summaryrefslogtreecommitdiff
path: root/gcc/shrink-wrap.c
blob: 2710d98e444a8fb6217719d0e9770a6b07a589ac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
/* Shrink-wrapping related optimizations.
   Copyright (C) 1987-2014 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* This file handles shrink-wrapping related optimizations.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl-error.h"
#include "tree.h"
#include "stor-layout.h"
#include "varasm.h"
#include "stringpool.h"
#include "flags.h"
#include "except.h"
#include "function.h"
#include "expr.h"
#include "optabs.h"
#include "libfuncs.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "insn-config.h"
#include "recog.h"
#include "output.h"
#include "hashtab.h"
#include "tm_p.h"
#include "langhooks.h"
#include "target.h"
#include "common/common-target.h"
#include "gimple-expr.h"
#include "gimplify.h"
#include "tree-pass.h"
#include "predict.h"
#include "df.h"
#include "params.h"
#include "bb-reorder.h"
#include "shrink-wrap.h"
#include "regcprop.h"

#ifdef HAVE_simple_return

/* Return true if INSN requires the stack frame to be set up.
   PROLOGUE_USED contains the hard registers used in the function
   prologue.  SET_UP_BY_PROLOGUE is the set of registers we expect the
   prologue to set up for the function.  */
bool
requires_stack_frame_p (rtx_insn *insn, HARD_REG_SET prologue_used,
			HARD_REG_SET set_up_by_prologue)
{
  df_ref def, use;
  HARD_REG_SET hardregs;
  unsigned regno;

  if (CALL_P (insn))
    return !SIBLING_CALL_P (insn);

  /* We need a frame to get the unique CFA expected by the unwinder.  */
  if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
    return true;

  CLEAR_HARD_REG_SET (hardregs);
  FOR_EACH_INSN_DEF (def, insn)
    {
      rtx dreg = DF_REF_REG (def);

      if (!REG_P (dreg))
	continue;

      add_to_hard_reg_set (&hardregs, GET_MODE (dreg),
			   REGNO (dreg));
    }
  if (hard_reg_set_intersect_p (hardregs, prologue_used))
    return true;
  AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
    if (TEST_HARD_REG_BIT (hardregs, regno)
	&& df_regs_ever_live_p (regno))
      return true;

  FOR_EACH_INSN_USE (use, insn)
    {
      rtx reg = DF_REF_REG (use);

      if (!REG_P (reg))
	continue;

      add_to_hard_reg_set (&hardregs, GET_MODE (reg),
			   REGNO (reg));
    }
  if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
    return true;

  return false;
}

/* See whether there has a single live edge from BB, which dest uses
   [REGNO, END_REGNO).  Return the live edge if its dest bb has
   one or two predecessors.  Otherwise return NULL.  */

static edge
live_edge_for_reg (basic_block bb, int regno, int end_regno)
{
  edge e, live_edge;
  edge_iterator ei;
  bitmap live;
  int i;

  live_edge = NULL;
  FOR_EACH_EDGE (e, ei, bb->succs)
    {
      live = df_get_live_in (e->dest);
      for (i = regno; i < end_regno; i++)
	if (REGNO_REG_SET_P (live, i))
	  {
	    if (live_edge && live_edge != e)
	      return NULL;
	    live_edge = e;
	  }
    }

  /* We can sometimes encounter dead code.  Don't try to move it
     into the exit block.  */
  if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
    return NULL;

  /* Reject targets of abnormal edges.  This is needed for correctness
     on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
     exception edges even though it is generally treated as call-saved
     for the majority of the compilation.  Moving across abnormal edges
     isn't going to be interesting for shrink-wrap usage anyway.  */
  if (live_edge->flags & EDGE_ABNORMAL)
    return NULL;

  /* When live_edge->dest->preds == 2, we can create a new block on
     the edge to make it meet the requirement.  */
  if (EDGE_COUNT (live_edge->dest->preds) > 2)
    return NULL;

  return live_edge;
}

/* Try to move INSN from BB to a successor.  Return true on success.
   USES and DEFS are the set of registers that are used and defined
   after INSN in BB.  SPLIT_P indicates whether a live edge from BB
   is splitted or not.  */

static bool
move_insn_for_shrink_wrap (basic_block bb, rtx_insn *insn,
			   const HARD_REG_SET uses,
			   const HARD_REG_SET defs,
			   bool *split_p)
{
  rtx set, src, dest;
  bitmap live_out, live_in, bb_uses, bb_defs;
  unsigned int i, dregno, end_dregno, sregno, end_sregno;
  basic_block next_block;
  edge live_edge;

  /* Look for a simple register copy.  */
  set = single_set (insn);
  if (!set)
    return false;
  src = SET_SRC (set);
  dest = SET_DEST (set);
  if (!REG_P (dest) || !REG_P (src)
      /* STACK or FRAME related adjustment might be part of prologue.
	 So keep them in the entry block.  */
      || dest == stack_pointer_rtx
      || dest == frame_pointer_rtx
      || dest == hard_frame_pointer_rtx)
    return false;

  /* Make sure that the source register isn't defined later in BB.  */
  sregno = REGNO (src);
  end_sregno = END_REGNO (src);
  if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
    return false;

  /* Make sure that the destination register isn't referenced later in BB.  */
  dregno = REGNO (dest);
  end_dregno = END_REGNO (dest);
  if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
      || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
    return false;

  /* See whether there is a successor block to which we could move INSN.  */
  live_edge = live_edge_for_reg (bb, dregno, end_dregno);
  if (!live_edge)
    return false;

  next_block = live_edge->dest;
  /* Create a new basic block on the edge.  */
  if (EDGE_COUNT (next_block->preds) == 2)
    {
      /* split_edge for a block with only one successor is meaningless.  */
      if (EDGE_COUNT (bb->succs) == 1)
	return false;

      /* If DF_LIVE doesn't exist, i.e. at -O1, just give up.  */
      if (!df_live)
	return false;

      next_block = split_edge (live_edge);

      /* We create a new basic block.  Call df_grow_bb_info to make sure
	 all data structures are allocated.  */
      df_grow_bb_info (df_live);
      bitmap_copy (df_get_live_in (next_block), df_get_live_out (bb));
      df_set_bb_dirty (next_block);

      /* We should not split more than once for a function.  */
      gcc_assert (!(*split_p));
      *split_p = true;
    }

  /* At this point we are committed to moving INSN, but let's try to
     move it as far as we can.  */
  do
    {
      live_out = df_get_live_out (bb);
      live_in = df_get_live_in (next_block);
      bb = next_block;

      /* Check whether BB uses DEST or clobbers DEST.  We need to add
	 INSN to BB if so.  Either way, DEST is no longer live on entry,
	 except for any part that overlaps SRC (next loop).  */
      bb_uses = &DF_LR_BB_INFO (bb)->use;
      bb_defs = &DF_LR_BB_INFO (bb)->def;
      if (df_live)
	{
	  for (i = dregno; i < end_dregno; i++)
	    {
	      if (*split_p
		  || REGNO_REG_SET_P (bb_uses, i)
		  || REGNO_REG_SET_P (bb_defs, i)
		  || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
		next_block = NULL;
	      CLEAR_REGNO_REG_SET (live_out, i);
	      CLEAR_REGNO_REG_SET (live_in, i);
	    }

	  /* Check whether BB clobbers SRC.  We need to add INSN to BB if so.
	     Either way, SRC is now live on entry.  */
	  for (i = sregno; i < end_sregno; i++)
	    {
	      if (*split_p
		  || REGNO_REG_SET_P (bb_defs, i)
		  || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
		next_block = NULL;
	      SET_REGNO_REG_SET (live_out, i);
	      SET_REGNO_REG_SET (live_in, i);
	    }
	}
      else
	{
	  /* DF_LR_BB_INFO (bb)->def does not comprise the DF_REF_PARTIAL and
	     DF_REF_CONDITIONAL defs.  So if DF_LIVE doesn't exist, i.e.
	     at -O1, just give up searching NEXT_BLOCK.  */
	  next_block = NULL;
	  for (i = dregno; i < end_dregno; i++)
	    {
	      CLEAR_REGNO_REG_SET (live_out, i);
	      CLEAR_REGNO_REG_SET (live_in, i);
	    }

	  for (i = sregno; i < end_sregno; i++)
	    {
	      SET_REGNO_REG_SET (live_out, i);
	      SET_REGNO_REG_SET (live_in, i);
	    }
	}

      /* If we don't need to add the move to BB, look for a single
	 successor block.  */
      if (next_block)
	{
	  live_edge = live_edge_for_reg (next_block, dregno, end_dregno);
	  if (!live_edge || EDGE_COUNT (live_edge->dest->preds) > 1)
	    break;
	  next_block = live_edge->dest;
	}
    }
  while (next_block);

  /* For the new created basic block, there is no dataflow info at all.
     So skip the following dataflow update and check.  */
  if (!(*split_p))
    {
      /* BB now defines DEST.  It only uses the parts of DEST that overlap SRC
	 (next loop).  */
      for (i = dregno; i < end_dregno; i++)
	{
	  CLEAR_REGNO_REG_SET (bb_uses, i);
	  SET_REGNO_REG_SET (bb_defs, i);
	}

      /* BB now uses SRC.  */
      for (i = sregno; i < end_sregno; i++)
	SET_REGNO_REG_SET (bb_uses, i);
    }

  emit_insn_after (PATTERN (insn), bb_note (bb));
  delete_insn (insn);
  return true;
}

/* Look for register copies in the first block of the function, and move
   them down into successor blocks if the register is used only on one
   path.  This exposes more opportunities for shrink-wrapping.  These
   kinds of sets often occur when incoming argument registers are moved
   to call-saved registers because their values are live across one or
   more calls during the function.  */

void
prepare_shrink_wrap (basic_block entry_block)
{
  rtx_insn *insn, *curr;
  rtx x;
  HARD_REG_SET uses, defs;
  df_ref def, use;
  bool split_p = false;

  if (JUMP_P (BB_END (entry_block)))
    {
      /* To have more shrink-wrapping opportunities, prepare_shrink_wrap tries
	 to sink the copies from parameter to callee saved register out of
	 entry block.  copyprop_hardreg_forward_bb_without_debug_insn is called
	 to release some dependences.  */
      copyprop_hardreg_forward_bb_without_debug_insn (entry_block);
    }

  CLEAR_HARD_REG_SET (uses);
  CLEAR_HARD_REG_SET (defs);
  FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
    if (NONDEBUG_INSN_P (insn)
	&& !move_insn_for_shrink_wrap (entry_block, insn, uses, defs,
				       &split_p))
      {
	/* Add all defined registers to DEFs.  */
	FOR_EACH_INSN_DEF (def, insn)
	  {
	    x = DF_REF_REG (def);
	    if (REG_P (x) && HARD_REGISTER_P (x))
	      SET_HARD_REG_BIT (defs, REGNO (x));
	  }

	/* Add all used registers to USESs.  */
	FOR_EACH_INSN_USE (use, insn)
	  {
	    x = DF_REF_REG (use);
	    if (REG_P (x) && HARD_REGISTER_P (x))
	      SET_HARD_REG_BIT (uses, REGNO (x));
	  }
      }
}

/* Create a copy of BB instructions and insert at BEFORE.  Redirect
   preds of BB to COPY_BB if they don't appear in NEED_PROLOGUE.  */
void
dup_block_and_redirect (basic_block bb, basic_block copy_bb, rtx_insn *before,
			bitmap_head *need_prologue)
{
  edge_iterator ei;
  edge e;
  rtx_insn *insn = BB_END (bb);

  /* We know BB has a single successor, so there is no need to copy a
     simple jump at the end of BB.  */
  if (simplejump_p (insn))
    insn = PREV_INSN (insn);

  start_sequence ();
  duplicate_insn_chain (BB_HEAD (bb), insn);
  if (dump_file)
    {
      unsigned count = 0;
      for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
	if (active_insn_p (insn))
	  ++count;
      fprintf (dump_file, "Duplicating bb %d to bb %d, %u active insns.\n",
	       bb->index, copy_bb->index, count);
    }
  insn = get_insns ();
  end_sequence ();
  emit_insn_before (insn, before);

  /* Redirect all the paths that need no prologue into copy_bb.  */
  for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei));)
    if (!bitmap_bit_p (need_prologue, e->src->index))
      {
	int freq = EDGE_FREQUENCY (e);
	copy_bb->count += e->count;
	copy_bb->frequency += EDGE_FREQUENCY (e);
	e->dest->count -= e->count;
	if (e->dest->count < 0)
	  e->dest->count = 0;
	e->dest->frequency -= freq;
	if (e->dest->frequency < 0)
	  e->dest->frequency = 0;
	redirect_edge_and_branch_force (e, copy_bb);
	continue;
      }
    else
      ei_next (&ei);
}


/* Try to perform a kind of shrink-wrapping, making sure the
   prologue/epilogue is emitted only around those parts of the
   function that require it.  */

void
try_shrink_wrapping (edge *entry_edge, edge orig_entry_edge,
		     bitmap_head *bb_flags, rtx prologue_seq)
{
  edge e;
  edge_iterator ei;
  bool nonempty_prologue = false;
  unsigned max_grow_size;
  rtx seq;

  for (seq = prologue_seq; seq; seq = NEXT_INSN (seq))
    if (!NOTE_P (seq) || NOTE_KIND (seq) != NOTE_INSN_PROLOGUE_END)
      {
	nonempty_prologue = true;
	break;
      }

  if (flag_shrink_wrap && HAVE_simple_return
      && (targetm.profile_before_prologue () || !crtl->profile)
      && nonempty_prologue && !crtl->calls_eh_return)
    {
      HARD_REG_SET prologue_clobbered, prologue_used, live_on_edge;
      struct hard_reg_set_container set_up_by_prologue;
      rtx p_insn;
      vec<basic_block> vec;
      basic_block bb;
      bitmap_head bb_antic_flags;
      bitmap_head bb_on_list;
      bitmap_head bb_tail;

      if (dump_file)
	fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");

      /* Compute the registers set and used in the prologue.  */
      CLEAR_HARD_REG_SET (prologue_clobbered);
      CLEAR_HARD_REG_SET (prologue_used);
      for (p_insn = prologue_seq; p_insn; p_insn = NEXT_INSN (p_insn))
	{
	  HARD_REG_SET this_used;
	  if (!NONDEBUG_INSN_P (p_insn))
	    continue;

	  CLEAR_HARD_REG_SET (this_used);
	  note_uses (&PATTERN (p_insn), record_hard_reg_uses,
		     &this_used);
	  AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
	  IOR_HARD_REG_SET (prologue_used, this_used);
	  note_stores (PATTERN (p_insn), record_hard_reg_sets,
		       &prologue_clobbered);
	}

      prepare_shrink_wrap ((*entry_edge)->dest);

      bitmap_initialize (&bb_antic_flags, &bitmap_default_obstack);
      bitmap_initialize (&bb_on_list, &bitmap_default_obstack);
      bitmap_initialize (&bb_tail, &bitmap_default_obstack);

      /* Find the set of basic blocks that require a stack frame,
	 and blocks that are too big to be duplicated.  */

      vec.create (n_basic_blocks_for_fn (cfun));

      CLEAR_HARD_REG_SET (set_up_by_prologue.set);
      add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
			   STACK_POINTER_REGNUM);
      add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
      if (frame_pointer_needed)
	add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
			     HARD_FRAME_POINTER_REGNUM);
      if (pic_offset_table_rtx)
	add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
			     PIC_OFFSET_TABLE_REGNUM);
      if (crtl->drap_reg)
	add_to_hard_reg_set (&set_up_by_prologue.set,
			     GET_MODE (crtl->drap_reg),
			     REGNO (crtl->drap_reg));
      if (targetm.set_up_by_prologue)
	targetm.set_up_by_prologue (&set_up_by_prologue);

      /* We don't use a different max size depending on
	 optimize_bb_for_speed_p because increasing shrink-wrapping
	 opportunities by duplicating tail blocks can actually result
	 in an overall decrease in code size.  */
      max_grow_size = get_uncond_jump_length ();
      max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);

      FOR_EACH_BB_FN (bb, cfun)
	{
	  rtx_insn *insn;
	  unsigned size = 0;

	  FOR_BB_INSNS (bb, insn)
	    if (NONDEBUG_INSN_P (insn))
	      {
		if (requires_stack_frame_p (insn, prologue_used,
					    set_up_by_prologue.set))
		  {
		    if (bb == (*entry_edge)->dest)
		      goto fail_shrinkwrap;
		    bitmap_set_bit (bb_flags, bb->index);
		    vec.quick_push (bb);
		    break;
		  }
		else if (size <= max_grow_size)
		  {
		    size += get_attr_min_length (insn);
		    if (size > max_grow_size)
		      bitmap_set_bit (&bb_on_list, bb->index);
		  }
	      }
	}

      /* Blocks that really need a prologue, or are too big for tails.  */
      bitmap_ior_into (&bb_on_list, bb_flags);

      /* For every basic block that needs a prologue, mark all blocks
	 reachable from it, so as to ensure they are also seen as
	 requiring a prologue.  */
      while (!vec.is_empty ())
	{
	  basic_block tmp_bb = vec.pop ();

	  FOR_EACH_EDGE (e, ei, tmp_bb->succs)
	    if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
		&& bitmap_set_bit (bb_flags, e->dest->index))
	      vec.quick_push (e->dest);
	}

      /* Find the set of basic blocks that need no prologue, have a
	 single successor, can be duplicated, meet a max size
	 requirement, and go to the exit via like blocks.  */
      vec.quick_push (EXIT_BLOCK_PTR_FOR_FN (cfun));
      while (!vec.is_empty ())
	{
	  basic_block tmp_bb = vec.pop ();

	  FOR_EACH_EDGE (e, ei, tmp_bb->preds)
	    if (single_succ_p (e->src)
		&& !bitmap_bit_p (&bb_on_list, e->src->index)
		&& can_duplicate_block_p (e->src))
	      {
		edge pe;
		edge_iterator pei;

		/* If there is predecessor of e->src which doesn't
		   need prologue and the edge is complex,
		   we might not be able to redirect the branch
		   to a copy of e->src.  */
		FOR_EACH_EDGE (pe, pei, e->src->preds)
		  if ((pe->flags & EDGE_COMPLEX) != 0
		      && !bitmap_bit_p (bb_flags, pe->src->index))
		    break;
		if (pe == NULL && bitmap_set_bit (&bb_tail, e->src->index))
		  vec.quick_push (e->src);
	      }
	}

      /* Now walk backwards from every block that is marked as needing
	 a prologue to compute the bb_antic_flags bitmap.  Exclude
	 tail blocks; They can be duplicated to be used on paths not
	 needing a prologue.  */
      bitmap_clear (&bb_on_list);
      bitmap_and_compl (&bb_antic_flags, bb_flags, &bb_tail);
      FOR_EACH_BB_FN (bb, cfun)
	{
	  if (!bitmap_bit_p (&bb_antic_flags, bb->index))
	    continue;
	  FOR_EACH_EDGE (e, ei, bb->preds)
	    if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
		&& bitmap_set_bit (&bb_on_list, e->src->index))
	      vec.quick_push (e->src);
	}
      while (!vec.is_empty ())
	{
	  basic_block tmp_bb = vec.pop ();
	  bool all_set = true;

	  bitmap_clear_bit (&bb_on_list, tmp_bb->index);
	  FOR_EACH_EDGE (e, ei, tmp_bb->succs)
	    if (!bitmap_bit_p (&bb_antic_flags, e->dest->index))
	      {
		all_set = false;
		break;
	      }

	  if (all_set)
	    {
	      bitmap_set_bit (&bb_antic_flags, tmp_bb->index);
	      FOR_EACH_EDGE (e, ei, tmp_bb->preds)
		if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
		    && bitmap_set_bit (&bb_on_list, e->src->index))
		  vec.quick_push (e->src);
	    }
	}
      /* Find exactly one edge that leads to a block in ANTIC from
	 a block that isn't.  */
      if (!bitmap_bit_p (&bb_antic_flags, (*entry_edge)->dest->index))
	FOR_EACH_BB_FN (bb, cfun)
	  {
	    if (!bitmap_bit_p (&bb_antic_flags, bb->index))
	      continue;
	    FOR_EACH_EDGE (e, ei, bb->preds)
	      if (!bitmap_bit_p (&bb_antic_flags, e->src->index))
		{
		  if (*entry_edge != orig_entry_edge)
		    {
		      *entry_edge = orig_entry_edge;
		      if (dump_file)
			fprintf (dump_file, "More than one candidate edge.\n");
		      goto fail_shrinkwrap;
		    }
		  if (dump_file)
		    fprintf (dump_file, "Found candidate edge for "
			     "shrink-wrapping, %d->%d.\n", e->src->index,
			     e->dest->index);
		  *entry_edge = e;
		}
	  }

      if (*entry_edge != orig_entry_edge)
	{
	  /* Test whether the prologue is known to clobber any register
	     (other than FP or SP) which are live on the edge.  */
	  CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
	  if (frame_pointer_needed)
	    CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
	  REG_SET_TO_HARD_REG_SET (live_on_edge,
				   df_get_live_in ((*entry_edge)->dest));
	  if (hard_reg_set_intersect_p (live_on_edge, prologue_clobbered))
	    {
	      *entry_edge = orig_entry_edge;
	      if (dump_file)
		fprintf (dump_file,
			 "Shrink-wrapping aborted due to clobber.\n");
	    }
	}
      if (*entry_edge != orig_entry_edge)
	{
	  crtl->shrink_wrapped = true;
	  if (dump_file)
	    fprintf (dump_file, "Performing shrink-wrapping.\n");

	  /* Find tail blocks reachable from both blocks needing a
	     prologue and blocks not needing a prologue.  */
	  if (!bitmap_empty_p (&bb_tail))
	    FOR_EACH_BB_FN (bb, cfun)
	      {
		bool some_pro, some_no_pro;
		if (!bitmap_bit_p (&bb_tail, bb->index))
		  continue;
		some_pro = some_no_pro = false;
		FOR_EACH_EDGE (e, ei, bb->preds)
		  {
		    if (bitmap_bit_p (bb_flags, e->src->index))
		      some_pro = true;
		    else
		      some_no_pro = true;
		  }
		if (some_pro && some_no_pro)
		  vec.quick_push (bb);
		else
		  bitmap_clear_bit (&bb_tail, bb->index);
	      }
	  /* Find the head of each tail.  */
	  while (!vec.is_empty ())
	    {
	      basic_block tbb = vec.pop ();

	      if (!bitmap_bit_p (&bb_tail, tbb->index))
		continue;

	      while (single_succ_p (tbb))
		{
		  tbb = single_succ (tbb);
		  bitmap_clear_bit (&bb_tail, tbb->index);
		}
	    }
	  /* Now duplicate the tails.  */
	  if (!bitmap_empty_p (&bb_tail))
	    FOR_EACH_BB_REVERSE_FN (bb, cfun)
	      {
		basic_block copy_bb, tbb;
		rtx_insn *insert_point;
		int eflags;

		if (!bitmap_clear_bit (&bb_tail, bb->index))
		  continue;

		/* Create a copy of BB, instructions and all, for
		   use on paths that don't need a prologue.
		   Ideal placement of the copy is on a fall-thru edge
		   or after a block that would jump to the copy.  */
		FOR_EACH_EDGE (e, ei, bb->preds)
		  if (!bitmap_bit_p (bb_flags, e->src->index)
		      && single_succ_p (e->src))
		    break;
		if (e)
		  {
                    /* Make sure we insert after any barriers.  */
                    rtx_insn *end = get_last_bb_insn (e->src);
                    copy_bb = create_basic_block (NEXT_INSN (end),
                                                  NULL_RTX, e->src);
		    BB_COPY_PARTITION (copy_bb, e->src);
		  }
		else
		  {
		    /* Otherwise put the copy at the end of the function.  */
		    copy_bb = create_basic_block (NULL_RTX, NULL_RTX,
						  EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
		    BB_COPY_PARTITION (copy_bb, bb);
		  }

		insert_point = emit_note_after (NOTE_INSN_DELETED,
						BB_END (copy_bb));
		emit_barrier_after (BB_END (copy_bb));

		tbb = bb;
		while (1)
		  {
		    dup_block_and_redirect (tbb, copy_bb, insert_point,
					    bb_flags);
		    tbb = single_succ (tbb);
		    if (tbb == EXIT_BLOCK_PTR_FOR_FN (cfun))
		      break;
		    e = split_block (copy_bb, PREV_INSN (insert_point));
		    copy_bb = e->dest;
		  }

		/* Quiet verify_flow_info by (ab)using EDGE_FAKE.
		   We have yet to add a simple_return to the tails,
		   as we'd like to first convert_jumps_to_returns in
		   case the block is no longer used after that.  */
		eflags = EDGE_FAKE;
		if (CALL_P (PREV_INSN (insert_point))
		    && SIBLING_CALL_P (PREV_INSN (insert_point)))
		  eflags = EDGE_SIBCALL | EDGE_ABNORMAL;
		make_single_succ_edge (copy_bb, EXIT_BLOCK_PTR_FOR_FN (cfun),
				       eflags);

		/* verify_flow_info doesn't like a note after a
		   sibling call.  */
		delete_insn (insert_point);
		if (bitmap_empty_p (&bb_tail))
		  break;
	      }
	}

    fail_shrinkwrap:
      bitmap_clear (&bb_tail);
      bitmap_clear (&bb_antic_flags);
      bitmap_clear (&bb_on_list);
      vec.release ();
    }
}

/* If we're allowed to generate a simple return instruction, then by
   definition we don't need a full epilogue.  If the last basic
   block before the exit block does not contain active instructions,
   examine its predecessors and try to emit (conditional) return
   instructions.  */

edge
get_unconverted_simple_return (edge exit_fallthru_edge, bitmap_head bb_flags,
			       vec<edge> *unconverted_simple_returns,
			       rtx_insn **returnjump)
{
  if (optimize)
    {
      unsigned i, last;

      /* convert_jumps_to_returns may add to preds of the exit block
         (but won't remove).  Stop at end of current preds.  */
      last = EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
      for (i = 0; i < last; i++)
	{
	  edge e = EDGE_I (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds, i);
	  if (LABEL_P (BB_HEAD (e->src))
	      && !bitmap_bit_p (&bb_flags, e->src->index)
	      && !active_insn_between (BB_HEAD (e->src), BB_END (e->src)))
	    *unconverted_simple_returns
		  = convert_jumps_to_returns (e->src, true,
					      *unconverted_simple_returns);
	}
    }

  if (exit_fallthru_edge != NULL
      && EDGE_COUNT (exit_fallthru_edge->src->preds) != 0
      && !bitmap_bit_p (&bb_flags, exit_fallthru_edge->src->index))
    {
      basic_block last_bb;

      last_bb = emit_return_for_exit (exit_fallthru_edge, true);
      *returnjump = BB_END (last_bb);
      exit_fallthru_edge = NULL;
    }
  return exit_fallthru_edge;
}

/* If there were branches to an empty LAST_BB which we tried to
   convert to conditional simple_returns, but couldn't for some
   reason, create a block to hold a simple_return insn and redirect
   those remaining edges.  */

void
convert_to_simple_return (edge entry_edge, edge orig_entry_edge,
			  bitmap_head bb_flags, rtx returnjump,
			  vec<edge> unconverted_simple_returns)
{
  edge e;
  edge_iterator ei;

  if (!unconverted_simple_returns.is_empty ())
    {
      basic_block simple_return_block_hot = NULL;
      basic_block simple_return_block_cold = NULL;
      edge pending_edge_hot = NULL;
      edge pending_edge_cold = NULL;
      basic_block exit_pred;
      int i;

      gcc_assert (entry_edge != orig_entry_edge);

      /* See if we can reuse the last insn that was emitted for the
	 epilogue.  */
      if (returnjump != NULL_RTX
	  && JUMP_LABEL (returnjump) == simple_return_rtx)
	{
	  e = split_block (BLOCK_FOR_INSN (returnjump), PREV_INSN (returnjump));
	  if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
	    simple_return_block_hot = e->dest;
	  else
	    simple_return_block_cold = e->dest;
	}

      /* Also check returns we might need to add to tail blocks.  */
      FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
	if (EDGE_COUNT (e->src->preds) != 0
	    && (e->flags & EDGE_FAKE) != 0
	    && !bitmap_bit_p (&bb_flags, e->src->index))
	  {
	    if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
	      pending_edge_hot = e;
	    else
	      pending_edge_cold = e;
	  }

      /* Save a pointer to the exit's predecessor BB for use in
         inserting new BBs at the end of the function.  Do this
         after the call to split_block above which may split
         the original exit pred.  */
      exit_pred = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;

      FOR_EACH_VEC_ELT (unconverted_simple_returns, i, e)
	{
	  basic_block *pdest_bb;
	  edge pending;

	  if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
	    {
	      pdest_bb = &simple_return_block_hot;
	      pending = pending_edge_hot;
	    }
	  else
	    {
	      pdest_bb = &simple_return_block_cold;
	      pending = pending_edge_cold;
	    }

	  if (*pdest_bb == NULL && pending != NULL)
	    {
	      emit_return_into_block (true, pending->src);
	      pending->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
	      *pdest_bb = pending->src;
	    }
	  else if (*pdest_bb == NULL)
	    {
	      basic_block bb;
	      rtx_insn *start;

	      bb = create_basic_block (NULL, NULL, exit_pred);
	      BB_COPY_PARTITION (bb, e->src);
	      start = emit_jump_insn_after (gen_simple_return (),
					    BB_END (bb));
	      JUMP_LABEL (start) = simple_return_rtx;
	      emit_barrier_after (start);

	      *pdest_bb = bb;
	      make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
	    }
	  redirect_edge_and_branch_force (e, *pdest_bb);
	}
      unconverted_simple_returns.release ();
    }

  if (entry_edge != orig_entry_edge)
    {
      FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
	if (EDGE_COUNT (e->src->preds) != 0
	    && (e->flags & EDGE_FAKE) != 0
	    && !bitmap_bit_p (&bb_flags, e->src->index))
	  {
	    emit_return_into_block (true, e->src);
	    e->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
	  }
    }
}

#endif