1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
|
/* Instruction scheduling pass. Selective scheduler and pipeliner.
Copyright (C) 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "toplev.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "regs.h"
#include "function.h"
#include "flags.h"
#include "insn-config.h"
#include "insn-attr.h"
#include "except.h"
#include "toplev.h"
#include "recog.h"
#include "params.h"
#include "target.h"
#include "output.h"
#include "timevar.h"
#include "tree-pass.h"
#include "sched-int.h"
#include "ggc.h"
#include "tree.h"
#include "vec.h"
#include "langhooks.h"
#include "rtlhooks-def.h"
#include "output.h"
#ifdef INSN_SCHEDULING
#include "sel-sched-ir.h"
#include "sel-sched-dump.h"
#include "sel-sched.h"
#include "dbgcnt.h"
/* Implementation of selective scheduling approach.
The below implementation follows the original approach with the following
changes:
o the scheduler works after register allocation (but can be also tuned
to work before RA);
o some instructions are not copied or register renamed;
o conditional jumps are not moved with code duplication;
o several jumps in one parallel group are not supported;
o when pipelining outer loops, code motion through inner loops
is not supported;
o control and data speculation are supported;
o some improvements for better compile time/performance were made.
Terminology
===========
A vinsn, or virtual insn, is an insn with additional data characterizing
insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
Vinsns also act as smart pointers to save memory by reusing them in
different expressions. A vinsn is described by vinsn_t type.
An expression is a vinsn with additional data characterizing its properties
at some point in the control flow graph. The data may be its usefulness,
priority, speculative status, whether it was renamed/subsituted, etc.
An expression is described by expr_t type.
Availability set (av_set) is a set of expressions at a given control flow
point. It is represented as av_set_t. The expressions in av sets are kept
sorted in the terms of expr_greater_p function. It allows to truncate
the set while leaving the best expressions.
A fence is a point through which code motion is prohibited. On each step,
we gather a parallel group of insns at a fence. It is possible to have
multiple fences. A fence is represented via fence_t.
A boundary is the border between the fence group and the rest of the code.
Currently, we never have more than one boundary per fence, as we finalize
the fence group when a jump is scheduled. A boundary is represented
via bnd_t.
High-level overview
===================
The scheduler finds regions to schedule, schedules each one, and finalizes.
The regions are formed starting from innermost loops, so that when the inner
loop is pipelined, its prologue can be scheduled together with yet unprocessed
outer loop. The rest of acyclic regions are found using extend_rgns:
the blocks that are not yet allocated to any regions are traversed in top-down
order, and a block is added to a region to which all its predecessors belong;
otherwise, the block starts its own region.
The main scheduling loop (sel_sched_region_2) consists of just
scheduling on each fence and updating fences. For each fence,
we fill a parallel group of insns (fill_insns) until some insns can be added.
First, we compute available exprs (av-set) at the boundary of the current
group. Second, we choose the best expression from it. If the stall is
required to schedule any of the expressions, we advance the current cycle
appropriately. So, the final group does not exactly correspond to a VLIW
word. Third, we move the chosen expression to the boundary (move_op)
and update the intermediate av sets and liveness sets. We quit fill_insns
when either no insns left for scheduling or we have scheduled enough insns
so we feel like advancing a scheduling point.
Computing available expressions
===============================
The computation (compute_av_set) is a bottom-up traversal. At each insn,
we're moving the union of its successors' sets through it via
moveup_expr_set. The dependent expressions are removed. Local
transformations (substitution, speculation) are applied to move more
exprs. Then the expr corresponding to the current insn is added.
The result is saved on each basic block header.
When traversing the CFG, we're moving down for no more than max_ws insns.
Also, we do not move down to ineligible successors (is_ineligible_successor),
which include moving along a back-edge, moving to already scheduled code,
and moving to another fence. The first two restrictions are lifted during
pipelining, which allows us to move insns along a back-edge. We always have
an acyclic region for scheduling because we forbid motion through fences.
Choosing the best expression
============================
We sort the final availability set via sel_rank_for_schedule, then we remove
expressions which are not yet ready (tick_check_p) or which dest registers
cannot be used. For some of them, we choose another register via
find_best_reg. To do this, we run find_used_regs to calculate the set of
registers which cannot be used. The find_used_regs function performs
a traversal of code motion paths for an expr. We consider for renaming
only registers which are from the same regclass as the original one and
using which does not interfere with any live ranges. Finally, we convert
the resulting set to the ready list format and use max_issue and reorder*
hooks similarly to the Haifa scheduler.
Scheduling the best expression
==============================
We run the move_op routine to perform the same type of code motion paths
traversal as in find_used_regs. (These are working via the same driver,
code_motion_path_driver.) When moving down the CFG, we look for original
instruction that gave birth to a chosen expression. We undo
the transformations performed on an expression via the history saved in it.
When found, we remove the instruction or leave a reg-reg copy/speculation
check if needed. On a way up, we insert bookkeeping copies at each join
point. If a copy is not needed, it will be removed later during this
traversal. We update the saved av sets and liveness sets on the way up, too.
Finalizing the schedule
=======================
When pipelining, we reschedule the blocks from which insns were pipelined
to get a tighter schedule. On Itanium, we also perform bundling via
the same routine from ia64.c.
Dependence analysis changes
===========================
We augmented the sched-deps.c with hooks that get called when a particular
dependence is found in a particular part of an insn. Using these hooks, we
can do several actions such as: determine whether an insn can be moved through
another (has_dependence_p, moveup_expr); find out whether an insn can be
scheduled on the current cycle (tick_check_p); find out registers that
are set/used/clobbered by an insn and find out all the strange stuff that
restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
init_global_and_expr_for_insn).
Initialization changes
======================
There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
reused in all of the schedulers. We have split up the initialization of data
of such parts into different functions prefixed with scheduler type and
postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
The same splitting is done with current_sched_info structure:
dependence-related parts are in sched_deps_info, common part is in
common_sched_info, and haifa/sel/etc part is in current_sched_info.
Target contexts
===============
As we now have multiple-point scheduling, this would not work with backends
which save some of the scheduler state to use it in the target hooks.
For this purpose, we introduce a concept of target contexts, which
encapsulate such information. The backend should implement simple routines
of allocating/freeing/setting such a context. The scheduler calls these
as target hooks and handles the target context as an opaque pointer (similar
to the DFA state type, state_t).
Various speedups
================
As the correct data dependence graph is not supported during scheduling (which
is to be changed in mid-term), we cache as much of the dependence analysis
results as possible to avoid reanalyzing. This includes: bitmap caches on
each insn in stream of the region saying yes/no for a query with a pair of
UIDs; hashtables with the previously done transformations on each insn in
stream; a vector keeping a history of transformations on each expr.
Also, we try to minimize the dependence context used on each fence to check
whether the given expression is ready for scheduling by removing from it
insns that are definitely completed the execution. The results of
tick_check_p checks are also cached in a vector on each fence.
We keep a valid liveness set on each insn in a region to avoid the high
cost of recomputation on large basic blocks.
Finally, we try to minimize the number of needed updates to the availability
sets. The updates happen in two cases: when fill_insns terminates,
we advance all fences and increase the stage number to show that the region
has changed and the sets are to be recomputed; and when the next iteration
of a loop in fill_insns happens (but this one reuses the saved av sets
on bb headers.) Thus, we try to break the fill_insns loop only when
"significant" number of insns from the current scheduling window was
scheduled. This should be made a target param.
TODO: correctly support the data dependence graph at all stages and get rid
of all caches. This should speed up the scheduler.
TODO: implement moving cond jumps with bookkeeping copies on both targets.
TODO: tune the scheduler before RA so it does not create too much pseudos.
References:
S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
selective scheduling and software pipelining.
ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
for GCC. In Proceedings of GCC Developers' Summit 2006.
Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
http://rogue.colorado.edu/EPIC7/.
*/
/* True when pipelining is enabled. */
bool pipelining_p;
/* True if bookkeeping is enabled. */
bool bookkeeping_p;
/* Maximum number of insns that are eligible for renaming. */
int max_insns_to_rename;
/* Definitions of local types and macros. */
/* Represents possible outcomes of moving an expression through an insn. */
enum MOVEUP_EXPR_CODE
{
/* The expression is not changed. */
MOVEUP_EXPR_SAME,
/* Not changed, but requires a new destination register. */
MOVEUP_EXPR_AS_RHS,
/* Cannot be moved. */
MOVEUP_EXPR_NULL,
/* Changed (substituted or speculated). */
MOVEUP_EXPR_CHANGED
};
/* The container to be passed into rtx search & replace functions. */
struct rtx_search_arg
{
/* What we are searching for. */
rtx x;
/* The occurence counter. */
int n;
};
typedef struct rtx_search_arg *rtx_search_arg_p;
/* This struct contains precomputed hard reg sets that are needed when
computing registers available for renaming. */
struct hard_regs_data
{
/* For every mode, this stores registers available for use with
that mode. */
HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
/* True when regs_for_mode[mode] is initialized. */
bool regs_for_mode_ok[NUM_MACHINE_MODES];
/* For every register, it has regs that are ok to rename into it.
The register in question is always set. If not, this means
that the whole set is not computed yet. */
HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
/* For every mode, this stores registers not available due to
call clobbering. */
HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
/* All registers that are used or call used. */
HARD_REG_SET regs_ever_used;
#ifdef STACK_REGS
/* Stack registers. */
HARD_REG_SET stack_regs;
#endif
};
/* Holds the results of computation of available for renaming and
unavailable hard registers. */
struct reg_rename
{
/* These are unavailable due to calls crossing, globalness, etc. */
HARD_REG_SET unavailable_hard_regs;
/* These are *available* for renaming. */
HARD_REG_SET available_for_renaming;
/* Whether this code motion path crosses a call. */
bool crosses_call;
};
/* A global structure that contains the needed information about harg
regs. */
static struct hard_regs_data sel_hrd;
/* This structure holds local data used in code_motion_path_driver hooks on
the same or adjacent levels of recursion. Here we keep those parameters
that are not used in code_motion_path_driver routine itself, but only in
its hooks. Moreover, all parameters that can be modified in hooks are
in this structure, so all other parameters passed explicitly to hooks are
read-only. */
struct cmpd_local_params
{
/* Local params used in move_op_* functions. */
/* Edges for bookkeeping generation. */
edge e1, e2;
/* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
expr_t c_expr_merged, c_expr_local;
/* Local params used in fur_* functions. */
/* Copy of the ORIGINAL_INSN list, stores the original insns already
found before entering the current level of code_motion_path_driver. */
def_list_t old_original_insns;
/* Local params used in move_op_* functions. */
/* True when we have removed last insn in the block which was
also a boundary. Do not update anything or create bookkeeping copies. */
BOOL_BITFIELD removed_last_insn : 1;
};
/* Stores the static parameters for move_op_* calls. */
struct moveop_static_params
{
/* Destination register. */
rtx dest;
/* Current C_EXPR. */
expr_t c_expr;
/* An UID of expr_vliw which is to be moved up. If we find other exprs,
they are to be removed. */
int uid;
#ifdef ENABLE_CHECKING
/* This is initialized to the insn on which the driver stopped its traversal. */
insn_t failed_insn;
#endif
/* True if we scheduled an insn with different register. */
bool was_renamed;
};
/* Stores the static parameters for fur_* calls. */
struct fur_static_params
{
/* Set of registers unavailable on the code motion path. */
regset used_regs;
/* Pointer to the list of original insns definitions. */
def_list_t *original_insns;
/* True if a code motion path contains a CALL insn. */
bool crosses_call;
};
typedef struct fur_static_params *fur_static_params_p;
typedef struct cmpd_local_params *cmpd_local_params_p;
typedef struct moveop_static_params *moveop_static_params_p;
/* Set of hooks and parameters that determine behaviour specific to
move_op or find_used_regs functions. */
struct code_motion_path_driver_info_def
{
/* Called on enter to the basic block. */
int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
/* Called when original expr is found. */
void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
/* Called while descending current basic block if current insn is not
the original EXPR we're searching for. */
bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
/* Function to merge C_EXPRes from different successors. */
void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
/* Function to finalize merge from different successors and possibly
deallocate temporary data structures used for merging. */
void (*after_merge_succs) (cmpd_local_params_p, void *);
/* Called on the backward stage of recursion to do moveup_expr.
Used only with move_op_*. */
void (*ascend) (insn_t, void *);
/* Called on the ascending pass, before returning from the current basic
block or from the whole traversal. */
void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
/* When processing successors in move_op we need only descend into
SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
int succ_flags;
/* The routine name to print in dumps ("move_op" of "find_used_regs"). */
const char *routine_name;
};
/* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
FUR_HOOKS. */
struct code_motion_path_driver_info_def *code_motion_path_driver_info;
/* Set of hooks for performing move_op and find_used_regs routines with
code_motion_path_driver. */
struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
/* True if/when we want to emulate Haifa scheduler in the common code.
This is used in sched_rgn_local_init and in various places in
sched-deps.c. */
int sched_emulate_haifa_p;
/* GLOBAL_LEVEL is used to discard information stored in basic block headers
av_sets. Av_set of bb header is valid if its (bb header's) level is equal
to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
scheduling window. */
int global_level;
/* Current fences. */
flist_t fences;
/* True when separable insns should be scheduled as RHSes. */
static bool enable_schedule_as_rhs_p;
/* Used in verify_target_availability to assert that target reg is reported
unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
we haven't scheduled anything on the previous fence.
if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
have more conservative value than the one returned by the
find_used_regs, thus we shouldn't assert that these values are equal. */
static bool scheduled_something_on_previous_fence;
/* All newly emitted insns will have their uids greater than this value. */
static int first_emitted_uid;
/* Set of basic blocks that are forced to start new ebbs. This is a subset
of all the ebb heads. */
static bitmap_head _forced_ebb_heads;
bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
/* Blocks that need to be rescheduled after pipelining. */
bitmap blocks_to_reschedule = NULL;
/* True when the first lv set should be ignored when updating liveness. */
static bool ignore_first = false;
/* Number of insns max_issue has initialized data structures for. */
static int max_issue_size = 0;
/* Whether we can issue more instructions. */
static int can_issue_more;
/* Maximum software lookahead window size, reduced when rescheduling after
pipelining. */
static int max_ws;
/* Number of insns scheduled in current region. */
static int num_insns_scheduled;
/* A vector of expressions is used to be able to sort them. */
DEF_VEC_P(expr_t);
DEF_VEC_ALLOC_P(expr_t,heap);
static VEC(expr_t, heap) *vec_av_set = NULL;
/* A vector of vinsns is used to hold temporary lists of vinsns. */
DEF_VEC_P(vinsn_t);
DEF_VEC_ALLOC_P(vinsn_t,heap);
typedef VEC(vinsn_t, heap) *vinsn_vec_t;
/* This vector has the exprs which may still present in av_sets, but actually
can't be moved up due to bookkeeping created during code motion to another
fence. See comment near the call to update_and_record_unavailable_insns
for the detailed explanations. */
static vinsn_vec_t vec_bookkeeping_blocked_vinsns = NULL;
/* This vector has vinsns which are scheduled with renaming on the first fence
and then seen on the second. For expressions with such vinsns, target
availability information may be wrong. */
static vinsn_vec_t vec_target_unavailable_vinsns = NULL;
/* Vector to store temporary nops inserted in move_op to prevent removal
of empty bbs. */
DEF_VEC_P(insn_t);
DEF_VEC_ALLOC_P(insn_t,heap);
static VEC(insn_t, heap) *vec_temp_moveop_nops = NULL;
/* These bitmaps record original instructions scheduled on the current
iteration and bookkeeping copies created by them. */
static bitmap current_originators = NULL;
static bitmap current_copies = NULL;
/* This bitmap marks the blocks visited by code_motion_path_driver so we don't
visit them afterwards. */
static bitmap code_motion_visited_blocks = NULL;
/* Variables to accumulate different statistics. */
/* The number of bookkeeping copies created. */
static int stat_bookkeeping_copies;
/* The number of insns that required bookkeeiping for their scheduling. */
static int stat_insns_needed_bookkeeping;
/* The number of insns that got renamed. */
static int stat_renamed_scheduled;
/* The number of substitutions made during scheduling. */
static int stat_substitutions_total;
/* Forward declarations of static functions. */
static bool rtx_ok_for_substitution_p (rtx, rtx);
static int sel_rank_for_schedule (const void *, const void *);
static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
static rtx get_dest_from_orig_ops (av_set_t);
static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
def_list_t *);
static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
cmpd_local_params_p, void *);
static void sel_sched_region_1 (void);
static void sel_sched_region_2 (int);
static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
static void debug_state (state_t);
/* Functions that work with fences. */
/* Advance one cycle on FENCE. */
static void
advance_one_cycle (fence_t fence)
{
unsigned i;
int cycle;
rtx insn;
advance_state (FENCE_STATE (fence));
cycle = ++FENCE_CYCLE (fence);
FENCE_ISSUED_INSNS (fence) = 0;
FENCE_STARTS_CYCLE_P (fence) = 1;
can_issue_more = issue_rate;
for (i = 0; VEC_iterate (rtx, FENCE_EXECUTING_INSNS (fence), i, insn); )
{
if (INSN_READY_CYCLE (insn) < cycle)
{
remove_from_deps (FENCE_DC (fence), insn);
VEC_unordered_remove (rtx, FENCE_EXECUTING_INSNS (fence), i);
continue;
}
i++;
}
if (sched_verbose >= 2)
{
sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
debug_state (FENCE_STATE (fence));
}
}
/* Returns true when SUCC in a fallthru bb of INSN, possibly
skipping empty basic blocks. */
static bool
in_fallthru_bb_p (rtx insn, rtx succ)
{
basic_block bb = BLOCK_FOR_INSN (insn);
if (bb == BLOCK_FOR_INSN (succ))
return true;
if (find_fallthru_edge (bb))
bb = find_fallthru_edge (bb)->dest;
else
return false;
while (sel_bb_empty_p (bb))
bb = bb->next_bb;
return bb == BLOCK_FOR_INSN (succ);
}
/* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
When a successor will continue a ebb, transfer all parameters of a fence
to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
of scheduling helping to distinguish between the old and the new code. */
static void
extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
int orig_max_seqno)
{
bool was_here_p = false;
insn_t insn = NULL_RTX;
insn_t succ;
succ_iterator si;
ilist_iterator ii;
fence_t fence = FLIST_FENCE (old_fences);
basic_block bb;
/* Get the only element of FENCE_BNDS (fence). */
FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
{
gcc_assert (!was_here_p);
was_here_p = true;
}
gcc_assert (was_here_p && insn != NULL_RTX);
/* When in the "middle" of the block, just move this fence
to the new list. */
bb = BLOCK_FOR_INSN (insn);
if (! sel_bb_end_p (insn)
|| (single_succ_p (bb)
&& single_pred_p (single_succ (bb))))
{
insn_t succ;
succ = (sel_bb_end_p (insn)
? sel_bb_head (single_succ (bb))
: NEXT_INSN (insn));
if (INSN_SEQNO (succ) > 0
&& INSN_SEQNO (succ) <= orig_max_seqno
&& INSN_SCHED_TIMES (succ) <= 0)
{
FENCE_INSN (fence) = succ;
move_fence_to_fences (old_fences, new_fences);
if (sched_verbose >= 1)
sel_print ("Fence %d continues as %d[%d] (state continue)\n",
INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
}
return;
}
/* Otherwise copy fence's structures to (possibly) multiple successors. */
FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
{
int seqno = INSN_SEQNO (succ);
if (0 < seqno && seqno <= orig_max_seqno
&& (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
{
bool b = (in_same_ebb_p (insn, succ)
|| in_fallthru_bb_p (insn, succ));
if (sched_verbose >= 1)
sel_print ("Fence %d continues as %d[%d] (state %s)\n",
INSN_UID (insn), INSN_UID (succ),
BLOCK_NUM (succ), b ? "continue" : "reset");
if (b)
add_dirty_fence_to_fences (new_fences, succ, fence);
else
{
/* Mark block of the SUCC as head of the new ebb. */
bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
add_clean_fence_to_fences (new_fences, succ, fence);
}
}
}
}
/* Functions to support substitution. */
/* Returns whether INSN with dependence status DS is eligible for
substitution, i.e. it's a copy operation x := y, and RHS that is
moved up through this insn should be substituted. */
static bool
can_substitute_through_p (insn_t insn, ds_t ds)
{
/* We can substitute only true dependencies. */
if ((ds & DEP_OUTPUT)
|| (ds & DEP_ANTI)
|| ! INSN_RHS (insn)
|| ! INSN_LHS (insn))
return false;
/* Now we just need to make sure the INSN_RHS consists of only one
simple REG rtx. */
if (REG_P (INSN_LHS (insn))
&& REG_P (INSN_RHS (insn)))
return true;
return false;
}
/* Substitute all occurences of INSN's destination in EXPR' vinsn with INSN's
source (if INSN is eligible for substitution). Returns TRUE if
substitution was actually performed, FALSE otherwise. Substitution might
be not performed because it's either EXPR' vinsn doesn't contain INSN's
destination or the resulting insn is invalid for the target machine.
When UNDO is true, perform unsubstitution instead (the difference is in
the part of rtx on which validate_replace_rtx is called). */
static bool
substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
{
rtx *where;
bool new_insn_valid;
vinsn_t *vi = &EXPR_VINSN (expr);
bool has_rhs = VINSN_RHS (*vi) != NULL;
rtx old, new_rtx;
/* Do not try to replace in SET_DEST. Although we'll choose new
register for the RHS, we don't want to change RHS' original reg.
If the insn is not SET, we may still be able to substitute something
in it, and if we're here (don't have deps), it doesn't write INSN's
dest. */
where = (has_rhs
? &VINSN_RHS (*vi)
: &PATTERN (VINSN_INSN_RTX (*vi)));
old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
/* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
if (rtx_ok_for_substitution_p (old, *where))
{
rtx new_insn;
rtx *where_replace;
/* We should copy these rtxes before substitution. */
new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
/* Where we'll replace.
WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
used instead of SET_SRC. */
where_replace = (has_rhs
? &SET_SRC (PATTERN (new_insn))
: &PATTERN (new_insn));
new_insn_valid
= validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
new_insn);
/* ??? Actually, constrain_operands result depends upon choice of
destination register. E.g. if we allow single register to be an rhs,
and if we try to move dx=ax(as rhs) through ax=dx, we'll result
in invalid insn dx=dx, so we'll loose this rhs here.
Just can't come up with significant testcase for this, so just
leaving it for now. */
if (new_insn_valid)
{
change_vinsn_in_expr (expr,
create_vinsn_from_insn_rtx (new_insn, false));
/* Do not allow clobbering the address register of speculative
insns. */
if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
&& bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
expr_dest_regno (expr)))
EXPR_TARGET_AVAILABLE (expr) = false;
return true;
}
else
return false;
}
else
return false;
}
/* Helper function for count_occurences_equiv. */
static int
count_occurrences_1 (rtx *cur_rtx, void *arg)
{
rtx_search_arg_p p = (rtx_search_arg_p) arg;
/* The last param FOR_GCSE is true, because otherwise it performs excessive
substitutions like
r8 = r33
r16 = r33
for the last insn it presumes r33 equivalent to r8, so it changes it to
r33. Actually, there's no change, but it spoils debugging. */
if (exp_equiv_p (*cur_rtx, p->x, 0, true))
{
/* Bail out if we occupy more than one register. */
if (REG_P (*cur_rtx)
&& HARD_REGISTER_P (*cur_rtx)
&& hard_regno_nregs[REGNO(*cur_rtx)][GET_MODE (*cur_rtx)] > 1)
{
p->n = 0;
return 1;
}
p->n++;
/* Do not traverse subexprs. */
return -1;
}
if (GET_CODE (*cur_rtx) == SUBREG
&& REG_P (p->x)
&& REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x))
{
/* ??? Do not support substituting regs inside subregs. In that case,
simplify_subreg will be called by validate_replace_rtx, and
unsubstitution will fail later. */
p->n = 0;
return 1;
}
/* Continue search. */
return 0;
}
/* Return the number of places WHAT appears within WHERE.
Bail out when we found a reference occupying several hard registers. */
static int
count_occurrences_equiv (rtx what, rtx where)
{
struct rtx_search_arg arg;
arg.x = what;
arg.n = 0;
for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
return arg.n;
}
/* Returns TRUE if WHAT is found in WHERE rtx tree. */
static bool
rtx_ok_for_substitution_p (rtx what, rtx where)
{
return (count_occurrences_equiv (what, where) > 0);
}
/* Functions to support register renaming. */
/* Substitute VI's set source with REGNO. Returns newly created pattern
that has REGNO as its source. */
static rtx
create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
{
rtx lhs_rtx;
rtx pattern;
rtx insn_rtx;
lhs_rtx = copy_rtx (VINSN_LHS (vi));
pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
return insn_rtx;
}
/* Returns whether INSN's src can be replaced with register number
NEW_SRC_REG. E.g. the following insn is valid for i386:
(insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
(set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
(reg:SI 0 ax [orig:770 c1 ] [770]))
(const_int 288 [0x120])) [0 str S1 A8])
(const_int 0 [0x0])) 43 {*movqi_1} (nil)
(nil))
But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
because of operand constraints:
(define_insn "*movqi_1"
[(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
(match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
)]
So do constrain_operands here, before choosing NEW_SRC_REG as best
reg for rhs. */
static bool
replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
{
vinsn_t vi = INSN_VINSN (insn);
enum machine_mode mode;
rtx dst_loc;
bool res;
gcc_assert (VINSN_SEPARABLE_P (vi));
get_dest_and_mode (insn, &dst_loc, &mode);
gcc_assert (mode == GET_MODE (new_src_reg));
if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
return true;
/* See whether SET_SRC can be replaced with this register. */
validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
res = verify_changes (0);
cancel_changes (0);
return res;
}
/* Returns whether INSN still be valid after replacing it's DEST with
register NEW_REG. */
static bool
replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
{
vinsn_t vi = INSN_VINSN (insn);
bool res;
/* We should deal here only with separable insns. */
gcc_assert (VINSN_SEPARABLE_P (vi));
gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
/* See whether SET_DEST can be replaced with this register. */
validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
res = verify_changes (0);
cancel_changes (0);
return res;
}
/* Create a pattern with rhs of VI and lhs of LHS_RTX. */
static rtx
create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
{
rtx rhs_rtx;
rtx pattern;
rtx insn_rtx;
rhs_rtx = copy_rtx (VINSN_RHS (vi));
pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
return insn_rtx;
}
/* Substitute lhs in the given expression EXPR for the register with number
NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
static void
replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
{
rtx insn_rtx;
vinsn_t vinsn;
insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
change_vinsn_in_expr (expr, vinsn);
EXPR_WAS_RENAMED (expr) = 1;
EXPR_TARGET_AVAILABLE (expr) = 1;
}
/* Returns whether VI writes either one of the USED_REGS registers or,
if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
static bool
vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
HARD_REG_SET unavailable_hard_regs)
{
unsigned regno;
reg_set_iterator rsi;
EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
{
if (REGNO_REG_SET_P (used_regs, regno))
return true;
if (HARD_REGISTER_NUM_P (regno)
&& TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
return true;
}
EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
{
if (REGNO_REG_SET_P (used_regs, regno))
return true;
if (HARD_REGISTER_NUM_P (regno)
&& TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
return true;
}
return false;
}
/* Returns register class of the output register in INSN.
Returns NO_REGS for call insns because some targets have constraints on
destination register of a call insn.
Code adopted from regrename.c::build_def_use. */
static enum reg_class
get_reg_class (rtx insn)
{
int alt, i, n_ops;
extract_insn (insn);
if (! constrain_operands (1))
fatal_insn_not_found (insn);
preprocess_constraints ();
alt = which_alternative;
n_ops = recog_data.n_operands;
for (i = 0; i < n_ops; ++i)
{
int matches = recog_op_alt[i][alt].matches;
if (matches >= 0)
recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
}
if (asm_noperands (PATTERN (insn)) > 0)
{
for (i = 0; i < n_ops; i++)
if (recog_data.operand_type[i] == OP_OUT)
{
rtx *loc = recog_data.operand_loc[i];
rtx op = *loc;
enum reg_class cl = recog_op_alt[i][alt].cl;
if (REG_P (op)
&& REGNO (op) == ORIGINAL_REGNO (op))
continue;
return cl;
}
}
else if (!CALL_P (insn))
{
for (i = 0; i < n_ops + recog_data.n_dups; i++)
{
int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
enum reg_class cl = recog_op_alt[opn][alt].cl;
if (recog_data.operand_type[opn] == OP_OUT ||
recog_data.operand_type[opn] == OP_INOUT)
return cl;
}
}
/* Insns like
(insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
may result in returning NO_REGS, cause flags is written implicitly through
CMP insn, which has no OP_OUT | OP_INOUT operands. */
return NO_REGS;
}
#ifdef HARD_REGNO_RENAME_OK
/* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
static void
init_hard_regno_rename (int regno)
{
int cur_reg;
SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
{
/* We are not interested in renaming in other regs. */
if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
continue;
if (HARD_REGNO_RENAME_OK (regno, cur_reg))
SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
}
}
#endif
/* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
data first. */
static inline bool
sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
{
#ifdef HARD_REGNO_RENAME_OK
/* Check whether this is all calculated. */
if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
init_hard_regno_rename (from);
return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
#else
return true;
#endif
}
/* Calculate set of registers that are capable of holding MODE. */
static void
init_regs_for_mode (enum machine_mode mode)
{
int cur_reg;
CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
{
int nregs = hard_regno_nregs[cur_reg][mode];
int i;
for (i = nregs - 1; i >= 0; --i)
if (fixed_regs[cur_reg + i]
|| global_regs[cur_reg + i]
/* Can't use regs which aren't saved by
the prologue. */
|| !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
#ifdef LEAF_REGISTERS
/* We can't use a non-leaf register if we're in a
leaf function. */
|| (current_function_is_leaf
&& !LEAF_REGISTERS[cur_reg + i])
#endif
)
break;
if (i >= 0)
continue;
/* See whether it accepts all modes that occur in
original insns. */
if (! HARD_REGNO_MODE_OK (cur_reg, mode))
continue;
if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
cur_reg);
/* If the CUR_REG passed all the checks above,
then it's ok. */
SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
}
sel_hrd.regs_for_mode_ok[mode] = true;
}
/* Init all register sets gathered in HRD. */
static void
init_hard_regs_data (void)
{
int cur_reg = 0;
int cur_mode = 0;
CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
/* Initialize registers that are valid based on mode when this is
really needed. */
for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
sel_hrd.regs_for_mode_ok[cur_mode] = false;
/* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
#ifdef STACK_REGS
CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
#endif
}
/* Mark hardware regs in REG_RENAME_P that are not suitable
for renaming rhs in INSN due to hardware restrictions (register class,
modes compatibility etc). This doesn't affect original insn's dest reg,
if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
Registers that are in used_regs are always marked in
unavailable_hard_regs as well. */
static void
mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
regset used_regs ATTRIBUTE_UNUSED)
{
enum machine_mode mode;
enum reg_class cl = NO_REGS;
rtx orig_dest;
unsigned cur_reg, regno;
hard_reg_set_iterator hrsi;
gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
gcc_assert (reg_rename_p);
orig_dest = SET_DEST (PATTERN (def->orig_insn));
/* We have decided not to rename 'mem = something;' insns, as 'something'
is usually a register. */
if (!REG_P (orig_dest))
return;
regno = REGNO (orig_dest);
/* If before reload, don't try to work with pseudos. */
if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
return;
mode = GET_MODE (orig_dest);
/* Stop when mode is not supported for renaming. Also can't proceed
if the original register is one of the fixed_regs, global_regs or
frame pointer. */
if (fixed_regs[regno]
|| global_regs[regno]
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
|| (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
#else
|| (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
#endif
)
{
SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
/* Give a chance for original register, if it isn't in used_regs. */
if (!def->crosses_call)
CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
return;
}
/* If something allocated on stack in this function, mark frame pointer
register unavailable, considering also modes.
FIXME: it is enough to do this once per all original defs. */
if (frame_pointer_needed)
{
int i;
for (i = hard_regno_nregs[FRAME_POINTER_REGNUM][Pmode]; i--;)
SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
FRAME_POINTER_REGNUM + i);
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
for (i = hard_regno_nregs[HARD_FRAME_POINTER_REGNUM][Pmode]; i--;)
SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
HARD_FRAME_POINTER_REGNUM + i);
#endif
}
#ifdef STACK_REGS
/* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
is equivalent to as if all stack regs were in this set.
I.e. no stack register can be renamed, and even if it's an original
register here we make sure it won't be lifted over it's previous def
(it's previous def will appear as if it's a FIRST_STACK_REG def.
The HARD_REGNO_RENAME_OK covers other cases in condition below. */
if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
&& REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
sel_hrd.stack_regs);
#endif
/* If there's a call on this path, make regs from call_used_reg_set
unavailable. */
if (def->crosses_call)
IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
call_used_reg_set);
/* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
but not register classes. */
if (!reload_completed)
return;
/* Leave regs as 'available' only from the current
register class. */
cl = get_reg_class (def->orig_insn);
gcc_assert (cl != NO_REGS);
COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
reg_class_contents[cl]);
/* Leave only registers available for this mode. */
if (!sel_hrd.regs_for_mode_ok[mode])
init_regs_for_mode (mode);
AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
sel_hrd.regs_for_mode[mode]);
/* Exclude registers that are partially call clobbered. */
if (def->crosses_call
&& ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
sel_hrd.regs_for_call_clobbered[mode]);
/* Leave only those that are ok to rename. */
EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
0, cur_reg, hrsi)
{
int nregs;
int i;
nregs = hard_regno_nregs[cur_reg][mode];
gcc_assert (nregs > 0);
for (i = nregs - 1; i >= 0; --i)
if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
break;
if (i >= 0)
CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
cur_reg);
}
AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
reg_rename_p->unavailable_hard_regs);
/* Regno is always ok from the renaming part of view, but it really
could be in *unavailable_hard_regs already, so set it here instead
of there. */
SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
}
/* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
best register more recently than REG2. */
static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
/* Indicates the number of times renaming happened before the current one. */
static int reg_rename_this_tick;
/* Choose the register among free, that is suitable for storing
the rhs value.
ORIGINAL_INSNS is the list of insns where the operation (rhs)
originally appears. There could be multiple original operations
for single rhs since we moving it up and merging along different
paths.
Some code is adapted from regrename.c (regrename_optimize).
If original register is available, function returns it.
Otherwise it performs the checks, so the new register should
comply with the following:
- it should not violate any live ranges (such registers are in
REG_RENAME_P->available_for_renaming set);
- it should not be in the HARD_REGS_USED regset;
- it should be in the class compatible with original uses;
- it should not be clobbered through reference with different mode;
- if we're in the leaf function, then the new register should
not be in the LEAF_REGISTERS;
- etc.
If several registers meet the conditions, the register with smallest
tick is returned to achieve more even register allocation.
If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
If no register satisfies the above conditions, NULL_RTX is returned. */
static rtx
choose_best_reg_1 (HARD_REG_SET hard_regs_used,
struct reg_rename *reg_rename_p,
def_list_t original_insns, bool *is_orig_reg_p_ptr)
{
int best_new_reg;
unsigned cur_reg;
enum machine_mode mode = VOIDmode;
unsigned regno, i, n;
hard_reg_set_iterator hrsi;
def_list_iterator di;
def_t def;
/* If original register is available, return it. */
*is_orig_reg_p_ptr = true;
FOR_EACH_DEF (def, di, original_insns)
{
rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
gcc_assert (REG_P (orig_dest));
/* Check that all original operations have the same mode.
This is done for the next loop; if we'd return from this
loop, we'd check only part of them, but in this case
it doesn't matter. */
if (mode == VOIDmode)
mode = GET_MODE (orig_dest);
gcc_assert (mode == GET_MODE (orig_dest));
regno = REGNO (orig_dest);
for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
break;
/* All hard registers are available. */
if (i == n)
{
gcc_assert (mode != VOIDmode);
/* Hard registers should not be shared. */
return gen_rtx_REG (mode, regno);
}
}
*is_orig_reg_p_ptr = false;
best_new_reg = -1;
/* Among all available regs choose the register that was
allocated earliest. */
EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
0, cur_reg, hrsi)
if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
{
/* All hard registers are available. */
if (best_new_reg < 0
|| reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
{
best_new_reg = cur_reg;
/* Return immediately when we know there's no better reg. */
if (! reg_rename_tick[best_new_reg])
break;
}
}
if (best_new_reg >= 0)
{
/* Use the check from the above loop. */
gcc_assert (mode != VOIDmode);
return gen_rtx_REG (mode, best_new_reg);
}
return NULL_RTX;
}
/* A wrapper around choose_best_reg_1 () to verify that we make correct
assumptions about available registers in the function. */
static rtx
choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
def_list_t original_insns, bool *is_orig_reg_p_ptr)
{
rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
original_insns, is_orig_reg_p_ptr);
gcc_assert (best_reg == NULL_RTX
|| TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
return best_reg;
}
/* Choose the pseudo register for storing rhs value. As this is supposed
to work before reload, we return either the original register or make
the new one. The parameters are the same that in choose_nest_reg_1
functions, except that USED_REGS may contain pseudos.
If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
TODO: take into account register pressure while doing this. Up to this
moment, this function would never return NULL for pseudos, but we should
not rely on this. */
static rtx
choose_best_pseudo_reg (regset used_regs,
struct reg_rename *reg_rename_p,
def_list_t original_insns, bool *is_orig_reg_p_ptr)
{
def_list_iterator i;
def_t def;
enum machine_mode mode = VOIDmode;
bool bad_hard_regs = false;
/* We should not use this after reload. */
gcc_assert (!reload_completed);
/* If original register is available, return it. */
*is_orig_reg_p_ptr = true;
FOR_EACH_DEF (def, i, original_insns)
{
rtx dest = SET_DEST (PATTERN (def->orig_insn));
int orig_regno;
gcc_assert (REG_P (dest));
/* Check that all original operations have the same mode. */
if (mode == VOIDmode)
mode = GET_MODE (dest);
else
gcc_assert (mode == GET_MODE (dest));
orig_regno = REGNO (dest);
if (!REGNO_REG_SET_P (used_regs, orig_regno))
{
if (orig_regno < FIRST_PSEUDO_REGISTER)
{
gcc_assert (df_regs_ever_live_p (orig_regno));
/* For hard registers, we have to check hardware imposed
limitations (frame/stack registers, calls crossed). */
if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
orig_regno))
{
/* Don't let register cross a call if it doesn't already
cross one. This condition is written in accordance with
that in sched-deps.c sched_analyze_reg(). */
if (!reg_rename_p->crosses_call
|| REG_N_CALLS_CROSSED (orig_regno) > 0)
return gen_rtx_REG (mode, orig_regno);
}
bad_hard_regs = true;
}
else
return dest;
}
}
*is_orig_reg_p_ptr = false;
/* We had some original hard registers that couldn't be used.
Those were likely special. Don't try to create a pseudo. */
if (bad_hard_regs)
return NULL_RTX;
/* We haven't found a register from original operations. Get a new one.
FIXME: control register pressure somehow. */
{
rtx new_reg = gen_reg_rtx (mode);
gcc_assert (mode != VOIDmode);
max_regno = max_reg_num ();
maybe_extend_reg_info_p ();
REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
return new_reg;
}
}
/* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
static void
verify_target_availability (expr_t expr, regset used_regs,
struct reg_rename *reg_rename_p)
{
unsigned n, i, regno;
enum machine_mode mode;
bool target_available, live_available, hard_available;
if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
return;
regno = expr_dest_regno (expr);
mode = GET_MODE (EXPR_LHS (expr));
target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
n = reload_completed ? hard_regno_nregs[regno][mode] : 1;
live_available = hard_available = true;
for (i = 0; i < n; i++)
{
if (bitmap_bit_p (used_regs, regno + i))
live_available = false;
if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
hard_available = false;
}
/* When target is not available, it may be due to hard register
restrictions, e.g. crosses calls, so we check hard_available too. */
if (target_available)
gcc_assert (live_available);
else
/* Check only if we haven't scheduled something on the previous fence,
cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
and having more than one fence, we may end having targ_un in a block
in which successors target register is actually available.
The last condition handles the case when a dependence from a call insn
was created in sched-deps.c for insns with destination registers that
never crossed a call before, but do cross one after our code motion.
FIXME: in the latter case, we just uselessly called find_used_regs,
because we can't move this expression with any other register
as well. */
gcc_assert (scheduled_something_on_previous_fence || !live_available
|| !hard_available
|| (!reload_completed && reg_rename_p->crosses_call
&& REG_N_CALLS_CROSSED (regno) == 0));
}
/* Collect unavailable registers due to liveness for EXPR from BNDS
into USED_REGS. Save additional information about available
registers and unavailable due to hardware restriction registers
into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
list. */
static void
collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
struct reg_rename *reg_rename_p,
def_list_t *original_insns)
{
for (; bnds; bnds = BLIST_NEXT (bnds))
{
bool res;
av_set_t orig_ops = NULL;
bnd_t bnd = BLIST_BND (bnds);
/* If the chosen best expr doesn't belong to current boundary,
skip it. */
if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
continue;
/* Put in ORIG_OPS all exprs from this boundary that became
RES on top. */
orig_ops = find_sequential_best_exprs (bnd, expr, false);
/* Compute used regs and OR it into the USED_REGS. */
res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
reg_rename_p, original_insns);
/* FIXME: the assert is true until we'd have several boundaries. */
gcc_assert (res);
av_set_clear (&orig_ops);
}
}
/* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
If BEST_REG is valid, replace LHS of EXPR with it. */
static bool
try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
{
if (expr_dest_regno (expr) == REGNO (best_reg))
{
EXPR_TARGET_AVAILABLE (expr) = 1;
return true;
}
gcc_assert (orig_insns);
/* Try whether we'll be able to generate the insn
'dest := best_reg' at the place of the original operation. */
for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
{
insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
if (!replace_src_with_reg_ok_p (orig_insn, best_reg)
|| !replace_dest_with_reg_ok_p (orig_insn, best_reg))
return false;
}
/* Make sure that EXPR has the right destination
register. */
replace_dest_with_reg_in_expr (expr, best_reg);
return true;
}
/* Select and assign best register to EXPR searching from BNDS.
Set *IS_ORIG_REG_P to TRUE if original register was selected.
Return FALSE if no register can be chosen, which could happen when:
* EXPR_SEPARABLE_P is true but we were unable to find suitable register;
* EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
that are used on the moving path. */
static bool
find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
{
static struct reg_rename reg_rename_data;
regset used_regs;
def_list_t original_insns = NULL;
bool reg_ok;
*is_orig_reg_p = false;
/* Don't bother to do anything if this insn doesn't set any registers. */
if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
&& bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
return true;
used_regs = get_clear_regset_from_pool ();
CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
collect_unavailable_regs_from_bnds (expr, bnds, used_regs, ®_rename_data,
&original_insns);
#ifdef ENABLE_CHECKING
/* If after reload, make sure we're working with hard regs here. */
if (reload_completed)
{
reg_set_iterator rsi;
unsigned i;
EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
gcc_unreachable ();
}
#endif
if (EXPR_SEPARABLE_P (expr))
{
rtx best_reg = NULL_RTX;
/* Check that we have computed availability of a target register
correctly. */
verify_target_availability (expr, used_regs, ®_rename_data);
/* Turn everything in hard regs after reload. */
if (reload_completed)
{
HARD_REG_SET hard_regs_used;
REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
/* Join hard registers unavailable due to register class
restrictions and live range intersection. */
IOR_HARD_REG_SET (hard_regs_used,
reg_rename_data.unavailable_hard_regs);
best_reg = choose_best_reg (hard_regs_used, ®_rename_data,
original_insns, is_orig_reg_p);
}
else
best_reg = choose_best_pseudo_reg (used_regs, ®_rename_data,
original_insns, is_orig_reg_p);
if (!best_reg)
reg_ok = false;
else if (*is_orig_reg_p)
{
/* In case of unification BEST_REG may be different from EXPR's LHS
when EXPR's LHS is unavailable, and there is another LHS among
ORIGINAL_INSNS. */
reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
}
else
{
/* Forbid renaming of low-cost insns. */
if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
reg_ok = false;
else
reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
}
}
else
{
/* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
any of the HARD_REGS_USED set. */
if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
reg_rename_data.unavailable_hard_regs))
{
reg_ok = false;
gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
}
else
{
reg_ok = true;
gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
}
}
ilist_clear (&original_insns);
return_regset_to_pool (used_regs);
return reg_ok;
}
/* Return true if dependence described by DS can be overcomed. */
static bool
can_speculate_dep_p (ds_t ds)
{
if (spec_info == NULL)
return false;
/* Leave only speculative data. */
ds &= SPECULATIVE;
if (ds == 0)
return false;
{
/* FIXME: make sched-deps.c produce only those non-hard dependencies,
that we can overcome. */
ds_t spec_mask = spec_info->mask;
if ((ds & spec_mask) != ds)
return false;
}
if (ds_weak (ds) < spec_info->data_weakness_cutoff)
return false;
return true;
}
/* Get a speculation check instruction.
C_EXPR is a speculative expression,
CHECK_DS describes speculations that should be checked,
ORIG_INSN is the original non-speculative insn in the stream. */
static insn_t
create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
{
rtx check_pattern;
rtx insn_rtx;
insn_t insn;
basic_block recovery_block;
rtx label;
/* Create a recovery block if target is going to emit branchy check, or if
ORIG_INSN was speculative already. */
if (targetm.sched.needs_block_p (check_ds)
|| EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
{
recovery_block = sel_create_recovery_block (orig_insn);
label = BB_HEAD (recovery_block);
}
else
{
recovery_block = NULL;
label = NULL_RTX;
}
/* Get pattern of the check. */
check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
check_ds);
gcc_assert (check_pattern != NULL);
/* Emit check. */
insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
INSN_SEQNO (orig_insn), orig_insn);
/* Make check to be non-speculative. */
EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
INSN_SPEC_CHECKED_DS (insn) = check_ds;
/* Decrease priority of check by difference of load/check instruction
latencies. */
EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
- sel_vinsn_cost (INSN_VINSN (insn)));
/* Emit copy of original insn (though with replaced target register,
if needed) to the recovery block. */
if (recovery_block != NULL)
{
rtx twin_rtx;
insn_t twin;
twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
twin = sel_gen_recovery_insn_from_rtx_after (twin_rtx,
INSN_EXPR (orig_insn),
INSN_SEQNO (insn),
bb_note (recovery_block));
}
/* If we've generated a data speculation check, make sure
that all the bookkeeping instruction we'll create during
this move_op () will allocate an ALAT entry so that the
check won't fail.
In case of control speculation we must convert C_EXPR to control
speculative mode, because failing to do so will bring us an exception
thrown by the non-control-speculative load. */
check_ds = ds_get_max_dep_weak (check_ds);
speculate_expr (c_expr, check_ds);
return insn;
}
/* True when INSN is a "regN = regN" copy. */
static bool
identical_copy_p (rtx insn)
{
rtx lhs, rhs, pat;
pat = PATTERN (insn);
if (GET_CODE (pat) != SET)
return false;
lhs = SET_DEST (pat);
if (!REG_P (lhs))
return false;
rhs = SET_SRC (pat);
if (!REG_P (rhs))
return false;
return REGNO (lhs) == REGNO (rhs);
}
/* Undo all transformations on *AV_PTR that were done when
moving through INSN. */
static void
undo_transformations (av_set_t *av_ptr, rtx insn)
{
av_set_iterator av_iter;
expr_t expr;
av_set_t new_set = NULL;
/* First, kill any EXPR that uses registers set by an insn. This is
required for correctness. */
FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
&& bitmap_intersect_p (INSN_REG_SETS (insn),
VINSN_REG_USES (EXPR_VINSN (expr)))
/* When an insn looks like 'r1 = r1', we could substitute through
it, but the above condition will still hold. This happened with
gcc.c-torture/execute/961125-1.c. */
&& !identical_copy_p (insn))
{
if (sched_verbose >= 6)
sel_print ("Expr %d removed due to use/set conflict\n",
INSN_UID (EXPR_INSN_RTX (expr)));
av_set_iter_remove (&av_iter);
}
/* Undo transformations looking at the history vector. */
FOR_EACH_EXPR (expr, av_iter, *av_ptr)
{
int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
insn, EXPR_VINSN (expr), true);
if (index >= 0)
{
expr_history_def *phist;
phist = VEC_index (expr_history_def,
EXPR_HISTORY_OF_CHANGES (expr),
index);
switch (phist->type)
{
case TRANS_SPECULATION:
{
ds_t old_ds, new_ds;
/* Compute the difference between old and new speculative
statuses: that's what we need to check.
Earlier we used to assert that the status will really
change. This no longer works because only the probability
bits in the status may have changed during compute_av_set,
and in the case of merging different probabilities of the
same speculative status along different paths we do not
record this in the history vector. */
old_ds = phist->spec_ds;
new_ds = EXPR_SPEC_DONE_DS (expr);
old_ds &= SPECULATIVE;
new_ds &= SPECULATIVE;
new_ds &= ~old_ds;
EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
break;
}
case TRANS_SUBSTITUTION:
{
expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
vinsn_t new_vi;
bool add = true;
new_vi = phist->old_expr_vinsn;
gcc_assert (VINSN_SEPARABLE_P (new_vi)
== EXPR_SEPARABLE_P (expr));
copy_expr (tmp_expr, expr);
if (vinsn_equal_p (phist->new_expr_vinsn,
EXPR_VINSN (tmp_expr)))
change_vinsn_in_expr (tmp_expr, new_vi);
else
/* This happens when we're unsubstituting on a bookkeeping
copy, which was in turn substituted. The history is wrong
in this case. Do it the hard way. */
add = substitute_reg_in_expr (tmp_expr, insn, true);
if (add)
av_set_add (&new_set, tmp_expr);
clear_expr (tmp_expr);
break;
}
default:
gcc_unreachable ();
}
}
}
av_set_union_and_clear (av_ptr, &new_set, NULL);
}
/* Moveup_* helpers for code motion and computing av sets. */
/* Propagates EXPR inside an insn group through THROUGH_INSN.
The difference from the below function is that only substitution is
performed. */
static enum MOVEUP_EXPR_CODE
moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
{
vinsn_t vi = EXPR_VINSN (expr);
ds_t *has_dep_p;
ds_t full_ds;
/* Do this only inside insn group. */
gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
if (full_ds == 0)
return MOVEUP_EXPR_SAME;
/* Substitution is the possible choice in this case. */
if (has_dep_p[DEPS_IN_RHS])
{
/* Can't substitute UNIQUE VINSNs. */
gcc_assert (!VINSN_UNIQUE_P (vi));
if (can_substitute_through_p (through_insn,
has_dep_p[DEPS_IN_RHS])
&& substitute_reg_in_expr (expr, through_insn, false))
{
EXPR_WAS_SUBSTITUTED (expr) = true;
return MOVEUP_EXPR_CHANGED;
}
/* Don't care about this, as even true dependencies may be allowed
in an insn group. */
return MOVEUP_EXPR_SAME;
}
/* This can catch output dependencies in COND_EXECs. */
if (has_dep_p[DEPS_IN_INSN])
return MOVEUP_EXPR_NULL;
/* This is either an output or an anti dependence, which usually have
a zero latency. Allow this here, if we'd be wrong, tick_check_p
will fix this. */
gcc_assert (has_dep_p[DEPS_IN_LHS]);
return MOVEUP_EXPR_AS_RHS;
}
/* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
#define CANT_MOVE_TRAPPING(expr, through_insn) \
(VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
&& !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
&& !sel_insn_is_speculation_check (through_insn))
/* True when a conflict on a target register was found during moveup_expr. */
static bool was_target_conflict = false;
/* Modifies EXPR so it can be moved through the THROUGH_INSN,
performing necessary transformations. Record the type of transformation
made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
permit all dependencies except true ones, and try to remove those
too via forward substitution. All cases when a non-eliminable
non-zero cost dependency exists inside an insn group will be fixed
in tick_check_p instead. */
static enum MOVEUP_EXPR_CODE
moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
enum local_trans_type *ptrans_type)
{
vinsn_t vi = EXPR_VINSN (expr);
insn_t insn = VINSN_INSN_RTX (vi);
bool was_changed = false;
bool as_rhs = false;
ds_t *has_dep_p;
ds_t full_ds;
/* When inside_insn_group, delegate to the helper. */
if (inside_insn_group)
return moveup_expr_inside_insn_group (expr, through_insn);
/* Deal with unique insns and control dependencies. */
if (VINSN_UNIQUE_P (vi))
{
/* We can move jumps without side-effects or jumps that are
mutually exclusive with instruction THROUGH_INSN (all in cases
dependencies allow to do so and jump is not speculative). */
if (control_flow_insn_p (insn))
{
basic_block fallthru_bb;
/* Do not move checks and do not move jumps through other
jumps. */
if (control_flow_insn_p (through_insn)
|| sel_insn_is_speculation_check (insn))
return MOVEUP_EXPR_NULL;
/* Don't move jumps through CFG joins. */
if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
return MOVEUP_EXPR_NULL;
/* The jump should have a clear fallthru block, and
this block should be in the current region. */
if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
|| ! in_current_region_p (fallthru_bb))
return MOVEUP_EXPR_NULL;
/* And it should be mutually exclusive with through_insn, or
be an unconditional jump. */
if (! any_uncondjump_p (insn)
&& ! sched_insns_conditions_mutex_p (insn, through_insn))
return MOVEUP_EXPR_NULL;
}
/* Don't move what we can't move. */
if (EXPR_CANT_MOVE (expr)
&& BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
return MOVEUP_EXPR_NULL;
/* Don't move SCHED_GROUP instruction through anything.
If we don't force this, then it will be possible to start
scheduling a sched_group before all its dependencies are
resolved.
??? Haifa deals with this issue by delaying the SCHED_GROUP
as late as possible through rank_for_schedule. */
if (SCHED_GROUP_P (insn))
return MOVEUP_EXPR_NULL;
}
else
gcc_assert (!control_flow_insn_p (insn));
/* Deal with data dependencies. */
was_target_conflict = false;
full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
if (full_ds == 0)
{
if (!CANT_MOVE_TRAPPING (expr, through_insn))
return MOVEUP_EXPR_SAME;
}
else
{
/* We can move UNIQUE insn up only as a whole and unchanged,
so it shouldn't have any dependencies. */
if (VINSN_UNIQUE_P (vi))
return MOVEUP_EXPR_NULL;
}
if (full_ds != 0 && can_speculate_dep_p (full_ds))
{
int res;
res = speculate_expr (expr, full_ds);
if (res >= 0)
{
/* Speculation was successful. */
full_ds = 0;
was_changed = (res > 0);
if (res == 2)
was_target_conflict = true;
if (ptrans_type)
*ptrans_type = TRANS_SPECULATION;
sel_clear_has_dependence ();
}
}
if (has_dep_p[DEPS_IN_INSN])
/* We have some dependency that cannot be discarded. */
return MOVEUP_EXPR_NULL;
if (has_dep_p[DEPS_IN_LHS])
{
/* Only separable insns can be moved up with the new register.
Anyways, we should mark that the original register is
unavailable. */
if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
return MOVEUP_EXPR_NULL;
EXPR_TARGET_AVAILABLE (expr) = false;
was_target_conflict = true;
as_rhs = true;
}
/* At this point we have either separable insns, that will be lifted
up only as RHSes, or non-separable insns with no dependency in lhs.
If dependency is in RHS, then try to perform substitution and move up
substituted RHS:
Ex. 1: Ex.2
y = x; y = x;
z = y*2; y = y*2;
In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
moved above y=x assignment as z=x*2.
In Ex.2 y*2 also can be substituted for x*2, but only the right hand
side can be moved because of the output dependency. The operation was
cropped to its rhs above. */
if (has_dep_p[DEPS_IN_RHS])
{
ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
/* Can't substitute UNIQUE VINSNs. */
gcc_assert (!VINSN_UNIQUE_P (vi));
if (can_speculate_dep_p (*rhs_dsp))
{
int res;
res = speculate_expr (expr, *rhs_dsp);
if (res >= 0)
{
/* Speculation was successful. */
*rhs_dsp = 0;
was_changed = (res > 0);
if (res == 2)
was_target_conflict = true;
if (ptrans_type)
*ptrans_type = TRANS_SPECULATION;
}
else
return MOVEUP_EXPR_NULL;
}
else if (can_substitute_through_p (through_insn,
*rhs_dsp)
&& substitute_reg_in_expr (expr, through_insn, false))
{
/* ??? We cannot perform substitution AND speculation on the same
insn. */
gcc_assert (!was_changed);
was_changed = true;
if (ptrans_type)
*ptrans_type = TRANS_SUBSTITUTION;
EXPR_WAS_SUBSTITUTED (expr) = true;
}
else
return MOVEUP_EXPR_NULL;
}
/* Don't move trapping insns through jumps.
This check should be at the end to give a chance to control speculation
to perform its duties. */
if (CANT_MOVE_TRAPPING (expr, through_insn))
return MOVEUP_EXPR_NULL;
return (was_changed
? MOVEUP_EXPR_CHANGED
: (as_rhs
? MOVEUP_EXPR_AS_RHS
: MOVEUP_EXPR_SAME));
}
/* Try to look at bitmap caches for EXPR and INSN pair, return true
if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
that can exist within a parallel group. Write to RES the resulting
code for moveup_expr. */
static bool
try_bitmap_cache (expr_t expr, insn_t insn,
bool inside_insn_group,
enum MOVEUP_EXPR_CODE *res)
{
int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
/* First check whether we've analyzed this situation already. */
if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
{
if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
{
if (sched_verbose >= 6)
sel_print ("removed (cached)\n");
*res = MOVEUP_EXPR_NULL;
return true;
}
else
{
if (sched_verbose >= 6)
sel_print ("unchanged (cached)\n");
*res = MOVEUP_EXPR_SAME;
return true;
}
}
else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
{
if (inside_insn_group)
{
if (sched_verbose >= 6)
sel_print ("unchanged (as RHS, cached, inside insn group)\n");
*res = MOVEUP_EXPR_SAME;
return true;
}
else
EXPR_TARGET_AVAILABLE (expr) = false;
/* This is the only case when propagation result can change over time,
as we can dynamically switch off scheduling as RHS. In this case,
just check the flag to reach the correct decision. */
if (enable_schedule_as_rhs_p)
{
if (sched_verbose >= 6)
sel_print ("unchanged (as RHS, cached)\n");
*res = MOVEUP_EXPR_AS_RHS;
return true;
}
else
{
if (sched_verbose >= 6)
sel_print ("removed (cached as RHS, but renaming"
" is now disabled)\n");
*res = MOVEUP_EXPR_NULL;
return true;
}
}
return false;
}
/* Try to look at bitmap caches for EXPR and INSN pair, return true
if successful. Write to RES the resulting code for moveup_expr. */
static bool
try_transformation_cache (expr_t expr, insn_t insn,
enum MOVEUP_EXPR_CODE *res)
{
struct transformed_insns *pti
= (struct transformed_insns *)
htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
&EXPR_VINSN (expr),
VINSN_HASH_RTX (EXPR_VINSN (expr)));
if (pti)
{
/* This EXPR was already moved through this insn and was
changed as a result. Fetch the proper data from
the hashtable. */
insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
INSN_UID (insn), pti->type,
pti->vinsn_old, pti->vinsn_new,
EXPR_SPEC_DONE_DS (expr));
if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
change_vinsn_in_expr (expr, pti->vinsn_new);
if (pti->was_target_conflict)
EXPR_TARGET_AVAILABLE (expr) = false;
if (pti->type == TRANS_SPECULATION)
{
ds_t ds;
ds = EXPR_SPEC_DONE_DS (expr);
EXPR_SPEC_DONE_DS (expr) = pti->ds;
EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
}
if (sched_verbose >= 6)
{
sel_print ("changed (cached): ");
dump_expr (expr);
sel_print ("\n");
}
*res = MOVEUP_EXPR_CHANGED;
return true;
}
return false;
}
/* Update bitmap caches on INSN with result RES of propagating EXPR. */
static void
update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
enum MOVEUP_EXPR_CODE res)
{
int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
/* Do not cache result of propagating jumps through an insn group,
as it is always true, which is not useful outside the group. */
if (inside_insn_group)
return;
if (res == MOVEUP_EXPR_NULL)
{
bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
}
else if (res == MOVEUP_EXPR_SAME)
{
bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
}
else if (res == MOVEUP_EXPR_AS_RHS)
{
bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
}
else
gcc_unreachable ();
}
/* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
and transformation type TRANS_TYPE. */
static void
update_transformation_cache (expr_t expr, insn_t insn,
bool inside_insn_group,
enum local_trans_type trans_type,
vinsn_t expr_old_vinsn)
{
struct transformed_insns *pti;
if (inside_insn_group)
return;
pti = XNEW (struct transformed_insns);
pti->vinsn_old = expr_old_vinsn;
pti->vinsn_new = EXPR_VINSN (expr);
pti->type = trans_type;
pti->was_target_conflict = was_target_conflict;
pti->ds = EXPR_SPEC_DONE_DS (expr);
pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
vinsn_attach (pti->vinsn_old);
vinsn_attach (pti->vinsn_new);
*((struct transformed_insns **)
htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
pti, VINSN_HASH_RTX (expr_old_vinsn),
INSERT)) = pti;
}
/* Same as moveup_expr, but first looks up the result of
transformation in caches. */
static enum MOVEUP_EXPR_CODE
moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
{
enum MOVEUP_EXPR_CODE res;
bool got_answer = false;
if (sched_verbose >= 6)
{
sel_print ("Moving ");
dump_expr (expr);
sel_print (" through %d: ", INSN_UID (insn));
}
if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
/* When inside insn group, we do not want remove stores conflicting
with previosly issued loads. */
got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
else if (try_transformation_cache (expr, insn, &res))
got_answer = true;
if (! got_answer)
{
/* Invoke moveup_expr and record the results. */
vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
enum local_trans_type trans_type = TRANS_SUBSTITUTION;
/* ??? Invent something better than this. We can't allow old_vinsn
to go, we need it for the history vector. */
vinsn_attach (expr_old_vinsn);
res = moveup_expr (expr, insn, inside_insn_group,
&trans_type);
switch (res)
{
case MOVEUP_EXPR_NULL:
update_bitmap_cache (expr, insn, inside_insn_group, res);
if (sched_verbose >= 6)
sel_print ("removed\n");
break;
case MOVEUP_EXPR_SAME:
update_bitmap_cache (expr, insn, inside_insn_group, res);
if (sched_verbose >= 6)
sel_print ("unchanged\n");
break;
case MOVEUP_EXPR_AS_RHS:
gcc_assert (!unique_p || inside_insn_group);
update_bitmap_cache (expr, insn, inside_insn_group, res);
if (sched_verbose >= 6)
sel_print ("unchanged (as RHS)\n");
break;
case MOVEUP_EXPR_CHANGED:
gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
|| EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
INSN_UID (insn), trans_type,
expr_old_vinsn, EXPR_VINSN (expr),
expr_old_spec_ds);
update_transformation_cache (expr, insn, inside_insn_group,
trans_type, expr_old_vinsn);
if (sched_verbose >= 6)
{
sel_print ("changed: ");
dump_expr (expr);
sel_print ("\n");
}
break;
default:
gcc_unreachable ();
}
vinsn_detach (expr_old_vinsn);
}
return res;
}
/* Moves an av set AVP up through INSN, performing necessary
transformations. */
static void
moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
{
av_set_iterator i;
expr_t expr;
FOR_EACH_EXPR_1 (expr, i, avp)
{
switch (moveup_expr_cached (expr, insn, inside_insn_group))
{
case MOVEUP_EXPR_SAME:
case MOVEUP_EXPR_AS_RHS:
break;
case MOVEUP_EXPR_NULL:
av_set_iter_remove (&i);
break;
case MOVEUP_EXPR_CHANGED:
expr = merge_with_other_exprs (avp, &i, expr);
break;
default:
gcc_unreachable ();
}
}
}
/* Moves AVP set along PATH. */
static void
moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
{
int last_cycle;
if (sched_verbose >= 6)
sel_print ("Moving expressions up in the insn group...\n");
if (! path)
return;
last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
while (path
&& INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
{
moveup_set_expr (avp, ILIST_INSN (path), true);
path = ILIST_NEXT (path);
}
}
/* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
static bool
equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
{
expr_def _tmp, *tmp = &_tmp;
int last_cycle;
bool res = true;
copy_expr_onside (tmp, expr);
last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
while (path
&& res
&& INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
{
res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
!= MOVEUP_EXPR_NULL);
path = ILIST_NEXT (path);
}
if (res)
{
vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
if (tmp_vinsn != expr_vliw_vinsn)
res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
}
clear_expr (tmp);
return res;
}
/* Functions that compute av and lv sets. */
/* Returns true if INSN is not a downward continuation of the given path P in
the current stage. */
static bool
is_ineligible_successor (insn_t insn, ilist_t p)
{
insn_t prev_insn;
/* Check if insn is not deleted. */
if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
gcc_unreachable ();
else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
gcc_unreachable ();
/* If it's the first insn visited, then the successor is ok. */
if (!p)
return false;
prev_insn = ILIST_INSN (p);
if (/* a backward edge. */
INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
/* is already visited. */
|| (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
&& (ilist_is_in_p (p, insn)
/* We can reach another fence here and still seqno of insn
would be equal to seqno of prev_insn. This is possible
when prev_insn is a previously created bookkeeping copy.
In that case it'd get a seqno of insn. Thus, check here
whether insn is in current fence too. */
|| IN_CURRENT_FENCE_P (insn)))
/* Was already scheduled on this round. */
|| (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
&& IN_CURRENT_FENCE_P (insn))
/* An insn from another fence could also be
scheduled earlier even if this insn is not in
a fence list right now. Check INSN_SCHED_CYCLE instead. */
|| (!pipelining_p
&& INSN_SCHED_TIMES (insn) > 0))
return true;
else
return false;
}
/* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
of handling multiple successors and properly merging its av_sets. P is
the current path traversed. WS is the size of lookahead window.
Return the av set computed. */
static av_set_t
compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
{
struct succs_info *sinfo;
av_set_t expr_in_all_succ_branches = NULL;
int is;
insn_t succ, zero_succ = NULL;
av_set_t av1 = NULL;
gcc_assert (sel_bb_end_p (insn));
/* Find different kind of successors needed for correct computing of
SPEC and TARGET_AVAILABLE attributes. */
sinfo = compute_succs_info (insn, SUCCS_NORMAL);
/* Debug output. */
if (sched_verbose >= 6)
{
sel_print ("successors of bb end (%d): ", INSN_UID (insn));
dump_insn_vector (sinfo->succs_ok);
sel_print ("\n");
if (sinfo->succs_ok_n != sinfo->all_succs_n)
sel_print ("real successors num: %d\n", sinfo->all_succs_n);
}
/* Add insn to to the tail of current path. */
ilist_add (&p, insn);
for (is = 0; VEC_iterate (rtx, sinfo->succs_ok, is, succ); is++)
{
av_set_t succ_set;
/* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
succ_set = compute_av_set_inside_bb (succ, p, ws, true);
av_set_split_usefulness (succ_set,
VEC_index (int, sinfo->probs_ok, is),
sinfo->all_prob);
if (sinfo->all_succs_n > 1
&& sinfo->all_succs_n == sinfo->succs_ok_n)
{
/* Find EXPR'es that came from *all* successors and save them
into expr_in_all_succ_branches. This set will be used later
for calculating speculation attributes of EXPR'es. */
if (is == 0)
{
expr_in_all_succ_branches = av_set_copy (succ_set);
/* Remember the first successor for later. */
zero_succ = succ;
}
else
{
av_set_iterator i;
expr_t expr;
FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
av_set_iter_remove (&i);
}
}
/* Union the av_sets. Check liveness restrictions on target registers
in special case of two successors. */
if (sinfo->succs_ok_n == 2 && is == 1)
{
basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
basic_block bb1 = BLOCK_FOR_INSN (succ);
gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
av_set_union_and_live (&av1, &succ_set,
BB_LV_SET (bb0),
BB_LV_SET (bb1),
insn);
}
else
av_set_union_and_clear (&av1, &succ_set, insn);
}
/* Check liveness restrictions via hard way when there are more than
two successors. */
if (sinfo->succs_ok_n > 2)
for (is = 0; VEC_iterate (rtx, sinfo->succs_ok, is, succ); is++)
{
basic_block succ_bb = BLOCK_FOR_INSN (succ);
gcc_assert (BB_LV_SET_VALID_P (succ_bb));
mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
BB_LV_SET (succ_bb));
}
/* Finally, check liveness restrictions on paths leaving the region. */
if (sinfo->all_succs_n > sinfo->succs_ok_n)
for (is = 0; VEC_iterate (rtx, sinfo->succs_other, is, succ); is++)
mark_unavailable_targets
(av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
if (sinfo->all_succs_n > 1)
{
av_set_iterator i;
expr_t expr;
/* Increase the spec attribute of all EXPR'es that didn't come
from all successors. */
FOR_EACH_EXPR (expr, i, av1)
if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
EXPR_SPEC (expr)++;
av_set_clear (&expr_in_all_succ_branches);
/* Do not move conditional branches through other
conditional branches. So, remove all conditional
branches from av_set if current operator is a conditional
branch. */
av_set_substract_cond_branches (&av1);
}
ilist_remove (&p);
free_succs_info (sinfo);
if (sched_verbose >= 6)
{
sel_print ("av_succs (%d): ", INSN_UID (insn));
dump_av_set (av1);
sel_print ("\n");
}
return av1;
}
/* This function computes av_set for the FIRST_INSN by dragging valid
av_set through all basic block insns either from the end of basic block
(computed using compute_av_set_at_bb_end) or from the insn on which
MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
below the basic block and handling conditional branches.
FIRST_INSN - the basic block head, P - path consisting of the insns
traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
and bb ends are added to the path), WS - current window size,
NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
static av_set_t
compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
bool need_copy_p)
{
insn_t cur_insn;
int end_ws = ws;
insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
insn_t after_bb_end = NEXT_INSN (bb_end);
insn_t last_insn;
av_set_t av = NULL;
basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
/* Return NULL if insn is not on the legitimate downward path. */
if (is_ineligible_successor (first_insn, p))
{
if (sched_verbose >= 6)
sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
return NULL;
}
/* If insn already has valid av(insn) computed, just return it. */
if (AV_SET_VALID_P (first_insn))
{
av_set_t av_set;
if (sel_bb_head_p (first_insn))
av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
else
av_set = NULL;
if (sched_verbose >= 6)
{
sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
dump_av_set (av_set);
sel_print ("\n");
}
return need_copy_p ? av_set_copy (av_set) : av_set;
}
ilist_add (&p, first_insn);
/* As the result after this loop have completed, in LAST_INSN we'll
have the insn which has valid av_set to start backward computation
from: it either will be NULL because on it the window size was exceeded
or other valid av_set as returned by compute_av_set for the last insn
of the basic block. */
for (last_insn = first_insn; last_insn != after_bb_end;
last_insn = NEXT_INSN (last_insn))
{
/* We may encounter valid av_set not only on bb_head, but also on
those insns on which previously MAX_WS was exceeded. */
if (AV_SET_VALID_P (last_insn))
{
if (sched_verbose >= 6)
sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
break;
}
/* The special case: the last insn of the BB may be an
ineligible_successor due to its SEQ_NO that was set on
it as a bookkeeping. */
if (last_insn != first_insn
&& is_ineligible_successor (last_insn, p))
{
if (sched_verbose >= 6)
sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
break;
}
if (end_ws > max_ws)
{
/* We can reach max lookahead size at bb_header, so clean av_set
first. */
INSN_WS_LEVEL (last_insn) = global_level;
if (sched_verbose >= 6)
sel_print ("Insn %d is beyond the software lookahead window size\n",
INSN_UID (last_insn));
break;
}
end_ws++;
}
/* Get the valid av_set into AV above the LAST_INSN to start backward
computation from. It either will be empty av_set or av_set computed from
the successors on the last insn of the current bb. */
if (last_insn != after_bb_end)
{
av = NULL;
/* This is needed only to obtain av_sets that are identical to
those computed by the old compute_av_set version. */
if (last_insn == first_insn && !INSN_NOP_P (last_insn))
av_set_add (&av, INSN_EXPR (last_insn));
}
else
/* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
av = compute_av_set_at_bb_end (bb_end, p, end_ws);
/* Compute av_set in AV starting from below the LAST_INSN up to
location above the FIRST_INSN. */
for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
cur_insn = PREV_INSN (cur_insn))
if (!INSN_NOP_P (cur_insn))
{
expr_t expr;
moveup_set_expr (&av, cur_insn, false);
/* If the expression for CUR_INSN is already in the set,
replace it by the new one. */
expr = av_set_lookup (av, INSN_VINSN (cur_insn));
if (expr != NULL)
{
clear_expr (expr);
copy_expr (expr, INSN_EXPR (cur_insn));
}
else
av_set_add (&av, INSN_EXPR (cur_insn));
}
/* Clear stale bb_av_set. */
if (sel_bb_head_p (first_insn))
{
av_set_clear (&BB_AV_SET (cur_bb));
BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
BB_AV_LEVEL (cur_bb) = global_level;
}
if (sched_verbose >= 6)
{
sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
dump_av_set (av);
sel_print ("\n");
}
ilist_remove (&p);
return av;
}
/* Compute av set before INSN.
INSN - the current operation (actual rtx INSN)
P - the current path, which is list of insns visited so far
WS - software lookahead window size.
UNIQUE_P - TRUE, if returned av_set will be changed, hence
if we want to save computed av_set in s_i_d, we should make a copy of it.
In the resulting set we will have only expressions that don't have delay
stalls and nonsubstitutable dependences. */
static av_set_t
compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
{
return compute_av_set_inside_bb (insn, p, ws, unique_p);
}
/* Propagate a liveness set LV through INSN. */
static void
propagate_lv_set (regset lv, insn_t insn)
{
gcc_assert (INSN_P (insn));
if (INSN_NOP_P (insn))
return;
df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
}
/* Return livness set at the end of BB. */
static regset
compute_live_after_bb (basic_block bb)
{
edge e;
edge_iterator ei;
regset lv = get_clear_regset_from_pool ();
gcc_assert (!ignore_first);
FOR_EACH_EDGE (e, ei, bb->succs)
if (sel_bb_empty_p (e->dest))
{
if (! BB_LV_SET_VALID_P (e->dest))
{
gcc_unreachable ();
gcc_assert (BB_LV_SET (e->dest) == NULL);
BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
BB_LV_SET_VALID_P (e->dest) = true;
}
IOR_REG_SET (lv, BB_LV_SET (e->dest));
}
else
IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
return lv;
}
/* Compute the set of all live registers at the point before INSN and save
it at INSN if INSN is bb header. */
regset
compute_live (insn_t insn)
{
basic_block bb = BLOCK_FOR_INSN (insn);
insn_t final, temp;
regset lv;
/* Return the valid set if we're already on it. */
if (!ignore_first)
{
regset src = NULL;
if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
src = BB_LV_SET (bb);
else
{
gcc_assert (in_current_region_p (bb));
if (INSN_LIVE_VALID_P (insn))
src = INSN_LIVE (insn);
}
if (src)
{
lv = get_regset_from_pool ();
COPY_REG_SET (lv, src);
if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
{
COPY_REG_SET (BB_LV_SET (bb), lv);
BB_LV_SET_VALID_P (bb) = true;
}
return_regset_to_pool (lv);
return lv;
}
}
/* We've skipped the wrong lv_set. Don't skip the right one. */
ignore_first = false;
gcc_assert (in_current_region_p (bb));
/* Find a valid LV set in this block or below, if needed.
Start searching from the next insn: either ignore_first is true, or
INSN doesn't have a correct live set. */
temp = NEXT_INSN (insn);
final = NEXT_INSN (BB_END (bb));
while (temp != final && ! INSN_LIVE_VALID_P (temp))
temp = NEXT_INSN (temp);
if (temp == final)
{
lv = compute_live_after_bb (bb);
temp = PREV_INSN (temp);
}
else
{
lv = get_regset_from_pool ();
COPY_REG_SET (lv, INSN_LIVE (temp));
}
/* Put correct lv sets on the insns which have bad sets. */
final = PREV_INSN (insn);
while (temp != final)
{
propagate_lv_set (lv, temp);
COPY_REG_SET (INSN_LIVE (temp), lv);
INSN_LIVE_VALID_P (temp) = true;
temp = PREV_INSN (temp);
}
/* Also put it in a BB. */
if (sel_bb_head_p (insn))
{
basic_block bb = BLOCK_FOR_INSN (insn);
COPY_REG_SET (BB_LV_SET (bb), lv);
BB_LV_SET_VALID_P (bb) = true;
}
/* We return LV to the pool, but will not clear it there. Thus we can
legimatelly use LV till the next use of regset_pool_get (). */
return_regset_to_pool (lv);
return lv;
}
/* Update liveness sets for INSN. */
static inline void
update_liveness_on_insn (rtx insn)
{
ignore_first = true;
compute_live (insn);
}
/* Compute liveness below INSN and write it into REGS. */
static inline void
compute_live_below_insn (rtx insn, regset regs)
{
rtx succ;
succ_iterator si;
FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
IOR_REG_SET (regs, compute_live (succ));
}
/* Update the data gathered in av and lv sets starting from INSN. */
static void
update_data_sets (rtx insn)
{
update_liveness_on_insn (insn);
if (sel_bb_head_p (insn))
{
gcc_assert (AV_LEVEL (insn) != 0);
BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
compute_av_set (insn, NULL, 0, 0);
}
}
/* Helper for move_op () and find_used_regs ().
Return speculation type for which a check should be created on the place
of INSN. EXPR is one of the original ops we are searching for. */
static ds_t
get_spec_check_type_for_insn (insn_t insn, expr_t expr)
{
ds_t to_check_ds;
ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
if (targetm.sched.get_insn_checked_ds)
already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
if (spec_info != NULL
&& (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
already_checked_ds |= BEGIN_CONTROL;
already_checked_ds = ds_get_speculation_types (already_checked_ds);
to_check_ds &= ~already_checked_ds;
return to_check_ds;
}
/* Find the set of registers that are unavailable for storing expres
while moving ORIG_OPS up on the path starting from INSN due to
liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
All the original operations found during the traversal are saved in the
ORIGINAL_INSNS list.
REG_RENAME_P denotes the set of hardware registers that
can not be used with renaming due to the register class restrictions,
mode restrictions and other (the register we'll choose should be
compatible class with the original uses, shouldn't be in call_used_regs,
should be HARD_REGNO_RENAME_OK etc).
Returns TRUE if we've found all original insns, FALSE otherwise.
This function utilizes code_motion_path_driver (formerly find_used_regs_1)
to traverse the code motion paths. This helper function finds registers
that are not available for storing expres while moving ORIG_OPS up on the
path starting from INSN. A register considered as used on the moving path,
if one of the following conditions is not satisfied:
(1) a register not set or read on any path from xi to an instance of
the original operation,
(2) not among the live registers of the point immediately following the
first original operation on a given downward path, except for the
original target register of the operation,
(3) not live on the other path of any conditional branch that is passed
by the operation, in case original operations are not present on
both paths of the conditional branch.
All the original operations found during the traversal are saved in the
ORIGINAL_INSNS list.
REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
from INSN to original insn. In this case CALL_USED_REG_SET will be added
to unavailable hard regs at the point original operation is found. */
static bool
find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
struct reg_rename *reg_rename_p, def_list_t *original_insns)
{
def_list_iterator i;
def_t def;
int res;
bool needs_spec_check_p = false;
expr_t expr;
av_set_iterator expr_iter;
struct fur_static_params sparams;
struct cmpd_local_params lparams;
/* We haven't visited any blocks yet. */
bitmap_clear (code_motion_visited_blocks);
/* Init parameters for code_motion_path_driver. */
sparams.crosses_call = false;
sparams.original_insns = original_insns;
sparams.used_regs = used_regs;
/* Set the appropriate hooks and data. */
code_motion_path_driver_info = &fur_hooks;
res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
reg_rename_p->crosses_call |= sparams.crosses_call;
gcc_assert (res == 1);
gcc_assert (original_insns && *original_insns);
/* ??? We calculate whether an expression needs a check when computing
av sets. This information is not as precise as it could be due to
merging this bit in merge_expr. We can do better in find_used_regs,
but we want to avoid multiple traversals of the same code motion
paths. */
FOR_EACH_EXPR (expr, expr_iter, orig_ops)
needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
/* Mark hardware regs in REG_RENAME_P that are not suitable
for renaming expr in INSN due to hardware restrictions (register class,
modes compatibility etc). */
FOR_EACH_DEF (def, i, *original_insns)
{
vinsn_t vinsn = INSN_VINSN (def->orig_insn);
if (VINSN_SEPARABLE_P (vinsn))
mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
/* Do not allow clobbering of ld.[sa] address in case some of the
original operations need a check. */
if (needs_spec_check_p)
IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
}
return true;
}
/* Functions to choose the best insn from available ones. */
/* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
static int
sel_target_adjust_priority (expr_t expr)
{
int priority = EXPR_PRIORITY (expr);
int new_priority;
if (targetm.sched.adjust_priority)
new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
else
new_priority = priority;
/* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
if (sched_verbose >= 2)
sel_print ("sel_target_adjust_priority: insn %d, %d +%d = %d.\n",
INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
EXPR_PRIORITY_ADJ (expr), new_priority);
return new_priority;
}
/* Rank two available exprs for schedule. Never return 0 here. */
static int
sel_rank_for_schedule (const void *x, const void *y)
{
expr_t tmp = *(const expr_t *) y;
expr_t tmp2 = *(const expr_t *) x;
insn_t tmp_insn, tmp2_insn;
vinsn_t tmp_vinsn, tmp2_vinsn;
int val;
tmp_vinsn = EXPR_VINSN (tmp);
tmp2_vinsn = EXPR_VINSN (tmp2);
tmp_insn = EXPR_INSN_RTX (tmp);
tmp2_insn = EXPR_INSN_RTX (tmp2);
/* Prefer SCHED_GROUP_P insns to any others. */
if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
{
if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
/* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
cannot be cloned. */
if (VINSN_UNIQUE_P (tmp2_vinsn))
return 1;
return -1;
}
/* Discourage scheduling of speculative checks. */
val = (sel_insn_is_speculation_check (tmp_insn)
- sel_insn_is_speculation_check (tmp2_insn));
if (val)
return val;
/* Prefer not scheduled insn over scheduled one. */
if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
{
val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
if (val)
return val;
}
/* Prefer jump over non-jump instruction. */
if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
return -1;
else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
return 1;
/* Prefer an expr with greater priority. */
if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
{
int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
}
else
val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
+ EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
if (val)
return val;
if (spec_info != NULL && spec_info->mask != 0)
/* This code was taken from haifa-sched.c: rank_for_schedule (). */
{
ds_t ds1, ds2;
dw_t dw1, dw2;
int dw;
ds1 = EXPR_SPEC_DONE_DS (tmp);
if (ds1)
dw1 = ds_weak (ds1);
else
dw1 = NO_DEP_WEAK;
ds2 = EXPR_SPEC_DONE_DS (tmp2);
if (ds2)
dw2 = ds_weak (ds2);
else
dw2 = NO_DEP_WEAK;
dw = dw2 - dw1;
if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
return dw;
}
tmp_insn = EXPR_INSN_RTX (tmp);
tmp2_insn = EXPR_INSN_RTX (tmp2);
/* Prefer an old insn to a bookkeeping insn. */
if (INSN_UID (tmp_insn) < first_emitted_uid
&& INSN_UID (tmp2_insn) >= first_emitted_uid)
return -1;
if (INSN_UID (tmp_insn) >= first_emitted_uid
&& INSN_UID (tmp2_insn) < first_emitted_uid)
return 1;
/* Prefer an insn with smaller UID, as a last resort.
We can't safely use INSN_LUID as it is defined only for those insns
that are in the stream. */
return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
}
/* Filter out expressions from av set pointed to by AV_PTR
that are pipelined too many times. */
static void
process_pipelined_exprs (av_set_t *av_ptr)
{
expr_t expr;
av_set_iterator si;
/* Don't pipeline already pipelined code as that would increase
number of unnecessary register moves. */
FOR_EACH_EXPR_1 (expr, si, av_ptr)
{
if (EXPR_SCHED_TIMES (expr)
>= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
av_set_iter_remove (&si);
}
}
/* Filter speculative insns from AV_PTR if we don't want them. */
static void
process_spec_exprs (av_set_t *av_ptr)
{
bool try_data_p = true;
bool try_control_p = true;
expr_t expr;
av_set_iterator si;
if (spec_info == NULL)
return;
/* Scan *AV_PTR to find out if we want to consider speculative
instructions for scheduling. */
FOR_EACH_EXPR_1 (expr, si, av_ptr)
{
ds_t ds;
ds = EXPR_SPEC_DONE_DS (expr);
/* The probability of a success is too low - don't speculate. */
if ((ds & SPECULATIVE)
&& (ds_weak (ds) < spec_info->data_weakness_cutoff
|| EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
|| (pipelining_p && false
&& (ds & DATA_SPEC)
&& (ds & CONTROL_SPEC))))
{
av_set_iter_remove (&si);
continue;
}
if ((spec_info->flags & PREFER_NON_DATA_SPEC)
&& !(ds & BEGIN_DATA))
try_data_p = false;
if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
&& !(ds & BEGIN_CONTROL))
try_control_p = false;
}
FOR_EACH_EXPR_1 (expr, si, av_ptr)
{
ds_t ds;
ds = EXPR_SPEC_DONE_DS (expr);
if (ds & SPECULATIVE)
{
if ((ds & BEGIN_DATA) && !try_data_p)
/* We don't want any data speculative instructions right
now. */
av_set_iter_remove (&si);
if ((ds & BEGIN_CONTROL) && !try_control_p)
/* We don't want any control speculative instructions right
now. */
av_set_iter_remove (&si);
}
}
}
/* Search for any use-like insns in AV_PTR and decide on scheduling
them. Return one when found, and NULL otherwise.
Note that we check here whether a USE could be scheduled to avoid
an infinite loop later. */
static expr_t
process_use_exprs (av_set_t *av_ptr)
{
expr_t expr;
av_set_iterator si;
bool uses_present_p = false;
bool try_uses_p = true;
FOR_EACH_EXPR_1 (expr, si, av_ptr)
{
/* This will also initialize INSN_CODE for later use. */
if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
{
/* If we have a USE in *AV_PTR that was not scheduled yet,
do so because it will do good only. */
if (EXPR_SCHED_TIMES (expr) <= 0)
{
if (EXPR_TARGET_AVAILABLE (expr) == 1)
return expr;
av_set_iter_remove (&si);
}
else
{
gcc_assert (pipelining_p);
uses_present_p = true;
}
}
else
try_uses_p = false;
}
if (uses_present_p)
{
/* If we don't want to schedule any USEs right now and we have some
in *AV_PTR, remove them, else just return the first one found. */
if (!try_uses_p)
{
FOR_EACH_EXPR_1 (expr, si, av_ptr)
if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
av_set_iter_remove (&si);
}
else
{
FOR_EACH_EXPR_1 (expr, si, av_ptr)
{
gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
if (EXPR_TARGET_AVAILABLE (expr) == 1)
return expr;
av_set_iter_remove (&si);
}
}
}
return NULL;
}
/* Lookup EXPR in VINSN_VEC and return TRUE if found. */
static bool
vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
{
vinsn_t vinsn;
int n;
for (n = 0; VEC_iterate (vinsn_t, vinsn_vec, n, vinsn); n++)
if (VINSN_SEPARABLE_P (vinsn))
{
if (vinsn_equal_p (vinsn, EXPR_VINSN (expr)))
return true;
}
else
{
/* For non-separable instructions, the blocking insn can have
another pattern due to substitution, and we can't choose
different register as in the above case. Check all registers
being written instead. */
if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
VINSN_REG_SETS (EXPR_VINSN (expr))))
return true;
}
return false;
}
#ifdef ENABLE_CHECKING
/* Return true if either of expressions from ORIG_OPS can be blocked
by previously created bookkeeping code. STATIC_PARAMS points to static
parameters of move_op. */
static bool
av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
{
expr_t expr;
av_set_iterator iter;
moveop_static_params_p sparams;
/* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
created while scheduling on another fence. */
FOR_EACH_EXPR (expr, iter, orig_ops)
if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
return true;
gcc_assert (code_motion_path_driver_info == &move_op_hooks);
sparams = (moveop_static_params_p) static_params;
/* Expressions can be also blocked by bookkeeping created during current
move_op. */
if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
FOR_EACH_EXPR (expr, iter, orig_ops)
if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
return true;
/* Expressions in ORIG_OPS may have wrong destination register due to
renaming. Check with the right register instead. */
if (sparams->dest && REG_P (sparams->dest))
{
unsigned regno = REGNO (sparams->dest);
vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
if (bitmap_bit_p (VINSN_REG_SETS (failed_vinsn), regno)
|| bitmap_bit_p (VINSN_REG_USES (failed_vinsn), regno)
|| bitmap_bit_p (VINSN_REG_CLOBBERS (failed_vinsn), regno))
return true;
}
return false;
}
#endif
/* Clear VINSN_VEC and detach vinsns. */
static void
vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
{
unsigned len = VEC_length (vinsn_t, *vinsn_vec);
if (len > 0)
{
vinsn_t vinsn;
int n;
for (n = 0; VEC_iterate (vinsn_t, *vinsn_vec, n, vinsn); n++)
vinsn_detach (vinsn);
VEC_block_remove (vinsn_t, *vinsn_vec, 0, len);
}
}
/* Add the vinsn of EXPR to the VINSN_VEC. */
static void
vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
{
vinsn_attach (EXPR_VINSN (expr));
VEC_safe_push (vinsn_t, heap, *vinsn_vec, EXPR_VINSN (expr));
}
/* Free the vector representing blocked expressions. */
static void
vinsn_vec_free (vinsn_vec_t *vinsn_vec)
{
if (*vinsn_vec)
VEC_free (vinsn_t, heap, *vinsn_vec);
}
/* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
void sel_add_to_insn_priority (rtx insn, int amount)
{
EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
if (sched_verbose >= 2)
sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
}
/* Turn AV into a vector, filter inappropriate insns and sort it. Return
true if there is something to schedule. BNDS and FENCE are current
boundaries and fence, respectively. If we need to stall for some cycles
before an expr from AV would become available, write this number to
*PNEED_STALL. */
static bool
fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
int *pneed_stall)
{
av_set_iterator si;
expr_t expr;
int sched_next_worked = 0, stalled, n;
static int av_max_prio, est_ticks_till_branch;
int min_need_stall = -1;
deps_t dc = BND_DC (BLIST_BND (bnds));
/* Bail out early when the ready list contained only USEs/CLOBBERs that are
already scheduled. */
if (av == NULL)
return false;
/* Empty vector from the previous stuff. */
if (VEC_length (expr_t, vec_av_set) > 0)
VEC_block_remove (expr_t, vec_av_set, 0, VEC_length (expr_t, vec_av_set));
/* Turn the set into a vector for sorting and call sel_target_adjust_priority
for each insn. */
gcc_assert (VEC_empty (expr_t, vec_av_set));
FOR_EACH_EXPR (expr, si, av)
{
VEC_safe_push (expr_t, heap, vec_av_set, expr);
gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
/* Adjust priority using target backend hook. */
sel_target_adjust_priority (expr);
}
/* Sort the vector. */
qsort (VEC_address (expr_t, vec_av_set), VEC_length (expr_t, vec_av_set),
sizeof (expr_t), sel_rank_for_schedule);
/* We record maximal priority of insns in av set for current instruction
group. */
if (FENCE_STARTS_CYCLE_P (fence))
av_max_prio = est_ticks_till_branch = INT_MIN;
/* Filter out inappropriate expressions. Loop's direction is reversed to
visit "best" instructions first. We assume that VEC_unordered_remove
moves last element in place of one being deleted. */
for (n = VEC_length (expr_t, vec_av_set) - 1, stalled = 0; n >= 0; n--)
{
expr_t expr = VEC_index (expr_t, vec_av_set, n);
insn_t insn = EXPR_INSN_RTX (expr);
char target_available;
bool is_orig_reg_p = true;
int need_cycles, new_prio;
/* Don't allow any insns other than from SCHED_GROUP if we have one. */
if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
{
VEC_unordered_remove (expr_t, vec_av_set, n);
continue;
}
/* Set number of sched_next insns (just in case there
could be several). */
if (FENCE_SCHED_NEXT (fence))
sched_next_worked++;
/* Check all liveness requirements and try renaming.
FIXME: try to minimize calls to this. */
target_available = EXPR_TARGET_AVAILABLE (expr);
/* If insn was already scheduled on the current fence,
set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
target_available = -1;
/* If the availability of the EXPR is invalidated by the insertion of
bookkeeping earlier, make sure that we won't choose this expr for
scheduling if it's not separable, and if it is separable, then
we have to recompute the set of available registers for it. */
if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
{
VEC_unordered_remove (expr_t, vec_av_set, n);
if (sched_verbose >= 4)
sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
INSN_UID (insn));
continue;
}
if (target_available == true)
{
/* Do nothing -- we can use an existing register. */
is_orig_reg_p = EXPR_SEPARABLE_P (expr);
}
else if (/* Non-separable instruction will never
get another register. */
(target_available == false
&& !EXPR_SEPARABLE_P (expr))
/* Don't try to find a register for low-priority expression. */
|| (int) VEC_length (expr_t, vec_av_set) - 1 - n >= max_insns_to_rename
/* ??? FIXME: Don't try to rename data speculation. */
|| (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
|| ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
{
VEC_unordered_remove (expr_t, vec_av_set, n);
if (sched_verbose >= 4)
sel_print ("Expr %d has no suitable target register\n",
INSN_UID (insn));
continue;
}
/* Filter expressions that need to be renamed or speculated when
pipelining, because compensating register copies or speculation
checks are likely to be placed near the beginning of the loop,
causing a stall. */
if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
&& (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
{
/* Estimation of number of cycles until loop branch for
renaming/speculation to be successful. */
int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
if ((int) current_loop_nest->ninsns < 9)
{
VEC_unordered_remove (expr_t, vec_av_set, n);
if (sched_verbose >= 4)
sel_print ("Pipelining expr %d will likely cause stall\n",
INSN_UID (insn));
continue;
}
if ((int) current_loop_nest->ninsns - num_insns_scheduled
< need_n_ticks_till_branch * issue_rate / 2
&& est_ticks_till_branch < need_n_ticks_till_branch)
{
VEC_unordered_remove (expr_t, vec_av_set, n);
if (sched_verbose >= 4)
sel_print ("Pipelining expr %d will likely cause stall\n",
INSN_UID (insn));
continue;
}
}
/* We want to schedule speculation checks as late as possible. Discard
them from av set if there are instructions with higher priority. */
if (sel_insn_is_speculation_check (insn)
&& EXPR_PRIORITY (expr) < av_max_prio)
{
stalled++;
min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
VEC_unordered_remove (expr_t, vec_av_set, n);
if (sched_verbose >= 4)
sel_print ("Delaying speculation check %d until its first use\n",
INSN_UID (insn));
continue;
}
/* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
/* Don't allow any insns whose data is not yet ready.
Check first whether we've already tried them and failed. */
if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
{
need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
- FENCE_CYCLE (fence));
if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
est_ticks_till_branch = MAX (est_ticks_till_branch,
EXPR_PRIORITY (expr) + need_cycles);
if (need_cycles > 0)
{
stalled++;
min_need_stall = (min_need_stall < 0
? need_cycles
: MIN (min_need_stall, need_cycles));
VEC_unordered_remove (expr_t, vec_av_set, n);
if (sched_verbose >= 4)
sel_print ("Expr %d is not ready until cycle %d (cached)\n",
INSN_UID (insn),
FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
continue;
}
}
/* Now resort to dependence analysis to find whether EXPR might be
stalled due to dependencies from FENCE's context. */
need_cycles = tick_check_p (expr, dc, fence);
new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
est_ticks_till_branch = MAX (est_ticks_till_branch,
new_prio);
if (need_cycles > 0)
{
if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
{
int new_size = INSN_UID (insn) * 3 / 2;
FENCE_READY_TICKS (fence)
= (int *) xrecalloc (FENCE_READY_TICKS (fence),
new_size, FENCE_READY_TICKS_SIZE (fence),
sizeof (int));
}
FENCE_READY_TICKS (fence)[INSN_UID (insn)]
= FENCE_CYCLE (fence) + need_cycles;
stalled++;
min_need_stall = (min_need_stall < 0
? need_cycles
: MIN (min_need_stall, need_cycles));
VEC_unordered_remove (expr_t, vec_av_set, n);
if (sched_verbose >= 4)
sel_print ("Expr %d is not ready yet until cycle %d\n",
INSN_UID (insn),
FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
continue;
}
if (sched_verbose >= 4)
sel_print ("Expr %d is ok\n", INSN_UID (insn));
min_need_stall = 0;
}
/* Clear SCHED_NEXT. */
if (FENCE_SCHED_NEXT (fence))
{
gcc_assert (sched_next_worked == 1);
FENCE_SCHED_NEXT (fence) = NULL_RTX;
}
/* No need to stall if this variable was not initialized. */
if (min_need_stall < 0)
min_need_stall = 0;
if (VEC_empty (expr_t, vec_av_set))
{
/* We need to set *pneed_stall here, because later we skip this code
when ready list is empty. */
*pneed_stall = min_need_stall;
return false;
}
else
gcc_assert (min_need_stall == 0);
/* Sort the vector. */
qsort (VEC_address (expr_t, vec_av_set), VEC_length (expr_t, vec_av_set),
sizeof (expr_t), sel_rank_for_schedule);
if (sched_verbose >= 4)
{
sel_print ("Total ready exprs: %d, stalled: %d\n",
VEC_length (expr_t, vec_av_set), stalled);
sel_print ("Sorted av set (%d): ", VEC_length (expr_t, vec_av_set));
for (n = 0; VEC_iterate (expr_t, vec_av_set, n, expr); n++)
dump_expr (expr);
sel_print ("\n");
}
*pneed_stall = 0;
return true;
}
/* Convert a vectored and sorted av set to the ready list that
the rest of the backend wants to see. */
static void
convert_vec_av_set_to_ready (void)
{
int n;
expr_t expr;
/* Allocate and fill the ready list from the sorted vector. */
ready.n_ready = VEC_length (expr_t, vec_av_set);
ready.first = ready.n_ready - 1;
gcc_assert (ready.n_ready > 0);
if (ready.n_ready > max_issue_size)
{
max_issue_size = ready.n_ready;
sched_extend_ready_list (ready.n_ready);
}
for (n = 0; VEC_iterate (expr_t, vec_av_set, n, expr); n++)
{
vinsn_t vi = EXPR_VINSN (expr);
insn_t insn = VINSN_INSN_RTX (vi);
ready_try[n] = 0;
ready.vec[n] = insn;
}
}
/* Initialize ready list from *AV_PTR for the max_issue () call.
If any unrecognizable insn found in *AV_PTR, return it (and skip
max_issue). BND and FENCE are current boundary and fence,
respectively. If we need to stall for some cycles before an expr
from *AV_PTR would become available, write this number to *PNEED_STALL. */
static expr_t
fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
int *pneed_stall)
{
expr_t expr;
/* We do not support multiple boundaries per fence. */
gcc_assert (BLIST_NEXT (bnds) == NULL);
/* Process expressions required special handling, i.e. pipelined,
speculative and recog() < 0 expressions first. */
process_pipelined_exprs (av_ptr);
process_spec_exprs (av_ptr);
/* A USE could be scheduled immediately. */
expr = process_use_exprs (av_ptr);
if (expr)
{
*pneed_stall = 0;
return expr;
}
/* Turn the av set to a vector for sorting. */
if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
{
ready.n_ready = 0;
return NULL;
}
/* Build the final ready list. */
convert_vec_av_set_to_ready ();
return NULL;
}
/* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
static bool
sel_dfa_new_cycle (insn_t insn, fence_t fence)
{
int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
: FENCE_CYCLE (fence) - 1;
bool res = false;
int sort_p = 0;
if (!targetm.sched.dfa_new_cycle)
return false;
memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
insn, last_scheduled_cycle,
FENCE_CYCLE (fence), &sort_p))
{
memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
advance_one_cycle (fence);
memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
res = true;
}
return res;
}
/* Invoke reorder* target hooks on the ready list. Return the number of insns
we can issue. FENCE is the current fence. */
static int
invoke_reorder_hooks (fence_t fence)
{
int issue_more;
bool ran_hook = false;
/* Call the reorder hook at the beginning of the cycle, and call
the reorder2 hook in the middle of the cycle. */
if (FENCE_ISSUED_INSNS (fence) == 0)
{
if (targetm.sched.reorder
&& !SCHED_GROUP_P (ready_element (&ready, 0))
&& ready.n_ready > 1)
{
/* Don't give reorder the most prioritized insn as it can break
pipelining. */
if (pipelining_p)
--ready.n_ready;
issue_more
= targetm.sched.reorder (sched_dump, sched_verbose,
ready_lastpos (&ready),
&ready.n_ready, FENCE_CYCLE (fence));
if (pipelining_p)
++ready.n_ready;
ran_hook = true;
}
else
/* Initialize can_issue_more for variable_issue. */
issue_more = issue_rate;
}
else if (targetm.sched.reorder2
&& !SCHED_GROUP_P (ready_element (&ready, 0)))
{
if (ready.n_ready == 1)
issue_more =
targetm.sched.reorder2 (sched_dump, sched_verbose,
ready_lastpos (&ready),
&ready.n_ready, FENCE_CYCLE (fence));
else
{
if (pipelining_p)
--ready.n_ready;
issue_more =
targetm.sched.reorder2 (sched_dump, sched_verbose,
ready.n_ready
? ready_lastpos (&ready) : NULL,
&ready.n_ready, FENCE_CYCLE (fence));
if (pipelining_p)
++ready.n_ready;
}
ran_hook = true;
}
else
issue_more = issue_rate;
/* Ensure that ready list and vec_av_set are in line with each other,
i.e. vec_av_set[i] == ready_element (&ready, i). */
if (issue_more && ran_hook)
{
int i, j, n;
rtx *arr = ready.vec;
expr_t *vec = VEC_address (expr_t, vec_av_set);
for (i = 0, n = ready.n_ready; i < n; i++)
if (EXPR_INSN_RTX (vec[i]) != arr[i])
{
expr_t tmp;
for (j = i; j < n; j++)
if (EXPR_INSN_RTX (vec[j]) == arr[i])
break;
gcc_assert (j < n);
tmp = vec[i];
vec[i] = vec[j];
vec[j] = tmp;
}
}
return issue_more;
}
/* Return an EXPR correponding to INDEX element of ready list, if
FOLLOW_READY_ELEMENT is true (i.e., an expr of
ready_element (&ready, INDEX) will be returned), and to INDEX element of
ready.vec otherwise. */
static inline expr_t
find_expr_for_ready (int index, bool follow_ready_element)
{
expr_t expr;
int real_index;
real_index = follow_ready_element ? ready.first - index : index;
expr = VEC_index (expr_t, vec_av_set, real_index);
gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
return expr;
}
/* Calculate insns worth trying via lookahead_guard hook. Return a number
of such insns found. */
static int
invoke_dfa_lookahead_guard (void)
{
int i, n;
bool have_hook
= targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
if (sched_verbose >= 2)
sel_print ("ready after reorder: ");
for (i = 0, n = 0; i < ready.n_ready; i++)
{
expr_t expr;
insn_t insn;
int r;
/* In this loop insn is Ith element of the ready list given by
ready_element, not Ith element of ready.vec. */
insn = ready_element (&ready, i);
if (! have_hook || i == 0)
r = 0;
else
r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
gcc_assert (INSN_CODE (insn) >= 0);
/* Only insns with ready_try = 0 can get here
from fill_ready_list. */
gcc_assert (ready_try [i] == 0);
ready_try[i] = r;
if (!r)
n++;
expr = find_expr_for_ready (i, true);
if (sched_verbose >= 2)
{
dump_vinsn (EXPR_VINSN (expr));
sel_print (":%d; ", ready_try[i]);
}
}
if (sched_verbose >= 2)
sel_print ("\n");
return n;
}
/* Calculate the number of privileged insns and return it. */
static int
calculate_privileged_insns (void)
{
expr_t cur_expr, min_spec_expr = NULL;
insn_t cur_insn, min_spec_insn;
int privileged_n = 0, i;
for (i = 0; i < ready.n_ready; i++)
{
if (ready_try[i])
continue;
if (! min_spec_expr)
{
min_spec_insn = ready_element (&ready, i);
min_spec_expr = find_expr_for_ready (i, true);
}
cur_insn = ready_element (&ready, i);
cur_expr = find_expr_for_ready (i, true);
if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
break;
++privileged_n;
}
if (i == ready.n_ready)
privileged_n = 0;
if (sched_verbose >= 2)
sel_print ("privileged_n: %d insns with SPEC %d\n",
privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
return privileged_n;
}
/* Call the rest of the hooks after the choice was made. Return
the number of insns that still can be issued given that the current
number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
and the insn chosen for scheduling, respectively. */
static int
invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
{
gcc_assert (INSN_P (best_insn));
/* First, call dfa_new_cycle, and then variable_issue, if available. */
sel_dfa_new_cycle (best_insn, fence);
if (targetm.sched.variable_issue)
{
memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
issue_more =
targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
issue_more);
memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
}
else if (GET_CODE (PATTERN (best_insn)) != USE
&& GET_CODE (PATTERN (best_insn)) != CLOBBER)
issue_more--;
return issue_more;
}
/* Estimate the cost of issuing INSN on DFA state STATE. */
static int
estimate_insn_cost (rtx insn, state_t state)
{
static state_t temp = NULL;
int cost;
if (!temp)
temp = xmalloc (dfa_state_size);
memcpy (temp, state, dfa_state_size);
cost = state_transition (temp, insn);
if (cost < 0)
return 0;
else if (cost == 0)
return 1;
return cost;
}
/* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
This function properly handles ASMs, USEs etc. */
static int
get_expr_cost (expr_t expr, fence_t fence)
{
rtx insn = EXPR_INSN_RTX (expr);
if (recog_memoized (insn) < 0)
{
if (!FENCE_STARTS_CYCLE_P (fence)
/* FIXME: Is this condition necessary? */
&& VINSN_UNIQUE_P (EXPR_VINSN (expr))
&& INSN_ASM_P (insn))
/* This is asm insn which is tryed to be issued on the
cycle not first. Issue it on the next cycle. */
return 1;
else
/* A USE insn, or something else we don't need to
understand. We can't pass these directly to
state_transition because it will trigger a
fatal error for unrecognizable insns. */
return 0;
}
else
return estimate_insn_cost (insn, FENCE_STATE (fence));
}
/* Find the best insn for scheduling, either via max_issue or just take
the most prioritized available. */
static int
choose_best_insn (fence_t fence, int privileged_n, int *index)
{
int can_issue = 0;
if (dfa_lookahead > 0)
{
cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
can_issue = max_issue (&ready, privileged_n,
FENCE_STATE (fence), index);
if (sched_verbose >= 2)
sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
can_issue, FENCE_ISSUED_INSNS (fence));
}
else
{
/* We can't use max_issue; just return the first available element. */
int i;
for (i = 0; i < ready.n_ready; i++)
{
expr_t expr = find_expr_for_ready (i, true);
if (get_expr_cost (expr, fence) < 1)
{
can_issue = can_issue_more;
*index = i;
if (sched_verbose >= 2)
sel_print ("using %dth insn from the ready list\n", i + 1);
break;
}
}
if (i == ready.n_ready)
{
can_issue = 0;
*index = -1;
}
}
return can_issue;
}
/* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
BNDS and FENCE are current boundaries and scheduling fence respectively.
Return the expr found and NULL if nothing can be issued atm.
Write to PNEED_STALL the number of cycles to stall if no expr was found. */
static expr_t
find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
int *pneed_stall)
{
expr_t best;
/* Choose the best insn for scheduling via:
1) sorting the ready list based on priority;
2) calling the reorder hook;
3) calling max_issue. */
best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
if (best == NULL && ready.n_ready > 0)
{
int privileged_n, index, avail_n;
can_issue_more = invoke_reorder_hooks (fence);
if (can_issue_more > 0)
{
/* Try choosing the best insn until we find one that is could be
scheduled due to liveness restrictions on its destination register.
In the future, we'd like to choose once and then just probe insns
in the order of their priority. */
avail_n = invoke_dfa_lookahead_guard ();
privileged_n = calculate_privileged_insns ();
can_issue_more = choose_best_insn (fence, privileged_n, &index);
if (can_issue_more)
best = find_expr_for_ready (index, true);
}
/* We had some available insns, so if we can't issue them,
we have a stall. */
if (can_issue_more == 0)
{
best = NULL;
*pneed_stall = 1;
}
}
if (best != NULL)
{
can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
can_issue_more);
if (can_issue_more == 0)
*pneed_stall = 1;
}
if (sched_verbose >= 2)
{
if (best != NULL)
{
sel_print ("Best expression (vliw form): ");
dump_expr (best);
sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
}
else
sel_print ("No best expr found!\n");
}
return best;
}
/* Functions that implement the core of the scheduler. */
/* Emit an instruction from EXPR with SEQNO and VINSN after
PLACE_TO_INSERT. */
static insn_t
emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
insn_t place_to_insert)
{
/* This assert fails when we have identical instructions
one of which dominates the other. In this case move_op ()
finds the first instruction and doesn't search for second one.
The solution would be to compute av_set after the first found
insn and, if insn present in that set, continue searching.
For now we workaround this issue in move_op. */
gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
if (EXPR_WAS_RENAMED (expr))
{
unsigned regno = expr_dest_regno (expr);
if (HARD_REGISTER_NUM_P (regno))
{
df_set_regs_ever_live (regno, true);
reg_rename_tick[regno] = ++reg_rename_this_tick;
}
}
return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
place_to_insert);
}
/* Return TRUE if BB can hold bookkeeping code. */
static bool
block_valid_for_bookkeeping_p (basic_block bb)
{
insn_t bb_end = BB_END (bb);
if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
return false;
if (INSN_P (bb_end))
{
if (INSN_SCHED_TIMES (bb_end) > 0)
return false;
}
else
gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
return true;
}
/* Attempt to find a block that can hold bookkeeping code for path(s) incoming
into E2->dest, except from E1->src (there may be a sequence of empty basic
blocks between E1->src and E2->dest). Return found block, or NULL if new
one must be created. */
static basic_block
find_block_for_bookkeeping (edge e1, edge e2)
{
basic_block candidate_block = NULL;
edge e;
/* Loop over edges from E1 to E2, inclusive. */
for (e = e1; ; e = EDGE_SUCC (e->dest, 0))
{
if (EDGE_COUNT (e->dest->preds) == 2)
{
if (candidate_block == NULL)
candidate_block = (EDGE_PRED (e->dest, 0) == e
? EDGE_PRED (e->dest, 1)->src
: EDGE_PRED (e->dest, 0)->src);
else
/* Found additional edge leading to path from e1 to e2
from aside. */
return NULL;
}
else if (EDGE_COUNT (e->dest->preds) > 2)
/* Several edges leading to path from e1 to e2 from aside. */
return NULL;
if (e == e2)
return (block_valid_for_bookkeeping_p (candidate_block)
? candidate_block
: NULL);
}
gcc_unreachable ();
}
/* Create new basic block for bookkeeping code for path(s) incoming into
E2->dest, except from E1->src. Return created block. */
static basic_block
create_block_for_bookkeeping (edge e1, edge e2)
{
basic_block new_bb, bb = e2->dest;
/* Check that we don't spoil the loop structure. */
if (current_loop_nest)
{
basic_block latch = current_loop_nest->latch;
/* We do not split header. */
gcc_assert (e2->dest != current_loop_nest->header);
/* We do not redirect the only edge to the latch block. */
gcc_assert (e1->dest != latch
|| !single_pred_p (latch)
|| e1 != single_pred_edge (latch));
}
/* Split BB to insert BOOK_INSN there. */
new_bb = sched_split_block (bb, NULL);
/* Move note_list from the upper bb. */
gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
BB_NOTE_LIST (bb) = NULL_RTX;
gcc_assert (e2->dest == bb);
/* Skip block for bookkeeping copy when leaving E1->src. */
if (e1->flags & EDGE_FALLTHRU)
sel_redirect_edge_and_branch_force (e1, new_bb);
else
sel_redirect_edge_and_branch (e1, new_bb);
gcc_assert (e1->dest == new_bb);
gcc_assert (sel_bb_empty_p (bb));
return bb;
}
/* Return insn after which we must insert bookkeeping code for path(s) incoming
into E2->dest, except from E1->src. */
static insn_t
find_place_for_bookkeeping (edge e1, edge e2)
{
insn_t place_to_insert;
/* Find a basic block that can hold bookkeeping. If it can be found, do not
create new basic block, but insert bookkeeping there. */
basic_block book_block = find_block_for_bookkeeping (e1, e2);
if (!book_block)
book_block = create_block_for_bookkeeping (e1, e2);
place_to_insert = BB_END (book_block);
/* If basic block ends with a jump, insert bookkeeping code right before it. */
if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
place_to_insert = PREV_INSN (place_to_insert);
return place_to_insert;
}
/* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
for JOIN_POINT. */
static int
find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
{
int seqno;
rtx next;
/* Check if we are about to insert bookkeeping copy before a jump, and use
jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
next = NEXT_INSN (place_to_insert);
if (INSN_P (next)
&& JUMP_P (next)
&& BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
{
gcc_assert (INSN_SCHED_TIMES (next) == 0);
seqno = INSN_SEQNO (next);
}
else if (INSN_SEQNO (join_point) > 0)
seqno = INSN_SEQNO (join_point);
else
{
seqno = get_seqno_by_preds (place_to_insert);
/* Sometimes the fences can move in such a way that there will be
no instructions with positive seqno around this bookkeeping.
This means that there will be no way to get to it by a regular
fence movement. Never mind because we pick up such pieces for
rescheduling anyways, so any positive value will do for now. */
if (seqno < 0)
{
gcc_assert (pipelining_p);
seqno = 1;
}
}
gcc_assert (seqno > 0);
return seqno;
}
/* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
NEW_SEQNO to it. Return created insn. */
static insn_t
emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
{
rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
vinsn_t new_vinsn
= create_vinsn_from_insn_rtx (new_insn_rtx,
VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
place_to_insert);
INSN_SCHED_TIMES (new_insn) = 0;
bitmap_set_bit (current_copies, INSN_UID (new_insn));
return new_insn;
}
/* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
E2->dest, except from E1->src (there may be a sequence of empty blocks
between E1->src and E2->dest). Return block containing the copy.
All scheduler data is initialized for the newly created insn. */
static basic_block
generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
{
insn_t join_point, place_to_insert, new_insn;
int new_seqno;
bool need_to_exchange_data_sets;
if (sched_verbose >= 4)
sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
e2->dest->index);
join_point = sel_bb_head (e2->dest);
place_to_insert = find_place_for_bookkeeping (e1, e2);
new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
need_to_exchange_data_sets
= sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
/* When inserting bookkeeping insn in new block, av sets should be
following: old basic block (that now holds bookkeeping) data sets are
the same as was before generation of bookkeeping, and new basic block
(that now hold all other insns of old basic block) data sets are
invalid. So exchange data sets for these basic blocks as sel_split_block
mistakenly exchanges them in this case. Cannot do it earlier because
when single instruction is added to new basic block it should hold NULL
lv_set. */
if (need_to_exchange_data_sets)
exchange_data_sets (BLOCK_FOR_INSN (new_insn),
BLOCK_FOR_INSN (join_point));
stat_bookkeeping_copies++;
return BLOCK_FOR_INSN (new_insn);
}
/* Remove from AV_PTR all insns that may need bookkeeping when scheduling
on FENCE, but we are unable to copy them. */
static void
remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
{
expr_t expr;
av_set_iterator i;
/* An expression does not need bookkeeping if it is available on all paths
from current block to original block and current block dominates
original block. We check availability on all paths by examining
EXPR_SPEC; this is not equivalent, because it may be positive even
if expr is available on all paths (but if expr is not available on
any path, EXPR_SPEC will be positive). */
FOR_EACH_EXPR_1 (expr, i, av_ptr)
{
if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
&& (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
&& (EXPR_SPEC (expr)
|| !EXPR_ORIG_BB_INDEX (expr)
|| !dominated_by_p (CDI_DOMINATORS,
BASIC_BLOCK (EXPR_ORIG_BB_INDEX (expr)),
BLOCK_FOR_INSN (FENCE_INSN (fence)))))
{
if (sched_verbose >= 4)
sel_print ("Expr %d removed because it would need bookkeeping, which "
"cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
av_set_iter_remove (&i);
}
}
}
/* Moving conditional jump through some instructions.
Consider example:
... <- current scheduling point
NOTE BASIC BLOCK: <- bb header
(p8) add r14=r14+0x9;;
(p8) mov [r14]=r23
(!p8) jump L1;;
NOTE BASIC BLOCK:
...
We can schedule jump one cycle earlier, than mov, because they cannot be
executed together as their predicates are mutually exclusive.
This is done in this way: first, new fallthrough basic block is created
after jump (it is always can be done, because there already should be a
fallthrough block, where control flow goes in case of predicate being true -
in our example; otherwise there should be a dependence between those
instructions and jump and we cannot schedule jump right now);
next, all instructions between jump and current scheduling point are moved
to this new block. And the result is this:
NOTE BASIC BLOCK:
(!p8) jump L1 <- current scheduling point
NOTE BASIC BLOCK: <- bb header
(p8) add r14=r14+0x9;;
(p8) mov [r14]=r23
NOTE BASIC BLOCK:
...
*/
static void
move_cond_jump (rtx insn, bnd_t bnd)
{
edge ft_edge;
basic_block block_from, block_next, block_new;
rtx next, prev, link;
/* BLOCK_FROM holds basic block of the jump. */
block_from = BLOCK_FOR_INSN (insn);
/* Moving of jump should not cross any other jumps or
beginnings of new basic blocks. */
gcc_assert (block_from == BLOCK_FOR_INSN (BND_TO (bnd)));
/* Jump is moved to the boundary. */
prev = BND_TO (bnd);
next = PREV_INSN (insn);
BND_TO (bnd) = insn;
ft_edge = find_fallthru_edge (block_from);
block_next = ft_edge->dest;
/* There must be a fallthrough block (or where should go
control flow in case of false jump predicate otherwise?). */
gcc_assert (block_next);
/* Create new empty basic block after source block. */
block_new = sel_split_edge (ft_edge);
gcc_assert (block_new->next_bb == block_next
&& block_from->next_bb == block_new);
gcc_assert (BB_END (block_from) == insn);
/* Move all instructions except INSN from BLOCK_FROM to
BLOCK_NEW. */
for (link = prev; link != insn; link = NEXT_INSN (link))
{
EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
df_insn_change_bb (link, block_new);
}
/* Set correct basic block and instructions properties. */
BB_END (block_new) = PREV_INSN (insn);
NEXT_INSN (PREV_INSN (prev)) = insn;
PREV_INSN (insn) = PREV_INSN (prev);
/* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
PREV_INSN (prev) = BB_HEAD (block_new);
NEXT_INSN (next) = NEXT_INSN (BB_HEAD (block_new));
NEXT_INSN (BB_HEAD (block_new)) = prev;
PREV_INSN (NEXT_INSN (next)) = next;
gcc_assert (!sel_bb_empty_p (block_from)
&& !sel_bb_empty_p (block_new));
/* Update data sets for BLOCK_NEW to represent that INSN and
instructions from the other branch of INSN is no longer
available at BLOCK_NEW. */
BB_AV_LEVEL (block_new) = global_level;
gcc_assert (BB_LV_SET (block_new) == NULL);
BB_LV_SET (block_new) = get_clear_regset_from_pool ();
update_data_sets (sel_bb_head (block_new));
/* INSN is a new basic block header - so prepare its data
structures and update availability and liveness sets. */
update_data_sets (insn);
if (sched_verbose >= 4)
sel_print ("Moving jump %d\n", INSN_UID (insn));
}
/* Remove nops generated during move_op for preventing removal of empty
basic blocks. */
static void
remove_temp_moveop_nops (void)
{
int i;
insn_t insn;
for (i = 0; VEC_iterate (insn_t, vec_temp_moveop_nops, i, insn); i++)
{
gcc_assert (INSN_NOP_P (insn));
return_nop_to_pool (insn);
}
/* Empty the vector. */
if (VEC_length (insn_t, vec_temp_moveop_nops) > 0)
VEC_block_remove (insn_t, vec_temp_moveop_nops, 0,
VEC_length (insn_t, vec_temp_moveop_nops));
}
/* Records the maximal UID before moving up an instruction. Used for
distinguishing between bookkeeping copies and original insns. */
static int max_uid_before_move_op = 0;
/* Remove from AV_VLIW_P all instructions but next when debug counter
tells us so. Next instruction is fetched from BNDS. */
static void
remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
{
if (! dbg_cnt (sel_sched_insn_cnt))
/* Leave only the next insn in av_vliw. */
{
av_set_iterator av_it;
expr_t expr;
bnd_t bnd = BLIST_BND (bnds);
insn_t next = BND_TO (bnd);
gcc_assert (BLIST_NEXT (bnds) == NULL);
FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
if (EXPR_INSN_RTX (expr) != next)
av_set_iter_remove (&av_it);
}
}
/* Compute available instructions on BNDS. FENCE is the current fence. Write
the computed set to *AV_VLIW_P. */
static void
compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
{
if (sched_verbose >= 2)
{
sel_print ("Boundaries: ");
dump_blist (bnds);
sel_print ("\n");
}
for (; bnds; bnds = BLIST_NEXT (bnds))
{
bnd_t bnd = BLIST_BND (bnds);
av_set_t av1_copy;
insn_t bnd_to = BND_TO (bnd);
/* Rewind BND->TO to the basic block header in case some bookkeeping
instructions were inserted before BND->TO and it needs to be
adjusted. */
if (sel_bb_head_p (bnd_to))
gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
else
while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
{
bnd_to = PREV_INSN (bnd_to);
if (sel_bb_head_p (bnd_to))
break;
}
if (BND_TO (bnd) != bnd_to)
{
gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
FENCE_INSN (fence) = bnd_to;
BND_TO (bnd) = bnd_to;
}
av_set_clear (&BND_AV (bnd));
BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
av_set_clear (&BND_AV1 (bnd));
BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
av1_copy = av_set_copy (BND_AV1 (bnd));
av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
}
if (sched_verbose >= 2)
{
sel_print ("Available exprs (vliw form): ");
dump_av_set (*av_vliw_p);
sel_print ("\n");
}
}
/* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
expression. When FOR_MOVEOP is true, also replace the register of
expressions found with the register from EXPR_VLIW. */
static av_set_t
find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
{
av_set_t expr_seq = NULL;
expr_t expr;
av_set_iterator i;
FOR_EACH_EXPR (expr, i, BND_AV (bnd))
{
if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
{
if (for_moveop)
{
/* The sequential expression has the right form to pass
to move_op except when renaming happened. Put the
correct register in EXPR then. */
if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
{
if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
{
replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
stat_renamed_scheduled++;
}
/* Also put the correct TARGET_AVAILABLE bit on the expr.
This is needed when renaming came up with original
register. */
else if (EXPR_TARGET_AVAILABLE (expr)
!= EXPR_TARGET_AVAILABLE (expr_vliw))
{
gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
EXPR_TARGET_AVAILABLE (expr) = 1;
}
}
if (EXPR_WAS_SUBSTITUTED (expr))
stat_substitutions_total++;
}
av_set_add (&expr_seq, expr);
/* With substitution inside insn group, it is possible
that more than one expression in expr_seq will correspond
to expr_vliw. In this case, choose one as the attempt to
move both leads to miscompiles. */
break;
}
}
if (for_moveop && sched_verbose >= 2)
{
sel_print ("Best expression(s) (sequential form): ");
dump_av_set (expr_seq);
sel_print ("\n");
}
return expr_seq;
}
/* Move nop to previous block. */
static void ATTRIBUTE_UNUSED
move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
{
insn_t prev_insn, next_insn, note;
gcc_assert (sel_bb_head_p (nop)
&& prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
note = bb_note (BLOCK_FOR_INSN (nop));
prev_insn = sel_bb_end (prev_bb);
next_insn = NEXT_INSN (nop);
gcc_assert (prev_insn != NULL_RTX
&& PREV_INSN (note) == prev_insn);
NEXT_INSN (prev_insn) = nop;
PREV_INSN (nop) = prev_insn;
PREV_INSN (note) = nop;
NEXT_INSN (note) = next_insn;
NEXT_INSN (nop) = note;
PREV_INSN (next_insn) = note;
BB_END (prev_bb) = nop;
BLOCK_FOR_INSN (nop) = prev_bb;
}
/* Prepare a place to insert the chosen expression on BND. */
static insn_t
prepare_place_to_insert (bnd_t bnd)
{
insn_t place_to_insert;
/* Init place_to_insert before calling move_op, as the later
can possibly remove BND_TO (bnd). */
if (/* If this is not the first insn scheduled. */
BND_PTR (bnd))
{
/* Add it after last scheduled. */
place_to_insert = ILIST_INSN (BND_PTR (bnd));
}
else
{
/* Add it before BND_TO. The difference is in the
basic block, where INSN will be added. */
place_to_insert = get_nop_from_pool (BND_TO (bnd));
gcc_assert (BLOCK_FOR_INSN (place_to_insert)
== BLOCK_FOR_INSN (BND_TO (bnd)));
}
return place_to_insert;
}
/* Find original instructions for EXPR_SEQ and move it to BND boundary.
Return the expression to emit in C_EXPR. */
static bool
move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
av_set_t expr_seq, expr_t c_expr)
{
bool b, should_move;
unsigned book_uid;
bitmap_iterator bi;
int n_bookkeeping_copies_before_moveop;
/* Make a move. This call will remove the original operation,
insert all necessary bookkeeping instructions and update the
data sets. After that all we have to do is add the operation
at before BND_TO (BND). */
n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
max_uid_before_move_op = get_max_uid ();
bitmap_clear (current_copies);
bitmap_clear (current_originators);
b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
/* We should be able to find the expression we've chosen for
scheduling. */
gcc_assert (b);
if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
stat_insns_needed_bookkeeping++;
EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
{
/* We allocate these bitmaps lazily. */
if (! INSN_ORIGINATORS_BY_UID (book_uid))
INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
current_originators);
}
return should_move;
}
/* Debug a DFA state as an array of bytes. */
static void
debug_state (state_t state)
{
unsigned char *p;
unsigned int i, size = dfa_state_size;
sel_print ("state (%u):", size);
for (i = 0, p = (unsigned char *) state; i < size; i++)
sel_print (" %d", p[i]);
sel_print ("\n");
}
/* Advance state on FENCE with INSN. Return true if INSN is
an ASM, and we should advance state once more. */
static bool
advance_state_on_fence (fence_t fence, insn_t insn)
{
bool asm_p;
if (recog_memoized (insn) >= 0)
{
int res;
state_t temp_state = alloca (dfa_state_size);
gcc_assert (!INSN_ASM_P (insn));
asm_p = false;
memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
res = state_transition (FENCE_STATE (fence), insn);
gcc_assert (res < 0);
if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
{
FENCE_ISSUED_INSNS (fence)++;
/* We should never issue more than issue_rate insns. */
if (FENCE_ISSUED_INSNS (fence) > issue_rate)
gcc_unreachable ();
}
}
else
{
/* This could be an ASM insn which we'd like to schedule
on the next cycle. */
asm_p = INSN_ASM_P (insn);
if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
advance_one_cycle (fence);
}
if (sched_verbose >= 2)
debug_state (FENCE_STATE (fence));
FENCE_STARTS_CYCLE_P (fence) = 0;
return asm_p;
}
/* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
is nonzero if we need to stall after issuing INSN. */
static void
update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
{
bool asm_p;
/* First, reflect that something is scheduled on this fence. */
asm_p = advance_state_on_fence (fence, insn);
FENCE_LAST_SCHEDULED_INSN (fence) = insn;
VEC_safe_push (rtx, gc, FENCE_EXECUTING_INSNS (fence), insn);
if (SCHED_GROUP_P (insn))
{
FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
SCHED_GROUP_P (insn) = 0;
}
else
FENCE_SCHED_NEXT (fence) = NULL_RTX;
if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
/* Set instruction scheduling info. This will be used in bundling,
pipelining, tick computations etc. */
++INSN_SCHED_TIMES (insn);
EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
/* This does not account for adjust_cost hooks, just add the biggest
constant the hook may add to the latency. TODO: make this
a target dependent constant. */
INSN_READY_CYCLE (insn)
= INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
? 1
: maximal_insn_latency (insn) + 1);
/* Change these fields last, as they're used above. */
FENCE_AFTER_STALL_P (fence) = 0;
if (asm_p || need_stall)
advance_one_cycle (fence);
/* Indicate that we've scheduled something on this fence. */
FENCE_SCHEDULED_P (fence) = true;
scheduled_something_on_previous_fence = true;
/* Print debug information when insn's fields are updated. */
if (sched_verbose >= 2)
{
sel_print ("Scheduling insn: ");
dump_insn_1 (insn, 1);
sel_print ("\n");
}
}
/* Update boundary BND with INSN, remove the old boundary from
BNDSP, add new boundaries to BNDS_TAIL_P and return it. */
static blist_t *
update_boundaries (bnd_t bnd, insn_t insn, blist_t *bndsp,
blist_t *bnds_tailp)
{
succ_iterator si;
insn_t succ;
advance_deps_context (BND_DC (bnd), insn);
FOR_EACH_SUCC_1 (succ, si, insn,
SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
{
ilist_t ptr = ilist_copy (BND_PTR (bnd));
ilist_add (&ptr, insn);
blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
bnds_tailp = &BLIST_NEXT (*bnds_tailp);
}
blist_remove (bndsp);
return bnds_tailp;
}
/* Schedule EXPR_VLIW on BND. Return the insn emitted. */
static insn_t
schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
{
av_set_t expr_seq;
expr_t c_expr = XALLOCA (expr_def);
insn_t place_to_insert;
insn_t insn;
bool should_move;
expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
/* In case of scheduling a jump skipping some other instructions,
prepare CFG. After this, jump is at the boundary and can be
scheduled as usual insn by MOVE_OP. */
if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
{
insn = EXPR_INSN_RTX (expr_vliw);
/* Speculative jumps are not handled. */
if (insn != BND_TO (bnd)
&& !sel_insn_is_speculation_check (insn))
move_cond_jump (insn, bnd);
}
/* Find a place for C_EXPR to schedule. */
place_to_insert = prepare_place_to_insert (bnd);
should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
clear_expr (c_expr);
/* Add the instruction. The corner case to care about is when
the expr_seq set has more than one expr, and we chose the one that
is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
we can't use it. Generate the new vinsn. */
if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
{
vinsn_t vinsn_new;
vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
change_vinsn_in_expr (expr_vliw, vinsn_new);
should_move = false;
}
if (should_move)
insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
else
insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
place_to_insert);
/* Return the nops generated for preserving of data sets back
into pool. */
if (INSN_NOP_P (place_to_insert))
return_nop_to_pool (place_to_insert);
remove_temp_moveop_nops ();
av_set_clear (&expr_seq);
/* Save the expression scheduled so to reset target availability if we'll
meet it later on the same fence. */
if (EXPR_WAS_RENAMED (expr_vliw))
vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
/* Check that the recent movement didn't destroyed loop
structure. */
gcc_assert (!pipelining_p
|| current_loop_nest == NULL
|| loop_latch_edge (current_loop_nest));
return insn;
}
/* Stall for N cycles on FENCE. */
static void
stall_for_cycles (fence_t fence, int n)
{
int could_more;
could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
while (n--)
advance_one_cycle (fence);
if (could_more)
FENCE_AFTER_STALL_P (fence) = 1;
}
/* Gather a parallel group of insns at FENCE and assign their seqno
to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
list for later recalculation of seqnos. */
static void
fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
{
blist_t bnds = NULL, *bnds_tailp;
av_set_t av_vliw = NULL;
insn_t insn = FENCE_INSN (fence);
if (sched_verbose >= 2)
sel_print ("Starting fill_insns for insn %d, cycle %d\n",
INSN_UID (insn), FENCE_CYCLE (fence));
blist_add (&bnds, insn, NULL, FENCE_DC (fence));
bnds_tailp = &BLIST_NEXT (bnds);
set_target_context (FENCE_TC (fence));
target_bb = INSN_BB (insn);
/* Do while we can add any operation to the current group. */
do
{
blist_t *bnds_tailp1, *bndsp;
expr_t expr_vliw;
int need_stall;
int was_stall = 0, scheduled_insns = 0, stall_iterations = 0;
int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
int max_stall = pipelining_p ? 1 : 3;
compute_av_set_on_boundaries (fence, bnds, &av_vliw);
remove_insns_that_need_bookkeeping (fence, &av_vliw);
remove_insns_for_debug (bnds, &av_vliw);
/* Return early if we have nothing to schedule. */
if (av_vliw == NULL)
break;
/* Choose the best expression and, if needed, destination register
for it. */
do
{
expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
if (!expr_vliw && need_stall)
{
/* All expressions required a stall. Do not recompute av sets
as we'll get the same answer (modulo the insns between
the fence and its boundary, which will not be available for
pipelining). */
gcc_assert (! expr_vliw && stall_iterations < 2);
was_stall++;
/* If we are going to stall for too long, break to recompute av
sets and bring more insns for pipelining. */
if (need_stall <= 3)
stall_for_cycles (fence, need_stall);
else
{
stall_for_cycles (fence, 1);
break;
}
}
}
while (! expr_vliw && need_stall);
/* Now either we've selected expr_vliw or we have nothing to schedule. */
if (!expr_vliw)
{
av_set_clear (&av_vliw);
break;
}
bndsp = &bnds;
bnds_tailp1 = bnds_tailp;
do
/* This code will be executed only once until we'd have several
boundaries per fence. */
{
bnd_t bnd = BLIST_BND (*bndsp);
if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
{
bndsp = &BLIST_NEXT (*bndsp);
continue;
}
insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
update_fence_and_insn (fence, insn, need_stall);
bnds_tailp = update_boundaries (bnd, insn, bndsp, bnds_tailp);
/* Add insn to the list of scheduled on this cycle instructions. */
ilist_add (*scheduled_insns_tailpp, insn);
*scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
}
while (*bndsp != *bnds_tailp1);
av_set_clear (&av_vliw);
scheduled_insns++;
/* We currently support information about candidate blocks only for
one 'target_bb' block. Hence we can't schedule after jump insn,
as this will bring two boundaries and, hence, necessity to handle
information for two or more blocks concurrently. */
if (sel_bb_end_p (insn)
|| (was_stall
&& (was_stall >= max_stall
|| scheduled_insns >= max_insns)))
break;
}
while (bnds);
gcc_assert (!FENCE_BNDS (fence));
/* Update boundaries of the FENCE. */
while (bnds)
{
ilist_t ptr = BND_PTR (BLIST_BND (bnds));
if (ptr)
{
insn = ILIST_INSN (ptr);
if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
ilist_add (&FENCE_BNDS (fence), insn);
}
blist_remove (&bnds);
}
/* Update target context on the fence. */
reset_target_context (FENCE_TC (fence), false);
}
/* All exprs in ORIG_OPS must have the same destination register or memory.
Return that destination. */
static rtx
get_dest_from_orig_ops (av_set_t orig_ops)
{
rtx dest = NULL_RTX;
av_set_iterator av_it;
expr_t expr;
bool first_p = true;
FOR_EACH_EXPR (expr, av_it, orig_ops)
{
rtx x = EXPR_LHS (expr);
if (first_p)
{
first_p = false;
dest = x;
}
else
gcc_assert (dest == x
|| (dest != NULL_RTX && x != NULL_RTX
&& rtx_equal_p (dest, x)));
}
return dest;
}
/* Update data sets for the bookkeeping block and record those expressions
which become no longer available after inserting this bookkeeping. */
static void
update_and_record_unavailable_insns (basic_block book_block)
{
av_set_iterator i;
av_set_t old_av_set = NULL;
expr_t cur_expr;
rtx bb_end = sel_bb_end (book_block);
/* First, get correct liveness in the bookkeeping block. The problem is
the range between the bookeeping insn and the end of block. */
update_liveness_on_insn (bb_end);
if (control_flow_insn_p (bb_end))
update_liveness_on_insn (PREV_INSN (bb_end));
/* If there's valid av_set on BOOK_BLOCK, then there might exist another
fence above, where we may choose to schedule an insn which is
actually blocked from moving up with the bookkeeping we create here. */
if (AV_SET_VALID_P (sel_bb_head (book_block)))
{
old_av_set = av_set_copy (BB_AV_SET (book_block));
update_data_sets (sel_bb_head (book_block));
/* Traverse all the expressions in the old av_set and check whether
CUR_EXPR is in new AV_SET. */
FOR_EACH_EXPR (cur_expr, i, old_av_set)
{
expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
EXPR_VINSN (cur_expr));
if (! new_expr
/* In this case, we can just turn off the E_T_A bit, but we can't
represent this information with the current vector. */
|| EXPR_TARGET_AVAILABLE (new_expr)
!= EXPR_TARGET_AVAILABLE (cur_expr))
/* Unfortunately, the below code could be also fired up on
separable insns.
FIXME: add an example of how this could happen. */
vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
}
av_set_clear (&old_av_set);
}
}
/* The main effect of this function is that sparams->c_expr is merged
with (or copied to) lparams->c_expr_merged. If there's only one successor,
we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
lparams->c_expr_merged is copied back to sparams->c_expr after all
successors has been traversed. lparams->c_expr_local is an expr allocated
on stack in the caller function, and is used if there is more than one
successor.
SUCC is one of the SUCCS_NORMAL successors of INSN,
MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
LPARAMS and STATIC_PARAMS contain the parameters described above. */
static void
move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
insn_t succ ATTRIBUTE_UNUSED,
int moveop_drv_call_res,
cmpd_local_params_p lparams, void *static_params)
{
moveop_static_params_p sparams = (moveop_static_params_p) static_params;
/* Nothing to do, if original expr wasn't found below. */
if (moveop_drv_call_res != 1)
return;
/* If this is a first successor. */
if (!lparams->c_expr_merged)
{
lparams->c_expr_merged = sparams->c_expr;
sparams->c_expr = lparams->c_expr_local;
}
else
{
/* We must merge all found expressions to get reasonable
EXPR_SPEC_DONE_DS for the resulting insn. If we don't
do so then we can first find the expr with epsilon
speculation success probability and only then with the
good probability. As a result the insn will get epsilon
probability and will never be scheduled because of
weakness_cutoff in find_best_expr.
We call merge_expr_data here instead of merge_expr
because due to speculation C_EXPR and X may have the
same insns with different speculation types. And as of
now such insns are considered non-equal.
However, EXPR_SCHED_TIMES is different -- we must get
SCHED_TIMES from a real insn, not a bookkeeping copy.
We force this here. Instead, we may consider merging
SCHED_TIMES to the maximum instead of minimum in the
below function. */
int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
clear_expr (sparams->c_expr);
}
}
/* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
SUCC is one of the SUCCS_NORMAL successors of INSN,
MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
if SUCC is one of SUCCS_BACK or SUCCS_OUT.
STATIC_PARAMS contain USED_REGS set. */
static void
fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
int moveop_drv_call_res,
cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
void *static_params)
{
regset succ_live;
fur_static_params_p sparams = (fur_static_params_p) static_params;
/* Here we compute live regsets only for branches that do not lie
on the code motion paths. These branches correspond to value
MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
for such branches code_motion_path_driver is not called. */
if (moveop_drv_call_res != 0)
return;
/* Mark all registers that do not meet the following condition:
(3) not live on the other path of any conditional branch
that is passed by the operation, in case original
operations are not present on both paths of the
conditional branch. */
succ_live = compute_live (succ);
IOR_REG_SET (sparams->used_regs, succ_live);
}
/* This function is called after the last successor. Copies LP->C_EXPR_MERGED
into SP->CEXPR. */
static void
move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
{
moveop_static_params_p sp = (moveop_static_params_p) sparams;
sp->c_expr = lp->c_expr_merged;
}
/* Track bookkeeping copies created, insns scheduled, and blocks for
rescheduling when INSN is found by move_op. */
static void
track_scheduled_insns_and_blocks (rtx insn)
{
/* Even if this insn can be a copy that will be removed during current move_op,
we still need to count it as an originator. */
bitmap_set_bit (current_originators, INSN_UID (insn));
if (!bitmap_bit_p (current_copies, INSN_UID (insn)))
{
/* Note that original block needs to be rescheduled, as we pulled an
instruction out of it. */
if (INSN_SCHED_TIMES (insn) > 0)
bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
else if (INSN_UID (insn) < first_emitted_uid)
num_insns_scheduled++;
}
else
bitmap_clear_bit (current_copies, INSN_UID (insn));
/* For instructions we must immediately remove insn from the
stream, so subsequent update_data_sets () won't include this
insn into av_set.
For expr we must make insn look like "INSN_REG (insn) := c_expr". */
if (INSN_UID (insn) > max_uid_before_move_op)
stat_bookkeeping_copies--;
}
/* Emit a register-register copy for INSN if needed. Return true if
emitted one. PARAMS is the move_op static parameters. */
static bool
maybe_emit_renaming_copy (rtx insn,
moveop_static_params_p params)
{
bool insn_emitted = false;
rtx cur_reg = expr_dest_reg (params->c_expr);
gcc_assert (!cur_reg || (params->dest && REG_P (params->dest)));
/* If original operation has expr and the register chosen for
that expr is not original operation's dest reg, substitute
operation's right hand side with the register chosen. */
if (cur_reg != NULL_RTX && REGNO (params->dest) != REGNO (cur_reg))
{
insn_t reg_move_insn, reg_move_insn_rtx;
reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
params->dest);
reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
INSN_EXPR (insn),
INSN_SEQNO (insn),
insn);
EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
replace_dest_with_reg_in_expr (params->c_expr, params->dest);
insn_emitted = true;
params->was_renamed = true;
}
return insn_emitted;
}
/* Emit a speculative check for INSN speculated as EXPR if needed.
Return true if we've emitted one. PARAMS is the move_op static
parameters. */
static bool
maybe_emit_speculative_check (rtx insn, expr_t expr,
moveop_static_params_p params)
{
bool insn_emitted = false;
insn_t x;
ds_t check_ds;
check_ds = get_spec_check_type_for_insn (insn, expr);
if (check_ds != 0)
{
/* A speculation check should be inserted. */
x = create_speculation_check (params->c_expr, check_ds, insn);
insn_emitted = true;
}
else
{
EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
x = insn;
}
gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
&& EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
return insn_emitted;
}
/* Handle transformations that leave an insn in place of original
insn such as renaming/speculation. Return true if one of such
transformations actually happened, and we have emitted this insn. */
static bool
handle_emitting_transformations (rtx insn, expr_t expr,
moveop_static_params_p params)
{
bool insn_emitted = false;
insn_emitted = maybe_emit_renaming_copy (insn, params);
insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
return insn_emitted;
}
/* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
is not removed but reused when INSN is re-emitted. */
static void
remove_insn_from_stream (rtx insn, bool only_disconnect)
{
insn_t nop, bb_head, bb_end;
bool need_nop_to_preserve_bb;
basic_block bb = BLOCK_FOR_INSN (insn);
/* If INSN is the only insn in the basic block (not counting JUMP,
which may be a jump to next insn), leave NOP there till the
return to fill_insns. */
bb_head = sel_bb_head (bb);
bb_end = sel_bb_end (bb);
need_nop_to_preserve_bb = ((bb_head == bb_end)
|| (NEXT_INSN (bb_head) == bb_end
&& JUMP_P (bb_end))
|| IN_CURRENT_FENCE_P (NEXT_INSN (insn)));
/* If there's only one insn in the BB, make sure that a nop is
inserted into it, so the basic block won't disappear when we'll
delete INSN below with sel_remove_insn. It should also survive
till the return to fill_insns. */
if (need_nop_to_preserve_bb)
{
nop = get_nop_from_pool (insn);
gcc_assert (INSN_NOP_P (nop));
VEC_safe_push (insn_t, heap, vec_temp_moveop_nops, nop);
}
sel_remove_insn (insn, only_disconnect, false);
}
/* This function is called when original expr is found.
INSN - current insn traversed, EXPR - the corresponding expr found.
LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
is static parameters of move_op. */
static void
move_op_orig_expr_found (insn_t insn, expr_t expr,
cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
void *static_params)
{
bool only_disconnect, insn_emitted;
moveop_static_params_p params = (moveop_static_params_p) static_params;
copy_expr_onside (params->c_expr, INSN_EXPR (insn));
track_scheduled_insns_and_blocks (insn);
insn_emitted = handle_emitting_transformations (insn, expr, params);
only_disconnect = (params->uid == INSN_UID (insn)
&& ! insn_emitted && ! EXPR_WAS_CHANGED (expr));
/* Mark that we've disconnected an insn. */
if (only_disconnect)
params->uid = -1;
remove_insn_from_stream (insn, only_disconnect);
}
/* The function is called when original expr is found.
INSN - current insn traversed, EXPR - the corresponding expr found,
crosses_call and original_insns in STATIC_PARAMS are updated. */
static void
fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
void *static_params)
{
fur_static_params_p params = (fur_static_params_p) static_params;
regset tmp;
if (CALL_P (insn))
params->crosses_call = true;
def_list_add (params->original_insns, insn, params->crosses_call);
/* Mark the registers that do not meet the following condition:
(2) not among the live registers of the point
immediately following the first original operation on
a given downward path, except for the original target
register of the operation. */
tmp = get_clear_regset_from_pool ();
compute_live_below_insn (insn, tmp);
AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
IOR_REG_SET (params->used_regs, tmp);
return_regset_to_pool (tmp);
/* (*1) We need to add to USED_REGS registers that are read by
INSN's lhs. This may lead to choosing wrong src register.
E.g. (scheduling const expr enabled):
429: ax=0x0 <- Can't use AX for this expr (0x0)
433: dx=[bp-0x18]
427: [ax+dx+0x1]=ax
REG_DEAD: ax
168: di=dx
REG_DEAD: dx
*/
/* FIXME: see comment above and enable MEM_P
in vinsn_separable_p. */
gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
|| !MEM_P (INSN_LHS (insn)));
}
/* This function is called on the ascending pass, before returning from
current basic block. */
static void
move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
void *static_params)
{
moveop_static_params_p sparams = (moveop_static_params_p) static_params;
basic_block book_block = NULL;
/* When we have removed the boundary insn for scheduling, which also
happened to be the end insn in its bb, we don't need to update sets. */
if (!lparams->removed_last_insn
&& lparams->e1
&& sel_bb_head_p (insn))
{
/* We should generate bookkeeping code only if we are not at the
top level of the move_op. */
if (sel_num_cfg_preds_gt_1 (insn))
book_block = generate_bookkeeping_insn (sparams->c_expr,
lparams->e1, lparams->e2);
/* Update data sets for the current insn. */
update_data_sets (insn);
}
/* If bookkeeping code was inserted, we need to update av sets of basic
block that received bookkeeping. After generation of bookkeeping insn,
bookkeeping block does not contain valid av set because we are not following
the original algorithm in every detail with regards to e.g. renaming
simple reg-reg copies. Consider example:
bookkeeping block scheduling fence
\ /
\ join /
----------
| |
----------
/ \
/ \
r1 := r2 r1 := r3
We try to schedule insn "r1 := r3" on the current
scheduling fence. Also, note that av set of bookkeeping block
contain both insns "r1 := r2" and "r1 := r3". When the insn has
been scheduled, the CFG is as follows:
r1 := r3 r1 := r3
bookkeeping block scheduling fence
\ /
\ join /
----------
| |
----------
/ \
/ \
r1 := r2
Here, insn "r1 := r3" was scheduled at the current scheduling point
and bookkeeping code was generated at the bookeeping block. This
way insn "r1 := r2" is no longer available as a whole instruction
(but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
This situation is handled by calling update_data_sets.
Since update_data_sets is called only on the bookkeeping block, and
it also may have predecessors with av_sets, containing instructions that
are no longer available, we save all such expressions that become
unavailable during data sets update on the bookkeeping block in
VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
expressions for scheduling. This allows us to avoid recomputation of
av_sets outside the code motion path. */
if (book_block)
update_and_record_unavailable_insns (book_block);
/* If INSN was previously marked for deletion, it's time to do it. */
if (lparams->removed_last_insn)
insn = PREV_INSN (insn);
/* Do not tidy control flow at the topmost moveop, as we can erroneously
kill a block with a single nop in which the insn should be emitted. */
if (lparams->e1)
tidy_control_flow (BLOCK_FOR_INSN (insn), true);
}
/* This function is called on the ascending pass, before returning from the
current basic block. */
static void
fur_at_first_insn (insn_t insn,
cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
void *static_params ATTRIBUTE_UNUSED)
{
gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
|| AV_LEVEL (insn) == -1);
}
/* Called on the backward stage of recursion to call moveup_expr for insn
and sparams->c_expr. */
static void
move_op_ascend (insn_t insn, void *static_params)
{
enum MOVEUP_EXPR_CODE res;
moveop_static_params_p sparams = (moveop_static_params_p) static_params;
if (! INSN_NOP_P (insn))
{
res = moveup_expr_cached (sparams->c_expr, insn, false);
gcc_assert (res != MOVEUP_EXPR_NULL);
}
/* Update liveness for this insn as it was invalidated. */
update_liveness_on_insn (insn);
}
/* This function is called on enter to the basic block.
Returns TRUE if this block already have been visited and
code_motion_path_driver should return 1, FALSE otherwise. */
static int
fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
void *static_params, bool visited_p)
{
fur_static_params_p sparams = (fur_static_params_p) static_params;
if (visited_p)
{
/* If we have found something below this block, there should be at
least one insn in ORIGINAL_INSNS. */
gcc_assert (*sparams->original_insns);
/* Adjust CROSSES_CALL, since we may have come to this block along
different path. */
DEF_LIST_DEF (*sparams->original_insns)->crosses_call
|= sparams->crosses_call;
}
else
local_params->old_original_insns = *sparams->original_insns;
return 1;
}
/* Same as above but for move_op. */
static int
move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
void *static_params ATTRIBUTE_UNUSED, bool visited_p)
{
if (visited_p)
return -1;
return 1;
}
/* This function is called while descending current basic block if current
insn is not the original EXPR we're searching for.
Return value: FALSE, if code_motion_path_driver should perform a local
cleanup and return 0 itself;
TRUE, if code_motion_path_driver should continue. */
static bool
move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
void *static_params)
{
moveop_static_params_p sparams = (moveop_static_params_p) static_params;
#ifdef ENABLE_CHECKING
sparams->failed_insn = insn;
#endif
/* If we're scheduling separate expr, in order to generate correct code
we need to stop the search at bookkeeping code generated with the
same destination register or memory. */
if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
return false;
return true;
}
/* This function is called while descending current basic block if current
insn is not the original EXPR we're searching for.
Return value: TRUE (code_motion_path_driver should continue). */
static bool
fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
{
bool mutexed;
expr_t r;
av_set_iterator avi;
fur_static_params_p sparams = (fur_static_params_p) static_params;
if (CALL_P (insn))
sparams->crosses_call = true;
/* If current insn we are looking at cannot be executed together
with original insn, then we can skip it safely.
Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
INSN = (!p6) r14 = r14 + 1;
Here we can schedule ORIG_OP with lhs = r14, though only
looking at the set of used and set registers of INSN we must
forbid it. So, add set/used in INSN registers to the
untouchable set only if there is an insn in ORIG_OPS that can
affect INSN. */
mutexed = true;
FOR_EACH_EXPR (r, avi, orig_ops)
if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
{
mutexed = false;
break;
}
/* Mark all registers that do not meet the following condition:
(1) Not set or read on any path from xi to an instance of the
original operation. */
if (!mutexed)
{
IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
}
return true;
}
/* Hooks and data to perform move_op operations with code_motion_path_driver. */
struct code_motion_path_driver_info_def move_op_hooks = {
move_op_on_enter,
move_op_orig_expr_found,
move_op_orig_expr_not_found,
move_op_merge_succs,
move_op_after_merge_succs,
move_op_ascend,
move_op_at_first_insn,
SUCCS_NORMAL,
"move_op"
};
/* Hooks and data to perform find_used_regs operations
with code_motion_path_driver. */
struct code_motion_path_driver_info_def fur_hooks = {
fur_on_enter,
fur_orig_expr_found,
fur_orig_expr_not_found,
fur_merge_succs,
NULL, /* fur_after_merge_succs */
NULL, /* fur_ascend */
fur_at_first_insn,
SUCCS_ALL,
"find_used_regs"
};
/* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
code_motion_path_driver is called recursively. Original operation
was found at least on one path that is starting with one of INSN's
successors (this fact is asserted). ORIG_OPS is expressions we're looking
for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
of either move_op or find_used_regs depending on the caller.
Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
know for sure at this point. */
static int
code_motion_process_successors (insn_t insn, av_set_t orig_ops,
ilist_t path, void *static_params)
{
int res = 0;
succ_iterator succ_i;
rtx succ;
basic_block bb;
int old_index;
unsigned old_succs;
struct cmpd_local_params lparams;
expr_def _x;
lparams.c_expr_local = &_x;
lparams.c_expr_merged = NULL;
/* We need to process only NORMAL succs for move_op, and collect live
registers from ALL branches (including those leading out of the
region) for find_used_regs.
In move_op, there can be a case when insn's bb number has changed
due to created bookkeeping. This happens very rare, as we need to
move expression from the beginning to the end of the same block.
Rescan successors in this case. */
rescan:
bb = BLOCK_FOR_INSN (insn);
old_index = bb->index;
old_succs = EDGE_COUNT (bb->succs);
FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
{
int b;
lparams.e1 = succ_i.e1;
lparams.e2 = succ_i.e2;
/* Go deep into recursion only for NORMAL edges (non-backedges within the
current region). */
if (succ_i.current_flags == SUCCS_NORMAL)
b = code_motion_path_driver (succ, orig_ops, path, &lparams,
static_params);
else
b = 0;
/* Merge c_expres found or unify live register sets from different
successors. */
code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
static_params);
if (b == 1)
res = b;
else if (b == -1 && res != 1)
res = b;
/* We have simplified the control flow below this point. In this case,
the iterator becomes invalid. We need to try again. */
if (BLOCK_FOR_INSN (insn)->index != old_index
|| EDGE_COUNT (bb->succs) != old_succs)
goto rescan;
}
#ifdef ENABLE_CHECKING
/* Here, RES==1 if original expr was found at least for one of the
successors. After the loop, RES may happen to have zero value
only if at some point the expr searched is present in av_set, but is
not found below. In most cases, this situation is an error.
The exception is when the original operation is blocked by
bookkeeping generated for another fence or for another path in current
move_op. */
gcc_assert (res == 1
|| (res == 0
&& av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
static_params))
|| res == -1);
#endif
/* Merge data, clean up, etc. */
if (res != -1 && code_motion_path_driver_info->after_merge_succs)
code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
return res;
}
/* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
is the pointer to the av set with expressions we were looking for,
PATH_P is the pointer to the traversed path. */
static inline void
code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
{
ilist_remove (path_p);
av_set_clear (orig_ops_p);
}
/* The driver function that implements move_op or find_used_regs
functionality dependent whether code_motion_path_driver_INFO is set to
&MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
of code (CFG traversal etc) that are shared among both functions. INSN
is the insn we're starting the search from, ORIG_OPS are the expressions
we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
parameters of the driver, and STATIC_PARAMS are static parameters of
the caller.
Returns whether original instructions were found. Note that top-level
code_motion_path_driver always returns true. */
static int
code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
cmpd_local_params_p local_params_in,
void *static_params)
{
expr_t expr = NULL;
basic_block bb = BLOCK_FOR_INSN (insn);
insn_t first_insn, bb_tail, before_first;
bool removed_last_insn = false;
if (sched_verbose >= 6)
{
sel_print ("%s (", code_motion_path_driver_info->routine_name);
dump_insn (insn);
sel_print (",");
dump_av_set (orig_ops);
sel_print (")\n");
}
gcc_assert (orig_ops);
/* If no original operations exist below this insn, return immediately. */
if (is_ineligible_successor (insn, path))
{
if (sched_verbose >= 6)
sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
return false;
}
/* The block can have invalid av set, in which case it was created earlier
during move_op. Return immediately. */
if (sel_bb_head_p (insn))
{
if (! AV_SET_VALID_P (insn))
{
if (sched_verbose >= 6)
sel_print ("Returned from block %d as it had invalid av set\n",
bb->index);
return false;
}
if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
{
/* We have already found an original operation on this branch, do not
go any further and just return TRUE here. If we don't stop here,
function can have exponential behaviour even on the small code
with many different paths (e.g. with data speculation and
recovery blocks). */
if (sched_verbose >= 6)
sel_print ("Block %d already visited in this traversal\n", bb->index);
if (code_motion_path_driver_info->on_enter)
return code_motion_path_driver_info->on_enter (insn,
local_params_in,
static_params,
true);
}
}
if (code_motion_path_driver_info->on_enter)
code_motion_path_driver_info->on_enter (insn, local_params_in,
static_params, false);
orig_ops = av_set_copy (orig_ops);
/* Filter the orig_ops set. */
if (AV_SET_VALID_P (insn))
av_set_intersect (&orig_ops, AV_SET (insn));
/* If no more original ops, return immediately. */
if (!orig_ops)
{
if (sched_verbose >= 6)
sel_print ("No intersection with av set of block %d\n", bb->index);
return false;
}
/* For non-speculative insns we have to leave only one form of the
original operation, because if we don't, we may end up with
different C_EXPRes and, consequently, with bookkeepings for different
expression forms along the same code motion path. That may lead to
generation of incorrect code. So for each code motion we stick to
the single form of the instruction, except for speculative insns
which we need to keep in different forms with all speculation
types. */
av_set_leave_one_nonspec (&orig_ops);
/* It is not possible that all ORIG_OPS are filtered out. */
gcc_assert (orig_ops);
/* It is enough to place only heads and tails of visited basic blocks into
the PATH. */
ilist_add (&path, insn);
first_insn = insn;
bb_tail = sel_bb_end (bb);
/* Descend the basic block in search of the original expr; this part
corresponds to the part of the original move_op procedure executed
before the recursive call. */
for (;;)
{
/* Look at the insn and decide if it could be an ancestor of currently
scheduling operation. If it is so, then the insn "dest = op" could
either be replaced with "dest = reg", because REG now holds the result
of OP, or just removed, if we've scheduled the insn as a whole.
If this insn doesn't contain currently scheduling OP, then proceed
with searching and look at its successors. Operations we're searching
for could have changed when moving up through this insn via
substituting. In this case, perform unsubstitution on them first.
When traversing the DAG below this insn is finished, insert
bookkeeping code, if the insn is a joint point, and remove
leftovers. */
expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
if (expr)
{
insn_t last_insn = PREV_INSN (insn);
/* We have found the original operation. */
if (sched_verbose >= 6)
sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
code_motion_path_driver_info->orig_expr_found
(insn, expr, local_params_in, static_params);
/* Step back, so on the way back we'll start traversing from the
previous insn (or we'll see that it's bb_note and skip that
loop). */
if (insn == first_insn)
{
first_insn = NEXT_INSN (last_insn);
removed_last_insn = sel_bb_end_p (last_insn);
}
insn = last_insn;
break;
}
else
{
/* We haven't found the original expr, continue descending the basic
block. */
if (code_motion_path_driver_info->orig_expr_not_found
(insn, orig_ops, static_params))
{
/* Av set ops could have been changed when moving through this
insn. To find them below it, we have to un-substitute them. */
undo_transformations (&orig_ops, insn);
}
else
{
/* Clean up and return, if the hook tells us to do so. It may
happen if we've encountered the previously created
bookkeeping. */
code_motion_path_driver_cleanup (&orig_ops, &path);
return -1;
}
gcc_assert (orig_ops);
}
/* Stop at insn if we got to the end of BB. */
if (insn == bb_tail)
break;
insn = NEXT_INSN (insn);
}
/* Here INSN either points to the insn before the original insn (may be
bb_note, if original insn was a bb_head) or to the bb_end. */
if (!expr)
{
int res;
gcc_assert (insn == sel_bb_end (bb));
/* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
it's already in PATH then). */
if (insn != first_insn)
ilist_add (&path, insn);
/* Process_successors should be able to find at least one
successor for which code_motion_path_driver returns TRUE. */
res = code_motion_process_successors (insn, orig_ops,
path, static_params);
/* Remove bb tail from path. */
if (insn != first_insn)
ilist_remove (&path);
if (res != 1)
{
/* This is the case when one of the original expr is no longer available
due to bookkeeping created on this branch with the same register.
In the original algorithm, which doesn't have update_data_sets call
on a bookkeeping block, it would simply result in returning
FALSE when we've encountered a previously generated bookkeeping
insn in moveop_orig_expr_not_found. */
code_motion_path_driver_cleanup (&orig_ops, &path);
return res;
}
}
/* Don't need it any more. */
av_set_clear (&orig_ops);
/* Backward pass: now, when we have C_EXPR computed, we'll drag it to
the beginning of the basic block. */
before_first = PREV_INSN (first_insn);
while (insn != before_first)
{
if (code_motion_path_driver_info->ascend)
code_motion_path_driver_info->ascend (insn, static_params);
insn = PREV_INSN (insn);
}
/* Now we're at the bb head. */
insn = first_insn;
ilist_remove (&path);
local_params_in->removed_last_insn = removed_last_insn;
code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
/* This should be the very last operation as at bb head we could change
the numbering by creating bookkeeping blocks. */
if (removed_last_insn)
insn = PREV_INSN (insn);
bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
return true;
}
/* Move up the operations from ORIG_OPS set traversing the dag starting
from INSN. PATH represents the edges traversed so far.
DEST is the register chosen for scheduling the current expr. Insert
bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
C_EXPR is how it looks like at the given cfg point.
Set *SHOULD_MOVE to indicate whether we have only disconnected
one of the insns found.
Returns whether original instructions were found, which is asserted
to be true in the caller. */
static bool
move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
rtx dest, expr_t c_expr, bool *should_move)
{
struct moveop_static_params sparams;
struct cmpd_local_params lparams;
bool res;
/* Init params for code_motion_path_driver. */
sparams.dest = dest;
sparams.c_expr = c_expr;
sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
#ifdef ENABLE_CHECKING
sparams.failed_insn = NULL;
#endif
sparams.was_renamed = false;
lparams.e1 = NULL;
/* We haven't visited any blocks yet. */
bitmap_clear (code_motion_visited_blocks);
/* Set appropriate hooks and data. */
code_motion_path_driver_info = &move_op_hooks;
res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
if (sparams.was_renamed)
EXPR_WAS_RENAMED (expr_vliw) = true;
*should_move = (sparams.uid == -1);
return res;
}
/* Functions that work with regions. */
/* Current number of seqno used in init_seqno and init_seqno_1. */
static int cur_seqno;
/* A helper for init_seqno. Traverse the region starting from BB and
compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
static void
init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
{
int bbi = BLOCK_TO_BB (bb->index);
insn_t insn, note = bb_note (bb);
insn_t succ_insn;
succ_iterator si;
SET_BIT (visited_bbs, bbi);
if (blocks_to_reschedule)
bitmap_clear_bit (blocks_to_reschedule, bb->index);
FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
{
basic_block succ = BLOCK_FOR_INSN (succ_insn);
int succ_bbi = BLOCK_TO_BB (succ->index);
gcc_assert (in_current_region_p (succ));
if (!TEST_BIT (visited_bbs, succ_bbi))
{
gcc_assert (succ_bbi > bbi);
init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
}
}
for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
INSN_SEQNO (insn) = cur_seqno--;
}
/* Initialize seqnos for the current region. NUMBER_OF_INSNS is the number
of instructions in the region, BLOCKS_TO_RESCHEDULE contains blocks on
which we're rescheduling when pipelining, FROM is the block where
traversing region begins (it may not be the head of the region when
pipelining, but the head of the loop instead).
Returns the maximal seqno found. */
static int
init_seqno (int number_of_insns, bitmap blocks_to_reschedule, basic_block from)
{
sbitmap visited_bbs;
bitmap_iterator bi;
unsigned bbi;
visited_bbs = sbitmap_alloc (current_nr_blocks);
if (blocks_to_reschedule)
{
sbitmap_ones (visited_bbs);
EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
{
gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
RESET_BIT (visited_bbs, BLOCK_TO_BB (bbi));
}
}
else
{
sbitmap_zero (visited_bbs);
from = EBB_FIRST_BB (0);
}
cur_seqno = number_of_insns > 0 ? number_of_insns : sched_max_luid - 1;
init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
gcc_assert (cur_seqno == 0 || number_of_insns == 0);
sbitmap_free (visited_bbs);
return sched_max_luid - 1;
}
/* Initialize scheduling parameters for current region. */
static void
sel_setup_region_sched_flags (void)
{
enable_schedule_as_rhs_p = 1;
bookkeeping_p = 1;
pipelining_p = (bookkeeping_p
&& (flag_sel_sched_pipelining != 0)
&& current_loop_nest != NULL);
max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
max_ws = MAX_WS;
}
/* Return true if all basic blocks of current region are empty. */
static bool
current_region_empty_p (void)
{
int i;
for (i = 0; i < current_nr_blocks; i++)
if (! sel_bb_empty_p (BASIC_BLOCK (BB_TO_BLOCK (i))))
return false;
return true;
}
/* Prepare and verify loop nest for pipelining. */
static void
setup_current_loop_nest (int rgn)
{
current_loop_nest = get_loop_nest_for_rgn (rgn);
if (!current_loop_nest)
return;
/* If this loop has any saved loop preheaders from nested loops,
add these basic blocks to the current region. */
sel_add_loop_preheaders ();
/* Check that we're starting with a valid information. */
gcc_assert (loop_latch_edge (current_loop_nest));
gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
}
/* Purge meaningless empty blocks in the middle of a region. */
static void
purge_empty_blocks (void)
{
/* Do not attempt to delete preheader. */
int i = sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0))) ? 1 : 0;
while (i < current_nr_blocks)
{
basic_block b = BASIC_BLOCK (BB_TO_BLOCK (i));
if (maybe_tidy_empty_bb (b))
continue;
i++;
}
}
/* Compute instruction priorities for current region. */
static void
sel_compute_priorities (int rgn)
{
sched_rgn_compute_dependencies (rgn);
/* Compute insn priorities in haifa style. Then free haifa style
dependencies that we've calculated for this. */
compute_priorities ();
if (sched_verbose >= 5)
debug_rgn_dependencies (0);
free_rgn_deps ();
}
/* Init scheduling data for RGN. Returns true when this region should not
be scheduled. */
static bool
sel_region_init (int rgn)
{
int i;
bb_vec_t bbs;
rgn_setup_region (rgn);
/* Even if sched_is_disabled_for_current_region_p() is true, we still
do region initialization here so the region can be bundled correctly,
but we'll skip the scheduling in sel_sched_region (). */
if (current_region_empty_p ())
return true;
if (flag_sel_sched_pipelining)
setup_current_loop_nest (rgn);
sel_setup_region_sched_flags ();
bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
for (i = 0; i < current_nr_blocks; i++)
VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
sel_init_bbs (bbs, NULL);
/* Initialize luids and dependence analysis which both sel-sched and haifa
need. */
sched_init_luids (bbs, NULL, NULL, NULL);
sched_deps_init (false);
/* Initialize haifa data. */
rgn_setup_sched_infos ();
sel_set_sched_flags ();
haifa_init_h_i_d (bbs, NULL, NULL, NULL);
sel_compute_priorities (rgn);
init_deps_global ();
/* Main initialization. */
sel_setup_sched_infos ();
sel_init_global_and_expr (bbs);
VEC_free (basic_block, heap, bbs);
blocks_to_reschedule = BITMAP_ALLOC (NULL);
/* Init correct liveness sets on each instruction of a single-block loop.
This is the only situation when we can't update liveness when calling
compute_live for the first insn of the loop. */
if (current_loop_nest)
{
int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0)))
? 1
: 0);
if (current_nr_blocks == header + 1)
update_liveness_on_insn
(sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header))));
}
/* Set hooks so that no newly generated insn will go out unnoticed. */
sel_register_cfg_hooks ();
/* !!! We call target.sched.md_init () for the whole region, but we invoke
targetm.sched.md_finish () for every ebb. */
if (targetm.sched.md_init)
/* None of the arguments are actually used in any target. */
targetm.sched.md_init (sched_dump, sched_verbose, -1);
first_emitted_uid = get_max_uid () + 1;
preheader_removed = false;
/* Reset register allocation ticks array. */
memset (reg_rename_tick, 0, sizeof reg_rename_tick);
reg_rename_this_tick = 0;
bitmap_initialize (forced_ebb_heads, 0);
bitmap_clear (forced_ebb_heads);
setup_nop_vinsn ();
current_copies = BITMAP_ALLOC (NULL);
current_originators = BITMAP_ALLOC (NULL);
code_motion_visited_blocks = BITMAP_ALLOC (NULL);
return false;
}
/* Simplify insns after the scheduling. */
static void
simplify_changed_insns (void)
{
int i;
for (i = 0; i < current_nr_blocks; i++)
{
basic_block bb = BASIC_BLOCK (BB_TO_BLOCK (i));
rtx insn;
FOR_BB_INSNS (bb, insn)
if (INSN_P (insn))
{
expr_t expr = INSN_EXPR (insn);
if (EXPR_WAS_SUBSTITUTED (expr))
validate_simplify_insn (insn);
}
}
}
/* Find boundaries of the EBB starting from basic block BB, marking blocks of
this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
static void
find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
{
insn_t head, tail;
basic_block bb1 = bb;
if (sched_verbose >= 2)
sel_print ("Finishing schedule in bbs: ");
do
{
bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
if (sched_verbose >= 2)
sel_print ("%d; ", bb1->index);
}
while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
if (sched_verbose >= 2)
sel_print ("\n");
get_ebb_head_tail (bb, bb1, &head, &tail);
current_sched_info->head = head;
current_sched_info->tail = tail;
current_sched_info->prev_head = PREV_INSN (head);
current_sched_info->next_tail = NEXT_INSN (tail);
}
/* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
static void
reset_sched_cycles_in_current_ebb (void)
{
int last_clock = 0;
int haifa_last_clock = -1;
int haifa_clock = 0;
insn_t insn;
if (targetm.sched.md_init)
{
/* None of the arguments are actually used in any target.
NB: We should have md_reset () hook for cases like this. */
targetm.sched.md_init (sched_dump, sched_verbose, -1);
}
state_reset (curr_state);
advance_state (curr_state);
for (insn = current_sched_info->head;
insn != current_sched_info->next_tail;
insn = NEXT_INSN (insn))
{
int cost, haifa_cost;
int sort_p;
bool asm_p, real_insn, after_stall;
int clock;
if (!INSN_P (insn))
continue;
asm_p = false;
real_insn = recog_memoized (insn) >= 0;
clock = INSN_SCHED_CYCLE (insn);
cost = clock - last_clock;
/* Initialize HAIFA_COST. */
if (! real_insn)
{
asm_p = INSN_ASM_P (insn);
if (asm_p)
/* This is asm insn which *had* to be scheduled first
on the cycle. */
haifa_cost = 1;
else
/* This is a use/clobber insn. It should not change
cost. */
haifa_cost = 0;
}
else
haifa_cost = estimate_insn_cost (insn, curr_state);
/* Stall for whatever cycles we've stalled before. */
after_stall = 0;
if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
{
haifa_cost = cost;
after_stall = 1;
}
if (haifa_cost > 0)
{
int i = 0;
while (haifa_cost--)
{
advance_state (curr_state);
i++;
if (sched_verbose >= 2)
{
sel_print ("advance_state (state_transition)\n");
debug_state (curr_state);
}
/* The DFA may report that e.g. insn requires 2 cycles to be
issued, but on the next cycle it says that insn is ready
to go. Check this here. */
if (!after_stall
&& real_insn
&& haifa_cost > 0
&& estimate_insn_cost (insn, curr_state) == 0)
break;
}
haifa_clock += i;
}
else
gcc_assert (haifa_cost == 0);
if (sched_verbose >= 2)
sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
if (targetm.sched.dfa_new_cycle)
while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
haifa_last_clock, haifa_clock,
&sort_p))
{
advance_state (curr_state);
haifa_clock++;
if (sched_verbose >= 2)
{
sel_print ("advance_state (dfa_new_cycle)\n");
debug_state (curr_state);
}
}
if (real_insn)
{
cost = state_transition (curr_state, insn);
if (sched_verbose >= 2)
debug_state (curr_state);
gcc_assert (cost < 0);
}
if (targetm.sched.variable_issue)
targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
INSN_SCHED_CYCLE (insn) = haifa_clock;
last_clock = clock;
haifa_last_clock = haifa_clock;
}
}
/* Put TImode markers on insns starting a new issue group. */
static void
put_TImodes (void)
{
int last_clock = -1;
insn_t insn;
for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
insn = NEXT_INSN (insn))
{
int cost, clock;
if (!INSN_P (insn))
continue;
clock = INSN_SCHED_CYCLE (insn);
cost = (last_clock == -1) ? 1 : clock - last_clock;
gcc_assert (cost >= 0);
if (issue_rate > 1
&& GET_CODE (PATTERN (insn)) != USE
&& GET_CODE (PATTERN (insn)) != CLOBBER)
{
if (reload_completed && cost > 0)
PUT_MODE (insn, TImode);
last_clock = clock;
}
if (sched_verbose >= 2)
sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
}
}
/* Perform MD_FINISH on EBBs comprising current region. When
RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
to produce correct sched cycles on insns. */
static void
sel_region_target_finish (bool reset_sched_cycles_p)
{
int i;
bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
for (i = 0; i < current_nr_blocks; i++)
{
if (bitmap_bit_p (scheduled_blocks, i))
continue;
/* While pipelining outer loops, skip bundling for loop
preheaders. Those will be rescheduled in the outer loop. */
if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
continue;
find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
continue;
if (reset_sched_cycles_p)
reset_sched_cycles_in_current_ebb ();
if (targetm.sched.md_init)
targetm.sched.md_init (sched_dump, sched_verbose, -1);
put_TImodes ();
if (targetm.sched.md_finish)
{
targetm.sched.md_finish (sched_dump, sched_verbose);
/* Extend luids so that insns generated by the target will
get zero luid. */
sched_init_luids (NULL, NULL, NULL, NULL);
}
}
BITMAP_FREE (scheduled_blocks);
}
/* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
is true, make an additional pass emulating scheduler to get correct insn
cycles for md_finish calls. */
static void
sel_region_finish (bool reset_sched_cycles_p)
{
simplify_changed_insns ();
sched_finish_ready_list ();
free_nop_pool ();
/* Free the vectors. */
if (vec_av_set)
VEC_free (expr_t, heap, vec_av_set);
BITMAP_FREE (current_copies);
BITMAP_FREE (current_originators);
BITMAP_FREE (code_motion_visited_blocks);
vinsn_vec_free (&vec_bookkeeping_blocked_vinsns);
vinsn_vec_free (&vec_target_unavailable_vinsns);
/* If LV_SET of the region head should be updated, do it now because
there will be no other chance. */
{
succ_iterator si;
insn_t insn;
FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
{
basic_block bb = BLOCK_FOR_INSN (insn);
if (!BB_LV_SET_VALID_P (bb))
compute_live (insn);
}
}
/* Emulate the Haifa scheduler for bundling. */
if (reload_completed)
sel_region_target_finish (reset_sched_cycles_p);
sel_finish_global_and_expr ();
bitmap_clear (forced_ebb_heads);
free_nop_vinsn ();
finish_deps_global ();
sched_finish_luids ();
sel_finish_bbs ();
BITMAP_FREE (blocks_to_reschedule);
sel_unregister_cfg_hooks ();
max_issue_size = 0;
}
/* Functions that implement the scheduler driver. */
/* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
of insns scheduled -- these would be postprocessed later. */
static void
schedule_on_fences (flist_t fences, int max_seqno,
ilist_t **scheduled_insns_tailpp)
{
flist_t old_fences = fences;
if (sched_verbose >= 1)
{
sel_print ("\nScheduling on fences: ");
dump_flist (fences);
sel_print ("\n");
}
scheduled_something_on_previous_fence = false;
for (; fences; fences = FLIST_NEXT (fences))
{
fence_t fence = NULL;
int seqno = 0;
flist_t fences2;
bool first_p = true;
/* Choose the next fence group to schedule.
The fact that insn can be scheduled only once
on the cycle is guaranteed by two properties:
1. seqnos of parallel groups decrease with each iteration.
2. If is_ineligible_successor () sees the larger seqno, it
checks if candidate insn is_in_current_fence_p (). */
for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
{
fence_t f = FLIST_FENCE (fences2);
if (!FENCE_PROCESSED_P (f))
{
int i = INSN_SEQNO (FENCE_INSN (f));
if (first_p || i > seqno)
{
seqno = i;
fence = f;
first_p = false;
}
else
/* ??? Seqnos of different groups should be different. */
gcc_assert (1 || i != seqno);
}
}
gcc_assert (fence);
/* As FENCE is nonnull, SEQNO is initialized. */
seqno -= max_seqno + 1;
fill_insns (fence, seqno, scheduled_insns_tailpp);
FENCE_PROCESSED_P (fence) = true;
}
/* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
don't need to keep bookkeeping-invalidated and target-unavailable
vinsns any more. */
vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
vinsn_vec_clear (&vec_target_unavailable_vinsns);
}
/* Calculate MIN_SEQNO and MAX_SEQNO. */
static void
find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
{
*min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
/* The first element is already processed. */
while ((fences = FLIST_NEXT (fences)))
{
int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
if (*min_seqno > seqno)
*min_seqno = seqno;
else if (*max_seqno < seqno)
*max_seqno = seqno;
}
}
/* Calculate new fences from FENCES. */
static flist_t
calculate_new_fences (flist_t fences, int orig_max_seqno)
{
flist_t old_fences = fences;
struct flist_tail_def _new_fences, *new_fences = &_new_fences;
flist_tail_init (new_fences);
for (; fences; fences = FLIST_NEXT (fences))
{
fence_t fence = FLIST_FENCE (fences);
insn_t insn;
if (!FENCE_BNDS (fence))
{
/* This fence doesn't have any successors. */
if (!FENCE_SCHEDULED_P (fence))
{
/* Nothing was scheduled on this fence. */
int seqno;
insn = FENCE_INSN (fence);
seqno = INSN_SEQNO (insn);
gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
if (sched_verbose >= 1)
sel_print ("Fence %d[%d] has not changed\n",
INSN_UID (insn),
BLOCK_NUM (insn));
move_fence_to_fences (fences, new_fences);
}
}
else
extract_new_fences_from (fences, new_fences, orig_max_seqno);
}
flist_clear (&old_fences);
return FLIST_TAIL_HEAD (new_fences);
}
/* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
the highest seqno used in a region. Return the updated highest seqno. */
static int
update_seqnos_and_stage (int min_seqno, int max_seqno,
int highest_seqno_in_use,
ilist_t *pscheduled_insns)
{
int new_hs;
ilist_iterator ii;
insn_t insn;
/* Actually, new_hs is the seqno of the instruction, that was
scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
if (*pscheduled_insns)
{
new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
+ highest_seqno_in_use + max_seqno - min_seqno + 2);
gcc_assert (new_hs > highest_seqno_in_use);
}
else
new_hs = highest_seqno_in_use;
FOR_EACH_INSN (insn, ii, *pscheduled_insns)
{
gcc_assert (INSN_SEQNO (insn) < 0);
INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
gcc_assert (INSN_SEQNO (insn) <= new_hs);
}
ilist_clear (pscheduled_insns);
global_level++;
return new_hs;
}
/* The main driver for scheduling a region. This function is responsible
for correct propagation of fences (i.e. scheduling points) and creating
a group of parallel insns at each of them. It also supports
pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
of scheduling. */
static void
sel_sched_region_2 (int orig_max_seqno)
{
int highest_seqno_in_use = orig_max_seqno;
stat_bookkeeping_copies = 0;
stat_insns_needed_bookkeeping = 0;
stat_renamed_scheduled = 0;
stat_substitutions_total = 0;
num_insns_scheduled = 0;
while (fences)
{
int min_seqno, max_seqno;
ilist_t scheduled_insns = NULL;
ilist_t *scheduled_insns_tailp = &scheduled_insns;
find_min_max_seqno (fences, &min_seqno, &max_seqno);
schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
fences = calculate_new_fences (fences, orig_max_seqno);
highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
highest_seqno_in_use,
&scheduled_insns);
}
if (sched_verbose >= 1)
sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
"bookkeeping, %d insns renamed, %d insns substituted\n",
stat_bookkeeping_copies,
stat_insns_needed_bookkeeping,
stat_renamed_scheduled,
stat_substitutions_total);
}
/* Schedule a region. When pipelining, search for possibly never scheduled
bookkeeping code and schedule it. Reschedule pipelined code without
pipelining after. */
static void
sel_sched_region_1 (void)
{
int number_of_insns;
int orig_max_seqno;
/* Remove empty blocks that might be in the region from the beginning.
We need to do save sched_max_luid before that, as it actually shows
the number of insns in the region, and purge_empty_blocks can
alter it. */
number_of_insns = sched_max_luid - 1;
purge_empty_blocks ();
orig_max_seqno = init_seqno (number_of_insns, NULL, NULL);
gcc_assert (orig_max_seqno >= 1);
/* When pipelining outer loops, create fences on the loop header,
not preheader. */
fences = NULL;
if (current_loop_nest)
init_fences (BB_END (EBB_FIRST_BB (0)));
else
init_fences (bb_note (EBB_FIRST_BB (0)));
global_level = 1;
sel_sched_region_2 (orig_max_seqno);
gcc_assert (fences == NULL);
if (pipelining_p)
{
int i;
basic_block bb;
struct flist_tail_def _new_fences;
flist_tail_t new_fences = &_new_fences;
bool do_p = true;
pipelining_p = false;
max_ws = MIN (max_ws, issue_rate * 3 / 2);
bookkeeping_p = false;
enable_schedule_as_rhs_p = false;
/* Schedule newly created code, that has not been scheduled yet. */
do_p = true;
while (do_p)
{
do_p = false;
for (i = 0; i < current_nr_blocks; i++)
{
basic_block bb = EBB_FIRST_BB (i);
if (sel_bb_empty_p (bb))
{
bitmap_clear_bit (blocks_to_reschedule, bb->index);
continue;
}
if (bitmap_bit_p (blocks_to_reschedule, bb->index))
{
clear_outdated_rtx_info (bb);
if (sel_insn_is_speculation_check (BB_END (bb))
&& JUMP_P (BB_END (bb)))
bitmap_set_bit (blocks_to_reschedule,
BRANCH_EDGE (bb)->dest->index);
}
else if (INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
bitmap_set_bit (blocks_to_reschedule, bb->index);
}
for (i = 0; i < current_nr_blocks; i++)
{
bb = EBB_FIRST_BB (i);
/* While pipelining outer loops, skip bundling for loop
preheaders. Those will be rescheduled in the outer
loop. */
if (sel_is_loop_preheader_p (bb))
{
clear_outdated_rtx_info (bb);
continue;
}
if (bitmap_bit_p (blocks_to_reschedule, bb->index))
{
flist_tail_init (new_fences);
orig_max_seqno = init_seqno (0, blocks_to_reschedule, bb);
/* Mark BB as head of the new ebb. */
bitmap_set_bit (forced_ebb_heads, bb->index);
bitmap_clear_bit (blocks_to_reschedule, bb->index);
gcc_assert (fences == NULL);
init_fences (bb_note (bb));
sel_sched_region_2 (orig_max_seqno);
do_p = true;
break;
}
}
}
}
}
/* Schedule the RGN region. */
void
sel_sched_region (int rgn)
{
bool schedule_p;
bool reset_sched_cycles_p;
if (sel_region_init (rgn))
return;
if (sched_verbose >= 1)
sel_print ("Scheduling region %d\n", rgn);
schedule_p = (!sched_is_disabled_for_current_region_p ()
&& dbg_cnt (sel_sched_region_cnt));
reset_sched_cycles_p = pipelining_p;
if (schedule_p)
sel_sched_region_1 ();
else
/* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
reset_sched_cycles_p = true;
sel_region_finish (reset_sched_cycles_p);
}
/* Perform global init for the scheduler. */
static void
sel_global_init (void)
{
calculate_dominance_info (CDI_DOMINATORS);
alloc_sched_pools ();
/* Setup the infos for sched_init. */
sel_setup_sched_infos ();
setup_sched_dump ();
sched_rgn_init (false);
sched_init ();
sched_init_bbs ();
/* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
after_recovery = 0;
can_issue_more = issue_rate;
sched_extend_target ();
sched_deps_init (true);
setup_nop_and_exit_insns ();
sel_extend_global_bb_info ();
init_lv_sets ();
init_hard_regs_data ();
}
/* Free the global data of the scheduler. */
static void
sel_global_finish (void)
{
free_bb_note_pool ();
free_lv_sets ();
sel_finish_global_bb_info ();
free_regset_pool ();
free_nop_and_exit_insns ();
sched_rgn_finish ();
sched_deps_finish ();
sched_finish ();
if (current_loops)
sel_finish_pipelining ();
free_sched_pools ();
free_dominance_info (CDI_DOMINATORS);
}
/* Return true when we need to skip selective scheduling. Used for debugging. */
bool
maybe_skip_selective_scheduling (void)
{
return ! dbg_cnt (sel_sched_cnt);
}
/* The entry point. */
void
run_selective_scheduling (void)
{
int rgn;
if (n_basic_blocks == NUM_FIXED_BLOCKS)
return;
sel_global_init ();
for (rgn = 0; rgn < nr_regions; rgn++)
sel_sched_region (rgn);
sel_global_finish ();
}
#endif
|