The last "index--" is redundant but the code is trivially dead
and will be cleaned up by later passes. */
rtx index = copy_to_mode_reg (index_mode, dispatch_index);
rtx zero = CONST0_RTX (index_mode);
for (int i = 0; i < ncases; i++)
{
tree elt = dispatch_table[i];
rtx lab = label_rtx (CASE_LABEL (elt));
do_jump_if_equal (index_mode, index, zero, lab, 0, -1);
force_expand_binop (index_mode, sub_optab,
index, CONST1_RTX (index_mode),
index, 0, OPTAB_DIRECT);
}
}
else
{
/* Similar to expand_case, but much simpler. */
struct case_node *case_list = 0;
alloc_pool case_node_pool = create_alloc_pool ("struct sjlj_case pool",
sizeof (struct case_node),
ncases);
tree index_expr = make_tree (index_type, dispatch_index);
tree minval = build_int_cst (index_type, 0);
tree maxval = CASE_LOW (dispatch_table.last ());
tree range = maxval;
rtx default_label = gen_label_rtx ();
for (int i = ncases - 1; i >= 0; --i)
{
tree elt = dispatch_table[i];
tree low = CASE_LOW (elt);
tree lab = CASE_LABEL (elt);
case_list = add_case_node (case_list, low, low, lab, 0, case_node_pool);
}
emit_case_dispatch_table (index_expr, index_type,
case_list, default_label,
minval, maxval, range,
BLOCK_FOR_INSN (before_case));
emit_label (default_label);
free_alloc_pool (case_node_pool);
}
/* Dispatching something not handled? Trap! */
expand_builtin_trap ();
reorder_insns (NEXT_INSN (before_case), get_last_insn (), before_case);
free_temp_slots ();
}
/* Take an ordered list of case nodes
and transform them into a near optimal binary tree,
on the assumption that any target code selection value is as
likely as any other.
The transformation is performed by splitting the ordered
list into two equal sections plus a pivot. The parts are
then attached to the pivot as left and right branches. Each
branch is then transformed recursively. */
static void
balance_case_nodes (case_node_ptr *head, case_node_ptr parent)
{
case_node_ptr np;
np = *head;
if (np)
{
int i = 0;
int ranges = 0;
case_node_ptr *npp;
case_node_ptr left;
/* Count the number of entries on branch. Also count the ranges. */
while (np)
{
if (!tree_int_cst_equal (np->low, np->high))
ranges++;
i++;
np = np->right;
}
if (i > 2)
{
/* Split this list if it is long enough for that to help. */
npp = head;
left = *npp;
/* If there are just three nodes, split at the middle one. */
if (i == 3)
npp = &(*npp)->right;
else
{
/* Find the place in the list that bisects the list's total cost,
where ranges count as 2.
Here I gets half the total cost. */
i = (i + ranges + 1) / 2;
while (1)
{
/* Skip nodes while their cost does not reach that amount. */
if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
i--;
i--;
if (i <= 0)
break;
npp = &(*npp)->right;
}
}
*head = np = *npp;
*npp = 0;
np->parent = parent;
np->left = left;
/* Optimize each of the two split parts. */
balance_case_nodes (&np->left, np);
balance_case_nodes (&np->right, np);
np->subtree_prob = np->prob;
np->subtree_prob += np->left->subtree_prob;
np->subtree_prob += np->right->subtree_prob;
}
else
{
/* Else leave this branch as one level,
but fill in `parent' fields. */
np = *head;
np->parent = parent;
np->subtree_prob = np->prob;
for (; np->right; np = np->right)
{
np->right->parent = np;
(*head)->subtree_prob += np->right->subtree_prob;
}
}
}
}
/* Search the parent sections of the case node tree
to see if a test for the lower bound of NODE would be redundant.
INDEX_TYPE is the type of the index expression.
The instructions to generate the case decision tree are
output in the same order as nodes are processed so it is
known that if a parent node checks the range of the current
node minus one that the current node is bounded at its lower
span. Thus the test would be redundant. */
static int
node_has_low_bound (case_node_ptr node, tree index_type)
{
tree low_minus_one;
case_node_ptr pnode;
/* If the lower bound of this node is the lowest value in the index type,
we need not test it. */
if (tree_int_cst_equal (node->low, TYPE_MIN_VALUE (index_type)))
return 1;
/* If this node has a left branch, the value at the left must be less
than that at this node, so it cannot be bounded at the bottom and
we need not bother testing any further. */
if (node->left)
return 0;
low_minus_one = fold_build2 (MINUS_EXPR, TREE_TYPE (node->low),
node->low,
build_int_cst (TREE_TYPE (node->low), 1));
/* If the subtraction above overflowed, we can't verify anything.
Otherwise, look for a parent that tests our value - 1. */
if (! tree_int_cst_lt (low_minus_one, node->low))
return 0;
for (pnode = node->parent; pnode; pnode = pnode->parent)
if (tree_int_cst_equal (low_minus_one, pnode->high))
return 1;
return 0;
}
/* Search the parent sections of the case node tree
to see if a test for the upper bound of NODE would be redundant.
INDEX_TYPE is the type of the index expression.
The instructions to generate the case decision tree are
output in the same order as nodes are processed so it is
known that if a parent node checks the range of the current
node plus one that the current node is bounded at its upper
span. Thus the test would be redundant. */
static int
node_has_high_bound (case_node_ptr node, tree index_type)
{
tree high_plus_one;
case_node_ptr pnode;
/* If there is no upper bound, obviously no test is needed. */
if (TYPE_MAX_VALUE (index_type) == NULL)
return 1;
/* If the upper bound of this node is the highest value in the type
of the index expression, we need not test against it. */
if (tree_int_cst_equal (node->high, TYPE_MAX_VALUE (index_type)))
return 1;
/* If this node has a right branch, the value at the right must be greater
than that at this node, so it cannot be bounded at the top and
we need not bother testing any further. */
if (node->right)
return 0;
high_plus_one = fold_build2 (PLUS_EXPR, TREE_TYPE (node->high),
node->high,
build_int_cst (TREE_TYPE (node->high), 1));
/* If the addition above overflowed, we can't verify anything.
Otherwise, look for a parent that tests our value + 1. */
if (! tree_int_cst_lt (node->high, high_plus_one))
return 0;
for (pnode = node->parent; pnode; pnode = pnode->parent)
if (tree_int_cst_equal (high_plus_one, pnode->low))
return 1;
return 0;
}
/* Search the parent sections of the
case node tree to see if both tests for the upper and lower
bounds of NODE would be redundant. */
static int
node_is_bounded (case_node_ptr node, tree index_type)
{
return (node_has_low_bound (node, index_type)
&& node_has_high_bound (node, index_type));
}
/* Emit step-by-step code to select a case for the value of INDEX.
The thus generated decision tree follows the form of the
case-node binary tree NODE, whose nodes represent test conditions.
INDEX_TYPE is the type of the index of the switch.
Care is taken to prune redundant tests from the decision tree
by detecting any boundary conditions already checked by
emitted rtx. (See node_has_high_bound, node_has_low_bound
and node_is_bounded, above.)
Where the test conditions can be shown to be redundant we emit
an unconditional jump to the target code. As a further
optimization, the subordinates of a tree node are examined to
check for bounded nodes. In this case conditional and/or
unconditional jumps as a result of the boundary check for the
current node are arranged to target the subordinates associated
code for out of bound conditions on the current node.
We can assume that when control reaches the code generated here,
the index value has already been compared with the parents
of this node, and determined to be on the same side of each parent
as this node is. Thus, if this node tests for the value 51,
and a parent tested for 52, we don't need to consider
the possibility of a value greater than 51. If another parent
tests for the value 50, then this node need not test anything. */
static void
emit_case_nodes (rtx index, case_node_ptr node, rtx default_label,
int default_prob, tree index_type)
{
/* If INDEX has an unsigned type, we must make unsigned branches. */
int unsignedp = TYPE_UNSIGNED (index_type);
int probability;
int prob = node->prob, subtree_prob = node->subtree_prob;
enum machine_mode mode = GET_MODE (index);
enum machine_mode imode = TYPE_MODE (index_type);
/* Handle indices detected as constant during RTL expansion. */
if (mode == VOIDmode)
mode = imode;
/* See if our parents have already tested everything for us.
If they have, emit an unconditional jump for this node. */
if (node_is_bounded (node, index_type))
emit_jump (label_rtx (node->code_label));
else if (tree_int_cst_equal (node->low, node->high))
{
probability = conditional_probability (prob, subtree_prob + default_prob);
/* Node is single valued. First see if the index expression matches
this node and then check our children, if any. */
do_jump_if_equal (mode, index,
convert_modes (mode, imode,
expand_normal (node->low),
unsignedp),
label_rtx (node->code_label), unsignedp, probability);
/* Since this case is taken at this point, reduce its weight from
subtree_weight. */
subtree_prob -= prob;
if (node->right != 0 && node->left != 0)
{
/* This node has children on both sides.
Dispatch to one side or the other
by comparing the index value with this node's value.
If one subtree is bounded, check that one first,
so we can avoid real branches in the tree. */
if (node_is_bounded (node->right, index_type))
{
probability = conditional_probability (
node->right->prob,
subtree_prob + default_prob);
emit_cmp_and_jump_insns (index,
convert_modes
(mode, imode,
expand_normal (node->high),
unsignedp),
GT, NULL_RTX, mode, unsignedp,
label_rtx (node->right->code_label),
probability);
emit_case_nodes (index, node->left, default_label, default_prob,
index_type);
}
else if (node_is_bounded (node->left, index_type))
{
probability = conditional_probability (
node->left->prob,
subtree_prob + default_prob);
emit_cmp_and_jump_insns (index,
convert_modes
(mode, imode,
expand_normal (node->high),
unsignedp),
LT, NULL_RTX, mode, unsignedp,
label_rtx (node->left->code_label),
probability);
emit_case_nodes (index, node->right, default_label, default_prob, index_type);
}
/* If both children are single-valued cases with no
children, finish up all the work. This way, we can save
one ordered comparison. */
else if (tree_int_cst_equal (node->right->low, node->right->high)
&& node->right->left == 0
&& node->right->right == 0
&& tree_int_cst_equal (node->left->low, node->left->high)
&& node->left->left == 0
&& node->left->right == 0)
{
/* Neither node is bounded. First distinguish the two sides;
then emit the code for one side at a time. */
/* See if the value matches what the right hand side
wants. */
probability = conditional_probability (
node->right->prob,
subtree_prob + default_prob);
do_jump_if_equal (mode, index,
convert_modes (mode, imode,
expand_normal (node->right->low),
unsignedp),
label_rtx (node->right->code_label),
unsignedp, probability);
/* See if the value matches what the left hand side
wants. */
probability = conditional_probability (
node->left->prob,
subtree_prob + default_prob);
do_jump_if_equal (mode, index,
convert_modes (mode, imode,
expand_normal (node->left->low),
unsignedp),
label_rtx (node->left->code_label),
unsignedp, probability);
}
else
{
/* Neither node is bounded. First distinguish the two sides;
then emit the code for one side at a time. */
tree test_label
= build_decl (curr_insn_location (),
LABEL_DECL, NULL_TREE, NULL_TREE);
/* The default label could be reached either through the right
subtree or the left subtree. Divide the probability
equally. */
probability = conditional_probability (
node->right->subtree_prob + default_prob/2,
subtree_prob + default_prob);
/* See if the value is on the right. */
emit_cmp_and_jump_insns (index,
convert_modes
(mode, imode,
expand_normal (node->high),
unsignedp),
GT, NULL_RTX, mode, unsignedp,
label_rtx (test_label),
probability);
default_prob /= 2;
/* Value must be on the left.
Handle the left-hand subtree. */
emit_case_nodes (index, node->left, default_label, default_prob, index_type);
/* If left-hand subtree does nothing,
go to default. */
if (default_label)
emit_jump (default_label);
/* Code branches here for the right-hand subtree. */
expand_label (test_label);
emit_case_nodes (index, node->right, default_label, default_prob, index_type);
}
}
else if (node->right != 0 && node->left == 0)
{
/* Here we have a right child but no left so we issue a conditional
branch to default and process the right child.
Omit the conditional branch to default if the right child
does not have any children and is single valued; it would
cost too much space to save so little time. */
if (node->right->right || node->right->left
|| !tree_int_cst_equal (node->right->low, node->right->high))
{
if (!node_has_low_bound (node, index_type))
{
probability = conditional_probability (
default_prob/2,
subtree_prob + default_prob);
emit_cmp_and_jump_insns (index,
convert_modes
(mode, imode,
expand_normal (node->high),
unsignedp),
LT, NULL_RTX, mode, unsignedp,
default_label,
probability);
default_prob /= 2;
}
emit_case_nodes (index, node->right, default_label, default_prob, index_type);
}
else
{
probability = conditional_probability (
node->right->subtree_prob,
subtree_prob + default_prob);
/* We cannot process node->right normally
since we haven't ruled out the numbers less than
this node's value. So handle node->right explicitly. */
do_jump_if_equal (mode, index,
convert_modes
(mode, imode,
expand_normal (node->right->low),
unsignedp),
label_rtx (node->right->code_label), unsignedp, probability);
}
}
else if (node->right == 0 && node->left != 0)
{
/* Just one subtree, on the left. */
if (node->left->left || node->left->right
|| !tree_int_cst_equal (node->left->low, node->left->high))
{
if (!node_has_high_bound (node, index_type))
{
probability = conditional_probability (
default_prob/2,
subtree_prob + default_prob);
emit_cmp_and_jump_insns (index,
convert_modes
(mode, imode,
expand_normal (node->high),
unsignedp),
GT, NULL_RTX, mode, unsignedp,
default_label,
probability);
default_prob /= 2;
}
emit_case_nodes (index, node->left, default_label,
default_prob, index_type);
}
else
{
probability = conditional_probability (
node->left->subtree_prob,
subtree_prob + default_prob);
/* We cannot process node->left normally
since we haven't ruled out the numbers less than
this node's value. So handle node->left explicitly. */
do_jump_if_equal (mode, index,
convert_modes
(mode, imode,
expand_normal (node->left->low),
unsignedp),
label_rtx (node->left->code_label), unsignedp, probability);
}
}
}
else
{
/* Node is a range. These cases are very similar to those for a single
value, except that we do not start by testing whether this node
is the one to branch to. */
if (node->right != 0 && node->left != 0)
{
/* Node has subtrees on both sides.
If the right-hand subtree is bounded,
test for it first, since we can go straight there.
Otherwise, we need to make a branch in the control structure,
then handle the two subtrees. */
tree test_label = 0;
if (node_is_bounded (node->right, index_type))
{
/* Right hand node is fully bounded so we can eliminate any
testing and branch directly to the target code. */
probability = conditional_probability (
node->right->subtree_prob,
subtree_prob + default_prob);
emit_cmp_and_jump_insns (index,
convert_modes
(mode, imode,
expand_normal (node->high),
unsignedp),
GT, NULL_RTX, mode, unsignedp,
label_rtx (node->right->code_label),
probability);
}
else
{
/* Right hand node requires testing.
Branch to a label where we will handle it later. */
test_label = build_decl (curr_insn_location (),
LABEL_DECL, NULL_TREE, NULL_TREE);
probability = conditional_probability (
node->right->subtree_prob + default_prob/2,
subtree_prob + default_prob);
emit_cmp_and_jump_insns (index,
convert_modes
(mode, imode,
expand_normal (node->high),
unsignedp),
GT, NULL_RTX, mode, unsignedp,
label_rtx (test_label),
probability);
default_prob /= 2;
}
/* Value belongs to this node or to the left-hand subtree. */
probability = conditional_probability (
prob,
subtree_prob + default_prob);
emit_cmp_and_jump_insns (index,
convert_modes
(mode, imode,
expand_normal (node->low),
unsignedp),
GE, NULL_RTX, mode, unsignedp,
label_rtx (node->code_label),
probability);
/* Handle the left-hand subtree. */
emit_case_nodes (index, node->left, default_label, default_prob, index_type);
/* If right node had to be handled later, do that now. */
if (test_label)
{
/* If the left-hand subtree fell through,
don't let it fall into the right-hand subtree. */
if (default_label)
emit_jump (default_label);
expand_label (test_label);
emit_case_nodes (index, node->right, default_label, default_prob, index_type);
}
}
else if (node->right != 0 && node->left == 0)
{
/* Deal with values to the left of this node,
if they are possible. */
if (!node_has_low_bound (node, index_type))
{
probability = conditional_probability (
default_prob/2,
subtree_prob + default_prob);
emit_cmp_and_jump_insns (index,
convert_modes
(mode, imode,
expand_normal (node->low),
unsignedp),
LT, NULL_RTX, mode, unsignedp,
default_label,
probability);
default_prob /= 2;
}
/* Value belongs to this node or to the right-hand subtree. */
probability = conditional_probability (
prob,
subtree_prob + default_prob);
emit_cmp_and_jump_insns (index,
convert_modes
(mode, imode,
expand_normal (node->high),
unsignedp),
LE, NULL_RTX, mode, unsignedp,
label_rtx (node->code_label),
probability);
emit_case_nodes (index, node->right, default_label, default_prob, index_type);
}
else if (node->right == 0 && node->left != 0)
{
/* Deal with values to the right of this node,
if they are possible. */
if (!node_has_high_bound (node, index_type))
{
probability = conditional_probability (
default_prob/2,
subtree_prob + default_prob);
emit_cmp_and_jump_insns (index,
convert_modes
(mode, imode,
expand_normal (node->high),
unsignedp),
GT, NULL_RTX, mode, unsignedp,
default_label,
probability);
default_prob /= 2;
}
/* Value belongs to this node or to the left-hand subtree. */
probability = conditional_probability (
prob,
subtree_prob + default_prob);
emit_cmp_and_jump_insns (index,
convert_modes
(mode, imode,
expand_normal (node->low),
unsignedp),
GE, NULL_RTX, mode, unsignedp,
label_rtx (node->code_label),
probability);
emit_case_nodes (index, node->left, default_label, default_prob, index_type);
}
else
{
/* Node has no children so we check low and high bounds to remove
redundant tests. Only one of the bounds can exist,
since otherwise this node is bounded--a case tested already. */
int high_bound = node_has_high_bound (node, index_type);
int low_bound = node_has_low_bound (node, index_type);
if (!high_bound && low_bound)
{
probability = conditional_probability (
default_prob,
subtree_prob + default_prob);
emit_cmp_and_jump_insns (index,
convert_modes
(mode, imode,
expand_normal (node->high),
unsignedp),
GT, NULL_RTX, mode, unsignedp,
default_label,
probability);
}
else if (!low_bound && high_bound)
{
probability = conditional_probability (
default_prob,
subtree_prob + default_prob);
emit_cmp_and_jump_insns (index,
convert_modes
(mode, imode,
expand_normal (node->low),
unsignedp),
LT, NULL_RTX, mode, unsignedp,
default_label,
probability);
}
else if (!low_bound && !high_bound)
{
/* Widen LOW and HIGH to the same width as INDEX. */
tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
tree low = build1 (CONVERT_EXPR, type, node->low);
tree high = build1 (CONVERT_EXPR, type, node->high);
rtx low_rtx, new_index, new_bound;
/* Instead of doing two branches, emit one unsigned branch for
(index-low) > (high-low). */
low_rtx = expand_expr (low, NULL_RTX, mode, EXPAND_NORMAL);
new_index = expand_simple_binop (mode, MINUS, index, low_rtx,
NULL_RTX, unsignedp,
OPTAB_WIDEN);
new_bound = expand_expr (fold_build2 (MINUS_EXPR, type,
high, low),
NULL_RTX, mode, EXPAND_NORMAL);
probability = conditional_probability (
default_prob,
subtree_prob + default_prob);
emit_cmp_and_jump_insns (new_index, new_bound, GT, NULL_RTX,
mode, 1, default_label, probability);
}
emit_jump (label_rtx (node->code_label));
}
}
}
|