1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
|
/* Instruction scheduling pass. This file contains definitions used
internally in the scheduler.
Copyright (C) 2006, 2007, 2008 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_SEL_SCHED_IR_H
#define GCC_SEL_SCHED_IR_H
/* For state_t. */
#include "insn-attr.h"
/* For regset_head. */
#include "basic-block.h"
/* For reg_note. */
#include "rtl.h"
#include "ggc.h"
#include "bitmap.h"
#include "vecprim.h"
#include "sched-int.h"
#include "cfgloop.h"
/* tc_t is a short for target context. This is a state of the target
backend. */
typedef void *tc_t;
/* List data types used for av sets, fences, paths, and boundaries. */
/* Forward declarations for types that are part of some list nodes. */
struct _list_node;
/* List backend. */
typedef struct _list_node *_list_t;
#define _LIST_NEXT(L) ((L)->next)
/* Instruction data that is part of vinsn type. */
struct idata_def;
typedef struct idata_def *idata_t;
/* A virtual instruction, i.e. an instruction as seen by the scheduler. */
struct vinsn_def;
typedef struct vinsn_def *vinsn_t;
/* RTX list.
This type is the backend for ilist. */
typedef _list_t _xlist_t;
#define _XLIST_X(L) ((L)->u.x)
#define _XLIST_NEXT(L) (_LIST_NEXT (L))
/* Instruction. */
typedef rtx insn_t;
/* List of insns. */
typedef _xlist_t ilist_t;
#define ILIST_INSN(L) (_XLIST_X (L))
#define ILIST_NEXT(L) (_XLIST_NEXT (L))
/* This lists possible transformations that done locally, i.e. in
moveup_expr. */
enum local_trans_type
{
TRANS_SUBSTITUTION,
TRANS_SPECULATION
};
/* This struct is used to record the history of expression's
transformations. */
struct expr_history_def_1
{
/* UID of the insn. */
unsigned uid;
/* How the expression looked like. */
vinsn_t old_expr_vinsn;
/* How the expression looks after the transformation. */
vinsn_t new_expr_vinsn;
/* And its speculative status. */
ds_t spec_ds;
/* Type of the transformation. */
enum local_trans_type type;
};
typedef struct expr_history_def_1 expr_history_def;
DEF_VEC_O (expr_history_def);
DEF_VEC_ALLOC_O (expr_history_def, heap);
/* Expression information. */
struct _expr
{
/* Insn description. */
vinsn_t vinsn;
/* SPEC is the degree of speculativeness.
FIXME: now spec is increased when an rhs is moved through a
conditional, thus showing only control speculativeness. In the
future we'd like to count data spec separately to allow a better
control on scheduling. */
int spec;
/* Degree of speculativeness measured as probability of executing
instruction's original basic block given relative to
the current scheduling point. */
int usefulness;
/* A priority of this expression. */
int priority;
/* A priority adjustment of this expression. */
int priority_adj;
/* Number of times the insn was scheduled. */
int sched_times;
/* A basic block index this was originated from. Zero when there is
more than one originator. */
int orig_bb_index;
/* Instruction should be of SPEC_DONE_DS type in order to be moved to this
point. */
ds_t spec_done_ds;
/* SPEC_TO_CHECK_DS hold speculation types that should be checked
(used only during move_op ()). */
ds_t spec_to_check_ds;
/* Cycle on which original insn was scheduled. Zero when it has not yet
been scheduled or more than one originator. */
int orig_sched_cycle;
/* This vector contains the history of insn's transformations. */
VEC(expr_history_def, heap) *history_of_changes;
/* True (1) when original target (register or memory) of this instruction
is available for scheduling, false otherwise. -1 means we're not sure;
please run find_used_regs to clarify. */
signed char target_available;
/* True when this expression needs a speculation check to be scheduled.
This is used during find_used_regs. */
BOOL_BITFIELD needs_spec_check_p : 1;
/* True when the expression was substituted. Used for statistical
purposes. */
BOOL_BITFIELD was_substituted : 1;
/* True when the expression was renamed. */
BOOL_BITFIELD was_renamed : 1;
/* True when expression can't be moved. */
BOOL_BITFIELD cant_move : 1;
};
typedef struct _expr expr_def;
typedef expr_def *expr_t;
#define EXPR_VINSN(EXPR) ((EXPR)->vinsn)
#define EXPR_INSN_RTX(EXPR) (VINSN_INSN_RTX (EXPR_VINSN (EXPR)))
#define EXPR_PATTERN(EXPR) (VINSN_PATTERN (EXPR_VINSN (EXPR)))
#define EXPR_LHS(EXPR) (VINSN_LHS (EXPR_VINSN (EXPR)))
#define EXPR_RHS(EXPR) (VINSN_RHS (EXPR_VINSN (EXPR)))
#define EXPR_TYPE(EXPR) (VINSN_TYPE (EXPR_VINSN (EXPR)))
#define EXPR_SEPARABLE_P(EXPR) (VINSN_SEPARABLE_P (EXPR_VINSN (EXPR)))
#define EXPR_SPEC(EXPR) ((EXPR)->spec)
#define EXPR_USEFULNESS(EXPR) ((EXPR)->usefulness)
#define EXPR_PRIORITY(EXPR) ((EXPR)->priority)
#define EXPR_PRIORITY_ADJ(EXPR) ((EXPR)->priority_adj)
#define EXPR_SCHED_TIMES(EXPR) ((EXPR)->sched_times)
#define EXPR_ORIG_BB_INDEX(EXPR) ((EXPR)->orig_bb_index)
#define EXPR_ORIG_SCHED_CYCLE(EXPR) ((EXPR)->orig_sched_cycle)
#define EXPR_SPEC_DONE_DS(EXPR) ((EXPR)->spec_done_ds)
#define EXPR_SPEC_TO_CHECK_DS(EXPR) ((EXPR)->spec_to_check_ds)
#define EXPR_HISTORY_OF_CHANGES(EXPR) ((EXPR)->history_of_changes)
#define EXPR_TARGET_AVAILABLE(EXPR) ((EXPR)->target_available)
#define EXPR_NEEDS_SPEC_CHECK_P(EXPR) ((EXPR)->needs_spec_check_p)
#define EXPR_WAS_SUBSTITUTED(EXPR) ((EXPR)->was_substituted)
#define EXPR_WAS_RENAMED(EXPR) ((EXPR)->was_renamed)
#define EXPR_CANT_MOVE(EXPR) ((EXPR)->cant_move)
#define EXPR_WAS_CHANGED(EXPR) (VEC_length (expr_history_def, \
EXPR_HISTORY_OF_CHANGES (EXPR)) > 0)
/* Insn definition for list of original insns in find_used_regs. */
struct _def
{
insn_t orig_insn;
/* FIXME: Get rid of CROSSES_CALL in each def, since if we're moving up
rhs from two different places, but only one of the code motion paths
crosses a call, we can't use any of the call_used_regs, no matter which
path or whether all paths crosses a call. Thus we should move CROSSES_CALL
to static params. */
bool crosses_call;
};
typedef struct _def *def_t;
/* Availability sets are sets of expressions we're scheduling. */
typedef _list_t av_set_t;
#define _AV_SET_EXPR(L) (&(L)->u.expr)
#define _AV_SET_NEXT(L) (_LIST_NEXT (L))
/* Boundary of the current fence group. */
struct _bnd
{
/* The actual boundary instruction. */
insn_t to;
/* Its path to the fence. */
ilist_t ptr;
/* Availability set at the boundary. */
av_set_t av;
/* This set moved to the fence. */
av_set_t av1;
/* Deps context at this boundary. As long as we have one boundary per fence,
this is just a pointer to the same deps context as in the corresponding
fence. */
deps_t dc;
};
typedef struct _bnd *bnd_t;
#define BND_TO(B) ((B)->to)
/* PTR stands not for pointer as you might think, but as a Path To Root of the
current instruction group from boundary B. */
#define BND_PTR(B) ((B)->ptr)
#define BND_AV(B) ((B)->av)
#define BND_AV1(B) ((B)->av1)
#define BND_DC(B) ((B)->dc)
/* List of boundaries. */
typedef _list_t blist_t;
#define BLIST_BND(L) (&(L)->u.bnd)
#define BLIST_NEXT(L) (_LIST_NEXT (L))
/* Fence information. A fence represents current scheduling point and also
blocks code motion through it when pipelining. */
struct _fence
{
/* Insn before which we gather an instruction group.*/
insn_t insn;
/* Modeled state of the processor pipeline. */
state_t state;
/* Current cycle that is being scheduled on this fence. */
int cycle;
/* Number of insns that were scheduled on the current cycle.
This information has to be local to a fence. */
int cycle_issued_insns;
/* At the end of fill_insns () this field holds the list of the instructions
that are inner boundaries of the scheduled parallel group. */
ilist_t bnds;
/* Deps context at this fence. It is used to model dependencies at the
fence so that insn ticks can be properly evaluated. */
deps_t dc;
/* Target context at this fence. Used to save and load any local target
scheduling information when changing fences. */
tc_t tc;
/* A vector of insns that are scheduled but not yet completed. */
VEC (rtx,gc) *executing_insns;
/* A vector indexed by UIDs that caches the earliest cycle on which
an insn can be scheduled on this fence. */
int *ready_ticks;
/* Its size. */
int ready_ticks_size;
/* Insn, which has been scheduled last on this fence. */
rtx last_scheduled_insn;
/* If non-NULL force the next scheduled insn to be SCHED_NEXT. */
rtx sched_next;
/* True if fill_insns processed this fence. */
BOOL_BITFIELD processed_p : 1;
/* True if fill_insns actually scheduled something on this fence. */
BOOL_BITFIELD scheduled_p : 1;
/* True when the next insn scheduled here would start a cycle. */
BOOL_BITFIELD starts_cycle_p : 1;
/* True when the next insn scheduled here would be scheduled after a stall. */
BOOL_BITFIELD after_stall_p : 1;
};
typedef struct _fence *fence_t;
#define FENCE_INSN(F) ((F)->insn)
#define FENCE_STATE(F) ((F)->state)
#define FENCE_BNDS(F) ((F)->bnds)
#define FENCE_PROCESSED_P(F) ((F)->processed_p)
#define FENCE_SCHEDULED_P(F) ((F)->scheduled_p)
#define FENCE_ISSUED_INSNS(F) ((F)->cycle_issued_insns)
#define FENCE_CYCLE(F) ((F)->cycle)
#define FENCE_STARTS_CYCLE_P(F) ((F)->starts_cycle_p)
#define FENCE_AFTER_STALL_P(F) ((F)->after_stall_p)
#define FENCE_DC(F) ((F)->dc)
#define FENCE_TC(F) ((F)->tc)
#define FENCE_LAST_SCHEDULED_INSN(F) ((F)->last_scheduled_insn)
#define FENCE_EXECUTING_INSNS(F) ((F)->executing_insns)
#define FENCE_READY_TICKS(F) ((F)->ready_ticks)
#define FENCE_READY_TICKS_SIZE(F) ((F)->ready_ticks_size)
#define FENCE_SCHED_NEXT(F) ((F)->sched_next)
/* List of fences. */
typedef _list_t flist_t;
#define FLIST_FENCE(L) (&(L)->u.fence)
#define FLIST_NEXT(L) (_LIST_NEXT (L))
/* List of fences with pointer to the tail node. */
struct flist_tail_def
{
flist_t head;
flist_t *tailp;
};
typedef struct flist_tail_def *flist_tail_t;
#define FLIST_TAIL_HEAD(L) ((L)->head)
#define FLIST_TAIL_TAILP(L) ((L)->tailp)
/* List node information. A list node can be any of the types above. */
struct _list_node
{
_list_t next;
union
{
rtx x;
struct _bnd bnd;
expr_def expr;
struct _fence fence;
struct _def def;
void *data;
} u;
};
/* _list_t functions.
All of _*list_* functions are used through accessor macros, thus
we can't move them in sel-sched-ir.c. */
extern alloc_pool sched_lists_pool;
static inline _list_t
_list_alloc (void)
{
return (_list_t) pool_alloc (sched_lists_pool);
}
static inline void
_list_add (_list_t *lp)
{
_list_t l = _list_alloc ();
_LIST_NEXT (l) = *lp;
*lp = l;
}
static inline void
_list_remove_nofree (_list_t *lp)
{
_list_t n = *lp;
*lp = _LIST_NEXT (n);
}
static inline void
_list_remove (_list_t *lp)
{
_list_t n = *lp;
*lp = _LIST_NEXT (n);
pool_free (sched_lists_pool, n);
}
static inline void
_list_clear (_list_t *l)
{
while (*l)
_list_remove (l);
}
/* List iterator backend. */
typedef struct
{
/* The list we're iterating. */
_list_t *lp;
/* True when this iterator supprts removing. */
bool can_remove_p;
/* True when we've actually removed something. */
bool removed_p;
} _list_iterator;
static inline void
_list_iter_start (_list_iterator *ip, _list_t *lp, bool can_remove_p)
{
ip->lp = lp;
ip->can_remove_p = can_remove_p;
ip->removed_p = false;
}
static inline void
_list_iter_next (_list_iterator *ip)
{
if (!ip->removed_p)
ip->lp = &_LIST_NEXT (*ip->lp);
else
ip->removed_p = false;
}
static inline void
_list_iter_remove (_list_iterator *ip)
{
gcc_assert (!ip->removed_p && ip->can_remove_p);
_list_remove (ip->lp);
ip->removed_p = true;
}
static inline void
_list_iter_remove_nofree (_list_iterator *ip)
{
gcc_assert (!ip->removed_p && ip->can_remove_p);
_list_remove_nofree (ip->lp);
ip->removed_p = true;
}
/* General macros to traverse a list. FOR_EACH_* interfaces are
implemented using these. */
#define _FOR_EACH(TYPE, ELEM, I, L) \
for (_list_iter_start (&(I), &(L), false); \
_list_iter_cond_##TYPE (*(I).lp, &(ELEM)); \
_list_iter_next (&(I)))
#define _FOR_EACH_1(TYPE, ELEM, I, LP) \
for (_list_iter_start (&(I), (LP), true); \
_list_iter_cond_##TYPE (*(I).lp, &(ELEM)); \
_list_iter_next (&(I)))
/* _xlist_t functions. */
static inline void
_xlist_add (_xlist_t *lp, rtx x)
{
_list_add (lp);
_XLIST_X (*lp) = x;
}
#define _xlist_remove(LP) (_list_remove (LP))
#define _xlist_clear(LP) (_list_clear (LP))
static inline bool
_xlist_is_in_p (_xlist_t l, rtx x)
{
while (l)
{
if (_XLIST_X (l) == x)
return true;
l = _XLIST_NEXT (l);
}
return false;
}
/* Used through _FOR_EACH. */
static inline bool
_list_iter_cond_x (_xlist_t l, rtx *xp)
{
if (l)
{
*xp = _XLIST_X (l);
return true;
}
return false;
}
#define _xlist_iter_remove(IP) (_list_iter_remove (IP))
typedef _list_iterator _xlist_iterator;
#define _FOR_EACH_X(X, I, L) _FOR_EACH (x, (X), (I), (L))
#define _FOR_EACH_X_1(X, I, LP) _FOR_EACH_1 (x, (X), (I), (LP))
/* ilist_t functions. Instruction lists are simply RTX lists. */
#define ilist_add(LP, INSN) (_xlist_add ((LP), (INSN)))
#define ilist_remove(LP) (_xlist_remove (LP))
#define ilist_clear(LP) (_xlist_clear (LP))
#define ilist_is_in_p(L, INSN) (_xlist_is_in_p ((L), (INSN)))
#define ilist_iter_remove(IP) (_xlist_iter_remove (IP))
typedef _xlist_iterator ilist_iterator;
#define FOR_EACH_INSN(INSN, I, L) _FOR_EACH_X (INSN, I, L)
#define FOR_EACH_INSN_1(INSN, I, LP) _FOR_EACH_X_1 (INSN, I, LP)
/* Av set iterators. */
typedef _list_iterator av_set_iterator;
#define FOR_EACH_EXPR(EXPR, I, AV) _FOR_EACH (expr, (EXPR), (I), (AV))
#define FOR_EACH_EXPR_1(EXPR, I, AV) _FOR_EACH_1 (expr, (EXPR), (I), (AV))
static bool
_list_iter_cond_expr (av_set_t av, expr_t *exprp)
{
if (av)
{
*exprp = _AV_SET_EXPR (av);
return true;
}
return false;
}
/* Def list iterators. */
typedef _list_t def_list_t;
typedef _list_iterator def_list_iterator;
#define DEF_LIST_NEXT(L) (_LIST_NEXT (L))
#define DEF_LIST_DEF(L) (&(L)->u.def)
#define FOR_EACH_DEF(DEF, I, DEF_LIST) _FOR_EACH (def, (DEF), (I), (DEF_LIST))
static inline bool
_list_iter_cond_def (def_list_t def_list, def_t *def)
{
if (def_list)
{
*def = DEF_LIST_DEF (def_list);
return true;
}
return false;
}
/* InstructionData. Contains information about insn pattern. */
struct idata_def
{
/* Type of the insn.
o CALL_INSN - Call insn
o JUMP_INSN - Jump insn
o INSN - INSN that cannot be cloned
o USE - INSN that can be cloned
o SET - INSN that can be cloned and separable into lhs and rhs
o PC - simplejump. Insns that simply redirect control flow should not
have any dependencies. Sched-deps.c, though, might consider them as
producers or consumers of certain registers. To avoid that we handle
dependency for simple jumps ourselves. */
int type;
/* If insn is a SET, this is its left hand side. */
rtx lhs;
/* If insn is a SET, this is its right hand side. */
rtx rhs;
/* Registers that are set/used by this insn. This info is now gathered
via sched-deps.c. The downside of this is that we also use live info
from flow that is accumulated in the basic blocks. These two infos
can be slightly inconsistent, hence in the beginning we make a pass
through CFG and calculating the conservative solution for the info in
basic blocks. When this scheduler will be switched to use dataflow,
this can be unified as df gives us both per basic block and per
instruction info. Actually, we don't do that pass and just hope
for the best. */
regset reg_sets;
regset reg_clobbers;
regset reg_uses;
};
#define IDATA_TYPE(ID) ((ID)->type)
#define IDATA_LHS(ID) ((ID)->lhs)
#define IDATA_RHS(ID) ((ID)->rhs)
#define IDATA_REG_SETS(ID) ((ID)->reg_sets)
#define IDATA_REG_USES(ID) ((ID)->reg_uses)
#define IDATA_REG_CLOBBERS(ID) ((ID)->reg_clobbers)
/* Type to represent all needed info to emit an insn.
This is a virtual equivalent of the insn.
Every insn in the stream has an associated vinsn. This is used
to reduce memory consumption basing on the fact that many insns
don't change through the scheduler.
vinsn can be either normal or unique.
* Normal vinsn is the one, that can be cloned multiple times and typically
corresponds to normal instruction.
* Unique vinsn derivates from CALL, ASM, JUMP (for a while) and other
unusual stuff. Such a vinsn is described by its INSN field, which is a
reference to the original instruction. */
struct vinsn_def
{
/* Associated insn. */
rtx insn_rtx;
/* Its description. */
struct idata_def id;
/* Hash of vinsn. It is computed either from pattern or from rhs using
hash_rtx. It is not placed in ID for faster compares. */
unsigned hash;
/* Hash of the insn_rtx pattern. */
unsigned hash_rtx;
/* Smart pointer counter. */
int count;
/* Cached cost of the vinsn. To access it please use vinsn_cost (). */
int cost;
/* Mark insns that may trap so we don't move them through jumps. */
bool may_trap_p;
};
#define VINSN_INSN_RTX(VI) ((VI)->insn_rtx)
#define VINSN_PATTERN(VI) (PATTERN (VINSN_INSN_RTX (VI)))
#define VINSN_ID(VI) (&((VI)->id))
#define VINSN_HASH(VI) ((VI)->hash)
#define VINSN_HASH_RTX(VI) ((VI)->hash_rtx)
#define VINSN_TYPE(VI) (IDATA_TYPE (VINSN_ID (VI)))
#define VINSN_SEPARABLE_P(VI) (VINSN_TYPE (VI) == SET)
#define VINSN_CLONABLE_P(VI) (VINSN_SEPARABLE_P (VI) || VINSN_TYPE (VI) == USE)
#define VINSN_UNIQUE_P(VI) (!VINSN_CLONABLE_P (VI))
#define VINSN_LHS(VI) (IDATA_LHS (VINSN_ID (VI)))
#define VINSN_RHS(VI) (IDATA_RHS (VINSN_ID (VI)))
#define VINSN_REG_SETS(VI) (IDATA_REG_SETS (VINSN_ID (VI)))
#define VINSN_REG_USES(VI) (IDATA_REG_USES (VINSN_ID (VI)))
#define VINSN_REG_CLOBBERS(VI) (IDATA_REG_CLOBBERS (VINSN_ID (VI)))
#define VINSN_COUNT(VI) ((VI)->count)
#define VINSN_MAY_TRAP_P(VI) ((VI)->may_trap_p)
/* An entry of the hashtable describing transformations happened when
moving up through an insn. */
struct transformed_insns
{
/* Previous vinsn. Used to find the proper element. */
vinsn_t vinsn_old;
/* A new vinsn. */
vinsn_t vinsn_new;
/* Speculative status. */
ds_t ds;
/* Type of transformation happened. */
enum local_trans_type type;
/* Whether a conflict on the target register happened. */
BOOL_BITFIELD was_target_conflict : 1;
/* Whether a check was needed. */
BOOL_BITFIELD needs_check : 1;
};
/* Indexed by INSN_LUID, the collection of all data associated with
a single instruction that is in the stream. */
struct _sel_insn_data
{
/* The expression that contains vinsn for this insn and some
flow-sensitive data like priority. */
expr_def expr;
/* If (WS_LEVEL == GLOBAL_LEVEL) then AV is empty. */
int ws_level;
/* A number that helps in defining a traversing order for a region. */
int seqno;
/* A liveness data computed above this insn. */
regset live;
/* An INSN_UID bit is set when deps analysis result is already known. */
bitmap analyzed_deps;
/* An INSN_UID bit is set when a hard dep was found, not set when
no dependence is found. This is meaningful only when the analyzed_deps
bitmap has its bit set. */
bitmap found_deps;
/* An INSN_UID bit is set when this is a bookkeeping insn generated from
a parent with this uid. */
bitmap originators;
/* A hashtable caching the result of insn transformations through this one. */
htab_t transformed_insns;
/* A context incapsulating this insn. */
struct deps deps_context;
/* This field is initialized at the beginning of scheduling and is used
to handle sched group instructions. If it is non-null, then it points
to the instruction, which should be forced to schedule next. Such
instructions are unique. */
insn_t sched_next;
/* Cycle at which insn was scheduled. It is greater than zero if insn was
scheduled. This is used for bundling. */
int sched_cycle;
/* Cycle at which insn's data will be fully ready. */
int ready_cycle;
/* Speculations that are being checked by this insn. */
ds_t spec_checked_ds;
/* Whether the live set valid or not. */
BOOL_BITFIELD live_valid_p : 1;
/* Insn is an ASM. */
BOOL_BITFIELD asm_p : 1;
/* True when an insn is scheduled after we've determined that a stall is
required.
This is used when emulating the Haifa scheduler for bundling. */
BOOL_BITFIELD after_stall_p : 1;
};
typedef struct _sel_insn_data sel_insn_data_def;
typedef sel_insn_data_def *sel_insn_data_t;
DEF_VEC_O (sel_insn_data_def);
DEF_VEC_ALLOC_O (sel_insn_data_def, heap);
extern VEC (sel_insn_data_def, heap) *s_i_d;
/* Accessor macros for s_i_d. */
#define SID(INSN) (VEC_index (sel_insn_data_def, s_i_d, INSN_LUID (INSN)))
#define SID_BY_UID(UID) (VEC_index (sel_insn_data_def, s_i_d, LUID_BY_UID (UID)))
extern sel_insn_data_def insn_sid (insn_t);
#define INSN_ASM_P(INSN) (SID (INSN)->asm_p)
#define INSN_SCHED_NEXT(INSN) (SID (INSN)->sched_next)
#define INSN_ANALYZED_DEPS(INSN) (SID (INSN)->analyzed_deps)
#define INSN_FOUND_DEPS(INSN) (SID (INSN)->found_deps)
#define INSN_DEPS_CONTEXT(INSN) (SID (INSN)->deps_context)
#define INSN_ORIGINATORS(INSN) (SID (INSN)->originators)
#define INSN_ORIGINATORS_BY_UID(UID) (SID_BY_UID (UID)->originators)
#define INSN_TRANSFORMED_INSNS(INSN) (SID (INSN)->transformed_insns)
#define INSN_EXPR(INSN) (&SID (INSN)->expr)
#define INSN_LIVE(INSN) (SID (INSN)->live)
#define INSN_LIVE_VALID_P(INSN) (SID (INSN)->live_valid_p)
#define INSN_VINSN(INSN) (EXPR_VINSN (INSN_EXPR (INSN)))
#define INSN_TYPE(INSN) (VINSN_TYPE (INSN_VINSN (INSN)))
#define INSN_SIMPLEJUMP_P(INSN) (INSN_TYPE (INSN) == PC)
#define INSN_LHS(INSN) (VINSN_LHS (INSN_VINSN (INSN)))
#define INSN_RHS(INSN) (VINSN_RHS (INSN_VINSN (INSN)))
#define INSN_REG_SETS(INSN) (VINSN_REG_SETS (INSN_VINSN (INSN)))
#define INSN_REG_CLOBBERS(INSN) (VINSN_REG_CLOBBERS (INSN_VINSN (INSN)))
#define INSN_REG_USES(INSN) (VINSN_REG_USES (INSN_VINSN (INSN)))
#define INSN_SCHED_TIMES(INSN) (EXPR_SCHED_TIMES (INSN_EXPR (INSN)))
#define INSN_SEQNO(INSN) (SID (INSN)->seqno)
#define INSN_AFTER_STALL_P(INSN) (SID (INSN)->after_stall_p)
#define INSN_SCHED_CYCLE(INSN) (SID (INSN)->sched_cycle)
#define INSN_READY_CYCLE(INSN) (SID (INSN)->ready_cycle)
#define INSN_SPEC_CHECKED_DS(INSN) (SID (INSN)->spec_checked_ds)
/* A global level shows whether an insn is valid or not. */
extern int global_level;
#define INSN_WS_LEVEL(INSN) (SID (INSN)->ws_level)
extern av_set_t get_av_set (insn_t);
extern int get_av_level (insn_t);
#define AV_SET(INSN) (get_av_set (INSN))
#define AV_LEVEL(INSN) (get_av_level (INSN))
#define AV_SET_VALID_P(INSN) (AV_LEVEL (INSN) == global_level)
/* A list of fences currently in the works. */
extern flist_t fences;
/* A NOP pattern used as a placeholder for real insns. */
extern rtx nop_pattern;
/* An insn that 'contained' in EXIT block. */
extern rtx exit_insn;
/* Provide a separate luid for the insn. */
#define INSN_INIT_TODO_LUID (1)
/* Initialize s_s_i_d. */
#define INSN_INIT_TODO_SSID (2)
/* Initialize data for simplejump. */
#define INSN_INIT_TODO_SIMPLEJUMP (4)
/* Return true if INSN is a local NOP. The nop is local in the sense that
it was emitted by the scheduler as a temporary insn and will soon be
deleted. These nops are identified by their pattern. */
#define INSN_NOP_P(INSN) (PATTERN (INSN) == nop_pattern)
/* Return true if INSN is linked into instruction stream.
NB: It is impossible for INSN to have one field null and the other not
null: gcc_assert ((PREV_INSN (INSN) == NULL_RTX)
== (NEXT_INSN (INSN) == NULL_RTX)) is valid. */
#define INSN_IN_STREAM_P(INSN) (PREV_INSN (INSN) && NEXT_INSN (INSN))
/* Return true if INSN is in current fence. */
#define IN_CURRENT_FENCE_P(INSN) (flist_lookup (fences, INSN) != NULL)
/* Marks loop as being considered for pipelining. */
#define MARK_LOOP_FOR_PIPELINING(LOOP) ((LOOP)->aux = (void *)(size_t)(1))
#define LOOP_MARKED_FOR_PIPELINING_P(LOOP) ((size_t)((LOOP)->aux))
/* Saved loop preheader to transfer when scheduling the loop. */
#define LOOP_PREHEADER_BLOCKS(LOOP) ((size_t)((LOOP)->aux) == 1 \
? NULL \
: ((VEC(basic_block, heap) *) (LOOP)->aux))
#define SET_LOOP_PREHEADER_BLOCKS(LOOP,BLOCKS) ((LOOP)->aux \
= (BLOCKS != NULL \
? BLOCKS \
: (LOOP)->aux))
extern bitmap blocks_to_reschedule;
/* A variable to track which part of rtx we are scanning in
sched-deps.c: sched_analyze_insn (). */
enum deps_where_def
{
DEPS_IN_INSN,
DEPS_IN_LHS,
DEPS_IN_RHS,
DEPS_IN_NOWHERE
};
typedef enum deps_where_def deps_where_t;
/* Per basic block data for the whole CFG. */
typedef struct
{
/* For each bb header this field contains a set of live registers.
For all other insns this field has a NULL.
We also need to know LV sets for the instructions, that are immediatly
after the border of the region. */
regset lv_set;
/* Status of LV_SET.
true - block has usable LV_SET.
false - block's LV_SET should be recomputed. */
bool lv_set_valid_p;
} sel_global_bb_info_def;
typedef sel_global_bb_info_def *sel_global_bb_info_t;
DEF_VEC_O (sel_global_bb_info_def);
DEF_VEC_ALLOC_O (sel_global_bb_info_def, heap);
/* Per basic block data. This array is indexed by basic block index. */
extern VEC (sel_global_bb_info_def, heap) *sel_global_bb_info;
extern void sel_extend_global_bb_info (void);
extern void sel_finish_global_bb_info (void);
/* Get data for BB. */
#define SEL_GLOBAL_BB_INFO(BB) \
(VEC_index (sel_global_bb_info_def, sel_global_bb_info, (BB)->index))
/* Access macros. */
#define BB_LV_SET(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set)
#define BB_LV_SET_VALID_P(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set_valid_p)
/* Per basic block data for the region. */
typedef struct
{
/* This insn stream is constructed in such a way that it should be
traversed by PREV_INSN field - (*not* NEXT_INSN). */
rtx note_list;
/* Cached availability set at the beginning of a block.
See also AV_LEVEL () for conditions when this av_set can be used. */
av_set_t av_set;
/* If (AV_LEVEL == GLOBAL_LEVEL) then AV is valid. */
int av_level;
} sel_region_bb_info_def;
typedef sel_region_bb_info_def *sel_region_bb_info_t;
DEF_VEC_O (sel_region_bb_info_def);
DEF_VEC_ALLOC_O (sel_region_bb_info_def, heap);
/* Per basic block data. This array is indexed by basic block index. */
extern VEC (sel_region_bb_info_def, heap) *sel_region_bb_info;
/* Get data for BB. */
#define SEL_REGION_BB_INFO(BB) (VEC_index (sel_region_bb_info_def, \
sel_region_bb_info, (BB)->index))
/* Get BB's note_list.
A note_list is a list of various notes that was scattered across BB
before scheduling, and will be appended at the beginning of BB after
scheduling is finished. */
#define BB_NOTE_LIST(BB) (SEL_REGION_BB_INFO (BB)->note_list)
#define BB_AV_SET(BB) (SEL_REGION_BB_INFO (BB)->av_set)
#define BB_AV_LEVEL(BB) (SEL_REGION_BB_INFO (BB)->av_level)
#define BB_AV_SET_VALID_P(BB) (BB_AV_LEVEL (BB) == global_level)
/* Used in bb_in_ebb_p. */
extern bitmap_head *forced_ebb_heads;
/* The loop nest being pipelined. */
extern struct loop *current_loop_nest;
/* Saves pipelined blocks. Bitmap is indexed by bb->index. */
extern sbitmap bbs_pipelined;
/* Various flags. */
extern bool enable_moveup_set_path_p;
extern bool pipelining_p;
extern bool bookkeeping_p;
extern int max_insns_to_rename;
extern bool preheader_removed;
/* Software lookahead window size.
According to the results in Nakatani and Ebcioglu [1993], window size of 16
is enough to extract most ILP in integer code. */
#define MAX_WS (PARAM_VALUE (PARAM_SELSCHED_MAX_LOOKAHEAD))
extern regset sel_all_regs;
/* Successor iterator backend. */
typedef struct
{
/* True if we're at BB end. */
bool bb_end;
/* An edge on which we're iterating. */
edge e1;
/* The previous edge saved after skipping empty blocks. */
edge e2;
/* Edge iterator used when there are successors in other basic blocks. */
edge_iterator ei;
/* Successor block we're traversing. */
basic_block bb;
/* Flags that are passed to the iterator. We return only successors
that comply to these flags. */
short flags;
/* When flags include SUCCS_ALL, this will be set to the exact type
of the sucessor we're traversing now. */
short current_flags;
/* If skip to loop exits, save here information about loop exits. */
int current_exit;
VEC (edge, heap) *loop_exits;
} succ_iterator;
/* A structure returning all successor's information. */
struct succs_info
{
/* Flags that these succcessors were computed with. */
short flags;
/* Successors that correspond to the flags. */
insn_vec_t succs_ok;
/* Their probabilities. As of now, we don't need this for other
successors. */
VEC(int,heap) *probs_ok;
/* Other successors. */
insn_vec_t succs_other;
/* Probability of all successors. */
int all_prob;
/* The number of all successors. */
int all_succs_n;
/* The number of good successors. */
int succs_ok_n;
};
/* Some needed definitions. */
extern basic_block after_recovery;
extern insn_t sel_bb_head (basic_block);
extern bool sel_bb_empty_p (basic_block);
extern bool in_current_region_p (basic_block);
/* True when BB is a header of the inner loop. */
static inline bool
inner_loop_header_p (basic_block bb)
{
struct loop *inner_loop;
if (!current_loop_nest)
return false;
if (bb == EXIT_BLOCK_PTR)
return false;
inner_loop = bb->loop_father;
if (inner_loop == current_loop_nest)
return false;
/* If successor belongs to another loop. */
if (bb == inner_loop->header
&& flow_bb_inside_loop_p (current_loop_nest, bb))
{
/* Could be '=' here because of wrong loop depths. */
gcc_assert (loop_depth (inner_loop) >= loop_depth (current_loop_nest));
return true;
}
return false;
}
/* Return exit edges of LOOP, filtering out edges with the same dest bb. */
static inline VEC (edge, heap) *
get_loop_exit_edges_unique_dests (const struct loop *loop)
{
VEC (edge, heap) *edges = NULL;
struct loop_exit *exit;
gcc_assert (loop->latch != EXIT_BLOCK_PTR
&& current_loops->state & LOOPS_HAVE_RECORDED_EXITS);
for (exit = loop->exits->next; exit->e; exit = exit->next)
{
int i;
edge e;
bool was_dest = false;
for (i = 0; VEC_iterate (edge, edges, i, e); i++)
if (e->dest == exit->e->dest)
{
was_dest = true;
break;
}
if (!was_dest)
VEC_safe_push (edge, heap, edges, exit->e);
}
return edges;
}
/* Collect all loop exits recursively, skipping empty BBs between them.
E.g. if BB is a loop header which has several loop exits,
traverse all of them and if any of them turns out to be another loop header
(after skipping empty BBs), add its loop exits to the resulting vector
as well. */
static inline VEC(edge, heap) *
get_all_loop_exits (basic_block bb)
{
VEC(edge, heap) *exits = NULL;
/* If bb is empty, and we're skipping to loop exits, then
consider bb as a possible gate to the inner loop now. */
while (sel_bb_empty_p (bb)
&& in_current_region_p (bb))
{
bb = single_succ (bb);
/* This empty block could only lead outside the region. */
gcc_assert (! in_current_region_p (bb));
}
/* And now check whether we should skip over inner loop. */
if (inner_loop_header_p (bb))
{
struct loop *this_loop;
struct loop *pred_loop = NULL;
int i;
edge e;
for (this_loop = bb->loop_father;
this_loop && this_loop != current_loop_nest;
this_loop = loop_outer (this_loop))
pred_loop = this_loop;
this_loop = pred_loop;
gcc_assert (this_loop != NULL);
exits = get_loop_exit_edges_unique_dests (this_loop);
/* Traverse all loop headers. */
for (i = 0; VEC_iterate (edge, exits, i, e); i++)
if (in_current_region_p (e->dest))
{
VEC(edge, heap) *next_exits = get_all_loop_exits (e->dest);
if (next_exits)
{
int j;
edge ne;
/* Add all loop exits for the current edge into the
resulting vector. */
for (j = 0; VEC_iterate (edge, next_exits, j, ne); j++)
VEC_safe_push (edge, heap, exits, ne);
/* Remove the original edge. */
VEC_ordered_remove (edge, exits, i);
/* Decrease the loop counter so we won't skip anything. */
i--;
continue;
}
}
}
return exits;
}
/* Flags to pass to compute_succs_info and FOR_EACH_SUCC.
Any successor will fall into exactly one category. */
/* Include normal successors. */
#define SUCCS_NORMAL (1)
/* Include back-edge successors. */
#define SUCCS_BACK (2)
/* Include successors that are outside of the current region. */
#define SUCCS_OUT (4)
/* When pipelining of the outer loops is enabled, skip innermost loops
to their exits. */
#define SUCCS_SKIP_TO_LOOP_EXITS (8)
/* Include all successors. */
#define SUCCS_ALL (SUCCS_NORMAL | SUCCS_BACK | SUCCS_OUT)
/* We need to return a succ_iterator to avoid 'unitialized' warning
during bootstrap. */
static inline succ_iterator
_succ_iter_start (insn_t *succp, insn_t insn, int flags)
{
succ_iterator i;
basic_block bb = BLOCK_FOR_INSN (insn);
gcc_assert (INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn));
i.flags = flags;
/* Avoid 'uninitialized' warning. */
*succp = NULL;
i.e1 = NULL;
i.e2 = NULL;
i.bb = bb;
i.current_flags = 0;
i.current_exit = -1;
i.loop_exits = NULL;
if (bb != EXIT_BLOCK_PTR && BB_END (bb) != insn)
{
i.bb_end = false;
/* Avoid 'uninitialized' warning. */
i.ei.index = 0;
i.ei.container = NULL;
}
else
{
i.ei = ei_start (bb->succs);
i.bb_end = true;
}
return i;
}
static inline bool
_succ_iter_cond (succ_iterator *ip, rtx *succp, rtx insn,
bool check (edge, succ_iterator *))
{
if (!ip->bb_end)
{
/* When we're in a middle of a basic block, return
the next insn immediately, but only when SUCCS_NORMAL is set. */
if (*succp != NULL || (ip->flags & SUCCS_NORMAL) == 0)
return false;
*succp = NEXT_INSN (insn);
ip->current_flags = SUCCS_NORMAL;
return true;
}
else
{
while (1)
{
edge e_tmp = NULL;
/* First, try loop exits, if we have them. */
if (ip->loop_exits)
{
do
{
VEC_iterate (edge, ip->loop_exits,
ip->current_exit, e_tmp);
ip->current_exit++;
}
while (e_tmp && !check (e_tmp, ip));
if (!e_tmp)
VEC_free (edge, heap, ip->loop_exits);
}
/* If we have found a successor, then great. */
if (e_tmp)
{
ip->e1 = e_tmp;
break;
}
/* If not, then try the next edge. */
while (ei_cond (ip->ei, &(ip->e1)))
{
basic_block bb = ip->e1->dest;
/* Consider bb as a possible loop header. */
if ((ip->flags & SUCCS_SKIP_TO_LOOP_EXITS)
&& flag_sel_sched_pipelining_outer_loops
&& (!in_current_region_p (bb)
|| BLOCK_TO_BB (ip->bb->index)
< BLOCK_TO_BB (bb->index)))
{
/* Get all loop exits recursively. */
ip->loop_exits = get_all_loop_exits (bb);
if (ip->loop_exits)
{
ip->current_exit = 0;
/* Move the iterator now, because we won't do
succ_iter_next until loop exits will end. */
ei_next (&(ip->ei));
break;
}
}
/* bb is not a loop header, check as usual. */
if (check (ip->e1, ip))
break;
ei_next (&(ip->ei));
}
/* If loop_exits are non null, we have found an inner loop;
do one more iteration to fetch an edge from these exits. */
if (ip->loop_exits)
continue;
/* Otherwise, we've found an edge in a usual way. Break now. */
break;
}
if (ip->e1)
{
basic_block bb = ip->e2->dest;
if (bb == EXIT_BLOCK_PTR || bb == after_recovery)
*succp = exit_insn;
else
{
*succp = sel_bb_head (bb);
gcc_assert (ip->flags != SUCCS_NORMAL
|| *succp == NEXT_INSN (bb_note (bb)));
gcc_assert (BLOCK_FOR_INSN (*succp) == bb);
}
return true;
}
else
return false;
}
}
static inline void
_succ_iter_next (succ_iterator *ip)
{
gcc_assert (!ip->e2 || ip->e1);
if (ip->bb_end && ip->e1 && !ip->loop_exits)
ei_next (&(ip->ei));
}
/* Returns true when E1 is an eligible successor edge, possibly skipping
empty blocks. When E2P is not null, the resulting edge is written there.
FLAGS are used to specify whether back edges and out-of-region edges
should be considered. */
static inline bool
_eligible_successor_edge_p (edge e1, succ_iterator *ip)
{
edge e2 = e1;
basic_block bb;
int flags = ip->flags;
bool src_outside_rgn = !in_current_region_p (e1->src);
gcc_assert (flags != 0);
if (src_outside_rgn)
{
/* Any successor of the block that is outside current region is
ineligible, except when we're skipping to loop exits. */
gcc_assert (flags & (SUCCS_OUT | SUCCS_SKIP_TO_LOOP_EXITS));
if (flags & SUCCS_OUT)
return false;
}
bb = e2->dest;
/* Skip empty blocks, but be careful not to leave the region. */
while (1)
{
if (!sel_bb_empty_p (bb))
break;
if (!in_current_region_p (bb)
&& !(flags & SUCCS_OUT))
return false;
e2 = EDGE_SUCC (bb, 0);
bb = e2->dest;
}
/* Save the second edge for later checks. */
ip->e2 = e2;
if (in_current_region_p (bb))
{
/* BLOCK_TO_BB sets topological order of the region here.
It is important to use real predecessor here, which is ip->bb,
as we may well have e1->src outside current region,
when skipping to loop exits. */
bool succeeds_in_top_order = (BLOCK_TO_BB (ip->bb->index)
< BLOCK_TO_BB (bb->index));
/* This is true for the all cases except the last one. */
ip->current_flags = SUCCS_NORMAL;
/* We are advancing forward in the region, as usual. */
if (succeeds_in_top_order)
{
/* We are skipping to loop exits here. */
gcc_assert (!src_outside_rgn
|| flag_sel_sched_pipelining_outer_loops);
return !!(flags & SUCCS_NORMAL);
}
/* This is a back edge. During pipelining we ignore back edges,
but only when it leads to the same loop. It can lead to the header
of the outer loop, which will also be the preheader of
the current loop. */
if (pipelining_p
&& e1->src->loop_father == bb->loop_father)
return !!(flags & SUCCS_NORMAL);
/* A back edge should be requested explicitly. */
ip->current_flags = SUCCS_BACK;
return !!(flags & SUCCS_BACK);
}
ip->current_flags = SUCCS_OUT;
return !!(flags & SUCCS_OUT);
}
#define FOR_EACH_SUCC_1(SUCC, ITER, INSN, FLAGS) \
for ((ITER) = _succ_iter_start (&(SUCC), (INSN), (FLAGS)); \
_succ_iter_cond (&(ITER), &(SUCC), (INSN), _eligible_successor_edge_p); \
_succ_iter_next (&(ITER)))
#define FOR_EACH_SUCC(SUCC, ITER, INSN) \
FOR_EACH_SUCC_1 (SUCC, ITER, INSN, SUCCS_NORMAL)
/* Return the current edge along which a successor was built. */
#define SUCC_ITER_EDGE(ITER) ((ITER)->e1)
/* Return the next block of BB not running into inconsistencies. */
static inline basic_block
bb_next_bb (basic_block bb)
{
switch (EDGE_COUNT (bb->succs))
{
case 0:
return bb->next_bb;
case 1:
return single_succ (bb);
case 2:
return FALLTHRU_EDGE (bb)->dest;
default:
return bb->next_bb;
}
gcc_unreachable ();
}
/* Functions that are used in sel-sched.c. */
/* List functions. */
extern ilist_t ilist_copy (ilist_t);
extern ilist_t ilist_invert (ilist_t);
extern void blist_add (blist_t *, insn_t, ilist_t, deps_t);
extern void blist_remove (blist_t *);
extern void flist_tail_init (flist_tail_t);
extern fence_t flist_lookup (flist_t, insn_t);
extern void flist_clear (flist_t *);
extern void def_list_add (def_list_t *, insn_t, bool);
/* Target context functions. */
extern tc_t create_target_context (bool);
extern void set_target_context (tc_t);
extern void reset_target_context (tc_t, bool);
/* Deps context functions. */
extern void advance_deps_context (deps_t, insn_t);
/* Fences functions. */
extern void init_fences (insn_t);
extern void add_clean_fence_to_fences (flist_tail_t, insn_t, fence_t);
extern void add_dirty_fence_to_fences (flist_tail_t, insn_t, fence_t);
extern void move_fence_to_fences (flist_t, flist_tail_t);
/* Pool functions. */
extern regset get_regset_from_pool (void);
extern regset get_clear_regset_from_pool (void);
extern void return_regset_to_pool (regset);
extern void free_regset_pool (void);
extern insn_t get_nop_from_pool (insn_t);
extern void return_nop_to_pool (insn_t);
extern void free_nop_pool (void);
/* Vinsns functions. */
extern bool vinsn_separable_p (vinsn_t);
extern bool vinsn_cond_branch_p (vinsn_t);
extern void recompute_vinsn_lhs_rhs (vinsn_t);
extern int sel_vinsn_cost (vinsn_t);
extern insn_t sel_gen_insn_from_rtx_after (rtx, expr_t, int, insn_t);
extern insn_t sel_gen_recovery_insn_from_rtx_after (rtx, expr_t, int, insn_t);
extern insn_t sel_gen_insn_from_expr_after (expr_t, vinsn_t, int, insn_t);
extern insn_t sel_move_insn (expr_t, int, insn_t);
extern void vinsn_attach (vinsn_t);
extern void vinsn_detach (vinsn_t);
extern vinsn_t vinsn_copy (vinsn_t, bool);
extern bool vinsn_equal_p (vinsn_t, vinsn_t);
/* EXPR functions. */
extern void copy_expr (expr_t, expr_t);
extern void copy_expr_onside (expr_t, expr_t);
extern void merge_expr_data (expr_t, expr_t, insn_t);
extern void merge_expr (expr_t, expr_t, insn_t);
extern void clear_expr (expr_t);
extern unsigned expr_dest_regno (expr_t);
extern rtx expr_dest_reg (expr_t);
extern int find_in_history_vect (VEC(expr_history_def, heap) *,
rtx, vinsn_t, bool);
extern void insert_in_history_vect (VEC(expr_history_def, heap) **,
unsigned, enum local_trans_type,
vinsn_t, vinsn_t, ds_t);
extern void mark_unavailable_targets (av_set_t, av_set_t, regset);
extern int speculate_expr (expr_t, ds_t);
/* Av set functions. */
extern void av_set_add (av_set_t *, expr_t);
extern void av_set_iter_remove (av_set_iterator *);
extern expr_t av_set_lookup (av_set_t, vinsn_t);
extern expr_t merge_with_other_exprs (av_set_t *, av_set_iterator *, expr_t);
extern bool av_set_is_in_p (av_set_t, vinsn_t);
extern av_set_t av_set_copy (av_set_t);
extern void av_set_union_and_clear (av_set_t *, av_set_t *, insn_t);
extern void av_set_union_and_live (av_set_t *, av_set_t *, regset, regset, insn_t);
extern void av_set_clear (av_set_t *);
extern void av_set_leave_one_nonspec (av_set_t *);
extern expr_t av_set_element (av_set_t, int);
extern void av_set_substract_cond_branches (av_set_t *);
extern void av_set_split_usefulness (av_set_t, int, int);
extern void av_set_intersect (av_set_t *, av_set_t);
extern void sel_save_haifa_priorities (void);
extern void sel_init_global_and_expr (bb_vec_t);
extern void sel_finish_global_and_expr (void);
extern regset compute_live (insn_t);
/* Dependence analysis functions. */
extern void sel_clear_has_dependence (void);
extern ds_t has_dependence_p (expr_t, insn_t, ds_t **);
extern int tick_check_p (expr_t, deps_t, fence_t);
/* Functions to work with insns. */
extern bool lhs_of_insn_equals_to_dest_p (insn_t, rtx);
extern bool insn_eligible_for_subst_p (insn_t);
extern void get_dest_and_mode (rtx, rtx *, enum machine_mode *);
extern bool bookkeeping_can_be_created_if_moved_through_p (insn_t);
extern bool sel_remove_insn (insn_t, bool, bool);
extern bool bb_header_p (insn_t);
extern void sel_init_invalid_data_sets (insn_t);
extern bool insn_at_boundary_p (insn_t);
extern bool jump_leads_only_to_bb_p (insn_t, basic_block);
/* Basic block and CFG functions. */
extern insn_t sel_bb_head (basic_block);
extern bool sel_bb_head_p (insn_t);
extern insn_t sel_bb_end (basic_block);
extern bool sel_bb_end_p (insn_t);
extern bool sel_bb_empty_p (basic_block);
extern bool in_current_region_p (basic_block);
extern basic_block fallthru_bb_of_jump (rtx);
extern void sel_init_bbs (bb_vec_t, basic_block);
extern void sel_finish_bbs (void);
extern struct succs_info * compute_succs_info (insn_t, short);
extern void free_succs_info (struct succs_info *);
extern bool sel_insn_has_single_succ_p (insn_t, int);
extern bool sel_num_cfg_preds_gt_1 (insn_t);
extern int get_seqno_by_preds (rtx);
extern bool bb_ends_ebb_p (basic_block);
extern bool in_same_ebb_p (insn_t, insn_t);
extern bool tidy_control_flow (basic_block, bool);
extern void free_bb_note_pool (void);
extern void sel_remove_empty_bb (basic_block, bool, bool);
extern bool maybe_tidy_empty_bb (basic_block bb);
extern basic_block sel_split_edge (edge);
extern basic_block sel_create_recovery_block (insn_t);
extern void sel_merge_blocks (basic_block, basic_block);
extern void sel_redirect_edge_and_branch (edge, basic_block);
extern void sel_redirect_edge_and_branch_force (edge, basic_block);
extern void sel_init_pipelining (void);
extern void sel_finish_pipelining (void);
extern void sel_sched_region (int);
extern loop_p get_loop_nest_for_rgn (unsigned int);
extern bool considered_for_pipelining_p (struct loop *);
extern void make_region_from_loop_preheader (VEC(basic_block, heap) **);
extern void sel_add_loop_preheaders (void);
extern bool sel_is_loop_preheader_p (basic_block);
extern void clear_outdated_rtx_info (basic_block);
extern void free_data_sets (basic_block);
extern void exchange_data_sets (basic_block, basic_block);
extern void copy_data_sets (basic_block, basic_block);
extern void sel_register_cfg_hooks (void);
extern void sel_unregister_cfg_hooks (void);
/* Expression transformation routines. */
extern rtx create_insn_rtx_from_pattern (rtx, rtx);
extern vinsn_t create_vinsn_from_insn_rtx (rtx, bool);
extern rtx create_copy_of_insn_rtx (rtx);
extern void change_vinsn_in_expr (expr_t, vinsn_t);
/* Various initialization functions. */
extern void init_lv_sets (void);
extern void free_lv_sets (void);
extern void setup_nop_and_exit_insns (void);
extern void free_nop_and_exit_insns (void);
extern void setup_nop_vinsn (void);
extern void free_nop_vinsn (void);
extern void sel_set_sched_flags (void);
extern void sel_setup_sched_infos (void);
extern void alloc_sched_pools (void);
extern void free_sched_pools (void);
#endif /* GCC_SEL_SCHED_IR_H */
|