1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
|
/* Sign extension elimination optimization for GNU compiler.
Copyright (C) 2005 Free Software Foundation, Inc.
Contributed by Leehod Baruch <leehod@il.ibm.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.
Problem description:
--------------------
In order to support 32bit computations on a 64bit machine, sign
extension instructions are generated to ensure the correctness of
the computation.
A possible policy (as currently implemented) is to generate a sign
extension right after each 32bit computation.
Depending on the instruction set of the architecture, some of these
sign extension instructions may be redundant.
There are two cases in which the extension may be redundant:
Case1:
The instruction that uses the 64bit operands that are sign
extended has a dual mode that works with 32bit operands.
For example:
int32 a, b;
a = .... --> a = ....
a = sign extend a -->
b = .... --> b = ....
b = sign extend a -->
-->
cmpd a, b --> cmpw a, b //half word compare
Case2:
The instruction that defines the 64bit operand (which is later sign
extended) has a dual mode that defines and sign-extends simultaneously
a 32bit operand. For example:
int32 a;
ld a --> lwa a // load half word and sign extend
a = sign extend a -->
-->
return a --> return a
General idea for solution:
--------------------------
First, try to merge the sign extension with the instruction that
defines the source of the extension and (separately) with the
instructions that uses the extended result. By doing this, both cases
of redundancies (as described above) will be eliminated.
Then, use partial redundancy elimination to place the non redundant
ones at optimal placements.
Implementation by example:
--------------------------
Note: The instruction stream is not changed till the last phase.
Phase 0: Initial code, as currently generated by gcc.
def1 def3
se1 def2 se3
| \ | / |
| \ | / |
| \ | / |
| \ | / |
| \ | / |
| \|/ |
use1 use2 use3
use4
def1 + se1:
set ((reg:SI 10) (..def1rhs..))
set ((reg:DI 100) (sign_extend:DI (reg:SI 10)))
def2:
set ((reg:DI 100) (const_int 7))
def3 + se3:
set ((reg:SI 20) (..def3rhs..))
set ((reg:DI 100) (sign_extend:DI (reg:SI 20)))
use1:
set ((reg:CC...) (compare:CC (reg:DI 100) (...)))
use2, use3, use4:
set ((...) (reg:DI 100))
Phase 1: Propagate extensions to uses.
def1 def3
se1 def2 se3
| \ | / |
| \ | / |
| \ | / |
| \ | / |
| \ | / |
| \|/ |
se se se
use1 use2 use3
se
use4
From here, all of the subregs are lowpart !
def1, def2, def3: No change.
use1:
set ((reg:DI 100) (sign_extend:DI ((subreg:SI (reg:DI 100)))))
set ((reg:CC...) (compare:CC (reg:DI 100) (...)))
use2, use3, use4:
set ((reg:DI 100) (sign_extend:DI ((subreg:SI (reg:DI 100)))))
set ((...) (reg:DI 100))
Phase 2: Merge and eliminate locally redundant extensions.
*def1 def2 *def3
[se removed] se se3
| \ | / |
| \ | / |
| \ | / |
| \ | / |
| \ | / |
| \|/ |
[se removed] se se
*use1 use2 use3
[se removed]
use4
The instructions that were changed at this phase are marked with
asterisk.
*def1: Merge failed.
Remove the sign extension instruction, modify def1 and
insert a move instruction to assure to correctness of the code.
set ((subreg:SI (reg:DI 100)) (..def1rhs..))
set ((reg:SI 10) (subreg:SI (reg:DI 100)))
def2 + se: There is no need for merge.
Def2 is not changed but a sign extension instruction is
created.
set ((reg:DI 100) (const_int 7))
set ((reg:DI 100) (sign_extend:DI ((subreg:SI (reg:DI 100)))))
*def3 + se3: Merge succeeded.
set ((reg:DI 100) (sign_extend:DI (..def3rhs..)))
set ((reg:SI 20) (reg:DI 100))
set ((reg:DI 100) (sign_extend:DI (reg:SI 20)))
(The extension instruction is the original one).
*use1: Merge succeeded. Remove the sign extension instruction.
set ((reg:CC...)
(compare:CC (subreg:SI (reg:DI 100)) (...)))
use2, use3: Merge failed. No change.
use4: The extension is locally redundant, therefore it is eliminated
at this point.
Phase 3: Eliminate globally redundant extensions.
Following the LCM output:
def1 def2 def3
se se3
| \ | / |
| \ | / |
| se | / |
| \ | / |
| \ | / |
| \|/ |
[ses removed]
use1 use2 use3
use4
se:
set ((reg:DI 100) (sign_extend:DI ((subreg:SI (reg:DI 100)))))
se3:
set ((reg:DI 100) (sign_extend:DI (reg:SI 20)))
Phase 4: Commit changes to the insn stream.
def1 def3 *def1 def2 *def3
se1 def2 se3 [se removed] [se removed]
| \ | / | | \ | / |
| \ | / | ------> | \ | / |
| \ | / | ------> | se | / |
| \ | / | | \ | / |
| \ | / | | \ | / |
| \|/ | | \|/ |
use1 use2 use3 *use1 use2 use3
use4 use4
The instructions that were changed during the whole optimization are
marked with asterisk.
The result:
def1 + se1:
[ set ((reg:SI 10) (..def1rhs..)) ] - Deleted
[ set ((reg:DI 100) (sign_extend:DI (reg:SI 10))) ] - Deleted
set ((subreg:SI (reg:DI 100)) (..def3rhs..)) - Inserted
set ((reg:SI 10) (subreg:SI (reg:DI 100))) - Inserted
def2:
set ((reg:DI 100) (const_int 7)) - No change
def3 + se3:
[ set ((reg:SI 20) (..def3rhs..)) ] - Deleted
[ set ((reg:DI 100) (sign_extend:DI (reg:SI 20))) ] - Deleted
set ((reg:DI 100) (sign_extend:DI (..def3rhs..))) - Inserted
set ((reg:SI 20) (reg:DI 100)) - Inserted
use1:
[ set ((reg:CC...) (compare:CC (reg:DI 100) (...))) ] - Deleted
set ((reg:CC...) - Inserted
(compare:CC (subreg:SI (reg:DI 100)) (...)))
use2, use3, use4:
set ((...) (reg:DI 100)) - No change
se: - Inserted
set ((reg:DI 100) (sign_extend:DI ((subreg:SI (reg:DI 100)))))
Note: Most of the simple move instructions that were inserted will be
trivially dead and therefore eliminated.
The implementation outline:
---------------------------
Some definitions:
A web is RELEVANT if at the end of phase 1, his leader's
relevancy is {ZERO, SIGN}_EXTENDED_DEF. The source_mode of
the web is the source_mode of his leader.
A definition is a candidate for the optimization if it is part
of a RELEVANT web and his local source_mode is not narrower
then the source_mode of its web.
A use is a candidate for the optimization if it is part of a
RELEVANT web.
A simple explicit extension is a single set instruction that
extends a register (or a subregister) to a register (or
subregister).
A complex explicit extension is an explicit extension instruction
that is not simple.
A def extension is a simple explicit extension that is
also a candidate for the optimization. This extension is part
of the instruction stream, it is not generated by this
optimization.
A use extension is a simple explicit extension that is generated
and stored for candidate use during this optimization. It is
not emitted to the instruction stream till the last phase of
the optimization.
A reference is an instruction that satisfy at least on of these
criteria:
- It contains a definition with EXTENDED_DEF relevancy in a RELEVANT web.
- It is followed by a def extension.
- It contains a candidate use.
Phase 1: Propagate extensions to uses.
In this phase, we find candidate extensions for the optimization
and we generate (but not emit) proper extensions "right before the
uses".
a. Build a DF object.
b. Traverse over all the instructions that contains a definition
and set their local relevancy and local source_mode like this:
- If the instruction is a simple explicit extension instruction,
mark it as {ZERO, SIGN}_EXTENDED_DEF according to the extension
type and mark its source_mode to be the mode of the quantity
that is been extended.
- Otherwise, If the instruction has an implicit extension,
which means that its high part is an extension of its low part,
or if it is a complicated explicit extension, mark it as
EXTENDED_DEF and set its source_mode to be the narrowest
mode that is been extended in the instruction.
c. Traverse over all the instructions that contains a use and set
their local relevancy to RELEVANT_USE (except for few corner
cases).
d. Produce the web. During union of two entries, update the
relevancy and source_mode of the leader. There are two major
guide lines for this update:
- If one of the entries is NOT_RELEVANT, mark the leader
NOT_RELEVANT.
- If one is ZERO_EXTENDED_DEF and the other is SIGN_EXTENDED_DEF
(or vice versa) mark the leader as NOT_RELEVANT. We don't
handle this kind of mixed webs.
(For more details about this update process,
see see_update_leader_extra_info ()).
e. Generate uses extensions according to the relevancy and
source_mode of the webs.
Phase 2: Merge and eliminate locally redundant extensions.
In this phase, we try to merge def extensions and use
extensions with their references, and eliminate redundant extensions
in the same basic block.
Traverse over all the references. Do this in basic block number and
luid number forward order.
For each reference do:
a. Peephole optimization - try to merge it with all its
def extensions and use extensions in the following
order:
- Try to merge only the def extensions, one by one.
- Try to merge only the use extensions, one by one.
- Try to merge any couple of use extensions simultaneously.
- Try to merge any def extension with one or two uses
extensions simultaneously.
b. Handle each EXTENDED_DEF in it as if it was already merged with
an extension.
During the merge process we save the following data for each
register in each basic block:
a. The first instruction that defines the register in the basic
block.
b. The last instruction that defines the register in the basic
block.
c. The first extension of this register before the first
instruction that defines it in the basic block.
c. The first extension of this register after the last
instruction that defines it in the basic block.
This data will help us eliminate (or more precisely, not generate)
locally redundant extensions, and will be useful in the next stage.
While merging extensions with their reference there are 4 possible
situations:
a. A use extension was merged with the reference:
Delete the extension instruction and save the merged reference
for phase 4. (For details, see see_use_extension_merged ())
b. A use extension failed to be merged with the reference:
If there is already such an extension in the same basic block
and it is not dead at this point, delete the unmerged extension
(it is locally redundant), otherwise properly update the above
basic block data.
(For details, see see_merge_one_use_extension ())
c. A def extension was merged with the reference:
Mark this extension as a merged_def extension and properly
update the above basic block data.
(For details, see see_merge_one_def_extension ())
d. A def extension failed to be merged with the reference:
Replace the definition of the NARROWmode register in the
reference with the proper subreg of WIDEmode register and save
the result as a merged reference. Also, properly update the
the above basic block data.
(For details, see see_def_extension_not_merged ())
Phase 3: Eliminate globally redundant extensions.
In this phase, we set the bit vectors input of the edge based LCM
using the recorded data on the registers in each basic block.
We also save pointers for all the anticipatable and available
occurrences of the relevant extensions. Then we run the LCM.
a. Initialize the comp, antloc, kill bit vectors to zero and the
transp bit vector to ones.
b. Traverse over all the references. Do this in basic block number
and luid number forward order. For each reference:
- Go over all its use extensions. For each such extension -
If it is not dead from the beginning of the basic block SET
the antloc bit of the current extension in the current
basic block bits.
If it is not dead till the end of the basic block SET the
comp bit of the current extension in the current basic
block bits.
- Go over all its def extensions that were merged with
it. For each such extension -
If it is not dead till the end of the basic block SET the
comp bit of the current extension in the current basic
block bits.
RESET the proper transp and kill bits.
- Go over all its def extensions that were not merged
with it. For each such extension -
RESET the transp bit and SET the kill bit of the current
extension in the current basic block bits.
c. Run the edge based LCM.
Phase 4: Commit changes to the insn stream.
This is the only phase that actually changes the instruction stream.
Up to this point the optimization could be aborted at any time.
Here we insert extensions at their best placements and delete the
redundant ones according to the output of the LCM. We also replace
some of the instructions according to the second phase merges results.
a. Use the pre_delete_map (from the output of the LCM) in order to
delete redundant extensions. This will prevent them from been
emitted in the first place.
b. Insert extensions on edges where needed according to
pre_insert_map and edge_list (from the output of the LCM).
c. For each reference do-
- Emit all the uses extensions that were not deleted until now,
right before the reference.
- Delete all the merged and unmerged def extensions from
the instruction stream.
- Replace the reference with the merged one, if exist.
The implementation consists of four data structures:
- Data structure I
Purpose: To handle the relevancy of the uses, definitions and webs.
Relevant structures: web_entry (from df.h), see_entry_extra_info.
Details: This is a disjoint-set data structure. Most of its functions are
implemented in web.c. Each definition and use in the code are
elements. A web_entry structure is allocated for each element to
hold the element's relevancy and source_mode. The union rules are
defined in see_update_leader_extra_info ().
- Data structure II
Purpose: To store references and their extensions (uses and defs)
and to enable traverse over these references according to basic
block order.
Relevant structure: see_ref_s.
Details: This data structure consists of an array of splay trees. One splay
tree for each basic block. The splay tree nodes are references and
the keys are the luids of the references.
A see_ref_s structure is allocated for each reference. It holds the
reference itself, its def and uses extensions and later the merged
version of the reference.
Using this data structure we can traverse over all the references of
a basic block and their extensions in forward order.
- Data structure III.
Purpose: To store local properties of registers for each basic block.
This data will later help us build the LCM sbitmap_vectors
input.
Relevant structure: see_register_properties.
Details: This data structure consists of an array of hash tables. One hash
for each basic block. The hash node are a register properties
and the keys are the numbers of the registers.
A see_register_properties structure is allocated for each register
that we might be interested in its properties.
Using this data structure we can easily find the properties of a
register in a specific basic block. This is necessary for locally
redundancy elimination and for setting up the LCM input.
- Data structure IV.
Purpose: To store the extensions that are candidate for PRE and their
anticipatable and available occurrences.
Relevant structure: see_occr, see_pre_extension_expr.
Details: This data structure is a hash tables. Its nodes are the extensions
that are candidate for PRE.
A see_pre_extension_expr structure is allocated for each candidate
extension. It holds a copy of the extension and a linked list of all
the anticipatable and available occurrences of it.
We use this data structure when we read the output of the LCM. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "obstack.h"
#include "rtl.h"
#include "output.h"
#include "df.h"
#include "insn-config.h"
#include "recog.h"
#include "expr.h"
#include "splay-tree.h"
#include "hashtab.h"
#include "regs.h"
#include "timevar.h"
#include "tree-pass.h"
void
see_main (void);
/* Used to classify defs and uses according to relevancy. */
enum entry_type {
NOT_RELEVANT,
SIGN_EXTENDED_DEF,
ZERO_EXTENDED_DEF,
EXTENDED_DEF,
RELEVANT_USE
};
/* Used to classify extensions in relevant webs. */
enum extension_type {
DEF_EXTENSION,
EXPLICIT_DEF_EXTENSION,
IMPLICIT_DEF_EXTENSION,
USE_EXTENSION
};
/* Global data structures and flags. */
/* This structure will be assigned for each web_entry structure (defined
in df.h). It is placed in the extra_info field of a web_entry and holds the
relevancy and source mode of the web_entry. */
struct see_entry_extra_info
{
/* The relevancy of the ref. */
enum entry_type relevancy;
/* The relevancy of the ref.
This field is updated only once - when this structure is created. */
enum entry_type local_relevancy;
/* The source register mode. */
enum machine_mode source_mode;
/* This field is used only if the relevancy is ZERO/SIGN_EXTENDED_DEF.
It is updated only once when this structure is created. */
enum machine_mode local_source_mode;
/* This field is used only if the relevancy is EXTENDED_DEF.
It holds the narrowest mode that is sign extended. */
enum machine_mode source_mode_signed;
/* This field is used only if the relevancy is EXTENDED_DEF.
It holds the narrowest mode that is zero extended. */
enum machine_mode source_mode_unsigned;
};
/* There is one such structure for every reference. It stores the reference
itself as well as its extensions (uses and definitions).
Used as the value in splay_tree see_bb_splay_ar[]. */
struct see_ref_s
{
/* The luid of the insn. */
unsigned int luid;
/* The insn of the ref. */
rtx insn;
/* The merged insn that was formed from the reference's insn and extensions.
If all merges faile it remains NULL. */
rtx merged_insn;
/* The def extensions of the reference that were not merged with
it. */
htab_t unmerged_def_se_hash;
/* The def extensions of the reference that were merged with
it. Implicit extensions of the reference will be stored here too. */
htab_t merged_def_se_hash;
/* The uses extensions of reference. */
htab_t use_se_hash;
};
/* There is one such structure for every relevant extended register in a
specific basic block. This data will help us build the LCM sbitmap_vectors
input. */
struct see_register_properties
{
/* The register number. */
unsigned int regno;
/* The last luid of the reference that defines this register in this basic
block. */
int last_def;
/* The luid of the reference that has the first extension of this register
that appears before any definition in this basic block. */
int first_se_before_any_def;
/* The luid of the reference that has the first extension of this register
that appears after the last definition in this basic block. */
int first_se_after_last_def;
};
/* Occurrence of an expression.
There must be at most one available occurrence and at most one anticipatable
occurrence per basic block. */
struct see_occr
{
/* Next occurrence of this expression. */
struct see_occr *next;
/* The insn that computes the expression. */
rtx insn;
int block_num;
};
/* There is one such structure for every relevant extension expression.
It holds a copy of this extension instruction as well as a linked lists of
pointers to all the antic and avail occurrences of it. */
struct see_pre_extension_expr
{
/* A copy of the extension instruction. */
rtx se_insn;
/* Index in the available expression bitmaps. */
int bitmap_index;
/* List of anticipatable occurrences in basic blocks in the function.
An "anticipatable occurrence" is the first occurrence in the basic block,
the operands are not modified in the basic block prior to the occurrence
and the output is not used between the start of the block and the
occurrence. */
struct see_occr *antic_occr;
/* List of available occurrence in basic blocks in the function.
An "available occurrence" is the last occurrence in the basic block and
the operands are not modified by following statements in the basic block
[including this insn]. */
struct see_occr *avail_occr;
};
/* Helper structure for the note_uses and see_replace_src functions. */
struct see_replace_data
{
rtx from;
rtx to;
};
/* Helper structure for the note_uses and see_mentioned_reg functions. */
struct see_mentioned_reg_data
{
rtx reg;
bool mentioned;
};
/* A data flow object that will be created once and used throughout the
optimization. */
static struct df *df = NULL;
/* An array of web_entries. The i'th definition in the df object is associated
with def_entry[i] */
static struct web_entry *def_entry = NULL;
/* An array of web_entries. The i'th use in the df object is associated with
use_entry[i] */
static struct web_entry *use_entry = NULL;
/* Array of splay_trees.
see_bb_splay_ar[i] refers to the splay tree of the i'th basic block.
The splay tree will hold see_ref_s structures. The key is the luid
of the insn. This way we can traverse over the references of each basic
block in forward or backward order. */
static splay_tree *see_bb_splay_ar = NULL;
/* Array of hashes.
see_bb_hash_ar[i] refers to the hash of the i'th basic block.
The hash will hold see_register_properties structure. The key is regno. */
static htab_t *see_bb_hash_ar = NULL;
/* Hash table that holds a copy of all the extensions. The key is the right
hand side of the se_insn field. */
static htab_t see_pre_extension_hash = NULL;
/* Local LCM properties of expressions. */
/* Nonzero for expressions that are transparent in the block. */
static sbitmap *transp = NULL;
/* Nonzero for expressions that are computed (available) in the block. */
static sbitmap *comp = NULL;
/* Nonzero for expressions that are locally anticipatable in the block. */
static sbitmap *antloc = NULL;
/* Nonzero for expressions that are locally killed in the block. */
static sbitmap *ae_kill = NULL;
/* Nonzero for expressions which should be inserted on a specific edge. */
static sbitmap *pre_insert_map = NULL;
/* Nonzero for expressions which should be deleted in a specific block. */
static sbitmap *pre_delete_map = NULL;
/* Contains the edge_list returned by pre_edge_lcm. */
static struct edge_list *edge_list = NULL;
/* Records the last basic block at the beginning of the optimization. */
static int last_bb;
/* Records the number of uses at the beginning of the optimization. */
static unsigned int uses_num;
/* Records the number of definitions at the beginning of the optimization. */
static unsigned int defs_num;
#define ENTRY_EI(ENTRY) ((struct see_entry_extra_info *)(ENTRY)->extra_info)
/* Functions implementation. */
/* Verifies that EXTENSION's pattern is this:
set (reg/subreg reg1) (sign/zero_extend:WIDEmode (reg/subreg reg2))
If it doesn't have the expected pattern return NULL.
Otherwise, if RETURN_DEST_REG is set, return reg1 else return reg2. */
static rtx
see_get_extension_reg (rtx extension, bool return_dest_reg)
{
rtx set = NULL;
rtx rhs = NULL;
rtx lhs = NULL;
rtx reg1 = NULL;
rtx reg2 = NULL;
set = single_set (extension);
if (!set)
return NULL;
lhs = SET_DEST (set);
rhs = SET_SRC (set);
if (REG_P (lhs))
reg1 = lhs;
else if (REG_P (SUBREG_REG (lhs)))
reg1 = SUBREG_REG (lhs);
else
return NULL;
if ((GET_CODE (rhs) != SIGN_EXTEND) && (GET_CODE (rhs) != ZERO_EXTEND))
return NULL;
rhs = XEXP (rhs, 0);
if (REG_P (rhs))
reg2 = rhs;
else if (REG_P (SUBREG_REG (rhs)))
reg2 = SUBREG_REG (rhs);
else
return NULL;
if (return_dest_reg)
return reg1;
return reg2;
}
/* Verifies that EXTENSION's pattern is this:
set (reg/subreg reg1) (sign/zero_extend: (...expr...)
If it doesn't have the expected pattern return UNKNOWN.
Otherwise, set SOURCE_MODE to be the mode of the extended expr and return
the rtx code of the extension. */
static enum rtx_code
see_get_extension_data (rtx extension, enum machine_mode *source_mode)
{
rtx rhs = NULL;
rtx lhs = NULL;
rtx set = NULL;
if (!extension || !INSN_P (extension))
return UNKNOWN;
set = single_set (extension);
if (!set)
return NOT_RELEVANT;
rhs = SET_SRC (set);
lhs = SET_DEST (set);
/* Don't handle extensions to something other then register or
subregister. */
if (!REG_P (lhs) && !SUBREG_REG (lhs))
return UNKNOWN;
if ((GET_CODE (rhs) != SIGN_EXTEND) && (GET_CODE (rhs) != ZERO_EXTEND))
return UNKNOWN;
if (!REG_P (XEXP (rhs, 0))
&& !((GET_CODE (XEXP (rhs, 0)) == SUBREG)
&& (REG_P (SUBREG_REG (XEXP (rhs, 0))))))
return UNKNOWN;
*source_mode = GET_MODE (XEXP (rhs, 0));
if (GET_CODE (rhs) == SIGN_EXTEND)
return SIGN_EXTEND;
else
return ZERO_EXTEND;
}
/* Generate instruction with the pattern:
set ((reg r) (sign/zero_extend (subreg:mode (reg r))))
(the register r on both sides of the set is the same register).
And recognize it.
If the recognition failed, this is very bad, return NULL (This will abort
the entier optimization).
Otherwise, return the generated instruction. */
static rtx
see_gen_normalized_extension (rtx reg, enum rtx_code extension_code,
enum machine_mode mode)
{
rtx subreg = NULL;
rtx extension = NULL;
rtx insn = NULL;
if (!reg
|| !REG_P (reg)
|| ((extension_code != SIGN_EXTEND) && (extension_code != ZERO_EXTEND)))
return NULL;
subreg = gen_lowpart_SUBREG (mode, reg);
if (extension_code == SIGN_EXTEND)
extension = gen_rtx_SIGN_EXTEND (GET_MODE (reg), subreg);
else
extension = gen_rtx_ZERO_EXTEND (GET_MODE (reg), subreg);
start_sequence ();
emit_insn (gen_rtx_SET (VOIDmode, reg, extension));
insn = get_insns ();
end_sequence ();
if (insn_invalid_p (insn))
/* Recognition failed, this is very bad for this optimization.
Abort the optimization. */
return NULL;
return insn;
}
/* Hashes and splay_trees related functions implementation. */
/* Helper functions for the pre_extension hash.
This kind of hash will hold see_pre_extension_expr structures.
The key is the right hand side of the se_insn field.
Note that the se_insn is an expression that looks like:
set ((reg:WIDEmode r1) (sign_extend:WIDEmode
(subreg:NARROWmode (reg:WIDEmode r2)))) */
/* Return TRUE if P1 has the same value in its rhs as P2.
Otherwise, return FALSE.
P1 and P2 are see_pre_extension_expr structures. */
static int
eq_descriptor_pre_extension (const void *p1, const void *p2)
{
const struct see_pre_extension_expr *extension1 = p1;
const struct see_pre_extension_expr *extension2 = p2;
rtx set1 = single_set (extension1->se_insn);
rtx set2 = single_set (extension2->se_insn);
rtx rhs1 = NULL;
rtx rhs2 = NULL;
gcc_assert (set1 && set2);
rhs1 = SET_SRC (set1);
rhs2 = SET_SRC (set2);
return rtx_equal_p (rhs1, rhs2);
}
/* P is a see_pre_extension_expr struct, use the RHS of the se_insn field.
Note that the RHS is an expression that looks like this:
(sign_extend:WIDEmode (subreg:NARROWmode (reg:WIDEmode r))) */
static hashval_t
hash_descriptor_pre_extension (const void *p)
{
const struct see_pre_extension_expr *extension = p;
rtx set = single_set (extension->se_insn);
rtx rhs = NULL;
gcc_assert (set);
rhs = SET_SRC (set);
return hash_rtx (rhs, GET_MODE (rhs), 0, NULL, 0);
}
/* Free the allocated memory of the current see_pre_extension_expr struct.
It frees the two linked list of the occurrences structures. */
static void
hash_del_pre_extension (void *p)
{
struct see_pre_extension_expr *extension = p;
struct see_occr *curr_occr = extension->antic_occr;
struct see_occr *next_occr = NULL;
/* Free the linked list of the anticipatable occurrences. */
while (curr_occr)
{
next_occr = curr_occr->next;
free (curr_occr);
curr_occr = next_occr;
}
/* Free the linked list of the available occurrences. */
curr_occr = extension->avail_occr;
while (curr_occr)
{
next_occr = curr_occr->next;
free (curr_occr);
curr_occr = next_occr;
}
/* Free the see_pre_extension_expr structure itself. */
free (extension);
}
/* Helper functions for the register_properties hash.
This kind of hash will hold see_register_properties structures.
The value of the key is the regno field of the structure. */
/* Return TRUE if P1 has the same value in the regno field as P2.
Otherwise, return FALSE.
Where P1 and P2 are see_register_properties structures. */
static int
eq_descriptor_properties (const void *p1, const void *p2)
{
const struct see_register_properties *curr_prop1 = p1;
const struct see_register_properties *curr_prop2 = p2;
return (curr_prop1->regno == curr_prop2->regno);
}
/* P is a see_register_properties struct, use the register number in the
regno field. */
static hashval_t
hash_descriptor_properties (const void *p)
{
const struct see_register_properties *curr_prop = p;
return curr_prop->regno;
}
/* Free the allocated memory of the current see_register_properties struct. */
static void
hash_del_properties (void *p)
{
struct see_register_properties *curr_prop = p;
free (curr_prop);
}
/* Helper functions for an extension hash.
This kind of hash will hold insns that look like:
set ((reg:WIDEmode r1) (sign_extend:WIDEmode
(subreg:NARROWmode (reg:WIDEmode r2))))
or
set ((reg:WIDEmode r1) (sign_extend:WIDEmode (reg:NARROWmode r2)))
The value of the key is (REGNO (reg:WIDEmode r1))
It is possible to search this hash in two ways:
1. By a register rtx. The Value that is been compared to the keys is the
REGNO of it.
2. By an insn with the above pattern. The Value that is been compared to
the keys is the REGNO of the reg on the lhs. */
/* Return TRUE if P1 has the same value as P2. Otherwise, return FALSE.
Where P1 is an insn and P2 is an insn or a register. */
static int
eq_descriptor_extension (const void *p1, const void *p2)
{
const rtx insn = (rtx) p1;
const rtx element = (rtx) p2;
rtx set1 = single_set (insn);
rtx set2 = NULL;
rtx dest_reg1 = NULL;
rtx dest_reg2 = NULL;
gcc_assert (set1 && element && (REG_P (element) || INSN_P (element)));
dest_reg1 = SET_DEST (set1);
if (INSN_P (element))
{
set2 = single_set (element);
dest_reg2 = SET_DEST (set2);
}
else
dest_reg2 = element;
return (REGNO (dest_reg1) == REGNO (dest_reg2));
}
/* If P is an insn, use the register number of its lhs
otherwise, P is a register, use its number. */
static hashval_t
hash_descriptor_extension (const void *p)
{
const rtx r = (rtx) p;
rtx set = NULL;
rtx lhs = NULL;
if (r && REG_P (r))
return REGNO (r);
else
{
gcc_assert (r && INSN_P (r));
set = single_set (r);
gcc_assert (set);
lhs = SET_DEST (set);
return REGNO (lhs);
}
}
/* Helper function for a see_bb_splay_ar[i] splay tree.
It frees all the allocated memory of a struct see_ref_s pointer.
VALUE is the value of a splay tree node. */
static void
see_free_ref_s (splay_tree_value value)
{
struct see_ref_s *ref_s = (struct see_ref_s *)value;
if (ref_s->unmerged_def_se_hash)
htab_delete (ref_s->unmerged_def_se_hash);
if (ref_s->merged_def_se_hash)
htab_delete (ref_s->merged_def_se_hash);
if (ref_s->use_se_hash)
htab_delete (ref_s->use_se_hash);
free (ref_s);
}
/* Rest of the implementation. */
/* Search the extension hash for a suitable entry for EXTENSION.
TYPE is the type of EXTENSION (USE_EXTENSION or DEF_EXTENSION).
If TYPE is DEF_EXTENSION we need to normalize EXTENSION before searching the
extension hash.
If a suitable entry was found, return the slot. Otherwise, store EXTENSION
in the hash and return NULL. */
static struct see_pre_extension_expr *
see_seek_pre_extension_expr (rtx extension, enum extension_type type)
{
struct see_pre_extension_expr **slot_pre_exp = NULL;
struct see_pre_extension_expr temp_pre_exp;
rtx dest_extension_reg = see_get_extension_reg (extension, 1);
enum rtx_code extension_code;
enum machine_mode source_extension_mode;
if (type == DEF_EXTENSION)
{
extension_code = see_get_extension_data (extension,
&source_extension_mode);
gcc_assert (extension_code != UNKNOWN);
extension =
see_gen_normalized_extension (dest_extension_reg, extension_code,
source_extension_mode);
}
temp_pre_exp.se_insn = extension;
slot_pre_exp =
(struct see_pre_extension_expr **) htab_find_slot (see_pre_extension_hash,
&temp_pre_exp, INSERT);
if (*slot_pre_exp == NULL)
/* This is the first time this extension instruction is encountered. Store
it in the hash. */
{
(*slot_pre_exp) = xmalloc (sizeof (struct see_pre_extension_expr));
(*slot_pre_exp)->se_insn = extension;
(*slot_pre_exp)->bitmap_index =
(htab_elements (see_pre_extension_hash) - 1);
(*slot_pre_exp)->antic_occr = NULL;
(*slot_pre_exp)->avail_occr = NULL;
return NULL;
}
return *slot_pre_exp;
}
/* This function defines how to update the extra_info of the web_entry.
FIRST is the pointer of the extra_info of the first web_entry.
SECOND is the pointer of the extra_info of the second web_entry.
The first web_entry will be the predecessor (leader) of the second web_entry
after the union.
Return true if FIRST and SECOND points to the same web entry structure and
nothing is done. Otherwise, return false. */
static bool
see_update_leader_extra_info (struct web_entry *first, struct web_entry *second)
{
struct see_entry_extra_info *first_ei = NULL;
struct see_entry_extra_info *second_ei = NULL;
first = unionfind_root (first);
second = unionfind_root (second);
if (unionfind_union (first, second))
return true;
first_ei = (struct see_entry_extra_info *)first->extra_info;
second_ei = (struct see_entry_extra_info *)second->extra_info;
gcc_assert (first_ei && second_ei);
if (second_ei->relevancy == NOT_RELEVANT)
{
first_ei->relevancy = NOT_RELEVANT;
return false;
}
switch (first_ei->relevancy)
{
case NOT_RELEVANT:
return false;
case RELEVANT_USE:
switch (second_ei->relevancy)
{
case RELEVANT_USE:
return false;
case EXTENDED_DEF:
first_ei->relevancy = second_ei->relevancy;
first_ei->source_mode_signed = second_ei->source_mode_signed;
first_ei->source_mode_unsigned = second_ei->source_mode_unsigned;
return false;
case SIGN_EXTENDED_DEF:
case ZERO_EXTENDED_DEF:
first_ei->relevancy = second_ei->relevancy;
first_ei->source_mode = second_ei->source_mode;
return false;
default:
gcc_unreachable ();
}
case SIGN_EXTENDED_DEF:
switch (second_ei->relevancy)
{
case SIGN_EXTENDED_DEF:
/* The mode of the root should be the wider one in this case. */
first_ei->source_mode =
(first_ei->source_mode > second_ei->source_mode) ?
first_ei->source_mode : second_ei->source_mode;
return false;
case RELEVANT_USE:
return false;
case ZERO_EXTENDED_DEF:
/* Don't mix webs with zero extend and sign extend. */
first_ei->relevancy = NOT_RELEVANT;
return false;
case EXTENDED_DEF:
if (second_ei->source_mode_signed == MAX_MACHINE_MODE)
first_ei->relevancy = NOT_RELEVANT;
else
/* The mode of the root should be the wider one in this case. */
first_ei->source_mode =
(first_ei->source_mode > second_ei->source_mode_signed) ?
first_ei->source_mode : second_ei->source_mode_signed;
return false;
default:
gcc_unreachable ();
}
/* This case is similar to the previous one, with little changes. */
case ZERO_EXTENDED_DEF:
switch (second_ei->relevancy)
{
case SIGN_EXTENDED_DEF:
/* Don't mix webs with zero extend and sign extend. */
first_ei->relevancy = NOT_RELEVANT;
return false;
case RELEVANT_USE:
return false;
case ZERO_EXTENDED_DEF:
/* The mode of the root should be the wider one in this case. */
first_ei->source_mode =
(first_ei->source_mode > second_ei->source_mode) ?
first_ei->source_mode : second_ei->source_mode;
return false;
case EXTENDED_DEF:
if (second_ei->source_mode_unsigned == MAX_MACHINE_MODE)
first_ei->relevancy = NOT_RELEVANT;
else
/* The mode of the root should be the wider one in this case. */
first_ei->source_mode =
(first_ei->source_mode > second_ei->source_mode_unsigned) ?
first_ei->source_mode : second_ei->source_mode_unsigned;
return false;
default:
gcc_unreachable ();
}
case EXTENDED_DEF:
if ((first_ei->source_mode_signed != MAX_MACHINE_MODE)
&& (first_ei->source_mode_unsigned != MAX_MACHINE_MODE))
{
switch (second_ei->relevancy)
{
case SIGN_EXTENDED_DEF:
first_ei->relevancy = SIGN_EXTENDED_DEF;
first_ei->source_mode =
(first_ei->source_mode_signed > second_ei->source_mode) ?
first_ei->source_mode_signed : second_ei->source_mode;
return false;
case RELEVANT_USE:
return false;
case ZERO_EXTENDED_DEF:
first_ei->relevancy = ZERO_EXTENDED_DEF;
first_ei->source_mode =
(first_ei->source_mode_unsigned > second_ei->source_mode) ?
first_ei->source_mode_unsigned : second_ei->source_mode;
return false;
case EXTENDED_DEF:
if (second_ei->source_mode_unsigned != MAX_MACHINE_MODE)
first_ei->source_mode_unsigned =
(first_ei->source_mode_unsigned >
second_ei->source_mode_unsigned) ?
first_ei->source_mode_unsigned :
second_ei->source_mode_unsigned;
if (second_ei->source_mode_signed != MAX_MACHINE_MODE)
first_ei->source_mode_signed =
(first_ei->source_mode_signed >
second_ei->source_mode_signed) ?
first_ei->source_mode_signed : second_ei->source_mode_signed;
return false;
default:
gcc_unreachable ();
}
}
else if (first_ei->source_mode_signed == MAX_MACHINE_MODE)
{
gcc_assert (first_ei->source_mode_unsigned != MAX_MACHINE_MODE);
switch (second_ei->relevancy)
{
case SIGN_EXTENDED_DEF:
first_ei->relevancy = NOT_RELEVANT;
return false;
case RELEVANT_USE:
return false;
case ZERO_EXTENDED_DEF:
first_ei->relevancy = ZERO_EXTENDED_DEF;
first_ei->source_mode =
(first_ei->source_mode_unsigned > second_ei->source_mode) ?
first_ei->source_mode_unsigned : second_ei->source_mode;
return false;
case EXTENDED_DEF:
if (second_ei->source_mode_unsigned == MAX_MACHINE_MODE)
first_ei->relevancy = NOT_RELEVANT;
else
first_ei->source_mode_unsigned =
(first_ei->source_mode_unsigned >
second_ei->source_mode_unsigned) ?
first_ei->source_mode_unsigned :
second_ei->source_mode_unsigned;
return false;
default:
gcc_unreachable ();
}
}
else
{
gcc_assert (first_ei->source_mode_unsigned == MAX_MACHINE_MODE);
gcc_assert (first_ei->source_mode_signed != MAX_MACHINE_MODE);
switch (second_ei->relevancy)
{
case SIGN_EXTENDED_DEF:
first_ei->relevancy = SIGN_EXTENDED_DEF;
first_ei->source_mode =
(first_ei->source_mode_signed > second_ei->source_mode) ?
first_ei->source_mode_signed : second_ei->source_mode;
return false;
case RELEVANT_USE:
return false;
case ZERO_EXTENDED_DEF:
first_ei->relevancy = NOT_RELEVANT;
return false;
case EXTENDED_DEF:
if (second_ei->source_mode_signed == MAX_MACHINE_MODE)
first_ei->relevancy = NOT_RELEVANT;
else
first_ei->source_mode_signed =
(first_ei->source_mode_signed >
second_ei->source_mode_signed) ?
first_ei->source_mode_signed : second_ei->source_mode_signed;
return false;
default:
gcc_unreachable ();
}
}
default:
/* Unknown patern type. */
gcc_unreachable ();
}
}
/* Free global data structures. */
static void
see_free_data_structures (void)
{
int i;
unsigned int j;
/* Free the bitmap vectors. */
if (transp)
{
sbitmap_vector_free (transp);
transp = NULL;
sbitmap_vector_free (comp);
comp = NULL;
sbitmap_vector_free (antloc);
antloc = NULL;
sbitmap_vector_free (ae_kill);
ae_kill = NULL;
}
if (pre_insert_map)
{
sbitmap_vector_free (pre_insert_map);
pre_insert_map = NULL;
}
if (pre_delete_map)
{
sbitmap_vector_free (pre_delete_map);
pre_delete_map = NULL;
}
if (edge_list)
{
free_edge_list (edge_list);
edge_list = NULL;
}
/* Free the extension hash. */
htab_delete (see_pre_extension_hash);
/* Free the array of hashes. */
for (i = 0; i < last_bb; i++)
if (see_bb_hash_ar[i])
htab_delete (see_bb_hash_ar[i]);
free (see_bb_hash_ar);
/* Free the array of splay trees. */
for (i = 0; i < last_bb; i++)
if (see_bb_splay_ar[i])
splay_tree_delete (see_bb_splay_ar[i]);
free (see_bb_splay_ar);
/* Free the array of web entries and their extra info field. */
for (j = 0; j < defs_num; j++)
free (def_entry[j].extra_info);
free (def_entry);
for (j = 0; j < uses_num; j++)
free (use_entry[j].extra_info);
free (use_entry);
}
/* Initialize global data structures and variables. */
static void
see_initialize_data_structures (void)
{
/* Build the df object. */
df = df_init (DF_HARD_REGS | DF_EQUIV_NOTES | DF_SUBREGS);
df_rd_add_problem (df);
/* df_ru_add_problem (df); */
df_chain_add_problem (df, DF_DU_CHAIN | DF_UD_CHAIN);
df_analyze (df);
if (dump_file)
df_dump (df, dump_file);
/* Record the last basic block at the beginning of the optimization. */
last_bb = last_basic_block;
/* Record the number of uses at the beginning of the optimization. */
uses_num = DF_USES_SIZE (df);
/* Record the number of definitions at the beginning of the optimization. */
defs_num = DF_DEFS_SIZE (df);
/* Allocate web entries array for the union-find data structure. */
def_entry = xcalloc (defs_num, sizeof (struct web_entry));
use_entry = xcalloc (uses_num, sizeof (struct web_entry));
/* Allocate an array of splay trees.
One splay tree for each basic block. */
see_bb_splay_ar = xcalloc (last_bb, sizeof (splay_tree));
/* Allocate an array of hashes.
One hash for each basic block. */
see_bb_hash_ar = xcalloc (last_bb, sizeof (htab_t));
/* Allocate the extension hash. It will hold the extensions that we want
to PRE. */
see_pre_extension_hash =
htab_create (10, hash_descriptor_pre_extension, eq_descriptor_pre_extension,
hash_del_pre_extension);
}
/* Function called by note_uses to check if a register is used in a
subexpressions.
X is a pointer to the subexpression and DATA is a pointer to a
see_mentioned_reg_data structure that contains the register to look for and
a place for the result. */
static void
see_mentioned_reg (rtx *x, void *data)
{
struct see_mentioned_reg_data *d
= (struct see_mentioned_reg_data *) data;
if (reg_mentioned_p (d->reg, *x))
d->mentioned = true;
}
/* We don't want to merge a use extension with a reference if the extended
register is used only in a simple move instruction. We also don't want to
merge a def extension with a reference if the source register of the
extension is defined only in a simple move in the reference.
REF is the reference instruction.
EXTENSION is the use extension or def extension instruction.
TYPE is the type of the extension (use or def).
Return true if the reference is complicated enough, so we would like to merge
it with the extension. Otherwise, return false. */
static bool
see_want_to_be_merged_with_extension (rtx ref, rtx extension,
enum extension_type type)
{
rtx pat = NULL;
rtx dest_extension_reg = see_get_extension_reg (extension, 1);
rtx source_extension_reg = see_get_extension_reg (extension, 0);
enum rtx_code code;
struct see_mentioned_reg_data d;
int i;
pat = PATTERN (ref);
code = GET_CODE (pat);
if (code == PARALLEL)
{
for (i = 0; i < XVECLEN (pat, 0); i++)
{
rtx sub = XVECEXP (pat, 0, i);
if ((GET_CODE (sub) == SET)
&& (REG_P (SET_DEST (sub))
|| ((GET_CODE (SET_DEST (sub)) == SUBREG)
&& (REG_P (SUBREG_REG (SET_DEST (sub))))))
&& (REG_P (SET_SRC (sub))
|| ((GET_CODE (SET_SRC (sub)) == SUBREG)
&& (REG_P (SUBREG_REG (SET_SRC (sub)))))))
{
/* This is a simple move SET. */
if ((type == DEF_EXTENSION)
&& reg_mentioned_p (source_extension_reg, SET_DEST (sub)))
return false;
}
else
{
/* This is not a simple move SET.
Check if it uses the source of the extension. */
if (type == USE_EXTENSION)
{
d.reg = dest_extension_reg;
d.mentioned = false;
note_uses (&sub, see_mentioned_reg, &d);
if (d.mentioned)
return true;
}
}
}
if (type == USE_EXTENSION)
return false;
}
else
{
if ((code == SET)
&& (REG_P (SET_DEST (pat))
|| ((GET_CODE (SET_DEST (pat)) == SUBREG)
&& (REG_P (SUBREG_REG (SET_DEST (pat))))))
&& (REG_P (SET_SRC (pat))
|| ((GET_CODE (SET_SRC (pat)) == SUBREG)
&& (REG_P (SUBREG_REG (SET_SRC (pat)))))))
/* This is a simple move SET. */
return false;
}
return true;
}
/* Print the register number of the current see_register_properties
structure.
This is a subroutine of see_main called via htab_traverse.
SLOT contains the current see_register_properties structure pointer. */
static int
see_print_register_properties (void **slot, void *b ATTRIBUTE_UNUSED)
{
struct see_register_properties *prop = *slot;
gcc_assert (prop);
fprintf (dump_file, "Property found for register %d\n", prop->regno);
return 1;
}
/* Print the extension instruction of the current see_register_properties
structure.
This is a subroutine of see_main called via htab_traverse.
SLOT contains the current see_pre_extension_expr structure pointer. */
static int
see_print_pre_extension_expr (void **slot, void *b ATTRIBUTE_UNUSED)
{
struct see_pre_extension_expr *pre_extension = *slot;
gcc_assert (pre_extension
&& pre_extension->se_insn
&& INSN_P (pre_extension->se_insn));
fprintf (dump_file, "Index %d for:\n", pre_extension->bitmap_index);
print_rtl_single (dump_file, pre_extension->se_insn);
return 1;
}
/* Phase 4 implementation: Commit changes to the insn stream. */
/* Delete the merged def extension.
This is a subroutine of see_commit_ref_changes called via htab_traverse.
SLOT contains the current def extension instruction.
B is the see_ref_s structure pointer. */
static int
see_delete_merged_def_extension (void **slot, void *b ATTRIBUTE_UNUSED)
{
rtx def_se = *slot;
if (dump_file)
{
fprintf (dump_file, "Deleting merged def extension:\n");
print_rtl_single (dump_file, def_se);
}
if (INSN_DELETED_P (def_se))
/* This def extension is an implicit one. No need to delete it since
it is not in the insn stream. */
return 1;
delete_insn (def_se);
return 1;
}
/* Delete the unmerged def extension.
This is a subroutine of see_commit_ref_changes called via htab_traverse.
SLOT contains the current def extension instruction.
B is the see_ref_s structure pointer. */
static int
see_delete_unmerged_def_extension (void **slot, void *b ATTRIBUTE_UNUSED)
{
rtx def_se = *slot;
if (dump_file)
{
fprintf (dump_file, "Deleting unmerged def extension:\n");
print_rtl_single (dump_file, def_se);
}
delete_insn (def_se);
return 1;
}
/* Emit the non-redundant use extension to the instruction stream.
This is a subroutine of see_commit_ref_changes called via htab_traverse.
SLOT contains the current use extension instruction.
B is the see_ref_s structure pointer. */
static int
see_emit_use_extension (void **slot, void *b)
{
rtx use_se = *slot;
struct see_ref_s *curr_ref_s = (struct see_ref_s *) b;
if (INSN_DELETED_P (use_se))
/* This use extension was previously removed according to the lcm
output. */
return 1;
if (dump_file)
{
fprintf (dump_file, "Inserting use extension:\n");
print_rtl_single (dump_file, use_se);
}
add_insn_before (use_se, curr_ref_s->insn);
return 1;
}
/* For each relevant reference:
a. Emit the non-redundant use extensions.
b. Delete the def extensions.
c. Replace the original reference with the merged one (if exists) and add the
move instructions that were generated.
This is a subroutine of see_commit_changes called via splay_tree_foreach.
STN is the current node in the see_bb_splay_ar[i] splay tree. It holds a
see_ref_s structure. */
static int
see_commit_ref_changes (splay_tree_node stn,
void *data ATTRIBUTE_UNUSED)
{
htab_t use_se_hash = ((struct see_ref_s *) (stn->value))->use_se_hash;
htab_t unmerged_def_se_hash =
((struct see_ref_s *) (stn->value))->unmerged_def_se_hash;
htab_t merged_def_se_hash =
((struct see_ref_s *) (stn->value))->merged_def_se_hash;
rtx ref = ((struct see_ref_s *) (stn->value))->insn;
rtx merged_ref = ((struct see_ref_s *) (stn->value))->merged_insn;
/* Emit the non-redundant use extensions. */
if (use_se_hash)
htab_traverse_noresize (use_se_hash, see_emit_use_extension,
(PTR) (stn->value));
/* Delete the def extensions. */
if (unmerged_def_se_hash)
htab_traverse (unmerged_def_se_hash, see_delete_unmerged_def_extension,
(PTR) (stn->value));
if (merged_def_se_hash)
htab_traverse (merged_def_se_hash, see_delete_merged_def_extension,
(PTR) (stn->value));
/* Replace the original reference with the merged one (if exists) and add the
move instructions that were generated. */
if (merged_ref && !INSN_DELETED_P (ref))
{
if (dump_file)
{
fprintf (dump_file, "Replacing orig reference:\n");
print_rtl_single (dump_file, ref);
fprintf (dump_file, "With merged reference:\n");
print_rtl_single (dump_file, merged_ref);
}
emit_insn_after (merged_ref, ref);
delete_insn (ref);
}
/* Continue to the next reference. */
return 0;
}
/* Insert partially redundant expressions on edges to make the expressions fully
redundant.
INDEX_MAP is a mapping of an index to an expression.
Return true if an instruction was inserted on an edge.
Otherwise, return false. */
static bool
see_pre_insert_extensions (struct see_pre_extension_expr **index_map)
{
int num_edges = NUM_EDGES (edge_list);
int set_size = pre_insert_map[0]->size;
size_t pre_extension_num = htab_elements (see_pre_extension_hash);
int did_insert = 0;
int e;
int i;
int j;
for (e = 0; e < num_edges; e++)
{
int indx;
basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
{
SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
for (j = indx; insert && j < (int) pre_extension_num;
j++, insert >>= 1)
if (insert & 1)
{
struct see_pre_extension_expr *expr = index_map[j];
int idx = expr->bitmap_index;
rtx se_insn = NULL;
edge eg = INDEX_EDGE (edge_list, e);
start_sequence ();
emit_insn (PATTERN (expr->se_insn));
se_insn = get_insns ();
end_sequence ();
if (eg->flags & EDGE_ABNORMAL)
{
rtx new_insn = NULL;
new_insn = insert_insn_end_bb_new (se_insn, bb);
gcc_assert (new_insn && INSN_P (new_insn));
if (dump_file)
{
fprintf (dump_file,
"PRE: end of bb %d, insn %d, ",
bb->index, INSN_UID (new_insn));
fprintf (dump_file,
"inserting expression %d\n", idx);
}
}
else
{
insert_insn_on_edge (se_insn, eg);
if (dump_file)
{
fprintf (dump_file, "PRE: edge (%d,%d), ",
bb->index,
INDEX_EDGE_SUCC_BB (edge_list, e)->index);
fprintf (dump_file, "inserting expression %d\n", idx);
}
}
did_insert = true;
}
}
}
return did_insert;
}
/* Since all the redundant extensions must be anticipatable, they must be a use
extensions. Mark them as deleted. This will prevent them from been emitted
in the first place.
This is a subroutine of see_commit_changes called via htab_traverse.
SLOT contains the current see_pre_extension_expr structure pointer. */
static int
see_pre_delete_extension (void **slot, void *b ATTRIBUTE_UNUSED)
{
struct see_pre_extension_expr *expr = *slot;
struct see_occr *occr;
int indx = expr->bitmap_index;
for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
{
if (TEST_BIT (pre_delete_map[occr->block_num], indx))
{
/* Mark as deleted. */
INSN_DELETED_P (occr->insn) = 1;
if (dump_file)
{
fprintf (dump_file,"Redundant extension deleted:\n");
print_rtl_single (dump_file, occr->insn);
}
}
}
return 1;
}
/* Create the index_map mapping of an index to an expression.
This is a subroutine of see_commit_changes called via htab_traverse.
SLOT contains the current see_pre_extension_expr structure pointer.
B a pointer to see_pre_extension_expr structure pointer. */
static int
see_map_extension (void **slot, void *b)
{
struct see_pre_extension_expr *expr = *slot;
struct see_pre_extension_expr **index_map =
(struct see_pre_extension_expr **) b;
index_map[expr->bitmap_index] = expr;
return 1;
}
/* Phase 4 top level function.
In this phase we finally change the instruction stream.
Here we insert extensions at their best placements and delete the
redundant ones according to the output of the LCM. We also replace
some of the instructions according to phase 2 merges results. */
static void
see_commit_changes (void)
{
struct see_pre_extension_expr **index_map;
size_t pre_extension_num = htab_elements (see_pre_extension_hash);
bool did_insert = false;
int i;
index_map = xcalloc (pre_extension_num,
sizeof (struct see_pre_extension_expr *));
if (dump_file)
fprintf (dump_file,
"* Phase 4: Commit changes to the insn stream. *\n");
/* Produce a mapping of all the pre_extensions. */
htab_traverse (see_pre_extension_hash, see_map_extension, (PTR) index_map);
/* Delete redundant extension. This will prevent them from been emitted in
the first place. */
htab_traverse (see_pre_extension_hash, see_pre_delete_extension, NULL);
/* At this point, we must free the DF object, since the number of basic blocks
may change. */
df_finish (df);
df = NULL;
/* Insert extensions on edges, according to the LCM result. */
did_insert = see_pre_insert_extensions (index_map);
if (did_insert)
commit_edge_insertions ();
/* Commit the rest of the changes. */
for (i = 0; i < last_bb; i++)
{
if (see_bb_splay_ar[i])
{
/* Traverse over all the references in the basic block in forward
order. */
splay_tree_foreach (see_bb_splay_ar[i],
see_commit_ref_changes, NULL);
}
}
free (index_map);
}
/* Phase 3 implementation: Eliminate globally redundant extensions. */
/* Analyze the properties of a merged def extension for the LCM and record avail
occurrences.
This is a subroutine of see_analyze_ref_local_prop called
via htab_traverse.
SLOT contains the current def extension instruction.
B is the see_ref_s structure pointer. */
static int
see_analyze_merged_def_local_prop (void **slot, void *b)
{
rtx def_se = *slot;
struct see_ref_s *curr_ref_s = (struct see_ref_s *) b;
rtx ref = curr_ref_s->insn;
struct see_pre_extension_expr *extension_expr = NULL;
int indx;
int bb_num = BLOCK_NUM (ref);
htab_t curr_bb_hash = NULL;
struct see_register_properties *curr_prop = NULL;
struct see_register_properties **slot_prop = NULL;
struct see_register_properties temp_prop;
rtx dest_extension_reg = see_get_extension_reg (def_se, 1);
struct see_occr *curr_occr = NULL;
struct see_occr *tmp_occr = NULL;
extension_expr = see_seek_pre_extension_expr (def_se, DEF_EXTENSION);
/* The extension_expr must be found. */
gcc_assert (extension_expr);
curr_bb_hash = see_bb_hash_ar[bb_num];
gcc_assert (curr_bb_hash);
temp_prop.regno = REGNO (dest_extension_reg);
slot_prop =
(struct see_register_properties **) htab_find_slot (curr_bb_hash,
&temp_prop, INSERT);
curr_prop = *slot_prop;
gcc_assert (curr_prop);
indx = extension_expr->bitmap_index;
/* Reset the transparency bit. */
RESET_BIT (transp[bb_num], indx);
/* Reset the killed bit. */
RESET_BIT (ae_kill[bb_num], indx);
if (curr_prop->first_se_after_last_def == DF_INSN_LUID (df, ref))
{
/* Set the available bit. */
SET_BIT (comp[bb_num], indx);
/* Record the available occurrence. */
curr_occr = xmalloc (sizeof (struct see_occr));
curr_occr->next = NULL;
curr_occr->insn = def_se;
curr_occr->block_num = bb_num;
tmp_occr = extension_expr->avail_occr;
if (!tmp_occr)
extension_expr->avail_occr = curr_occr;
else
{
while (tmp_occr->next)
tmp_occr = tmp_occr->next;
tmp_occr->next = curr_occr;
}
}
return 1;
}
/* Analyze the properties of a unmerged def extension for the LCM.
This is a subroutine of see_analyze_ref_local_prop called
via htab_traverse.
SLOT contains the current def extension instruction.
B is the see_ref_s structure pointer. */
static int
see_analyze_unmerged_def_local_prop (void **slot, void *b)
{
rtx def_se = *slot;
struct see_ref_s *curr_ref_s = (struct see_ref_s *) b;
rtx ref = curr_ref_s->insn;
struct see_pre_extension_expr *extension_expr = NULL;
int indx;
int bb_num = BLOCK_NUM (ref);
htab_t curr_bb_hash = NULL;
struct see_register_properties *curr_prop = NULL;
struct see_register_properties **slot_prop = NULL;
struct see_register_properties temp_prop;
rtx dest_extension_reg = see_get_extension_reg (def_se, 1);
extension_expr = see_seek_pre_extension_expr (def_se, DEF_EXTENSION);
/* The extension_expr must be found. */
gcc_assert (extension_expr);
curr_bb_hash = see_bb_hash_ar[bb_num];
gcc_assert (curr_bb_hash);
temp_prop.regno = REGNO (dest_extension_reg);
slot_prop =
(struct see_register_properties **) htab_find_slot (curr_bb_hash,
&temp_prop, INSERT);
curr_prop = *slot_prop;
gcc_assert (curr_prop);
indx = extension_expr->bitmap_index;
/* Reset the transparency bit. */
RESET_BIT (transp[bb_num], indx);
/* Set the killed bit. */
SET_BIT (ae_kill[bb_num], indx);
return 1;
}
/* Analyze the properties of a use extension for the LCM and record anic and
avail occurrences.
This is a subroutine of see_analyze_ref_local_prop called
via htab_traverse.
SLOT contains the current use extension instruction.
B is the see_ref_s structure pointer. */
static int
see_analyze_use_local_prop (void **slot, void *b)
{
struct see_ref_s *curr_ref_s = (struct see_ref_s *) b;
rtx use_se = *slot;
rtx ref = curr_ref_s->insn;
rtx dest_extension_reg = see_get_extension_reg (use_se, 1);
struct see_pre_extension_expr *extension_expr = NULL;
struct see_register_properties *curr_prop = NULL;
struct see_register_properties **slot_prop = NULL;
struct see_register_properties temp_prop;
struct see_occr *curr_occr = NULL;
struct see_occr *tmp_occr = NULL;
htab_t curr_bb_hash = NULL;
int indx;
int bb_num = BLOCK_NUM (ref);
extension_expr = see_seek_pre_extension_expr (use_se, USE_EXTENSION);
/* The extension_expr must be found. */
gcc_assert (extension_expr);
curr_bb_hash = see_bb_hash_ar[bb_num];
gcc_assert (curr_bb_hash);
temp_prop.regno = REGNO (dest_extension_reg);
slot_prop =
(struct see_register_properties **) htab_find_slot (curr_bb_hash,
&temp_prop, INSERT);
curr_prop = *slot_prop;
gcc_assert (curr_prop);
indx = extension_expr->bitmap_index;
if (curr_prop->first_se_before_any_def == DF_INSN_LUID (df, ref))
{
/* Set the anticipatable bit. */
SET_BIT (antloc[bb_num], indx);
/* Record the anticipatable occurrence. */
curr_occr = xmalloc (sizeof (struct see_occr));
curr_occr->next = NULL;
curr_occr->insn = use_se;
curr_occr->block_num = bb_num;
tmp_occr = extension_expr->antic_occr;
if (!tmp_occr)
extension_expr->antic_occr = curr_occr;
else
{
while (tmp_occr->next)
tmp_occr = tmp_occr->next;
tmp_occr->next = curr_occr;
}
if (curr_prop->last_def < 0)
{
/* Set the available bit. */
SET_BIT (comp[bb_num], indx);
/* Record the available occurrence. */
curr_occr = xmalloc (sizeof (struct see_occr));
curr_occr->next = NULL;
curr_occr->insn = use_se;
curr_occr->block_num = bb_num;
tmp_occr = extension_expr->avail_occr;
if (!tmp_occr)
extension_expr->avail_occr = curr_occr;
else
{
while (tmp_occr->next)
tmp_occr = tmp_occr->next;
tmp_occr->next = curr_occr;
}
}
/* Note: there is no need to reset the killed bit since it must be zero at
this point. */
}
else if (curr_prop->first_se_after_last_def == DF_INSN_LUID (df, ref))
{
/* Set the available bit. */
SET_BIT (comp[bb_num], indx);
/* Reset the killed bit. */
RESET_BIT (ae_kill[bb_num], indx);
/* Record the available occurrence. */
curr_occr = xmalloc (sizeof (struct see_occr));
curr_occr->next = NULL;
curr_occr->insn = use_se;
curr_occr->block_num = bb_num;
tmp_occr = extension_expr->avail_occr;
if (!tmp_occr)
extension_expr->avail_occr = curr_occr;
else
{
while (tmp_occr->next)
tmp_occr = tmp_occr->next;
tmp_occr->next = curr_occr;
}
}
return 1;
}
/* Here we traverse over all the merged and unmerged extensions of the reference
and analyze their properties for the LCM.
This is a subroutine of see_execute_LCM called via splay_tree_foreach.
STN is the current node in the see_bb_splay_ar[i] splay tree. It holds a
see_ref_s structure. */
static int
see_analyze_ref_local_prop (splay_tree_node stn,
void *data ATTRIBUTE_UNUSED)
{
htab_t use_se_hash = ((struct see_ref_s *) (stn->value))->use_se_hash;
htab_t unmerged_def_se_hash =
((struct see_ref_s *) (stn->value))->unmerged_def_se_hash;
htab_t merged_def_se_hash =
((struct see_ref_s *) (stn->value))->merged_def_se_hash;
/* Analyze use extensions that were not merged with the reference. */
if (use_se_hash)
htab_traverse_noresize (use_se_hash, see_analyze_use_local_prop,
(PTR) (stn->value));
/* Analyze def extensions that were not merged with the reference. */
if (unmerged_def_se_hash)
htab_traverse (unmerged_def_se_hash, see_analyze_unmerged_def_local_prop,
(PTR) (stn->value));
/* Analyze def extensions that were merged with the reference. */
if (merged_def_se_hash)
htab_traverse (merged_def_se_hash, see_analyze_merged_def_local_prop,
(PTR) (stn->value));
/* Continue to the next definition. */
return 0;
}
/* Phase 3 top level function.
In this phase, we set the input bit vectors of the LCM according to data
gathered in phase 2.
Then we run the edge based LCM. */
static void
see_execute_LCM (void)
{
size_t pre_extension_num = htab_elements (see_pre_extension_hash);
int i = 0;
if (dump_file)
fprintf (dump_file,
"* Phase 3: Eliminate globally redundant extensions. *\n");
/* Initialize the global sbitmap vectors. */
transp = sbitmap_vector_alloc (last_bb, pre_extension_num);
comp = sbitmap_vector_alloc (last_bb, pre_extension_num);
antloc = sbitmap_vector_alloc (last_bb, pre_extension_num);
ae_kill = sbitmap_vector_alloc (last_bb, pre_extension_num);
sbitmap_vector_ones (transp, last_bb);
sbitmap_vector_zero (comp, last_bb);
sbitmap_vector_zero (antloc, last_bb);
sbitmap_vector_zero (ae_kill, last_bb);
/* Traverse over all the splay trees of the basic blocks. */
for (i = 0; i < last_bb; i++)
{
if (see_bb_splay_ar[i])
{
/* Traverse over all the references in the basic block in forward
order. */
splay_tree_foreach (see_bb_splay_ar[i],
see_analyze_ref_local_prop, NULL);
}
}
/* Add fake exit edges before running the lcm. */
add_noreturn_fake_exit_edges ();
/* Run the LCM. */
edge_list = pre_edge_lcm (pre_extension_num, transp, comp, antloc,
ae_kill, &pre_insert_map, &pre_delete_map);
/* Remove the fake edges. */
remove_fake_exit_edges ();
}
/* Phase 2 implementation: Merge and eliminate locally redundant extensions. */
/* In this function we set the register properties for the register that is
defined and extended in the reference.
The properties are defined in see_register_properties structure which is
allocated per basic bloack and per register.
Later the extension is inserted into the see_pre_extension_hash for the next
phase of the optimization.
This is a subroutine of see_handle_extensions_for_one_ref called
via htab_traverse.
SLOT contains the current def extension instruction.
B is the see_ref_s structure pointer. */
static int
see_set_prop_merged_def (void **slot, void *b)
{
rtx def_se = *slot;
struct see_ref_s *curr_ref_s = (struct see_ref_s *) b;
rtx insn = curr_ref_s->insn;
rtx dest_extension_reg = see_get_extension_reg (def_se, 1);
htab_t curr_bb_hash = NULL;
struct see_register_properties *curr_prop = NULL;
struct see_register_properties **slot_prop = NULL;
struct see_register_properties temp_prop;
int ref_luid = DF_INSN_LUID (df, insn);
curr_bb_hash = see_bb_hash_ar[BLOCK_NUM (curr_ref_s->insn)];
if (!curr_bb_hash)
{
/* The hash doesn't exist yet. Create it. */
curr_bb_hash =
htab_create (10, hash_descriptor_properties, eq_descriptor_properties,
hash_del_properties);
see_bb_hash_ar[BLOCK_NUM (curr_ref_s->insn)] = curr_bb_hash;
}
/* Find the right register properties in the right basic block. */
temp_prop.regno = REGNO (dest_extension_reg);
slot_prop =
(struct see_register_properties **) htab_find_slot (curr_bb_hash,
&temp_prop, INSERT);
if (slot_prop && (*slot_prop != NULL))
{
/* Property already exists. */
curr_prop = *slot_prop;
gcc_assert (curr_prop->regno == REGNO (dest_extension_reg));
curr_prop->last_def = ref_luid;
curr_prop->first_se_after_last_def = ref_luid;
}
else
{
/* Property doesn't exist yet. */
curr_prop = xmalloc (sizeof (struct see_register_properties));
curr_prop->regno = REGNO (dest_extension_reg);
curr_prop->last_def = ref_luid;
curr_prop->first_se_before_any_def = -1;
curr_prop->first_se_after_last_def = ref_luid;
*slot_prop = curr_prop;
}
/* Insert the def_se into see_pre_extension_hash if it isn't already
there. */
see_seek_pre_extension_expr (def_se, DEF_EXTENSION);
return 1;
}
/* In this function we set the register properties for the register that is
defined but not extended in the reference.
The properties are defined in see_register_properties structure which is
allocated per basic bloack and per register.
Later the extension is inserted into the see_pre_extension_hash for the next
phase of the optimization.
This is a subroutine of see_handle_extensions_for_one_ref called
via htab_traverse.
SLOT contains the current def extension instruction.
B is the see_ref_s structure pointer. */
static int
see_set_prop_unmerged_def (void **slot, void *b)
{
rtx def_se = *slot;
struct see_ref_s *curr_ref_s = (struct see_ref_s *) b;
rtx insn = curr_ref_s->insn;
rtx dest_extension_reg = see_get_extension_reg (def_se, 1);
htab_t curr_bb_hash = NULL;
struct see_register_properties *curr_prop = NULL;
struct see_register_properties **slot_prop = NULL;
struct see_register_properties temp_prop;
int ref_luid = DF_INSN_LUID (df, insn);
curr_bb_hash = see_bb_hash_ar[BLOCK_NUM (curr_ref_s->insn)];
if (!curr_bb_hash)
{
/* The hash doesn't exist yet. Create it. */
curr_bb_hash =
htab_create (10, hash_descriptor_properties, eq_descriptor_properties,
hash_del_properties);
see_bb_hash_ar[BLOCK_NUM (curr_ref_s->insn)] = curr_bb_hash;
}
/* Find the right register properties in the right basic block. */
temp_prop.regno = REGNO (dest_extension_reg);
slot_prop =
(struct see_register_properties **) htab_find_slot (curr_bb_hash,
&temp_prop, INSERT);
if (slot_prop && (*slot_prop != NULL))
{
/* Property already exists. */
curr_prop = *slot_prop;
gcc_assert (curr_prop->regno == REGNO (dest_extension_reg));
curr_prop->last_def = ref_luid;
curr_prop->first_se_after_last_def = -1;
}
else
{
/* Property doesn't exist yet. */
curr_prop = xmalloc (sizeof (struct see_register_properties));
curr_prop->regno = REGNO (dest_extension_reg);
curr_prop->last_def = ref_luid;
curr_prop->first_se_before_any_def = -1;
curr_prop->first_se_after_last_def = -1;
*slot_prop = curr_prop;
}
/* Insert the def_se into see_pre_extension_hash if it isn't already
there. */
see_seek_pre_extension_expr (def_se, DEF_EXTENSION);
return 1;
}
/* In this function we set the register properties for the register that is used
in the reference.
The properties are defined in see_register_properties structure which is
allocated per basic bloack and per register.
When a redundant use extension is found it is removed from the hash of the
reference.
If the extension is non redundant it is inserted into the
see_pre_extension_hash for the next phase of the optimization.
This is a subroutine of see_handle_extensions_for_one_ref called
via htab_traverse.
SLOT contains the current use extension instruction.
B is the see_ref_s structure pointer. */
static int
see_set_prop_unmerged_use (void **slot, void *b)
{
rtx use_se = *slot;
struct see_ref_s *curr_ref_s = (struct see_ref_s *) b;
rtx insn = curr_ref_s->insn;
rtx dest_extension_reg = see_get_extension_reg (use_se, 1);
htab_t curr_bb_hash = NULL;
struct see_register_properties *curr_prop = NULL;
struct see_register_properties **slot_prop = NULL;
struct see_register_properties temp_prop;
bool locally_redundant = false;
int ref_luid = DF_INSN_LUID (df, insn);
curr_bb_hash = see_bb_hash_ar[BLOCK_NUM (curr_ref_s->insn)];
if (!curr_bb_hash)
{
/* The hash doesn't exist yet. Create it. */
curr_bb_hash =
htab_create (10, hash_descriptor_properties, eq_descriptor_properties,
hash_del_properties);
see_bb_hash_ar[BLOCK_NUM (curr_ref_s->insn)] = curr_bb_hash;
}
/* Find the right register properties in the right basic block. */
temp_prop.regno = REGNO (dest_extension_reg);
slot_prop =
(struct see_register_properties **) htab_find_slot (curr_bb_hash,
&temp_prop, INSERT);
if (slot_prop && (*slot_prop != NULL))
{
/* Property already exists. */
curr_prop = *slot_prop;
gcc_assert (curr_prop->regno == REGNO (dest_extension_reg));
if ((curr_prop->last_def < 0) && (curr_prop->first_se_before_any_def < 0))
curr_prop->first_se_before_any_def = ref_luid;
else if ((curr_prop->last_def < 0)
&& (curr_prop->first_se_before_any_def >= 0))
{
/* In this case the extension is localy redundant. */
htab_clear_slot (curr_ref_s->use_se_hash, (PTR *)slot);
locally_redundant = true;
}
else if ((curr_prop->last_def >= 0)
&& (curr_prop->first_se_after_last_def < 0))
curr_prop->first_se_after_last_def = ref_luid;
else if ((curr_prop->last_def >= 0)
&& (curr_prop->first_se_after_last_def >= 0))
{
/* In this case the extension is localy redundant. */
htab_clear_slot (curr_ref_s->use_se_hash, (PTR *)slot);
locally_redundant = true;
}
else
gcc_unreachable ();
}
else
{
/* Property doesn't exist yet. Create a new one. */
curr_prop = xmalloc (sizeof (struct see_register_properties));
curr_prop->regno = REGNO (dest_extension_reg);
curr_prop->last_def = -1;
curr_prop->first_se_before_any_def = ref_luid;
curr_prop->first_se_after_last_def = -1;
*slot_prop = curr_prop;
}
/* Insert the use_se into see_pre_extension_hash if it isn't already
there. */
if (!locally_redundant)
see_seek_pre_extension_expr (use_se, USE_EXTENSION);
if (locally_redundant && dump_file)
{
fprintf (dump_file, "Locally redundant extension:\n");
print_rtl_single (dump_file, use_se);
}
return 1;
}
/* Print an extension instruction.
This is a subroutine of see_handle_extensions_for_one_ref called
via htab_traverse.
SLOT contains the extension instruction. */
static int
see_print_one_extension (void **slot, void *b ATTRIBUTE_UNUSED)
{
rtx def_se = *slot;
gcc_assert (def_se && INSN_P (def_se));
print_rtl_single (dump_file, def_se);
return 1;
}
/* Function called by note_uses to replace used subexpressions.
X is a pointer to the subexpression and DATA is a pointer to a
see_replace_data structure that contains the data for the replacement. */
static void
see_replace_src (rtx *x, void *data)
{
struct see_replace_data *d
= (struct see_replace_data *) data;
*x = replace_rtx (*x, d->from, d->to);
}
/* At this point the pattern is expected to be:
ref: set (dest_reg) (rhs)
def_se: set (dest_extension_reg) (sign/zero_extend (source_extension_reg))
The merge of these two instructions didn't succeed.
We try to generate the pattern:
set (subreg (dest_extension_reg)) (rhs)
We do this in 4 steps:
a. Replace every use of dest_reg with a new pseudo register.
b. Replace every instance of dest_reg with the subreg.
c. Replace every use of the new pseudo register back to dest_reg.
d. Try to recognize and simplify.
If the manipulation failed, leave the original ref but try to generate and
recognize a simple move instruction:
set (subreg (dest_extension_reg)) (dest_reg)
This move instruction will be emitted right after the ref to the instruction
stream and assure the correctness of the code after def_se will be removed.
CURR_REF_S is the current reference.
DEF_SE is the extension that couldn't be merged. */
static void
see_def_extension_not_merged (struct see_ref_s *curr_ref_s, rtx def_se)
{
struct see_replace_data d;
/* If the original insn was already merged with an extension before,
take the merged one. */
rtx ref = (curr_ref_s->merged_insn) ? curr_ref_s->merged_insn :
curr_ref_s->insn;
rtx merged_ref_next = (curr_ref_s->merged_insn) ?
NEXT_INSN (curr_ref_s->merged_insn): NULL_RTX;
rtx ref_copy = copy_rtx (ref);
rtx dest_reg = NULL;
rtx dest_real_reg = NULL;
rtx source_extension_reg = see_get_extension_reg (def_se, 0);
rtx dest_extension_reg = see_get_extension_reg (def_se, 1);
rtx new_pseudo_reg = NULL;
rtx subreg = NULL;
rtx move_insn = NULL;
rtx set = NULL;
rtx rhs = NULL;
enum machine_mode source_extension_mode = GET_MODE (source_extension_reg);
enum machine_mode dest_mode;
set = single_set (def_se);
gcc_assert (set);
rhs = SET_SRC (set);
gcc_assert ((GET_CODE (rhs) == SIGN_EXTEND)
|| (GET_CODE (rhs) == ZERO_EXTEND));
dest_reg = XEXP (rhs, 0);
gcc_assert (REG_P (dest_reg)
|| ((GET_CODE (dest_reg) == SUBREG)
&& REG_P (SUBREG_REG (dest_reg))));
dest_real_reg = REG_P (dest_reg) ? dest_reg : SUBREG_REG (dest_reg);
dest_mode = GET_MODE (dest_reg);
subreg = gen_lowpart_SUBREG (dest_mode, dest_extension_reg);
new_pseudo_reg = gen_reg_rtx (source_extension_mode);
/* Step a: Replace every use of dest_real_reg with a new pseudo register. */
d.from = dest_real_reg;
d.to = new_pseudo_reg;
note_uses (&PATTERN (ref_copy), see_replace_src, &d);
/* Step b: Replace every instance of dest_reg with the subreg. */
ref_copy = replace_rtx (ref_copy, dest_reg, subreg);
/* Step c: Replace every use of the new pseudo register back to
dest_real_reg. */
d.from = new_pseudo_reg;
d.to = dest_real_reg;
note_uses (&PATTERN (ref_copy), see_replace_src, &d);
if (rtx_equal_p (PATTERN (ref), PATTERN (ref_copy))
|| insn_invalid_p (ref_copy))
{
/* The manipulation failed. */
/* Create a new copy. */
ref_copy = copy_rtx (ref);
/* Create a simple move instruction that will replace the def_se. */
start_sequence ();
emit_move_insn (subreg, dest_reg);
move_insn = get_insns ();
end_sequence ();
/* Link the manipulated instruction to the newly created move instruction
and to the former created move instructions. */
PREV_INSN (ref_copy) = NULL_RTX;
NEXT_INSN (ref_copy) = move_insn;
PREV_INSN (move_insn) = ref_copy;
NEXT_INSN (move_insn) = merged_ref_next;
if (merged_ref_next != NULL_RTX)
PREV_INSN (merged_ref_next) = move_insn;
curr_ref_s->merged_insn = ref_copy;
if (dump_file)
{
fprintf (dump_file, "Following def merge failure a move ");
fprintf (dump_file, "insn was added after the ref.\n");
fprintf (dump_file, "Original ref:\n");
print_rtl_single (dump_file, ref);
fprintf (dump_file, "Move insn that was added:\n");
print_rtl_single (dump_file, move_insn);
}
return;
}
/* The manipulation succeeded. Store the new manipulated reference. */
/* Try to simplify the new manipulated insn. */
validate_simplify_insn (ref_copy);
/* Create a simple move instruction to assure the correctness of the code. */
start_sequence ();
emit_move_insn (dest_reg, subreg);
move_insn = get_insns ();
end_sequence ();
/* Link the manipulated instruction to the newly created move instruction and
to the former created move instructions. */
PREV_INSN (ref_copy) = NULL_RTX;
NEXT_INSN (ref_copy) = move_insn;
PREV_INSN (move_insn) = ref_copy;
NEXT_INSN (move_insn) = merged_ref_next;
if (merged_ref_next != NULL_RTX)
PREV_INSN (merged_ref_next) = move_insn;
curr_ref_s->merged_insn = ref_copy;
if (dump_file)
{
fprintf (dump_file, "Following merge failure the ref was transformed!\n");
fprintf (dump_file, "Original ref:\n");
print_rtl_single (dump_file, ref);
fprintf (dump_file, "Transformed ref:\n");
print_rtl_single (dump_file, ref_copy);
fprintf (dump_file, "Move insn that was added:\n");
print_rtl_single (dump_file, move_insn);
}
}
/* Merge the reference instruction (ref) with the current use extension.
use_se extends a NARROWmode register to a WIDEmode register.
ref uses the WIDEmode register.
The pattern we try to merge is this:
use_se: set (dest_extension_reg) (sign/zero_extend (source_extension_reg))
ref: use (dest_extension_reg)
where dest_extension_reg and source_extension_reg can be subregs.
The merge is done by generating, simplifying and recognizing the pattern:
use (sign/zero_extend (source_extension_reg))
If ref is too simple (according to see_want_to_be_merged_with_extension ())
we don't try to merge it with use_se and we continue as if the merge failed.
This is a subroutine of see_handle_extensions_for_one_ref called
via htab_traverse.
SLOT contains the current use extension instruction.
B is the see_ref_s structure pointer. */
static int
see_merge_one_use_extension (void **slot, void *b)
{
struct see_ref_s *curr_ref_s = (struct see_ref_s *) b;
rtx use_se = *slot;
rtx ref = (curr_ref_s->merged_insn) ? curr_ref_s->merged_insn :
curr_ref_s->insn;
rtx merged_ref_next = (curr_ref_s->merged_insn) ?
NEXT_INSN (curr_ref_s->merged_insn): NULL_RTX;
rtx ref_copy = copy_rtx (ref);
rtx extension_set = single_set (use_se);
rtx extension_rhs = NULL;
rtx dest_extension_reg = see_get_extension_reg (use_se, 1);
rtx note = NULL;
rtx simplified_note = NULL;
gcc_assert (use_se && curr_ref_s && extension_set);
extension_rhs = SET_SRC (extension_set);
/* In REG_EQUIV and REG_EQUAL notes that mention the register we need to
replace the uses of the dest_extension_reg with the rhs of the extension
instruction. This is necessary since there might not be an extension in
the path between the definition and the note when this optimization is
over. */
note = find_reg_equal_equiv_note (ref_copy);
if (note)
{
simplified_note = simplify_replace_rtx (XEXP (note, 0),
dest_extension_reg,
extension_rhs);
if (rtx_equal_p (XEXP (note, 0), simplified_note))
/* Replacement failed. Remove the note. */
remove_note (ref_copy, note);
else
XEXP (note, 0) = simplified_note;
}
if (!see_want_to_be_merged_with_extension (ref, use_se, USE_EXTENSION))
{
/* The use in the reference is too simple. Don't try to merge. */
if (dump_file)
{
fprintf (dump_file, "Use merge skipped!\n");
fprintf (dump_file, "Original instructions:\n");
print_rtl_single (dump_file, use_se);
print_rtl_single (dump_file, ref);
}
/* Don't remove the current use_se from the use_se_hash and continue to
the next extension. */
return 1;
}
validate_replace_src_group (dest_extension_reg, extension_rhs, ref_copy);
if (!num_changes_pending ())
/* In this case this is not a real use (the only use is/was in the notes
list). Remove the use extension from the hash. This will prevent it
from been emitted in the first place. */
{
if (dump_file)
{
fprintf (dump_file, "Use extension not necessary before:\n");
print_rtl_single (dump_file, ref);
}
htab_clear_slot (curr_ref_s->use_se_hash, (PTR *)slot);
PREV_INSN (ref_copy) = NULL_RTX;
NEXT_INSN (ref_copy) = merged_ref_next;
if (merged_ref_next != NULL_RTX)
PREV_INSN (merged_ref_next) = ref_copy;
curr_ref_s->merged_insn = ref_copy;
return 1;
}
if (!apply_change_group ())
{
/* The merge failed. */
if (dump_file)
{
fprintf (dump_file, "Use merge failed!\n");
fprintf (dump_file, "Original instructions:\n");
print_rtl_single (dump_file, use_se);
print_rtl_single (dump_file, ref);
}
/* Don't remove the current use_se from the use_se_hash and continue to
the next extension. */
return 1;
}
/* The merge succeeded! */
/* Try to simplify the new merged insn. */
validate_simplify_insn (ref_copy);
PREV_INSN (ref_copy) = NULL_RTX;
NEXT_INSN (ref_copy) = merged_ref_next;
if (merged_ref_next != NULL_RTX)
PREV_INSN (merged_ref_next) = ref_copy;
curr_ref_s->merged_insn = ref_copy;
if (dump_file)
{
fprintf (dump_file, "Use merge succeeded!\n");
fprintf (dump_file, "Original instructions:\n");
print_rtl_single (dump_file, use_se);
print_rtl_single (dump_file, ref);
fprintf (dump_file, "Merged instruction:\n");
print_rtl_single (dump_file, ref_copy);
}
/* Remove the current use_se from the use_se_hash. This will prevent it from
been emitted in the first place. */
htab_clear_slot (curr_ref_s->use_se_hash, (PTR *)slot);
return 1;
}
/* Merge the reference instruction (ref) with the extension that follows it
in the same basic block (def_se).
ref sets a NARROWmode register and def_se extends it to WIDEmode register.
The pattern we try to merge is this:
ref: set (dest_reg) (rhs)
def_se: set (dest_extension_reg) (sign/zero_extend (source_extension_reg))
where dest_reg and source_extension_reg can both be subregs (togather)
and (REGNO (dest_reg) == REGNO (source_extension_reg))
The merge is done by generating, simplifying and recognizing the pattern:
set (dest_extension_reg) (sign/zero_extend (rhs))
If ref is a parallel instruction we just replace the relevant set in it.
If ref is too simple (according to see_want_to_be_merged_with_extension ())
we don't try to merge it with def_se and we continue as if the merge failed.
This is a subroutine of see_handle_extensions_for_one_ref called
via htab_traverse.
SLOT contains the current def extension instruction.
B is the see_ref_s structure pointer. */
static int
see_merge_one_def_extension (void **slot, void *b)
{
struct see_ref_s *curr_ref_s = (struct see_ref_s *) b;
rtx def_se = *slot;
/* If the original insn was already merged with an extension before,
take the merged one. */
rtx ref = (curr_ref_s->merged_insn) ? curr_ref_s->merged_insn :
curr_ref_s->insn;
rtx merged_ref_next = (curr_ref_s->merged_insn) ?
NEXT_INSN (curr_ref_s->merged_insn): NULL_RTX;
rtx ref_copy = copy_rtx (ref);
rtx new_set = NULL;
rtx source_extension_reg = see_get_extension_reg (def_se, 0);
rtx dest_extension_reg = see_get_extension_reg (def_se, 1);
rtx move_insn = NULL;
rtx *rtx_slot = NULL;
rtx subreg = NULL;
rtx temp_extension = NULL;
rtx simplified_temp_extension = NULL;
rtx *pat = NULL;
enum rtx_code code;
enum rtx_code extension_code;
enum machine_mode source_extension_mode;
enum machine_mode source_mode;
enum machine_mode dest_extension_mode;
bool merge_success = false;
int i;
gcc_assert (def_se
&& INSN_P (def_se)
&& curr_ref_s
&& ref
&& INSN_P (ref));
if (!see_want_to_be_merged_with_extension (ref, def_se, DEF_EXTENSION))
{
/* The definition in the reference is too simple. Don't try to merge. */
if (dump_file)
{
fprintf (dump_file, "Def merge skipped!\n");
fprintf (dump_file, "Original instructions:\n");
print_rtl_single (dump_file, ref);
print_rtl_single (dump_file, def_se);
}
see_def_extension_not_merged (curr_ref_s, def_se);
/* Continue to the next extension. */
return 1;
}
extension_code = see_get_extension_data (def_se, &source_mode);
/* Try to merge and simplify the extension. */
source_extension_mode = GET_MODE (source_extension_reg);
dest_extension_mode = GET_MODE (dest_extension_reg);
pat = &PATTERN (ref_copy);
code = GET_CODE (*pat);
if (code == PARALLEL)
{
bool need_to_apply_change = false;
for (i = 0; i < XVECLEN (*pat, 0); i++)
{
rtx *sub = &XVECEXP (*pat, 0, i);
if ((GET_CODE (*sub) == SET)
&& (GET_MODE (SET_SRC (*sub)) != VOIDmode)
&& (GET_MODE (SET_DEST (*sub)) == source_mode)
&& ((REG_P (SET_DEST (*sub))
&& (REGNO (SET_DEST (*sub)) == REGNO (source_extension_reg)))
|| ((GET_CODE (SET_DEST (*sub)) == SUBREG)
&& (REG_P (SUBREG_REG (SET_DEST (*sub))))
&& (REGNO (SUBREG_REG (SET_DEST (*sub))) ==
REGNO (source_extension_reg)))))
{
rtx orig_src = SET_SRC (*sub);
if (extension_code == SIGN_EXTEND)
temp_extension = gen_rtx_SIGN_EXTEND (dest_extension_mode,
orig_src);
else
temp_extension = gen_rtx_ZERO_EXTEND (dest_extension_mode,
orig_src);
simplified_temp_extension = simplify_rtx (temp_extension);
temp_extension =
(simplified_temp_extension) ? simplified_temp_extension :
temp_extension;
new_set = gen_rtx_SET (VOIDmode, dest_extension_reg,
temp_extension);
validate_change (ref_copy, sub, new_set, 1);
need_to_apply_change = true;
}
}
if (need_to_apply_change)
if (apply_change_group ())
merge_success = true;
}
else if ((code == SET)
&& (GET_MODE (SET_SRC (*pat)) != VOIDmode)
&& (GET_MODE (SET_DEST (*pat)) == source_mode)
&& ((REG_P (SET_DEST (*pat))
&& REGNO (SET_DEST (*pat)) == REGNO (source_extension_reg))
|| ((GET_CODE (SET_DEST (*pat)) == SUBREG)
&& (REG_P (SUBREG_REG (SET_DEST (*pat))))
&& (REGNO (SUBREG_REG (SET_DEST (*pat))) ==
REGNO (source_extension_reg)))))
{
rtx orig_src = SET_SRC (*pat);
if (extension_code == SIGN_EXTEND)
temp_extension = gen_rtx_SIGN_EXTEND (dest_extension_mode, orig_src);
else
temp_extension = gen_rtx_ZERO_EXTEND (dest_extension_mode, orig_src);
simplified_temp_extension = simplify_rtx (temp_extension);
temp_extension = (simplified_temp_extension) ? simplified_temp_extension :
temp_extension;
new_set = gen_rtx_SET (VOIDmode, dest_extension_reg, temp_extension);
if (validate_change (ref_copy, pat, new_set, 0))
merge_success = true;
}
if (!merge_success)
{
/* The merge failed. */
if (dump_file)
{
fprintf (dump_file, "Def merge failed!\n");
fprintf (dump_file, "Original instructions:\n");
print_rtl_single (dump_file, ref);
print_rtl_single (dump_file, def_se);
}
see_def_extension_not_merged (curr_ref_s, def_se);
/* Continue to the next extension. */
return 1;
}
/* The merge succeeded! */
/* Create a simple move instruction to assure the correctness of the code. */
subreg = gen_lowpart_SUBREG (source_extension_mode, dest_extension_reg);
start_sequence ();
emit_move_insn (source_extension_reg, subreg);
move_insn = get_insns ();
end_sequence ();
/* Link the merged instruction to the newly created move instruction and
to the former created move instructions. */
PREV_INSN (ref_copy) = NULL_RTX;
NEXT_INSN (ref_copy) = move_insn;
PREV_INSN (move_insn) = ref_copy;
NEXT_INSN (move_insn) = merged_ref_next;
if (merged_ref_next != NULL_RTX)
PREV_INSN (merged_ref_next) = move_insn;
curr_ref_s->merged_insn = ref_copy;
if (dump_file)
{
fprintf (dump_file, "Def merge succeeded!\n");
fprintf (dump_file, "Original instructions:\n");
print_rtl_single (dump_file, ref);
print_rtl_single (dump_file, def_se);
fprintf (dump_file, "Merged instruction:\n");
print_rtl_single (dump_file, ref_copy);
fprintf (dump_file, "Move instruction that was added:\n");
print_rtl_single (dump_file, move_insn);
}
/* Remove the current def_se from the unmerged_def_se_hash and insert it to
the merged_def_se_hash. */
htab_clear_slot (curr_ref_s->unmerged_def_se_hash, (PTR *)slot);
if (!curr_ref_s->merged_def_se_hash)
curr_ref_s->merged_def_se_hash =
htab_create (10, hash_descriptor_extension, eq_descriptor_extension,
NULL);
rtx_slot = (rtx *) htab_find_slot (curr_ref_s->merged_def_se_hash,
dest_extension_reg, INSERT);
gcc_assert (*rtx_slot == NULL);
*rtx_slot = def_se;
return 1;
}
/* Try to eliminate extensions in this order:
a. Try to merge only the def extensions, one by one.
b. Try to merge only the use extensions, one by one.
TODO:
Try to merge any couple of use extensions simultaneously.
Try to merge any def extension with one or two uses extensions
simultaneously.
After all the merges are done, update the register properties for the basic
block and eliminate locally redundant use extensions.
This is a subroutine of see_merge_and_eliminate_extensions called
via splay_tree_foreach.
STN is the current node in the see_bb_splay_ar[i] splay tree. It holds a
see_ref_s structure. */
static int
see_handle_extensions_for_one_ref (splay_tree_node stn,
void *data ATTRIBUTE_UNUSED)
{
htab_t use_se_hash = ((struct see_ref_s *) (stn->value))->use_se_hash;
htab_t unmerged_def_se_hash =
((struct see_ref_s *) (stn->value))->unmerged_def_se_hash;
htab_t merged_def_se_hash = NULL;
rtx ref = ((struct see_ref_s *) (stn->value))->insn;
if (dump_file)
{
fprintf (dump_file, "Handling ref:\n");
print_rtl_single (dump_file, ref);
}
/* a. Try to eliminate only def extensions, one by one. */
if (unmerged_def_se_hash)
htab_traverse_noresize (unmerged_def_se_hash, see_merge_one_def_extension,
(PTR) (stn->value));
if (use_se_hash)
/* b. Try to eliminate only use extensions, one by one. */
htab_traverse_noresize (use_se_hash, see_merge_one_use_extension,
(PTR) (stn->value));
merged_def_se_hash = ((struct see_ref_s *) (stn->value))->merged_def_se_hash;
if (dump_file)
{
fprintf (dump_file, "The hashes of the current reference:\n");
if (unmerged_def_se_hash)
{
fprintf (dump_file, "unmerged_def_se_hash:\n");
htab_traverse (unmerged_def_se_hash, see_print_one_extension, NULL);
}
if (merged_def_se_hash)
{
fprintf (dump_file, "merged_def_se_hash:\n");
htab_traverse (merged_def_se_hash, see_print_one_extension, NULL);
}
if (use_se_hash)
{
fprintf (dump_file, "use_se_hash:\n");
htab_traverse (use_se_hash, see_print_one_extension, NULL);
}
}
/* Now that all the merges are done, update the register properties of the
basic block and eliminate locally redundant extensions.
It is important that we first traverse the use extensions hash and
afterwards the def extensions hashes. */
if (use_se_hash)
htab_traverse_noresize (use_se_hash, see_set_prop_unmerged_use,
(PTR) (stn->value));
if (unmerged_def_se_hash)
htab_traverse (unmerged_def_se_hash, see_set_prop_unmerged_def,
(PTR) (stn->value));
if (merged_def_se_hash)
htab_traverse (merged_def_se_hash, see_set_prop_merged_def,
(PTR) (stn->value));
/* Continue to the next definition. */
return 0;
}
/* Phase 2 top level function.
In this phase, we try to merge def extensions and use extensions with their
references, and eliminate redundant extensions in the same basic block.
We also gather information for the next phases. */
static void
see_merge_and_eliminate_extensions (void)
{
int i = 0;
if (dump_file)
fprintf (dump_file,
"* Phase 2: Merge and eliminate locally redundant extensions. *\n");
/* Traverse over all the splay trees of the basic blocks. */
for (i = 0; i < last_bb; i++)
{
if (see_bb_splay_ar[i])
{
if (dump_file)
fprintf (dump_file, "Handling references for bb %d\n", i);
/* Traverse over all the references in the basic block in forward
order. */
splay_tree_foreach (see_bb_splay_ar[i],
see_handle_extensions_for_one_ref, NULL);
}
}
}
/* Phase 1 implementation: Propagate extensions to uses. */
/* Insert REF_INSN into the splay tree of its basic block.
SE_INSN is the extension to store in the proper hash according to TYPE.
Return true if everything went well.
Otherwise, return false (this will cause the optimization to be aborted). */
static bool
see_store_reference_and_extension (rtx ref_insn, rtx se_insn,
enum extension_type type)
{
rtx *rtx_slot = NULL;
int curr_bb_num;
splay_tree_node stn = NULL;
htab_t se_hash = NULL;
struct see_ref_s *ref_s = NULL;
/* Check the arguments. */
gcc_assert (ref_insn && se_insn);
if (!see_bb_splay_ar)
return false;
curr_bb_num = BLOCK_NUM (ref_insn);
gcc_assert ((curr_bb_num < last_bb) && (curr_bb_num >= 0));
/* Insert the reference to the splay tree of its basic block. */
if (!see_bb_splay_ar[curr_bb_num])
/* The splay tree for this block doesn't exist yet, create it. */
see_bb_splay_ar[curr_bb_num] = splay_tree_new (splay_tree_compare_ints,
NULL, see_free_ref_s);
else
/* Splay tree already exists, check if the current reference is already
in it. */
{
stn = splay_tree_lookup (see_bb_splay_ar[curr_bb_num],
DF_INSN_LUID (df, ref_insn));
if (stn)
{
switch (type)
{
case EXPLICIT_DEF_EXTENSION:
se_hash =
((struct see_ref_s *) (stn->value))->unmerged_def_se_hash;
if (!se_hash)
{
se_hash = htab_create (10, hash_descriptor_extension,
eq_descriptor_extension, NULL);
((struct see_ref_s *) (stn->value))->unmerged_def_se_hash =
se_hash;
}
break;
case IMPLICIT_DEF_EXTENSION:
se_hash = ((struct see_ref_s *) (stn->value))->merged_def_se_hash;
if (!se_hash)
{
se_hash = htab_create (10, hash_descriptor_extension,
eq_descriptor_extension, NULL);
((struct see_ref_s *) (stn->value))->merged_def_se_hash =
se_hash;
}
break;
case USE_EXTENSION:
se_hash = ((struct see_ref_s *) (stn->value))->use_se_hash;
if (!se_hash)
{
se_hash = htab_create (10, hash_descriptor_extension,
eq_descriptor_extension, NULL);
((struct see_ref_s *) (stn->value))->use_se_hash = se_hash;
}
break;
default:
gcc_unreachable ();
}
}
}
/* Initialize a new see_ref_s structure and insert it to the splay
tree. */
if (!stn)
{
ref_s = xmalloc (sizeof (struct see_ref_s));
ref_s->luid = DF_INSN_LUID (df, ref_insn);
ref_s->insn = ref_insn;
ref_s->merged_insn = NULL;
/* Initialize the hashes. */
switch (type)
{
case EXPLICIT_DEF_EXTENSION:
ref_s->unmerged_def_se_hash =
htab_create (10, hash_descriptor_extension, eq_descriptor_extension,
NULL);
se_hash = ref_s->unmerged_def_se_hash;
ref_s->merged_def_se_hash = NULL;
ref_s->use_se_hash = NULL;
break;
case IMPLICIT_DEF_EXTENSION:
ref_s->merged_def_se_hash =
htab_create (10, hash_descriptor_extension, eq_descriptor_extension,
NULL);
se_hash = ref_s->merged_def_se_hash;
ref_s->unmerged_def_se_hash = NULL;
ref_s->use_se_hash = NULL;
break;
case USE_EXTENSION:
ref_s->use_se_hash =
htab_create (10, hash_descriptor_extension, eq_descriptor_extension,
NULL);
se_hash = ref_s->use_se_hash;
ref_s->unmerged_def_se_hash = NULL;
ref_s->merged_def_se_hash = NULL;
break;
default:
gcc_unreachable ();
}
}
/* Insert the new extension instruction into the correct se_hash of the
current reference. */
rtx_slot = (rtx *) htab_find_slot (se_hash, se_insn, INSERT);
if (*rtx_slot != NULL)
{
gcc_assert (type == USE_EXTENSION);
gcc_assert (rtx_equal_p (PATTERN (*rtx_slot), PATTERN (se_insn)));
}
else
*rtx_slot = se_insn;
/* If this is a new reference, insert it into the splay_tree. */
if (!stn)
splay_tree_insert (see_bb_splay_ar[curr_bb_num],
DF_INSN_LUID (df, ref_insn), (splay_tree_value) ref_s);
return true;
}
/* Go over all the defs, for each relevant definition (defined below) store its
instruction as a reference.
A definition is relevant if its root has
((entry_type == SIGN_EXTENDED_DEF) || (entry_type == ZERO_EXTENDED_DEF)) and
his source_mode is not narrower then the the roots source_mode.
Return the number of relevant defs or negative number if something bad had
happened and the optimization should be aborted. */
static int
see_handle_relevant_defs (void)
{
rtx insn = NULL;
rtx se_insn = NULL;
rtx reg = NULL;
rtx ref_insn = NULL;
struct web_entry *root_entry = NULL;
unsigned int i;
int num_relevant_defs = 0;
enum rtx_code extension_code;
for (i = 0; i < defs_num; i++)
{
insn = DF_REF_INSN (DF_DEFS_GET (df, i));
reg = DF_REF_REAL_REG (DF_DEFS_GET (df, i));
if (!insn)
continue;
if (!INSN_P (insn))
continue;
root_entry = unionfind_root (&def_entry[i]);
if ((ENTRY_EI (root_entry)->relevancy != SIGN_EXTENDED_DEF)
&& (ENTRY_EI (root_entry)->relevancy != ZERO_EXTENDED_DEF))
/* The current web is not relevant. Continue to the next def. */
continue;
if (root_entry->reg)
/* It isn't possible to have two different register for the same
web. */
gcc_assert (rtx_equal_p (root_entry->reg, reg));
else
root_entry->reg = reg;
/* The current definition is an EXTENDED_DEF or a definition that its
source_mode is narrower then its web's source_mode.
This means that we need to generate the implicit extension explicitly
and store it in the current reference's merged_def_se_hash. */
if ((ENTRY_EI (&def_entry[i])->local_relevancy == EXTENDED_DEF)
|| (ENTRY_EI (&def_entry[i])->local_source_mode <
ENTRY_EI (root_entry)->source_mode))
{
num_relevant_defs++;
if (ENTRY_EI (root_entry)->relevancy == SIGN_EXTENDED_DEF)
extension_code = SIGN_EXTEND;
else
extension_code = ZERO_EXTEND;
se_insn =
see_gen_normalized_extension (reg, extension_code,
ENTRY_EI (root_entry)->source_mode);
/* This is a dummy extension, mark it as deleted. */
INSN_DELETED_P (se_insn) = 1;
if (!see_store_reference_and_extension (insn, se_insn,
IMPLICIT_DEF_EXTENSION))
/* Something bad happened. Abort the optimization. */
return -1;
continue;
}
ref_insn = PREV_INSN (insn);
gcc_assert (BLOCK_NUM (ref_insn) == BLOCK_NUM (insn));
num_relevant_defs++;
if (!see_store_reference_and_extension (ref_insn, insn,
EXPLICIT_DEF_EXTENSION))
/* Something bad happened. Abort the optimization. */
return -1;
}
return num_relevant_defs;
}
/* Go over all the uses, for each use in relevant web store its instruction as
a reference and generate an extension before it.
Return the number of relevant uses or negative number if something bad had
happened and the optimization should be aborted. */
static int
see_handle_relevant_uses (void)
{
rtx insn = NULL;
rtx reg = NULL;
struct web_entry *root_entry = NULL;
rtx se_insn = NULL;
unsigned int i;
int num_relevant_uses = 0;
enum rtx_code extension_code;
for (i = 0; i < uses_num; i++)
{
insn = DF_REF_INSN (DF_USES_GET (df, i));
reg = DF_REF_REAL_REG (DF_USES_GET (df, i));
if (!insn)
continue;
if (!INSN_P (insn))
continue;
root_entry = unionfind_root (&use_entry[i]);
if ((ENTRY_EI (root_entry)->relevancy != SIGN_EXTENDED_DEF)
&& (ENTRY_EI (root_entry)->relevancy != ZERO_EXTENDED_DEF))
/* The current web is not relevant. Continue to the next use. */
continue;
if (root_entry->reg)
/* It isn't possible to have two different register for the same
web. */
gcc_assert (rtx_equal_p (root_entry->reg, reg));
else
root_entry->reg = reg;
/* Generate the use extension. */
if (ENTRY_EI (root_entry)->relevancy == SIGN_EXTENDED_DEF)
extension_code = SIGN_EXTEND;
else
extension_code = ZERO_EXTEND;
se_insn =
see_gen_normalized_extension (reg, extension_code,
ENTRY_EI (root_entry)->source_mode);
if (!se_insn)
/* This is very bad, abort the transformation. */
return -1;
num_relevant_uses++;
if (!see_store_reference_and_extension (insn, se_insn,
USE_EXTENSION))
/* Something bad happened. Abort the optimization. */
return -1;
}
return num_relevant_uses;
}
/* Updates the relevancy of all the uses.
The information of the i'th use is stored in use_entry[i].
Currently all the uses are relevant for the optimization except for uses that
are in LIBCALL or RETVAL instructions. */
static void
see_update_uses_relevancy (void)
{
rtx insn = NULL;
rtx reg = NULL;
struct see_entry_extra_info *curr_entry_extra_info;
enum entry_type et;
unsigned int i;
if (!df || !use_entry)
return;
for (i = 0; i < uses_num; i++)
{
insn = DF_REF_INSN (DF_USES_GET (df, i));
reg = DF_REF_REAL_REG (DF_USES_GET (df, i));
et = RELEVANT_USE;
if (insn)
{
if (!INSN_P (insn))
et = NOT_RELEVANT;
if (insn && find_reg_note (insn, REG_LIBCALL, NULL_RTX))
et = NOT_RELEVANT;
if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
et = NOT_RELEVANT;
}
else
et = NOT_RELEVANT;
if (dump_file)
{
fprintf (dump_file, "u%i insn %i reg %i ",
i, (insn ? INSN_UID (insn) : -1), REGNO (reg));
if (et == NOT_RELEVANT)
fprintf (dump_file, "NOT RELEVANT \n");
else
fprintf (dump_file, "RELEVANT USE \n");
}
curr_entry_extra_info = xmalloc (sizeof (struct see_entry_extra_info));
curr_entry_extra_info->relevancy = et;
curr_entry_extra_info->local_relevancy = et;
use_entry[i].extra_info = curr_entry_extra_info;
use_entry[i].reg = NULL;
use_entry[i].pred = NULL;
}
}
/* A definition in a candidate for this optimization only if its pattern is
recognized as relevant in this function.
INSN is the instruction to be recognized.
- If this is the pattern of a common sign extension after definition:
PREV_INSN (INSN): def (reg:NARROWmode r)
INSN: set ((reg:WIDEmode r')
(sign_extend:WIDEmode (reg:NARROWmode r)))
return SIGN_EXTENDED_DEF and set SOURCE_MODE to NARROWmode.
- If this is the pattern of a common zero extension after definition:
PREV_INSN (INSN): def (reg:NARROWmode r)
INSN: set ((reg:WIDEmode r')
(zero_extend:WIDEmode (reg:NARROWmode r)))
return ZERO_EXTENDED_DEF and set SOURCE_MODE to NARROWmode.
- Otherwise,
For the pattern:
INSN: set ((reg:WIDEmode r) (sign_extend:WIDEmode (...expr...)))
return EXTENDED_DEF and set SOURCE_MODE to the mode of expr.
For the pattern:
INSN: set ((reg:WIDEmode r) (zero_extend:WIDEmode (...expr...)))
return EXTENDED_DEF and set SOURCE_MODE_UNSIGNED to the mode of expr.
For the pattern:
INSN: set ((reg:WIDEmode r) (CONST_INT (...)))
return EXTENDED_DEF and set SOURCE_MODE(_UNSIGNED) to the narrowest mode that
is implicitly sign(zero) extended to WIDEmode in the INSN.
- FIXME: Extensions that are not adjacent to their definition and EXTENDED_DEF
that is part of a PARALLEL instruction are not handled.
These restriction can be relaxed. */
static enum entry_type
see_analyze_one_def (rtx insn, enum machine_mode *source_mode,
enum machine_mode *source_mode_unsigned)
{
enum rtx_code extension_code;
rtx rhs = NULL;
rtx lhs = NULL;
rtx set = NULL;
rtx source_register = NULL;
rtx prev_insn = NULL;
rtx next_insn = NULL;
enum machine_mode mode;
enum machine_mode next_source_mode;
HOST_WIDE_INT val = 0;
HOST_WIDE_INT val2 = 0;
int i = 0;
*source_mode = MAX_MACHINE_MODE;
*source_mode_unsigned = MAX_MACHINE_MODE;
if (!insn)
return NOT_RELEVANT;
if (!INSN_P (insn))
return NOT_RELEVANT;
extension_code = see_get_extension_data (insn, source_mode);
switch (extension_code)
{
case SIGN_EXTEND:
case ZERO_EXTEND:
source_register = see_get_extension_reg (insn, 0);
/* FIXME: This restriction can be relaxed. The only thing that is
important is that the reference would be inside the same basic block
as the extension. */
prev_insn = PREV_INSN (insn);
if (!prev_insn || !INSN_P (prev_insn))
return NOT_RELEVANT;
if (!reg_set_between_p (source_register, PREV_INSN (prev_insn), insn))
return NOT_RELEVANT;
if (find_reg_note (prev_insn, REG_LIBCALL, NULL_RTX))
return NOT_RELEVANT;
if (find_reg_note (prev_insn, REG_RETVAL, NULL_RTX))
return NOT_RELEVANT;
/* If we can't use copy_rtx on the reference it can't be a reference. */
if ((GET_CODE (PATTERN (prev_insn)) == PARALLEL)
&& (asm_noperands (PATTERN (prev_insn)) >= 0))
return NOT_RELEVANT;
/* Now, check if this extension is a reference itself. If so, it is not
relevant. Handling this extension as relevant would make things much
more complicated. */
next_insn = NEXT_INSN (insn);
if (prev_insn
&& INSN_P (prev_insn)
&& (see_get_extension_data (next_insn, &next_source_mode) !=
NOT_RELEVANT))
{
rtx curr_dest_register = see_get_extension_reg (insn, 1);
rtx next_source_register = see_get_extension_reg (next_insn, 0);
if (REGNO (curr_dest_register) == REGNO (next_source_register))
return NOT_RELEVANT;
}
if (extension_code == SIGN_EXTEND)
return SIGN_EXTENDED_DEF;
else
return ZERO_EXTENDED_DEF;
case UNKNOWN:
/* This may still be an EXTENDED_DEF. */
/* FIXME: This restriction can be relaxed. It is possible to handle
PARALLEL insns too. */
set = single_set (insn);
if (!set)
return NOT_RELEVANT;
rhs = SET_SRC (set);
lhs = SET_DEST (set);
/* Don't handle extensions to something other then register or
subregister. */
if (!REG_P (lhs) && !SUBREG_REG (lhs))
return NOT_RELEVANT;
switch (GET_CODE (rhs))
{
case (SIGN_EXTEND):
*source_mode = GET_MODE (XEXP (rhs, 0));
*source_mode_unsigned = MAX_MACHINE_MODE;
return EXTENDED_DEF;
case (ZERO_EXTEND):
*source_mode = MAX_MACHINE_MODE;
*source_mode_unsigned = GET_MODE (XEXP (rhs, 0));
return EXTENDED_DEF;
case (CONST_INT):
val = INTVAL (rhs);
/* Find the narrowest mode, val could fit into. */
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT), i = 0;
GET_MODE_BITSIZE (mode) < BITS_PER_WORD;
mode = GET_MODE_WIDER_MODE (mode), i++)
{
val2 = trunc_int_for_mode (val, mode);
if ((val2 == val) && (*source_mode == MAX_MACHINE_MODE))
*source_mode = mode;
if ((val == (val & (HOST_WIDE_INT)GET_MODE_MASK (mode)))
&& (*source_mode_unsigned == MAX_MACHINE_MODE))
*source_mode_unsigned = mode;
if ((*source_mode != MAX_MACHINE_MODE)
&& (*source_mode_unsigned !=MAX_MACHINE_MODE))
return EXTENDED_DEF;
}
if ((*source_mode != MAX_MACHINE_MODE)
|| (*source_mode_unsigned !=MAX_MACHINE_MODE))
return EXTENDED_DEF;
return NOT_RELEVANT;
default:
return NOT_RELEVANT;
}
default:
gcc_unreachable ();
}
}
/* Updates the relevancy and source_mode of all the definitions.
The information of the i'th definition is stored in def_entry[i]. */
static void
see_update_defs_relevancy (void)
{
struct see_entry_extra_info *curr_entry_extra_info;
unsigned int i;
rtx insn = NULL;
rtx reg = NULL;
enum entry_type et;
enum machine_mode source_mode;
enum machine_mode source_mode_unsigned;
if (!df || !def_entry)
return;
for (i = 0; i < defs_num; i++)
{
insn = DF_REF_INSN (DF_DEFS_GET (df, i));
reg = DF_REF_REAL_REG (DF_DEFS_GET (df, i));
et = see_analyze_one_def (insn, &source_mode, &source_mode_unsigned);
curr_entry_extra_info = xmalloc (sizeof (struct see_entry_extra_info));
curr_entry_extra_info->relevancy = et;
curr_entry_extra_info->local_relevancy = et;
if (et != EXTENDED_DEF)
{
curr_entry_extra_info->source_mode = source_mode;
curr_entry_extra_info->local_source_mode = source_mode;
}
else
{
curr_entry_extra_info->source_mode_signed = source_mode;
curr_entry_extra_info->source_mode_unsigned = source_mode_unsigned;
}
def_entry[i].extra_info = curr_entry_extra_info;
def_entry[i].reg = NULL;
def_entry[i].pred = NULL;
if (dump_file)
{
if (et == NOT_RELEVANT)
{
fprintf (dump_file, "d%i insn %i reg %i ",
i, (insn ? INSN_UID (insn) : -1), REGNO (reg));
fprintf (dump_file, "NOT RELEVANT \n");
}
else
{
fprintf (dump_file, "d%i insn %i reg %i ",
i ,INSN_UID (insn), REGNO (reg));
fprintf (dump_file, "RELEVANT - ");
switch (et)
{
case SIGN_EXTENDED_DEF :
fprintf (dump_file, "SIGN_EXTENDED_DEF, source_mode = %s\n",
GET_MODE_NAME (source_mode));
break;
case ZERO_EXTENDED_DEF :
fprintf (dump_file, "ZERO_EXTENDED_DEF, source_mode = %s\n",
GET_MODE_NAME (source_mode));
break;
case EXTENDED_DEF :
fprintf (dump_file, "EXTENDED_DEF, ");
if ((source_mode != MAX_MACHINE_MODE)
&& (source_mode_unsigned != MAX_MACHINE_MODE))
{
fprintf (dump_file, "positive const, ");
fprintf (dump_file, "source_mode_signed = %s, ",
GET_MODE_NAME (source_mode));
fprintf (dump_file, "source_mode_unsigned = %s\n",
GET_MODE_NAME (source_mode_unsigned));
}
else if (source_mode != MAX_MACHINE_MODE)
fprintf (dump_file, "source_mode_signed = %s\n",
GET_MODE_NAME (source_mode));
else
fprintf (dump_file, "source_mode_unsigned = %s\n",
GET_MODE_NAME (source_mode_unsigned));
break;
default :
gcc_unreachable ();
}
}
}
}
}
/* Phase 1 top level function.
In this phase the relevancy of all the definitions and uses are checked,
later the webs are produces and the extensions are generated.
These extensions are not emitted yet into the insns stream.
returns true if at list one relevant web was found and there were no
problems, otherwise return false. */
static bool
see_propagate_extensions_to_uses (void)
{
unsigned int i = 0;
int num_relevant_uses;
int num_relevant_defs;
if (dump_file)
fprintf (dump_file,
"* Phase 1: Propagate extensions to uses. *\n");
/* Update the relevancy of references using the DF object. */
see_update_defs_relevancy ();
see_update_uses_relevancy ();
/* Produce the webs and update the extra_info of the root.
In general, a web is relevant if all its definitions and uses are relevant
and there is at least one definition that was marked as SIGN_EXTENDED_DEF
or ZERO_EXTENDED_DEF. */
for (i = 0; i < uses_num; i++)
{
union_defs (df, DF_USES_GET (df, i), def_entry, use_entry,
see_update_leader_extra_info);
}
/* Generate use extensions for references and insert these
references to see_bb_splay_ar data structure. */
num_relevant_uses = see_handle_relevant_uses ();
if (num_relevant_uses < 0)
return false;
/* Store the def extensions in their references structures and insert these
references to see_bb_splay_ar data structure. */
num_relevant_defs = see_handle_relevant_defs ();
if (num_relevant_defs < 0)
return false;
return ((num_relevant_uses > 0) || (num_relevant_defs > 0));
}
/* Main entry point for the sign extension elimination optimization. */
void
see_main (void)
{
bool cont = false;
int i = 0;
/* Initialize global data structures. */
see_initialize_data_structures ();
/* Phase 1: Propagate extensions to uses. */
cont = see_propagate_extensions_to_uses ();
if (cont)
{
init_recog ();
/* Phase 2: Merge and eliminate locally redundant extensions. */
see_merge_and_eliminate_extensions ();
/* Phase 3: Eliminate globally redundant extensions. */
see_execute_LCM ();
/* Phase 4: Commit changes to the insn stream. */
see_commit_changes ();
if (dump_file)
{
/* For debug purpose only. */
fprintf (dump_file, "see_pre_extension_hash:\n");
htab_traverse (see_pre_extension_hash, see_print_pre_extension_expr,
NULL);
for (i = 0; i < last_bb; i++)
{
if (see_bb_hash_ar[i])
/* Traverse over all the references in the basic block in
forward order. */
{
fprintf (dump_file,
"Searching register properties in bb %d\n", i);
htab_traverse (see_bb_hash_ar[i],
see_print_register_properties, NULL);
}
}
}
}
/* Free global data structures. */
see_free_data_structures ();
}
static bool
gate_handle_see (void)
{
return ((optimize > 1) && flag_see);
}
static unsigned int
rest_of_handle_see (void)
{
int no_new_pseudos_bcp = no_new_pseudos;
no_new_pseudos = 0;
see_main ();
no_new_pseudos = no_new_pseudos_bcp;
delete_trivially_dead_insns (get_insns (), max_reg_num ());
update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
(PROP_DEATH_NOTES));
cleanup_cfg (CLEANUP_EXPENSIVE);
reg_scan (get_insns (), max_reg_num ());
return 0;
}
struct tree_opt_pass pass_see =
{
"see", /* name */
gate_handle_see, /* gate */
rest_of_handle_see, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_SEE, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_func, /* todo_flags_finish */
'u' /* letter */
};
|