1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
|
/* Instruction scheduling pass. This file computes dependencies between
instructions.
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
Free Software Foundation, Inc.
Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
and currently maintained by, Jim Wilson (wilson@cygnus.com)
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "toplev.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "regs.h"
#include "function.h"
#include "flags.h"
#include "insn-config.h"
#include "insn-attr.h"
#include "except.h"
#include "toplev.h"
#include "recog.h"
#include "sched-int.h"
#include "params.h"
#include "cselib.h"
#include "df.h"
#ifdef ENABLE_CHECKING
#define CHECK (true)
#else
#define CHECK (false)
#endif
/* Return the major type present in the DS. */
enum reg_note
ds_to_dk (ds_t ds)
{
if (ds & DEP_TRUE)
return REG_DEP_TRUE;
if (ds & DEP_OUTPUT)
return REG_DEP_OUTPUT;
gcc_assert (ds & DEP_ANTI);
return REG_DEP_ANTI;
}
/* Return equivalent dep_status. */
ds_t
dk_to_ds (enum reg_note dk)
{
switch (dk)
{
case REG_DEP_TRUE:
return DEP_TRUE;
case REG_DEP_OUTPUT:
return DEP_OUTPUT;
default:
gcc_assert (dk == REG_DEP_ANTI);
return DEP_ANTI;
}
}
/* Functions to operate with dependence information container - dep_t. */
/* Init DEP with the arguments. */
static void
init_dep_1 (dep_t dep, rtx pro, rtx con, enum reg_note kind, ds_t ds)
{
DEP_PRO (dep) = pro;
DEP_CON (dep) = con;
DEP_KIND (dep) = kind;
DEP_STATUS (dep) = ds;
}
/* Init DEP with the arguments.
While most of the scheduler (including targets) only need the major type
of the dependency, it is convenient to hide full dep_status from them. */
void
init_dep (dep_t dep, rtx pro, rtx con, enum reg_note kind)
{
ds_t ds;
if ((current_sched_info->flags & USE_DEPS_LIST) != 0)
ds = dk_to_ds (kind);
else
ds = -1;
init_dep_1 (dep, pro, con, kind, ds);
}
/* Make a copy of FROM in TO. */
static void
copy_dep (dep_t to, dep_t from)
{
memcpy (to, from, sizeof (*to));
}
/* Functions to operate with a single link from the dependencies lists -
dep_link_t. */
/* Return true if dep_link L is consistent. */
static bool
dep_link_consistent_p (dep_link_t l)
{
dep_link_t next = DEP_LINK_NEXT (l);
return (next == NULL
|| &DEP_LINK_NEXT (l) == DEP_LINK_PREV_NEXTP (next));
}
/* Attach L to appear after link X whose &DEP_LINK_NEXT (X) is given by
PREV_NEXT_P. */
static void
attach_dep_link (dep_link_t l, dep_link_t *prev_nextp)
{
dep_link_t next = *prev_nextp;
gcc_assert (DEP_LINK_PREV_NEXTP (l) == NULL
&& DEP_LINK_NEXT (l) == NULL);
/* Init node being inserted. */
DEP_LINK_PREV_NEXTP (l) = prev_nextp;
DEP_LINK_NEXT (l) = next;
/* Fix next node. */
if (next != NULL)
{
gcc_assert (DEP_LINK_PREV_NEXTP (next) == prev_nextp);
DEP_LINK_PREV_NEXTP (next) = &DEP_LINK_NEXT (l);
}
/* Fix prev node. */
*prev_nextp = l;
}
/* Add dep_link LINK to deps_list L. */
static void
add_to_deps_list (dep_link_t link, deps_list_t l)
{
attach_dep_link (link, &DEPS_LIST_FIRST (l));
}
/* Detach dep_link L from the list. */
static void
detach_dep_link (dep_link_t l)
{
dep_link_t *prev_nextp = DEP_LINK_PREV_NEXTP (l);
dep_link_t next = DEP_LINK_NEXT (l);
*prev_nextp = next;
if (next != NULL)
DEP_LINK_PREV_NEXTP (next) = prev_nextp;
/* Though this is property is not used anywhere but in the assert in
attach_dep_link (), this can prevent latent errors. */
DEP_LINK_PREV_NEXTP (l) = NULL;
DEP_LINK_NEXT (l) = NULL;
}
/* Move LINK from whatever list it is now to L. */
void
move_dep_link (dep_link_t link, deps_list_t l)
{
detach_dep_link (link);
add_to_deps_list (link, l);
}
/* Check L's and its successors' consistency.
This is, potentially, an expensive check, hence it should be guarded by
ENABLE_CHECKING at all times. */
static bool
dep_links_consistent_p (dep_link_t l)
{
while (l != NULL)
{
if (dep_link_consistent_p (l))
l = DEP_LINK_NEXT (l);
else
return false;
}
return true;
}
/* Dump dep_nodes starting from l. */
static void
dump_dep_links (FILE *dump, dep_link_t l)
{
while (l != NULL)
{
dep_t d = DEP_LINK_DEP (l);
fprintf (dump, "%d%c>%d ", INSN_UID (DEP_PRO (d)),
dep_link_consistent_p (l) ? '-' : '!', INSN_UID (DEP_CON (d)));
l = DEP_LINK_NEXT (l);
}
fprintf (dump, "\n");
}
/* Dump dep_nodes starting from L to stderr. */
void
debug_dep_links (dep_link_t l)
{
dump_dep_links (stderr, l);
}
/* Obstack to allocate dep_nodes and deps_lists on. */
static struct obstack deps_obstack;
/* Obstack to hold forward dependencies lists (deps_list_t). */
static struct obstack *dl_obstack = &deps_obstack;
/* Obstack to hold all dependency nodes (dep_node_t). */
static struct obstack *dn_obstack = &deps_obstack;
/* Functions to operate with dependences lists - deps_list_t. */
/* Allocate deps_list.
If ON_OBSTACK_P is true, allocate the list on the obstack. This is done for
INSN_FORW_DEPS lists because they should live till the end of scheduling.
INSN_BACK_DEPS and INSN_RESOLVED_BACK_DEPS lists are allocated on the free
store and are being freed in haifa-sched.c: schedule_insn (). */
static deps_list_t
alloc_deps_list (bool on_obstack_p)
{
if (on_obstack_p)
return obstack_alloc (dl_obstack, sizeof (struct _deps_list));
else
return xmalloc (sizeof (struct _deps_list));
}
/* Initialize deps_list L. */
static void
init_deps_list (deps_list_t l)
{
DEPS_LIST_FIRST (l) = NULL;
}
/* Create (allocate and init) deps_list.
The meaning of ON_OBSTACK_P is the same as in alloc_deps_list (). */
deps_list_t
create_deps_list (bool on_obstack_p)
{
deps_list_t l = alloc_deps_list (on_obstack_p);
init_deps_list (l);
return l;
}
/* Free dep_data_nodes that present in L. */
static void
clear_deps_list (deps_list_t l)
{
/* All dep_nodes are allocated on the dn_obstack. They'll be freed with
the obstack. */
DEPS_LIST_FIRST (l) = NULL;
}
/* Free deps_list L. */
void
free_deps_list (deps_list_t l)
{
gcc_assert (deps_list_empty_p (l));
free (l);
}
/* Delete (clear and free) deps_list L. */
void
delete_deps_list (deps_list_t l)
{
clear_deps_list (l);
free_deps_list (l);
}
/* Return true if L is empty. */
bool
deps_list_empty_p (deps_list_t l)
{
return DEPS_LIST_FIRST (l) == NULL;
}
/* Check L's consistency.
This is, potentially, an expensive check, hence it should be guarded by
ENABLE_CHECKING at all times. */
static bool
deps_list_consistent_p (deps_list_t l)
{
dep_link_t first = DEPS_LIST_FIRST (l);
return (first == NULL
|| (&DEPS_LIST_FIRST (l) == DEP_LINK_PREV_NEXTP (first)
&& dep_links_consistent_p (first)));
}
/* Dump L to F. */
static void
dump_deps_list (FILE *f, deps_list_t l)
{
dump_dep_links (f, DEPS_LIST_FIRST (l));
}
/* Dump L to STDERR. */
void
debug_deps_list (deps_list_t l)
{
dump_deps_list (stderr, l);
}
/* Add a dependency described by DEP to the list L.
L should be either INSN_BACK_DEPS or INSN_RESOLVED_BACK_DEPS. */
void
add_back_dep_to_deps_list (deps_list_t l, dep_t dep_from)
{
dep_node_t n = (dep_node_t) obstack_alloc (dn_obstack,
sizeof (*n));
dep_t dep_to = DEP_NODE_DEP (n);
dep_link_t back = DEP_NODE_BACK (n);
dep_link_t forw = DEP_NODE_FORW (n);
copy_dep (dep_to, dep_from);
DEP_LINK_NODE (back) = n;
DEP_LINK_NODE (forw) = n;
/* There is no particular need to initialize these four fields except to make
assert in attach_dep_link () happy. */
DEP_LINK_NEXT (back) = NULL;
DEP_LINK_PREV_NEXTP (back) = NULL;
DEP_LINK_NEXT (forw) = NULL;
DEP_LINK_PREV_NEXTP (forw) = NULL;
add_to_deps_list (back, l);
}
/* Find the dep_link with producer PRO in deps_list L. */
dep_link_t
find_link_by_pro_in_deps_list (deps_list_t l, rtx pro)
{
dep_link_t link;
FOR_EACH_DEP_LINK (link, l)
if (DEP_LINK_PRO (link) == pro)
return link;
return NULL;
}
/* Find the dep_link with consumer CON in deps_list L. */
dep_link_t
find_link_by_con_in_deps_list (deps_list_t l, rtx con)
{
dep_link_t link;
FOR_EACH_DEP_LINK (link, l)
if (DEP_LINK_CON (link) == con)
return link;
return NULL;
}
/* Make a copy of FROM in TO with substituting consumer with CON.
TO and FROM should be RESOLVED_BACK_DEPS lists. */
void
copy_deps_list_change_con (deps_list_t to, deps_list_t from, rtx con)
{
dep_link_t l;
gcc_assert (deps_list_empty_p (to));
FOR_EACH_DEP_LINK (l, from)
{
add_back_dep_to_deps_list (to, DEP_LINK_DEP (l));
DEP_LINK_CON (DEPS_LIST_FIRST (to)) = con;
}
}
static regset reg_pending_sets;
static regset reg_pending_clobbers;
static regset reg_pending_uses;
/* The following enumeration values tell us what dependencies we
should use to implement the barrier. We use true-dependencies for
TRUE_BARRIER and anti-dependencies for MOVE_BARRIER. */
enum reg_pending_barrier_mode
{
NOT_A_BARRIER = 0,
MOVE_BARRIER,
TRUE_BARRIER
};
static enum reg_pending_barrier_mode reg_pending_barrier;
/* To speed up the test for duplicate dependency links we keep a
record of dependencies created by add_dependence when the average
number of instructions in a basic block is very large.
Studies have shown that there is typically around 5 instructions between
branches for typical C code. So we can make a guess that the average
basic block is approximately 5 instructions long; we will choose 100X
the average size as a very large basic block.
Each insn has associated bitmaps for its dependencies. Each bitmap
has enough entries to represent a dependency on any other insn in
the insn chain. All bitmap for true dependencies cache is
allocated then the rest two ones are also allocated. */
static bitmap_head *true_dependency_cache;
static bitmap_head *output_dependency_cache;
static bitmap_head *anti_dependency_cache;
static bitmap_head *spec_dependency_cache;
static int cache_size;
/* To speed up checking consistency of formed forward insn
dependencies we use the following cache. Another possible solution
could be switching off checking duplication of insns in forward
dependencies. */
#ifdef ENABLE_CHECKING
static bitmap_head *forward_dependency_cache;
#endif
static int deps_may_trap_p (rtx);
static void add_dependence_list (rtx, rtx, int, enum reg_note);
static void add_dependence_list_and_free (rtx, rtx *, int, enum reg_note);
static void delete_all_dependences (rtx);
static void fixup_sched_groups (rtx);
static void flush_pending_lists (struct deps *, rtx, int, int);
static void sched_analyze_1 (struct deps *, rtx, rtx);
static void sched_analyze_2 (struct deps *, rtx, rtx);
static void sched_analyze_insn (struct deps *, rtx, rtx);
static rtx sched_get_condition (rtx);
static int conditions_mutex_p (rtx, rtx);
static enum DEPS_ADJUST_RESULT maybe_add_or_update_back_dep_1 (rtx, rtx,
enum reg_note, ds_t, rtx, rtx, dep_link_t **);
static enum DEPS_ADJUST_RESULT add_or_update_back_dep_1 (rtx, rtx,
enum reg_note, ds_t, rtx, rtx, dep_link_t **);
static void add_back_dep (rtx, rtx, enum reg_note, ds_t);
static void adjust_add_sorted_back_dep (rtx, dep_link_t, dep_link_t *);
static void adjust_back_add_forw_dep (rtx, dep_link_t *);
static void delete_forw_dep (dep_link_t);
static dw_t estimate_dep_weak (rtx, rtx);
#ifdef INSN_SCHEDULING
#ifdef ENABLE_CHECKING
static void check_dep_status (enum reg_note, ds_t, bool);
#endif
#endif
/* Return nonzero if a load of the memory reference MEM can cause a trap. */
static int
deps_may_trap_p (rtx mem)
{
rtx addr = XEXP (mem, 0);
if (REG_P (addr) && REGNO (addr) >= FIRST_PSEUDO_REGISTER)
{
rtx t = get_reg_known_value (REGNO (addr));
if (t)
addr = t;
}
return rtx_addr_can_trap_p (addr);
}
/* Find the condition under which INSN is executed. */
static rtx
sched_get_condition (rtx insn)
{
rtx pat = PATTERN (insn);
rtx src;
if (pat == 0)
return 0;
if (GET_CODE (pat) == COND_EXEC)
return COND_EXEC_TEST (pat);
if (!any_condjump_p (insn) || !onlyjump_p (insn))
return 0;
src = SET_SRC (pc_set (insn));
if (XEXP (src, 2) == pc_rtx)
return XEXP (src, 0);
else if (XEXP (src, 1) == pc_rtx)
{
rtx cond = XEXP (src, 0);
enum rtx_code revcode = reversed_comparison_code (cond, insn);
if (revcode == UNKNOWN)
return 0;
return gen_rtx_fmt_ee (revcode, GET_MODE (cond), XEXP (cond, 0),
XEXP (cond, 1));
}
return 0;
}
/* Return nonzero if conditions COND1 and COND2 can never be both true. */
static int
conditions_mutex_p (rtx cond1, rtx cond2)
{
if (COMPARISON_P (cond1)
&& COMPARISON_P (cond2)
&& GET_CODE (cond1) == reversed_comparison_code (cond2, NULL)
&& XEXP (cond1, 0) == XEXP (cond2, 0)
&& XEXP (cond1, 1) == XEXP (cond2, 1))
return 1;
return 0;
}
/* Return true if insn1 and insn2 can never depend on one another because
the conditions under which they are executed are mutually exclusive. */
bool
sched_insns_conditions_mutex_p (rtx insn1, rtx insn2)
{
rtx cond1, cond2;
/* flow.c doesn't handle conditional lifetimes entirely correctly;
calls mess up the conditional lifetimes. */
if (!CALL_P (insn1) && !CALL_P (insn2))
{
cond1 = sched_get_condition (insn1);
cond2 = sched_get_condition (insn2);
if (cond1 && cond2
&& conditions_mutex_p (cond1, cond2)
/* Make sure first instruction doesn't affect condition of second
instruction if switched. */
&& !modified_in_p (cond1, insn2)
/* Make sure second instruction doesn't affect condition of first
instruction if switched. */
&& !modified_in_p (cond2, insn1))
return true;
}
return false;
}
/* Add ELEM wrapped in an dep_link with reg note kind DEP_TYPE to the
INSN_BACK_DEPS (INSN), if it is not already there. DEP_TYPE indicates the
type of dependence that this link represents. DS, if nonzero,
indicates speculations, through which this dependence can be overcome.
MEM1 and MEM2, if non-null, corresponds to memory locations in case of
data speculation. The function returns a value indicating if an old entry
has been changed or a new entry has been added to insn's backward deps.
In case of changed entry CHANGED_LINKPP sets to its address.
See also the definition of enum DEPS_ADJUST_RESULT in sched-int.h.
Actual manipulation of dependence data structures is performed in
add_or_update_back_dep_1. */
static enum DEPS_ADJUST_RESULT
maybe_add_or_update_back_dep_1 (rtx insn, rtx elem, enum reg_note dep_type,
ds_t ds, rtx mem1, rtx mem2,
dep_link_t **changed_linkpp)
{
gcc_assert (INSN_P (insn) && INSN_P (elem));
/* Don't depend an insn on itself. */
if (insn == elem)
{
#ifdef INSN_SCHEDULING
if (current_sched_info->flags & DO_SPECULATION)
/* INSN has an internal dependence, which we can't overcome. */
HAS_INTERNAL_DEP (insn) = 1;
#endif
return 0;
}
return add_or_update_back_dep_1 (insn, elem, dep_type,
ds, mem1, mem2, changed_linkpp);
}
/* This function has the same meaning of parameters and return values
as maybe_add_or_update_back_dep_1. The only difference between these
two functions is that INSN and ELEM are guaranteed not to be the same
in this one. */
static enum DEPS_ADJUST_RESULT
add_or_update_back_dep_1 (rtx insn, rtx elem, enum reg_note dep_type,
ds_t ds ATTRIBUTE_UNUSED,
rtx mem1 ATTRIBUTE_UNUSED, rtx mem2 ATTRIBUTE_UNUSED,
dep_link_t **changed_linkpp ATTRIBUTE_UNUSED)
{
bool maybe_present_p = true, present_p = false;
gcc_assert (INSN_P (insn) && INSN_P (elem) && insn != elem);
#ifdef INSN_SCHEDULING
#ifdef ENABLE_CHECKING
check_dep_status (dep_type, ds, mem1 != NULL);
#endif
/* If we already have a dependency for ELEM, then we do not need to
do anything. Avoiding the list walk below can cut compile times
dramatically for some code. */
if (true_dependency_cache != NULL)
{
enum reg_note present_dep_type;
gcc_assert (output_dependency_cache);
gcc_assert (anti_dependency_cache);
if (!(current_sched_info->flags & USE_DEPS_LIST))
{
if (bitmap_bit_p (&true_dependency_cache[INSN_LUID (insn)],
INSN_LUID (elem)))
present_dep_type = REG_DEP_TRUE;
else if (bitmap_bit_p (&output_dependency_cache[INSN_LUID (insn)],
INSN_LUID (elem)))
present_dep_type = REG_DEP_OUTPUT;
else if (bitmap_bit_p (&anti_dependency_cache[INSN_LUID (insn)],
INSN_LUID (elem)))
present_dep_type = REG_DEP_ANTI;
else
maybe_present_p = false;
if (maybe_present_p)
{
if ((int) dep_type >= (int) present_dep_type)
return DEP_PRESENT;
present_p = true;
}
}
else
{
ds_t present_dep_types = 0;
if (bitmap_bit_p (&true_dependency_cache[INSN_LUID (insn)],
INSN_LUID (elem)))
present_dep_types |= DEP_TRUE;
if (bitmap_bit_p (&output_dependency_cache[INSN_LUID (insn)],
INSN_LUID (elem)))
present_dep_types |= DEP_OUTPUT;
if (bitmap_bit_p (&anti_dependency_cache[INSN_LUID (insn)],
INSN_LUID (elem)))
present_dep_types |= DEP_ANTI;
if (present_dep_types)
{
if (!(current_sched_info->flags & DO_SPECULATION)
|| !bitmap_bit_p (&spec_dependency_cache[INSN_LUID (insn)],
INSN_LUID (elem)))
{
if ((present_dep_types | (ds & DEP_TYPES))
== present_dep_types)
/* We already have all these bits. */
return DEP_PRESENT;
}
else
{
/* Only true dependencies can be data speculative and
only anti dependencies can be control speculative. */
gcc_assert ((present_dep_types & (DEP_TRUE | DEP_ANTI))
== present_dep_types);
/* if (additional dep is SPECULATIVE) then
we should update DEP_STATUS
else
we should reset existing dep to non-speculative. */
}
present_p = true;
}
else
maybe_present_p = false;
}
}
#endif
/* Check that we don't already have this dependence. */
if (maybe_present_p)
{
dep_link_t *linkp;
for (linkp = &DEPS_LIST_FIRST (INSN_BACK_DEPS (insn));
*linkp != NULL;
linkp = &DEP_LINK_NEXT (*linkp))
{
dep_t link = DEP_LINK_DEP (*linkp);
gcc_assert (true_dependency_cache == 0 || present_p);
if (DEP_PRO (link) == elem)
{
enum DEPS_ADJUST_RESULT changed_p = DEP_PRESENT;
#ifdef INSN_SCHEDULING
if (current_sched_info->flags & USE_DEPS_LIST)
{
ds_t new_status = ds | DEP_STATUS (link);
if (new_status & SPECULATIVE)
{
if (!(ds & SPECULATIVE)
|| !(DEP_STATUS (link) & SPECULATIVE))
/* Then this dep can't be speculative. */
{
new_status &= ~SPECULATIVE;
if (true_dependency_cache
&& (DEP_STATUS (link) & SPECULATIVE))
bitmap_clear_bit (&spec_dependency_cache
[INSN_LUID (insn)],
INSN_LUID (elem));
}
else
{
/* Both are speculative. Merging probabilities. */
if (mem1)
{
dw_t dw;
dw = estimate_dep_weak (mem1, mem2);
ds = set_dep_weak (ds, BEGIN_DATA, dw);
}
new_status = ds_merge (DEP_STATUS (link), ds);
}
}
ds = new_status;
}
/* Clear corresponding cache entry because type of the link
may have changed. Keep them if we use_deps_list. */
if (true_dependency_cache != NULL
&& !(current_sched_info->flags & USE_DEPS_LIST))
{
enum reg_note kind = DEP_KIND (link);
switch (kind)
{
case REG_DEP_OUTPUT:
bitmap_clear_bit (&output_dependency_cache
[INSN_LUID (insn)], INSN_LUID (elem));
break;
case REG_DEP_ANTI:
bitmap_clear_bit (&anti_dependency_cache
[INSN_LUID (insn)], INSN_LUID (elem));
break;
default:
gcc_unreachable ();
}
}
if ((current_sched_info->flags & USE_DEPS_LIST)
&& DEP_STATUS (link) != ds)
{
DEP_STATUS (link) = ds;
changed_p = DEP_CHANGED;
}
#endif
/* If this is a more restrictive type of dependence than the
existing one, then change the existing dependence to this
type. */
if ((int) dep_type < (int) DEP_KIND (link))
{
DEP_KIND (link) = dep_type;
changed_p = DEP_CHANGED;
}
#ifdef INSN_SCHEDULING
/* If we are adding a dependency to INSN's LOG_LINKs, then
note that in the bitmap caches of dependency information. */
if (true_dependency_cache != NULL)
{
if (!(current_sched_info->flags & USE_DEPS_LIST))
{
if (DEP_KIND (link) == REG_DEP_TRUE)
bitmap_set_bit (&true_dependency_cache
[INSN_LUID (insn)], INSN_LUID (elem));
else if (DEP_KIND (link) == REG_DEP_OUTPUT)
bitmap_set_bit (&output_dependency_cache
[INSN_LUID (insn)], INSN_LUID (elem));
else if (DEP_KIND (link) == REG_DEP_ANTI)
bitmap_set_bit (&anti_dependency_cache
[INSN_LUID (insn)], INSN_LUID (elem));
}
else
{
if (ds & DEP_TRUE)
bitmap_set_bit (&true_dependency_cache
[INSN_LUID (insn)], INSN_LUID (elem));
if (ds & DEP_OUTPUT)
bitmap_set_bit (&output_dependency_cache
[INSN_LUID (insn)], INSN_LUID (elem));
if (ds & DEP_ANTI)
bitmap_set_bit (&anti_dependency_cache
[INSN_LUID (insn)], INSN_LUID (elem));
/* Note, that dep can become speculative only
at the moment of creation. Thus, we don't need to
check for it here. */
}
}
if (changed_linkpp && changed_p == DEP_CHANGED)
*changed_linkpp = linkp;
#endif
return changed_p;
}
}
/* We didn't find a dep. It shouldn't be present in the cache. */
gcc_assert (!present_p);
}
/* Might want to check one level of transitivity to save conses.
This check should be done in maybe_add_or_update_back_dep_1.
Since we made it to add_or_update_back_dep_1, we must create
(or update) a link. */
if (mem1)
{
gcc_assert (current_sched_info->flags & DO_SPECULATION);
ds = set_dep_weak (ds, BEGIN_DATA, estimate_dep_weak (mem1, mem2));
}
add_back_dep (insn, elem, dep_type, ds);
return DEP_CREATED;
}
/* This function creates a link between INSN and ELEM under any
conditions. DS describes speculative status of the link. */
static void
add_back_dep (rtx insn, rtx elem, enum reg_note dep_type, ds_t ds)
{
struct _dep _dep, *dep = &_dep;
gcc_assert (INSN_P (insn) && INSN_P (elem) && insn != elem);
if (current_sched_info->flags & USE_DEPS_LIST)
init_dep_1 (dep, elem, insn, dep_type, ds);
else
init_dep_1 (dep, elem, insn, dep_type, -1);
add_back_dep_to_deps_list (INSN_BACK_DEPS (insn), dep);
#ifdef INSN_SCHEDULING
#ifdef ENABLE_CHECKING
check_dep_status (dep_type, ds, false);
#endif
/* If we are adding a dependency to INSN's LOG_LINKs, then note that
in the bitmap caches of dependency information. */
if (true_dependency_cache != NULL)
{
if (!(current_sched_info->flags & USE_DEPS_LIST))
{
if (dep_type == REG_DEP_TRUE)
bitmap_set_bit (&true_dependency_cache[INSN_LUID (insn)],
INSN_LUID (elem));
else if (dep_type == REG_DEP_OUTPUT)
bitmap_set_bit (&output_dependency_cache[INSN_LUID (insn)],
INSN_LUID (elem));
else if (dep_type == REG_DEP_ANTI)
bitmap_set_bit (&anti_dependency_cache[INSN_LUID (insn)],
INSN_LUID (elem));
}
else
{
if (ds & DEP_TRUE)
bitmap_set_bit (&true_dependency_cache[INSN_LUID (insn)],
INSN_LUID (elem));
if (ds & DEP_OUTPUT)
bitmap_set_bit (&output_dependency_cache[INSN_LUID (insn)],
INSN_LUID (elem));
if (ds & DEP_ANTI)
bitmap_set_bit (&anti_dependency_cache[INSN_LUID (insn)],
INSN_LUID (elem));
if (ds & SPECULATIVE)
{
gcc_assert (current_sched_info->flags & DO_SPECULATION);
bitmap_set_bit (&spec_dependency_cache[INSN_LUID (insn)],
INSN_LUID (elem));
}
}
}
#endif
}
/* A convenience wrapper to operate on an entire list. */
static void
add_dependence_list (rtx insn, rtx list, int uncond, enum reg_note dep_type)
{
for (; list; list = XEXP (list, 1))
{
if (uncond || ! sched_insns_conditions_mutex_p (insn, XEXP (list, 0)))
add_dependence (insn, XEXP (list, 0), dep_type);
}
}
/* Similar, but free *LISTP at the same time. */
static void
add_dependence_list_and_free (rtx insn, rtx *listp, int uncond,
enum reg_note dep_type)
{
rtx list, next;
for (list = *listp, *listp = NULL; list ; list = next)
{
next = XEXP (list, 1);
if (uncond || ! sched_insns_conditions_mutex_p (insn, XEXP (list, 0)))
add_dependence (insn, XEXP (list, 0), dep_type);
free_INSN_LIST_node (list);
}
}
/* Clear all dependencies for an insn. */
static void
delete_all_dependences (rtx insn)
{
/* Clear caches, if they exist, as well as free the dependence. */
#ifdef INSN_SCHEDULING
if (true_dependency_cache != NULL)
{
bitmap_clear (&true_dependency_cache[INSN_LUID (insn)]);
bitmap_clear (&output_dependency_cache[INSN_LUID (insn)]);
bitmap_clear (&anti_dependency_cache[INSN_LUID (insn)]);
/* We don't have to clear forward_dependency_cache here,
because it is formed later. */
if (current_sched_info->flags & DO_SPECULATION)
bitmap_clear (&spec_dependency_cache[INSN_LUID (insn)]);
}
#endif
clear_deps_list (INSN_BACK_DEPS (insn));
}
/* All insns in a scheduling group except the first should only have
dependencies on the previous insn in the group. So we find the
first instruction in the scheduling group by walking the dependence
chains backwards. Then we add the dependencies for the group to
the previous nonnote insn. */
static void
fixup_sched_groups (rtx insn)
{
dep_link_t link;
rtx prev_nonnote;
FOR_EACH_DEP_LINK (link, INSN_BACK_DEPS (insn))
{
rtx i = insn;
dep_t dep = DEP_LINK_DEP (link);
rtx pro = DEP_PRO (dep);
do
{
i = prev_nonnote_insn (i);
if (pro == i)
goto next_link;
} while (SCHED_GROUP_P (i));
if (! sched_insns_conditions_mutex_p (i, pro))
add_dependence (i, pro, DEP_KIND (dep));
next_link:;
}
delete_all_dependences (insn);
prev_nonnote = prev_nonnote_insn (insn);
if (BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (prev_nonnote)
&& ! sched_insns_conditions_mutex_p (insn, prev_nonnote))
add_dependence (insn, prev_nonnote, REG_DEP_ANTI);
}
/* Process an insn's memory dependencies. There are four kinds of
dependencies:
(0) read dependence: read follows read
(1) true dependence: read follows write
(2) output dependence: write follows write
(3) anti dependence: write follows read
We are careful to build only dependencies which actually exist, and
use transitivity to avoid building too many links. */
/* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
The MEM is a memory reference contained within INSN, which we are saving
so that we can do memory aliasing on it. */
static void
add_insn_mem_dependence (struct deps *deps, bool read_p,
rtx insn, rtx mem)
{
rtx *insn_list;
rtx *mem_list;
rtx link;
if (read_p)
{
insn_list = &deps->pending_read_insns;
mem_list = &deps->pending_read_mems;
deps->pending_read_list_length++;
}
else
{
insn_list = &deps->pending_write_insns;
mem_list = &deps->pending_write_mems;
deps->pending_write_list_length++;
}
link = alloc_INSN_LIST (insn, *insn_list);
*insn_list = link;
if (current_sched_info->use_cselib)
{
mem = shallow_copy_rtx (mem);
XEXP (mem, 0) = cselib_subst_to_values (XEXP (mem, 0));
}
link = alloc_EXPR_LIST (VOIDmode, canon_rtx (mem), *mem_list);
*mem_list = link;
}
/* Make a dependency between every memory reference on the pending lists
and INSN, thus flushing the pending lists. FOR_READ is true if emitting
dependencies for a read operation, similarly with FOR_WRITE. */
static void
flush_pending_lists (struct deps *deps, rtx insn, int for_read,
int for_write)
{
if (for_write)
{
add_dependence_list_and_free (insn, &deps->pending_read_insns, 1,
REG_DEP_ANTI);
free_EXPR_LIST_list (&deps->pending_read_mems);
deps->pending_read_list_length = 0;
}
add_dependence_list_and_free (insn, &deps->pending_write_insns, 1,
for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT);
free_EXPR_LIST_list (&deps->pending_write_mems);
deps->pending_write_list_length = 0;
add_dependence_list_and_free (insn, &deps->last_pending_memory_flush, 1,
for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT);
deps->last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX);
deps->pending_flush_length = 1;
}
/* Analyze a single reference to register (reg:MODE REGNO) in INSN.
The type of the reference is specified by REF and can be SET,
CLOBBER, PRE_DEC, POST_DEC, PRE_INC, POST_INC or USE. */
static void
sched_analyze_reg (struct deps *deps, int regno, enum machine_mode mode,
enum rtx_code ref, rtx insn)
{
/* A hard reg in a wide mode may really be multiple registers.
If so, mark all of them just like the first. */
if (regno < FIRST_PSEUDO_REGISTER)
{
int i = hard_regno_nregs[regno][mode];
if (ref == SET)
{
while (--i >= 0)
SET_REGNO_REG_SET (reg_pending_sets, regno + i);
}
else if (ref == USE)
{
while (--i >= 0)
SET_REGNO_REG_SET (reg_pending_uses, regno + i);
}
else
{
while (--i >= 0)
SET_REGNO_REG_SET (reg_pending_clobbers, regno + i);
}
}
/* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
it does not reload. Ignore these as they have served their
purpose already. */
else if (regno >= deps->max_reg)
{
enum rtx_code code = GET_CODE (PATTERN (insn));
gcc_assert (code == USE || code == CLOBBER);
}
else
{
if (ref == SET)
SET_REGNO_REG_SET (reg_pending_sets, regno);
else if (ref == USE)
SET_REGNO_REG_SET (reg_pending_uses, regno);
else
SET_REGNO_REG_SET (reg_pending_clobbers, regno);
/* Pseudos that are REG_EQUIV to something may be replaced
by that during reloading. We need only add dependencies for
the address in the REG_EQUIV note. */
if (!reload_completed && get_reg_known_equiv_p (regno))
{
rtx t = get_reg_known_value (regno);
if (MEM_P (t))
sched_analyze_2 (deps, XEXP (t, 0), insn);
}
/* Don't let it cross a call after scheduling if it doesn't
already cross one. */
if (REG_N_CALLS_CROSSED (regno) == 0)
{
if (ref == USE)
deps->sched_before_next_call
= alloc_INSN_LIST (insn, deps->sched_before_next_call);
else
add_dependence_list (insn, deps->last_function_call, 1,
REG_DEP_ANTI);
}
}
}
/* Analyze a single SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC or POST_INC
rtx, X, creating all dependencies generated by the write to the
destination of X, and reads of everything mentioned. */
static void
sched_analyze_1 (struct deps *deps, rtx x, rtx insn)
{
rtx dest = XEXP (x, 0);
enum rtx_code code = GET_CODE (x);
if (dest == 0)
return;
if (GET_CODE (dest) == PARALLEL)
{
int i;
for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
sched_analyze_1 (deps,
gen_rtx_CLOBBER (VOIDmode,
XEXP (XVECEXP (dest, 0, i), 0)),
insn);
if (GET_CODE (x) == SET)
sched_analyze_2 (deps, SET_SRC (x), insn);
return;
}
while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
|| GET_CODE (dest) == ZERO_EXTRACT)
{
if (GET_CODE (dest) == STRICT_LOW_PART
|| GET_CODE (dest) == ZERO_EXTRACT
|| df_read_modify_subreg_p (dest))
{
/* These both read and modify the result. We must handle
them as writes to get proper dependencies for following
instructions. We must handle them as reads to get proper
dependencies from this to previous instructions.
Thus we need to call sched_analyze_2. */
sched_analyze_2 (deps, XEXP (dest, 0), insn);
}
if (GET_CODE (dest) == ZERO_EXTRACT)
{
/* The second and third arguments are values read by this insn. */
sched_analyze_2 (deps, XEXP (dest, 1), insn);
sched_analyze_2 (deps, XEXP (dest, 2), insn);
}
dest = XEXP (dest, 0);
}
if (REG_P (dest))
{
int regno = REGNO (dest);
enum machine_mode mode = GET_MODE (dest);
sched_analyze_reg (deps, regno, mode, code, insn);
#ifdef STACK_REGS
/* Treat all writes to a stack register as modifying the TOS. */
if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
{
/* Avoid analyzing the same register twice. */
if (regno != FIRST_STACK_REG)
sched_analyze_reg (deps, FIRST_STACK_REG, mode, code, insn);
sched_analyze_reg (deps, FIRST_STACK_REG, mode, USE, insn);
}
#endif
}
else if (MEM_P (dest))
{
/* Writing memory. */
rtx t = dest;
if (current_sched_info->use_cselib)
{
t = shallow_copy_rtx (dest);
cselib_lookup (XEXP (t, 0), Pmode, 1);
XEXP (t, 0) = cselib_subst_to_values (XEXP (t, 0));
}
t = canon_rtx (t);
if ((deps->pending_read_list_length + deps->pending_write_list_length)
> MAX_PENDING_LIST_LENGTH)
{
/* Flush all pending reads and writes to prevent the pending lists
from getting any larger. Insn scheduling runs too slowly when
these lists get long. When compiling GCC with itself,
this flush occurs 8 times for sparc, and 10 times for m88k using
the default value of 32. */
flush_pending_lists (deps, insn, false, true);
}
else
{
rtx pending, pending_mem;
pending = deps->pending_read_insns;
pending_mem = deps->pending_read_mems;
while (pending)
{
if (anti_dependence (XEXP (pending_mem, 0), t)
&& ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI);
pending = XEXP (pending, 1);
pending_mem = XEXP (pending_mem, 1);
}
pending = deps->pending_write_insns;
pending_mem = deps->pending_write_mems;
while (pending)
{
if (output_dependence (XEXP (pending_mem, 0), t)
&& ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
pending = XEXP (pending, 1);
pending_mem = XEXP (pending_mem, 1);
}
add_dependence_list (insn, deps->last_pending_memory_flush, 1,
REG_DEP_ANTI);
add_insn_mem_dependence (deps, false, insn, dest);
}
sched_analyze_2 (deps, XEXP (dest, 0), insn);
}
/* Analyze reads. */
if (GET_CODE (x) == SET)
sched_analyze_2 (deps, SET_SRC (x), insn);
}
/* Analyze the uses of memory and registers in rtx X in INSN. */
static void
sched_analyze_2 (struct deps *deps, rtx x, rtx insn)
{
int i;
int j;
enum rtx_code code;
const char *fmt;
if (x == 0)
return;
code = GET_CODE (x);
switch (code)
{
case CONST_INT:
case CONST_DOUBLE:
case CONST_VECTOR:
case SYMBOL_REF:
case CONST:
case LABEL_REF:
/* Ignore constants. Note that we must handle CONST_DOUBLE here
because it may have a cc0_rtx in its CONST_DOUBLE_CHAIN field, but
this does not mean that this insn is using cc0. */
return;
#ifdef HAVE_cc0
case CC0:
/* User of CC0 depends on immediately preceding insn. */
SCHED_GROUP_P (insn) = 1;
/* Don't move CC0 setter to another block (it can set up the
same flag for previous CC0 users which is safe). */
CANT_MOVE (prev_nonnote_insn (insn)) = 1;
return;
#endif
case REG:
{
int regno = REGNO (x);
enum machine_mode mode = GET_MODE (x);
sched_analyze_reg (deps, regno, mode, USE, insn);
#ifdef STACK_REGS
/* Treat all reads of a stack register as modifying the TOS. */
if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
{
/* Avoid analyzing the same register twice. */
if (regno != FIRST_STACK_REG)
sched_analyze_reg (deps, FIRST_STACK_REG, mode, USE, insn);
sched_analyze_reg (deps, FIRST_STACK_REG, mode, SET, insn);
}
#endif
return;
}
case MEM:
{
/* Reading memory. */
rtx u;
rtx pending, pending_mem;
rtx t = x;
if (current_sched_info->use_cselib)
{
t = shallow_copy_rtx (t);
cselib_lookup (XEXP (t, 0), Pmode, 1);
XEXP (t, 0) = cselib_subst_to_values (XEXP (t, 0));
}
t = canon_rtx (t);
pending = deps->pending_read_insns;
pending_mem = deps->pending_read_mems;
while (pending)
{
if (read_dependence (XEXP (pending_mem, 0), t)
&& ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI);
pending = XEXP (pending, 1);
pending_mem = XEXP (pending_mem, 1);
}
pending = deps->pending_write_insns;
pending_mem = deps->pending_write_mems;
while (pending)
{
if (true_dependence (XEXP (pending_mem, 0), VOIDmode,
t, rtx_varies_p)
&& ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
{
if (current_sched_info->flags & DO_SPECULATION)
maybe_add_or_update_back_dep_1 (insn, XEXP (pending, 0),
REG_DEP_TRUE,
BEGIN_DATA | DEP_TRUE,
XEXP (pending_mem, 0), t, 0);
else
add_dependence (insn, XEXP (pending, 0), REG_DEP_TRUE);
}
pending = XEXP (pending, 1);
pending_mem = XEXP (pending_mem, 1);
}
for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
if (! JUMP_P (XEXP (u, 0)) || deps_may_trap_p (x))
add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
/* Always add these dependencies to pending_reads, since
this insn may be followed by a write. */
add_insn_mem_dependence (deps, true, insn, x);
/* Take advantage of tail recursion here. */
sched_analyze_2 (deps, XEXP (x, 0), insn);
return;
}
/* Force pending stores to memory in case a trap handler needs them. */
case TRAP_IF:
flush_pending_lists (deps, insn, true, false);
break;
case ASM_OPERANDS:
case ASM_INPUT:
case UNSPEC_VOLATILE:
{
/* Traditional and volatile asm instructions must be considered to use
and clobber all hard registers, all pseudo-registers and all of
memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
Consider for instance a volatile asm that changes the fpu rounding
mode. An insn should not be moved across this even if it only uses
pseudo-regs because it might give an incorrectly rounded result. */
if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
reg_pending_barrier = TRUE_BARRIER;
/* For all ASM_OPERANDS, we must traverse the vector of input operands.
We can not just fall through here since then we would be confused
by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
traditional asms unlike their normal usage. */
if (code == ASM_OPERANDS)
{
for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
sched_analyze_2 (deps, ASM_OPERANDS_INPUT (x, j), insn);
return;
}
break;
}
case PRE_DEC:
case POST_DEC:
case PRE_INC:
case POST_INC:
/* These both read and modify the result. We must handle them as writes
to get proper dependencies for following instructions. We must handle
them as reads to get proper dependencies from this to previous
instructions. Thus we need to pass them to both sched_analyze_1
and sched_analyze_2. We must call sched_analyze_2 first in order
to get the proper antecedent for the read. */
sched_analyze_2 (deps, XEXP (x, 0), insn);
sched_analyze_1 (deps, x, insn);
return;
case POST_MODIFY:
case PRE_MODIFY:
/* op0 = op0 + op1 */
sched_analyze_2 (deps, XEXP (x, 0), insn);
sched_analyze_2 (deps, XEXP (x, 1), insn);
sched_analyze_1 (deps, x, insn);
return;
default:
break;
}
/* Other cases: walk the insn. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
sched_analyze_2 (deps, XEXP (x, i), insn);
else if (fmt[i] == 'E')
for (j = 0; j < XVECLEN (x, i); j++)
sched_analyze_2 (deps, XVECEXP (x, i, j), insn);
}
}
/* Analyze an INSN with pattern X to find all dependencies. */
static void
sched_analyze_insn (struct deps *deps, rtx x, rtx insn)
{
RTX_CODE code = GET_CODE (x);
rtx link;
unsigned i;
reg_set_iterator rsi;
if (code == COND_EXEC)
{
sched_analyze_2 (deps, COND_EXEC_TEST (x), insn);
/* ??? Should be recording conditions so we reduce the number of
false dependencies. */
x = COND_EXEC_CODE (x);
code = GET_CODE (x);
}
if (code == SET || code == CLOBBER)
{
sched_analyze_1 (deps, x, insn);
/* Bare clobber insns are used for letting life analysis, reg-stack
and others know that a value is dead. Depend on the last call
instruction so that reg-stack won't get confused. */
if (code == CLOBBER)
add_dependence_list (insn, deps->last_function_call, 1, REG_DEP_OUTPUT);
}
else if (code == PARALLEL)
{
for (i = XVECLEN (x, 0); i--;)
{
rtx sub = XVECEXP (x, 0, i);
code = GET_CODE (sub);
if (code == COND_EXEC)
{
sched_analyze_2 (deps, COND_EXEC_TEST (sub), insn);
sub = COND_EXEC_CODE (sub);
code = GET_CODE (sub);
}
if (code == SET || code == CLOBBER)
sched_analyze_1 (deps, sub, insn);
else
sched_analyze_2 (deps, sub, insn);
}
}
else
sched_analyze_2 (deps, x, insn);
/* Mark registers CLOBBERED or used by called function. */
if (CALL_P (insn))
{
for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
{
if (GET_CODE (XEXP (link, 0)) == CLOBBER)
sched_analyze_1 (deps, XEXP (link, 0), insn);
else
sched_analyze_2 (deps, XEXP (link, 0), insn);
}
if (find_reg_note (insn, REG_SETJMP, NULL))
reg_pending_barrier = MOVE_BARRIER;
}
if (JUMP_P (insn))
{
rtx next;
next = next_nonnote_insn (insn);
if (next && BARRIER_P (next))
reg_pending_barrier = TRUE_BARRIER;
else
{
rtx pending, pending_mem;
regset_head tmp_uses, tmp_sets;
INIT_REG_SET (&tmp_uses);
INIT_REG_SET (&tmp_sets);
(*current_sched_info->compute_jump_reg_dependencies)
(insn, &deps->reg_conditional_sets, &tmp_uses, &tmp_sets);
/* Make latency of jump equal to 0 by using anti-dependence. */
EXECUTE_IF_SET_IN_REG_SET (&tmp_uses, 0, i, rsi)
{
struct deps_reg *reg_last = &deps->reg_last[i];
add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI);
add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_ANTI);
reg_last->uses_length++;
reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
}
IOR_REG_SET (reg_pending_sets, &tmp_sets);
CLEAR_REG_SET (&tmp_uses);
CLEAR_REG_SET (&tmp_sets);
/* All memory writes and volatile reads must happen before the
jump. Non-volatile reads must happen before the jump iff
the result is needed by the above register used mask. */
pending = deps->pending_write_insns;
pending_mem = deps->pending_write_mems;
while (pending)
{
if (! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
pending = XEXP (pending, 1);
pending_mem = XEXP (pending_mem, 1);
}
pending = deps->pending_read_insns;
pending_mem = deps->pending_read_mems;
while (pending)
{
if (MEM_VOLATILE_P (XEXP (pending_mem, 0))
&& ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
pending = XEXP (pending, 1);
pending_mem = XEXP (pending_mem, 1);
}
add_dependence_list (insn, deps->last_pending_memory_flush, 1,
REG_DEP_ANTI);
}
}
/* If this instruction can throw an exception, then moving it changes
where block boundaries fall. This is mighty confusing elsewhere.
Therefore, prevent such an instruction from being moved. Same for
non-jump instructions that define block boundaries.
??? Unclear whether this is still necessary in EBB mode. If not,
add_branch_dependences should be adjusted for RGN mode instead. */
if (((CALL_P (insn) || JUMP_P (insn)) && can_throw_internal (insn))
|| (NONJUMP_INSN_P (insn) && control_flow_insn_p (insn)))
reg_pending_barrier = MOVE_BARRIER;
/* Add dependencies if a scheduling barrier was found. */
if (reg_pending_barrier)
{
/* In the case of barrier the most added dependencies are not
real, so we use anti-dependence here. */
if (sched_get_condition (insn))
{
EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
{
struct deps_reg *reg_last = &deps->reg_last[i];
add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
add_dependence_list
(insn, reg_last->sets, 0,
reg_pending_barrier == TRUE_BARRIER ? REG_DEP_TRUE : REG_DEP_ANTI);
add_dependence_list
(insn, reg_last->clobbers, 0,
reg_pending_barrier == TRUE_BARRIER ? REG_DEP_TRUE : REG_DEP_ANTI);
}
}
else
{
EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
{
struct deps_reg *reg_last = &deps->reg_last[i];
add_dependence_list_and_free (insn, ®_last->uses, 0,
REG_DEP_ANTI);
add_dependence_list_and_free
(insn, ®_last->sets, 0,
reg_pending_barrier == TRUE_BARRIER ? REG_DEP_TRUE : REG_DEP_ANTI);
add_dependence_list_and_free
(insn, ®_last->clobbers, 0,
reg_pending_barrier == TRUE_BARRIER ? REG_DEP_TRUE : REG_DEP_ANTI);
reg_last->uses_length = 0;
reg_last->clobbers_length = 0;
}
}
for (i = 0; i < (unsigned)deps->max_reg; i++)
{
struct deps_reg *reg_last = &deps->reg_last[i];
reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
}
flush_pending_lists (deps, insn, true, true);
CLEAR_REG_SET (&deps->reg_conditional_sets);
reg_pending_barrier = NOT_A_BARRIER;
}
else
{
/* If the current insn is conditional, we can't free any
of the lists. */
if (sched_get_condition (insn))
{
EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
{
struct deps_reg *reg_last = &deps->reg_last[i];
add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE);
add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE);
reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
reg_last->uses_length++;
}
EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
{
struct deps_reg *reg_last = &deps->reg_last[i];
add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT);
add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
reg_last->clobbers = alloc_INSN_LIST (insn, reg_last->clobbers);
reg_last->clobbers_length++;
}
EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
{
struct deps_reg *reg_last = &deps->reg_last[i];
add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT);
add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_OUTPUT);
add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
SET_REGNO_REG_SET (&deps->reg_conditional_sets, i);
}
}
else
{
EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
{
struct deps_reg *reg_last = &deps->reg_last[i];
add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE);
add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE);
reg_last->uses_length++;
reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
}
EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
{
struct deps_reg *reg_last = &deps->reg_last[i];
if (reg_last->uses_length > MAX_PENDING_LIST_LENGTH
|| reg_last->clobbers_length > MAX_PENDING_LIST_LENGTH)
{
add_dependence_list_and_free (insn, ®_last->sets, 0,
REG_DEP_OUTPUT);
add_dependence_list_and_free (insn, ®_last->uses, 0,
REG_DEP_ANTI);
add_dependence_list_and_free (insn, ®_last->clobbers, 0,
REG_DEP_OUTPUT);
reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
reg_last->clobbers_length = 0;
reg_last->uses_length = 0;
}
else
{
add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT);
add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
}
reg_last->clobbers_length++;
reg_last->clobbers = alloc_INSN_LIST (insn, reg_last->clobbers);
}
EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
{
struct deps_reg *reg_last = &deps->reg_last[i];
add_dependence_list_and_free (insn, ®_last->sets, 0,
REG_DEP_OUTPUT);
add_dependence_list_and_free (insn, ®_last->clobbers, 0,
REG_DEP_OUTPUT);
add_dependence_list_and_free (insn, ®_last->uses, 0,
REG_DEP_ANTI);
reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
reg_last->uses_length = 0;
reg_last->clobbers_length = 0;
CLEAR_REGNO_REG_SET (&deps->reg_conditional_sets, i);
}
}
IOR_REG_SET (&deps->reg_last_in_use, reg_pending_uses);
IOR_REG_SET (&deps->reg_last_in_use, reg_pending_clobbers);
IOR_REG_SET (&deps->reg_last_in_use, reg_pending_sets);
}
CLEAR_REG_SET (reg_pending_uses);
CLEAR_REG_SET (reg_pending_clobbers);
CLEAR_REG_SET (reg_pending_sets);
/* If we are currently in a libcall scheduling group, then mark the
current insn as being in a scheduling group and that it can not
be moved into a different basic block. */
if (deps->libcall_block_tail_insn)
{
SCHED_GROUP_P (insn) = 1;
CANT_MOVE (insn) = 1;
}
/* If a post-call group is still open, see if it should remain so.
This insn must be a simple move of a hard reg to a pseudo or
vice-versa.
We must avoid moving these insns for correctness on
SMALL_REGISTER_CLASS machines, and for special registers like
PIC_OFFSET_TABLE_REGNUM. For simplicity, extend this to all
hard regs for all targets. */
if (deps->in_post_call_group_p)
{
rtx tmp, set = single_set (insn);
int src_regno, dest_regno;
if (set == NULL)
goto end_call_group;
tmp = SET_DEST (set);
if (GET_CODE (tmp) == SUBREG)
tmp = SUBREG_REG (tmp);
if (REG_P (tmp))
dest_regno = REGNO (tmp);
else
goto end_call_group;
tmp = SET_SRC (set);
if (GET_CODE (tmp) == SUBREG)
tmp = SUBREG_REG (tmp);
if ((GET_CODE (tmp) == PLUS
|| GET_CODE (tmp) == MINUS)
&& REG_P (XEXP (tmp, 0))
&& REGNO (XEXP (tmp, 0)) == STACK_POINTER_REGNUM
&& dest_regno == STACK_POINTER_REGNUM)
src_regno = STACK_POINTER_REGNUM;
else if (REG_P (tmp))
src_regno = REGNO (tmp);
else
goto end_call_group;
if (src_regno < FIRST_PSEUDO_REGISTER
|| dest_regno < FIRST_PSEUDO_REGISTER)
{
if (deps->in_post_call_group_p == post_call_initial)
deps->in_post_call_group_p = post_call;
SCHED_GROUP_P (insn) = 1;
CANT_MOVE (insn) = 1;
}
else
{
end_call_group:
deps->in_post_call_group_p = not_post_call;
}
}
/* Fixup the dependencies in the sched group. */
if (SCHED_GROUP_P (insn))
fixup_sched_groups (insn);
}
/* Analyze every insn between HEAD and TAIL inclusive, creating backward
dependencies for each insn. */
void
sched_analyze (struct deps *deps, rtx head, rtx tail)
{
rtx insn;
if (current_sched_info->use_cselib)
cselib_init (true);
/* Before reload, if the previous block ended in a call, show that
we are inside a post-call group, so as to keep the lifetimes of
hard registers correct. */
if (! reload_completed && !LABEL_P (head))
{
insn = prev_nonnote_insn (head);
if (insn && CALL_P (insn))
deps->in_post_call_group_p = post_call_initial;
}
for (insn = head;; insn = NEXT_INSN (insn))
{
rtx link, end_seq, r0, set;
if (INSN_P (insn))
{
/* Clear out the stale LOG_LINKS from flow. */
free_INSN_LIST_list (&LOG_LINKS (insn));
/* These two lists will be freed in schedule_insn (). */
INSN_BACK_DEPS (insn) = create_deps_list (false);
INSN_RESOLVED_BACK_DEPS (insn) = create_deps_list (false);
/* This one should be allocated on the obstack because it should live
till the scheduling ends. */
INSN_FORW_DEPS (insn) = create_deps_list (true);
}
if (NONJUMP_INSN_P (insn) || JUMP_P (insn))
{
/* Make each JUMP_INSN a scheduling barrier for memory
references. */
if (JUMP_P (insn))
{
/* Keep the list a reasonable size. */
if (deps->pending_flush_length++ > MAX_PENDING_LIST_LENGTH)
flush_pending_lists (deps, insn, true, true);
else
deps->last_pending_memory_flush
= alloc_INSN_LIST (insn, deps->last_pending_memory_flush);
}
sched_analyze_insn (deps, PATTERN (insn), insn);
}
else if (CALL_P (insn))
{
int i;
CANT_MOVE (insn) = 1;
if (find_reg_note (insn, REG_SETJMP, NULL))
{
/* This is setjmp. Assume that all registers, not just
hard registers, may be clobbered by this call. */
reg_pending_barrier = MOVE_BARRIER;
}
else
{
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
/* A call may read and modify global register variables. */
if (global_regs[i])
{
SET_REGNO_REG_SET (reg_pending_sets, i);
SET_REGNO_REG_SET (reg_pending_uses, i);
}
/* Other call-clobbered hard regs may be clobbered.
Since we only have a choice between 'might be clobbered'
and 'definitely not clobbered', we must include all
partly call-clobbered registers here. */
else if (HARD_REGNO_CALL_PART_CLOBBERED (i, reg_raw_mode[i])
|| TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
SET_REGNO_REG_SET (reg_pending_clobbers, i);
/* We don't know what set of fixed registers might be used
by the function, but it is certain that the stack pointer
is among them, but be conservative. */
else if (fixed_regs[i])
SET_REGNO_REG_SET (reg_pending_uses, i);
/* The frame pointer is normally not used by the function
itself, but by the debugger. */
/* ??? MIPS o32 is an exception. It uses the frame pointer
in the macro expansion of jal but does not represent this
fact in the call_insn rtl. */
else if (i == FRAME_POINTER_REGNUM
|| (i == HARD_FRAME_POINTER_REGNUM
&& (! reload_completed || frame_pointer_needed)))
SET_REGNO_REG_SET (reg_pending_uses, i);
}
/* For each insn which shouldn't cross a call, add a dependence
between that insn and this call insn. */
add_dependence_list_and_free (insn, &deps->sched_before_next_call, 1,
REG_DEP_ANTI);
sched_analyze_insn (deps, PATTERN (insn), insn);
/* In the absence of interprocedural alias analysis, we must flush
all pending reads and writes, and start new dependencies starting
from here. But only flush writes for constant calls (which may
be passed a pointer to something we haven't written yet). */
flush_pending_lists (deps, insn, true, !CONST_OR_PURE_CALL_P (insn));
/* Remember the last function call for limiting lifetimes. */
free_INSN_LIST_list (&deps->last_function_call);
deps->last_function_call = alloc_INSN_LIST (insn, NULL_RTX);
/* Before reload, begin a post-call group, so as to keep the
lifetimes of hard registers correct. */
if (! reload_completed)
deps->in_post_call_group_p = post_call;
}
/* EH_REGION insn notes can not appear until well after we complete
scheduling. */
if (NOTE_P (insn))
gcc_assert (NOTE_KIND (insn) != NOTE_INSN_EH_REGION_BEG
&& NOTE_KIND (insn) != NOTE_INSN_EH_REGION_END);
if (current_sched_info->use_cselib)
cselib_process_insn (insn);
/* Now that we have completed handling INSN, check and see if it is
a CLOBBER beginning a libcall block. If it is, record the
end of the libcall sequence.
We want to schedule libcall blocks as a unit before reload. While
this restricts scheduling, it preserves the meaning of a libcall
block.
As a side effect, we may get better code due to decreased register
pressure as well as less chance of a foreign insn appearing in
a libcall block. */
if (!reload_completed
/* Note we may have nested libcall sequences. We only care about
the outermost libcall sequence. */
&& deps->libcall_block_tail_insn == 0
/* The sequence must start with a clobber of a register. */
&& NONJUMP_INSN_P (insn)
&& GET_CODE (PATTERN (insn)) == CLOBBER
&& (r0 = XEXP (PATTERN (insn), 0), REG_P (r0))
&& REG_P (XEXP (PATTERN (insn), 0))
/* The CLOBBER must also have a REG_LIBCALL note attached. */
&& (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
&& (end_seq = XEXP (link, 0)) != 0
/* The insn referenced by the REG_LIBCALL note must be a
simple nop copy with the same destination as the register
mentioned in the clobber. */
&& (set = single_set (end_seq)) != 0
&& SET_DEST (set) == r0 && SET_SRC (set) == r0
/* And finally the insn referenced by the REG_LIBCALL must
also contain a REG_EQUAL note and a REG_RETVAL note. */
&& find_reg_note (end_seq, REG_EQUAL, NULL_RTX) != 0
&& find_reg_note (end_seq, REG_RETVAL, NULL_RTX) != 0)
deps->libcall_block_tail_insn = XEXP (link, 0);
/* If we have reached the end of a libcall block, then close the
block. */
if (deps->libcall_block_tail_insn == insn)
deps->libcall_block_tail_insn = 0;
if (insn == tail)
{
if (current_sched_info->use_cselib)
cselib_finish ();
return;
}
}
gcc_unreachable ();
}
/* The following function adds forward dependence (FROM, TO) with
given DEP_TYPE. The forward dependence should be not exist before. */
void
add_forw_dep (dep_link_t link)
{
dep_t dep = DEP_LINK_DEP (link);
rtx to = DEP_CON (dep);
rtx from = DEP_PRO (dep);
#ifdef ENABLE_CHECKING
/* If add_dependence is working properly there should never
be notes, deleted insns or duplicates in the backward
links. Thus we need not check for them here.
However, if we have enabled checking we might as well go
ahead and verify that add_dependence worked properly. */
gcc_assert (INSN_P (from));
gcc_assert (!INSN_DELETED_P (from));
if (true_dependency_cache)
{
gcc_assert (!bitmap_bit_p (&forward_dependency_cache[INSN_LUID (from)],
INSN_LUID (to)));
bitmap_set_bit (&forward_dependency_cache[INSN_LUID (from)],
INSN_LUID (to));
}
gcc_assert (find_link_by_con_in_deps_list (INSN_FORW_DEPS (from), to)
== NULL);
#endif
add_to_deps_list (DEP_NODE_FORW (DEP_LINK_NODE (link)),
INSN_FORW_DEPS (from));
INSN_DEP_COUNT (to) += 1;
}
/* Examine insns in the range [ HEAD, TAIL ] and Use the backward
dependences from INSN_BACK_DEPS list to build forward dependences in
INSN_FORW_DEPS. */
void
compute_forward_dependences (rtx head, rtx tail)
{
rtx insn;
rtx next_tail;
next_tail = NEXT_INSN (tail);
for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
{
dep_link_t link;
if (! INSN_P (insn))
continue;
if (current_sched_info->flags & DO_SPECULATION)
{
/* We will add links, preserving order, from INSN_BACK_DEPS to
NEW. */
dep_link_t new = NULL;
link = DEPS_LIST_FIRST (INSN_BACK_DEPS (insn));
while (link != NULL)
{
dep_link_t next = DEP_LINK_NEXT (link);
detach_dep_link (link);
adjust_add_sorted_back_dep (insn, link, &new);
link = next;
}
/* Attach NEW to be the list of backward dependencies. */
if (new != NULL)
{
DEP_LINK_PREV_NEXTP (new)
= &DEPS_LIST_FIRST (INSN_BACK_DEPS (insn));
DEPS_LIST_FIRST (INSN_BACK_DEPS (insn)) = new;
}
}
FOR_EACH_DEP_LINK (link, INSN_BACK_DEPS (insn))
add_forw_dep (link);
}
}
/* Initialize variables for region data dependence analysis.
n_bbs is the number of region blocks. */
void
init_deps (struct deps *deps)
{
int max_reg = (reload_completed ? FIRST_PSEUDO_REGISTER : max_reg_num ());
deps->max_reg = max_reg;
deps->reg_last = XCNEWVEC (struct deps_reg, max_reg);
INIT_REG_SET (&deps->reg_last_in_use);
INIT_REG_SET (&deps->reg_conditional_sets);
deps->pending_read_insns = 0;
deps->pending_read_mems = 0;
deps->pending_write_insns = 0;
deps->pending_write_mems = 0;
deps->pending_read_list_length = 0;
deps->pending_write_list_length = 0;
deps->pending_flush_length = 0;
deps->last_pending_memory_flush = 0;
deps->last_function_call = 0;
deps->sched_before_next_call = 0;
deps->in_post_call_group_p = not_post_call;
deps->libcall_block_tail_insn = 0;
}
/* Free insn lists found in DEPS. */
void
free_deps (struct deps *deps)
{
unsigned i;
reg_set_iterator rsi;
free_INSN_LIST_list (&deps->pending_read_insns);
free_EXPR_LIST_list (&deps->pending_read_mems);
free_INSN_LIST_list (&deps->pending_write_insns);
free_EXPR_LIST_list (&deps->pending_write_mems);
free_INSN_LIST_list (&deps->last_pending_memory_flush);
/* Without the EXECUTE_IF_SET, this loop is executed max_reg * nr_regions
times. For a testcase with 42000 regs and 8000 small basic blocks,
this loop accounted for nearly 60% (84 sec) of the total -O2 runtime. */
EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
{
struct deps_reg *reg_last = &deps->reg_last[i];
if (reg_last->uses)
free_INSN_LIST_list (®_last->uses);
if (reg_last->sets)
free_INSN_LIST_list (®_last->sets);
if (reg_last->clobbers)
free_INSN_LIST_list (®_last->clobbers);
}
CLEAR_REG_SET (&deps->reg_last_in_use);
CLEAR_REG_SET (&deps->reg_conditional_sets);
free (deps->reg_last);
}
/* If it is profitable to use them, initialize caches for tracking
dependency information. LUID is the number of insns to be scheduled,
it is used in the estimate of profitability. */
void
init_dependency_caches (int luid)
{
/* ?!? We could save some memory by computing a per-region luid mapping
which could reduce both the number of vectors in the cache and the size
of each vector. Instead we just avoid the cache entirely unless the
average number of instructions in a basic block is very high. See
the comment before the declaration of true_dependency_cache for
what we consider "very high". */
if (luid / n_basic_blocks > 100 * 5)
{
cache_size = 0;
extend_dependency_caches (luid, true);
}
/* Lifetime of this obstack is whole function scheduling (not single region
scheduling) because some dependencies can be manually generated for
outside regions. See dont_calc_deps in sched-{rgn, ebb}.c .
Possible solution would be to have two obstacks:
* the big one for regular dependencies with region scheduling lifetime,
* and the small one for manually generated dependencies with function
scheduling lifetime. */
gcc_obstack_init (&deps_obstack);
}
/* Create or extend (depending on CREATE_P) dependency caches to
size N. */
void
extend_dependency_caches (int n, bool create_p)
{
if (create_p || true_dependency_cache)
{
int i, luid = cache_size + n;
true_dependency_cache = XRESIZEVEC (bitmap_head, true_dependency_cache,
luid);
output_dependency_cache = XRESIZEVEC (bitmap_head,
output_dependency_cache, luid);
anti_dependency_cache = XRESIZEVEC (bitmap_head, anti_dependency_cache,
luid);
#ifdef ENABLE_CHECKING
forward_dependency_cache = XRESIZEVEC (bitmap_head,
forward_dependency_cache, luid);
#endif
if (current_sched_info->flags & DO_SPECULATION)
spec_dependency_cache = XRESIZEVEC (bitmap_head, spec_dependency_cache,
luid);
for (i = cache_size; i < luid; i++)
{
bitmap_initialize (&true_dependency_cache[i], 0);
bitmap_initialize (&output_dependency_cache[i], 0);
bitmap_initialize (&anti_dependency_cache[i], 0);
#ifdef ENABLE_CHECKING
bitmap_initialize (&forward_dependency_cache[i], 0);
#endif
if (current_sched_info->flags & DO_SPECULATION)
bitmap_initialize (&spec_dependency_cache[i], 0);
}
cache_size = luid;
}
}
/* Free the caches allocated in init_dependency_caches. */
void
free_dependency_caches (void)
{
obstack_free (&deps_obstack, NULL);
if (true_dependency_cache)
{
int i;
for (i = 0; i < cache_size; i++)
{
bitmap_clear (&true_dependency_cache[i]);
bitmap_clear (&output_dependency_cache[i]);
bitmap_clear (&anti_dependency_cache[i]);
#ifdef ENABLE_CHECKING
bitmap_clear (&forward_dependency_cache[i]);
#endif
if (current_sched_info->flags & DO_SPECULATION)
bitmap_clear (&spec_dependency_cache[i]);
}
free (true_dependency_cache);
true_dependency_cache = NULL;
free (output_dependency_cache);
output_dependency_cache = NULL;
free (anti_dependency_cache);
anti_dependency_cache = NULL;
#ifdef ENABLE_CHECKING
free (forward_dependency_cache);
forward_dependency_cache = NULL;
#endif
if (current_sched_info->flags & DO_SPECULATION)
{
free (spec_dependency_cache);
spec_dependency_cache = NULL;
}
}
}
/* Initialize some global variables needed by the dependency analysis
code. */
void
init_deps_global (void)
{
reg_pending_sets = ALLOC_REG_SET (®_obstack);
reg_pending_clobbers = ALLOC_REG_SET (®_obstack);
reg_pending_uses = ALLOC_REG_SET (®_obstack);
reg_pending_barrier = NOT_A_BARRIER;
}
/* Free everything used by the dependency analysis code. */
void
finish_deps_global (void)
{
FREE_REG_SET (reg_pending_sets);
FREE_REG_SET (reg_pending_clobbers);
FREE_REG_SET (reg_pending_uses);
}
/* Insert LINK into the dependence chain pointed to by LINKP and
maintain the sort order. */
static void
adjust_add_sorted_back_dep (rtx insn, dep_link_t link, dep_link_t *linkp)
{
gcc_assert (current_sched_info->flags & DO_SPECULATION);
/* If the insn cannot move speculatively, but the link is speculative,
make it hard dependence. */
if (HAS_INTERNAL_DEP (insn)
&& (DEP_LINK_STATUS (link) & SPECULATIVE))
{
DEP_LINK_STATUS (link) &= ~SPECULATIVE;
if (true_dependency_cache)
bitmap_clear_bit (&spec_dependency_cache[INSN_LUID (insn)],
INSN_LUID (DEP_LINK_PRO (link)));
}
/* Non-speculative links go at the head of deps_list, followed by
speculative links. */
if (DEP_LINK_STATUS (link) & SPECULATIVE)
while (*linkp && !(DEP_LINK_STATUS (*linkp) & SPECULATIVE))
linkp = &DEP_LINK_NEXT (*linkp);
attach_dep_link (link, linkp);
if (CHECK)
gcc_assert (deps_list_consistent_p (INSN_BACK_DEPS (insn)));
}
/* Move the dependence pointed to by LINKP to the back dependencies
of INSN, and also add this dependence to the forward ones. All dep_links,
except one pointed to by LINKP, must be sorted. */
static void
adjust_back_add_forw_dep (rtx insn, dep_link_t *linkp)
{
dep_link_t link;
gcc_assert (current_sched_info->flags & DO_SPECULATION);
link = *linkp;
detach_dep_link (link);
adjust_add_sorted_back_dep (insn, link,
&DEPS_LIST_FIRST (INSN_BACK_DEPS (insn)));
add_forw_dep (link);
}
/* Remove forward dependence described by L. */
static void
delete_forw_dep (dep_link_t l)
{
gcc_assert (current_sched_info->flags & DO_SPECULATION);
#ifdef ENABLE_CHECKING
if (true_dependency_cache)
bitmap_clear_bit (&forward_dependency_cache[INSN_LUID (DEP_LINK_PRO (l))],
INSN_LUID (DEP_LINK_CON (l)));
#endif
detach_dep_link (l);
INSN_DEP_COUNT (DEP_LINK_CON (l))--;
}
/* Estimate the weakness of dependence between MEM1 and MEM2. */
static dw_t
estimate_dep_weak (rtx mem1, rtx mem2)
{
rtx r1, r2;
if (mem1 == mem2)
/* MEMs are the same - don't speculate. */
return MIN_DEP_WEAK;
r1 = XEXP (mem1, 0);
r2 = XEXP (mem2, 0);
if (r1 == r2
|| (REG_P (r1) && REG_P (r2)
&& REGNO (r1) == REGNO (r2)))
/* Again, MEMs are the same. */
return MIN_DEP_WEAK;
else if ((REG_P (r1) && !REG_P (r2))
|| (!REG_P (r1) && REG_P (r2)))
/* Different addressing modes - reason to be more speculative,
than usual. */
return NO_DEP_WEAK - (NO_DEP_WEAK - UNCERTAIN_DEP_WEAK) / 2;
else
/* We can't say anything about the dependence. */
return UNCERTAIN_DEP_WEAK;
}
/* Add or update backward dependence between INSN and ELEM with type DEP_TYPE.
This function can handle same INSN and ELEM (INSN == ELEM).
It is a convenience wrapper. */
void
add_dependence (rtx insn, rtx elem, enum reg_note dep_type)
{
ds_t ds;
if (dep_type == REG_DEP_TRUE)
ds = DEP_TRUE;
else if (dep_type == REG_DEP_OUTPUT)
ds = DEP_OUTPUT;
else if (dep_type == REG_DEP_ANTI)
ds = DEP_ANTI;
else
gcc_unreachable ();
maybe_add_or_update_back_dep_1 (insn, elem, dep_type, ds, 0, 0, 0);
}
/* Add or update backward dependence between INSN and ELEM
with given type DEP_TYPE and dep_status DS.
This function is a convenience wrapper. */
enum DEPS_ADJUST_RESULT
add_or_update_back_dep (rtx insn, rtx elem, enum reg_note dep_type, ds_t ds)
{
return add_or_update_back_dep_1 (insn, elem, dep_type, ds, 0, 0, 0);
}
/* Add or update both backward and forward dependencies between INSN and ELEM
with given type DEP_TYPE and dep_status DS. */
void
add_or_update_back_forw_dep (rtx insn, rtx elem, enum reg_note dep_type,
ds_t ds)
{
enum DEPS_ADJUST_RESULT res;
dep_link_t *linkp;
res = add_or_update_back_dep_1 (insn, elem, dep_type, ds, 0, 0, &linkp);
if (res == DEP_CHANGED || res == DEP_CREATED)
{
if (res == DEP_CHANGED)
delete_forw_dep (DEP_NODE_FORW (DEP_LINK_NODE (*linkp)));
else if (res == DEP_CREATED)
linkp = &DEPS_LIST_FIRST (INSN_BACK_DEPS (insn));
adjust_back_add_forw_dep (insn, linkp);
}
}
/* Add both backward and forward dependencies between INSN and ELEM
with given type DEP_TYPE and dep_status DS. */
void
add_back_forw_dep (rtx insn, rtx elem, enum reg_note dep_type, ds_t ds)
{
add_back_dep (insn, elem, dep_type, ds);
adjust_back_add_forw_dep (insn, &DEPS_LIST_FIRST (INSN_BACK_DEPS (insn)));
if (CHECK)
gcc_assert (deps_list_consistent_p (INSN_BACK_DEPS (insn)));
}
/* Remove a dependency referred to by L. */
void
delete_back_forw_dep (dep_link_t l)
{
dep_node_t n = DEP_LINK_NODE (l);
gcc_assert (current_sched_info->flags & DO_SPECULATION);
if (true_dependency_cache != NULL)
{
dep_t dep = DEP_NODE_DEP (n);
int elem_luid = INSN_LUID (DEP_PRO (dep));
int insn_luid = INSN_LUID (DEP_CON (dep));
bitmap_clear_bit (&true_dependency_cache[insn_luid], elem_luid);
bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
bitmap_clear_bit (&spec_dependency_cache[insn_luid], elem_luid);
}
delete_forw_dep (DEP_NODE_FORW (n));
detach_dep_link (DEP_NODE_BACK (n));
}
/* Return weakness of speculative type TYPE in the dep_status DS. */
dw_t
get_dep_weak (ds_t ds, ds_t type)
{
ds = ds & type;
switch (type)
{
case BEGIN_DATA: ds >>= BEGIN_DATA_BITS_OFFSET; break;
case BE_IN_DATA: ds >>= BE_IN_DATA_BITS_OFFSET; break;
case BEGIN_CONTROL: ds >>= BEGIN_CONTROL_BITS_OFFSET; break;
case BE_IN_CONTROL: ds >>= BE_IN_CONTROL_BITS_OFFSET; break;
default: gcc_unreachable ();
}
gcc_assert (MIN_DEP_WEAK <= ds && ds <= MAX_DEP_WEAK);
return (dw_t) ds;
}
/* Return the dep_status, which has the same parameters as DS, except for
speculative type TYPE, that will have weakness DW. */
ds_t
set_dep_weak (ds_t ds, ds_t type, dw_t dw)
{
gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
ds &= ~type;
switch (type)
{
case BEGIN_DATA: ds |= ((ds_t) dw) << BEGIN_DATA_BITS_OFFSET; break;
case BE_IN_DATA: ds |= ((ds_t) dw) << BE_IN_DATA_BITS_OFFSET; break;
case BEGIN_CONTROL: ds |= ((ds_t) dw) << BEGIN_CONTROL_BITS_OFFSET; break;
case BE_IN_CONTROL: ds |= ((ds_t) dw) << BE_IN_CONTROL_BITS_OFFSET; break;
default: gcc_unreachable ();
}
return ds;
}
/* Return the join of two dep_statuses DS1 and DS2. */
ds_t
ds_merge (ds_t ds1, ds_t ds2)
{
ds_t ds, t;
gcc_assert ((ds1 & SPECULATIVE) && (ds2 & SPECULATIVE));
ds = (ds1 & DEP_TYPES) | (ds2 & DEP_TYPES);
t = FIRST_SPEC_TYPE;
do
{
if ((ds1 & t) && !(ds2 & t))
ds |= ds1 & t;
else if (!(ds1 & t) && (ds2 & t))
ds |= ds2 & t;
else if ((ds1 & t) && (ds2 & t))
{
ds_t dw;
dw = ((ds_t) get_dep_weak (ds1, t)) * ((ds_t) get_dep_weak (ds2, t));
dw /= MAX_DEP_WEAK;
if (dw < MIN_DEP_WEAK)
dw = MIN_DEP_WEAK;
ds = set_dep_weak (ds, t, (dw_t) dw);
}
if (t == LAST_SPEC_TYPE)
break;
t <<= SPEC_TYPE_SHIFT;
}
while (1);
return ds;
}
#ifdef INSN_SCHEDULING
#ifdef ENABLE_CHECKING
/* Verify that dependence type and status are consistent.
If RELAXED_P is true, then skip dep_weakness checks. */
static void
check_dep_status (enum reg_note dt, ds_t ds, bool relaxed_p)
{
/* Check that dependence type contains the same bits as the status. */
if (dt == REG_DEP_TRUE)
gcc_assert (ds & DEP_TRUE);
else if (dt == REG_DEP_OUTPUT)
gcc_assert ((ds & DEP_OUTPUT)
&& !(ds & DEP_TRUE));
else
gcc_assert ((dt == REG_DEP_ANTI)
&& (ds & DEP_ANTI)
&& !(ds & (DEP_OUTPUT | DEP_TRUE)));
/* HARD_DEP can not appear in dep_status of a link. */
gcc_assert (!(ds & HARD_DEP));
/* Check that dependence status is set correctly when speculation is not
supported. */
if (!(current_sched_info->flags & DO_SPECULATION))
gcc_assert (!(ds & SPECULATIVE));
else if (ds & SPECULATIVE)
{
if (!relaxed_p)
{
ds_t type = FIRST_SPEC_TYPE;
/* Check that dependence weakness is in proper range. */
do
{
if (ds & type)
get_dep_weak (ds, type);
if (type == LAST_SPEC_TYPE)
break;
type <<= SPEC_TYPE_SHIFT;
}
while (1);
}
if (ds & BEGIN_SPEC)
{
/* Only true dependence can be data speculative. */
if (ds & BEGIN_DATA)
gcc_assert (ds & DEP_TRUE);
/* Control dependencies in the insn scheduler are represented by
anti-dependencies, therefore only anti dependence can be
control speculative. */
if (ds & BEGIN_CONTROL)
gcc_assert (ds & DEP_ANTI);
}
else
{
/* Subsequent speculations should resolve true dependencies. */
gcc_assert ((ds & DEP_TYPES) == DEP_TRUE);
}
/* Check that true and anti dependencies can't have other speculative
statuses. */
if (ds & DEP_TRUE)
gcc_assert (ds & (BEGIN_DATA | BE_IN_SPEC));
/* An output dependence can't be speculative at all. */
gcc_assert (!(ds & DEP_OUTPUT));
if (ds & DEP_ANTI)
gcc_assert (ds & BEGIN_CONTROL);
}
}
#endif
#endif
|