1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
|
/* Instruction scheduling pass. This file computes dependencies between
instructions.
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
and currently maintained by, Jim Wilson (wilson@cygnus.com)
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "toplev.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "regs.h"
#include "function.h"
#include "flags.h"
#include "insn-config.h"
#include "insn-attr.h"
#include "except.h"
#include "toplev.h"
#include "recog.h"
#include "sched-int.h"
#include "params.h"
#include "cselib.h"
#include "df.h"
static regset_head reg_pending_sets_head;
static regset_head reg_pending_clobbers_head;
static regset_head reg_pending_uses_head;
static regset reg_pending_sets;
static regset reg_pending_clobbers;
static regset reg_pending_uses;
/* The following enumeration values tell us what dependencies we
should use to implement the barrier. We use true-dependencies for
TRUE_BARRIER and anti-dependencies for MOVE_BARRIER. */
enum reg_pending_barrier_mode
{
NOT_A_BARRIER = 0,
MOVE_BARRIER,
TRUE_BARRIER
};
static enum reg_pending_barrier_mode reg_pending_barrier;
/* To speed up the test for duplicate dependency links we keep a
record of dependencies created by add_dependence when the average
number of instructions in a basic block is very large.
Studies have shown that there is typically around 5 instructions between
branches for typical C code. So we can make a guess that the average
basic block is approximately 5 instructions long; we will choose 100X
the average size as a very large basic block.
Each insn has associated bitmaps for its dependencies. Each bitmap
has enough entries to represent a dependency on any other insn in
the insn chain. All bitmap for true dependencies cache is
allocated then the rest two ones are also allocated. */
static bitmap_head *true_dependency_cache;
static bitmap_head *anti_dependency_cache;
static bitmap_head *output_dependency_cache;
int cache_size;
/* To speed up checking consistency of formed forward insn
dependencies we use the following cache. Another possible solution
could be switching off checking duplication of insns in forward
dependencies. */
#ifdef ENABLE_CHECKING
static bitmap_head *forward_dependency_cache;
#endif
static int deps_may_trap_p (rtx);
static void add_dependence_list (rtx, rtx, enum reg_note);
static void add_dependence_list_and_free (rtx, rtx *, enum reg_note);
static void set_sched_group_p (rtx);
static void flush_pending_lists (struct deps *, rtx, int, int);
static void sched_analyze_1 (struct deps *, rtx, rtx);
static void sched_analyze_2 (struct deps *, rtx, rtx);
static void sched_analyze_insn (struct deps *, rtx, rtx, rtx);
static rtx get_condition (rtx);
static int conditions_mutex_p (rtx, rtx);
/* Return nonzero if a load of the memory reference MEM can cause a trap. */
static int
deps_may_trap_p (rtx mem)
{
rtx addr = XEXP (mem, 0);
if (REG_P (addr) && REGNO (addr) >= FIRST_PSEUDO_REGISTER)
{
rtx t = get_reg_known_value (REGNO (addr));
if (t)
addr = t;
}
return rtx_addr_can_trap_p (addr);
}
/* Return the INSN_LIST containing INSN in LIST, or NULL
if LIST does not contain INSN. */
rtx
find_insn_list (rtx insn, rtx list)
{
while (list)
{
if (XEXP (list, 0) == insn)
return list;
list = XEXP (list, 1);
}
return 0;
}
/* Find the condition under which INSN is executed. */
static rtx
get_condition (rtx insn)
{
rtx pat = PATTERN (insn);
rtx cond;
if (pat == 0)
return 0;
if (GET_CODE (pat) == COND_EXEC)
return COND_EXEC_TEST (pat);
if (GET_CODE (insn) != JUMP_INSN)
return 0;
if (GET_CODE (pat) != SET || SET_SRC (pat) != pc_rtx)
return 0;
if (GET_CODE (SET_DEST (pat)) != IF_THEN_ELSE)
return 0;
pat = SET_DEST (pat);
cond = XEXP (pat, 0);
if (GET_CODE (XEXP (cond, 1)) == LABEL_REF
&& XEXP (cond, 2) == pc_rtx)
return cond;
else if (GET_CODE (XEXP (cond, 2)) == LABEL_REF
&& XEXP (cond, 1) == pc_rtx)
return gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)), GET_MODE (cond),
XEXP (cond, 0), XEXP (cond, 1));
else
return 0;
}
/* Return nonzero if conditions COND1 and COND2 can never be both true. */
static int
conditions_mutex_p (rtx cond1, rtx cond2)
{
if (COMPARISON_P (cond1)
&& COMPARISON_P (cond2)
&& GET_CODE (cond1) == reverse_condition (GET_CODE (cond2))
&& XEXP (cond1, 0) == XEXP (cond2, 0)
&& XEXP (cond1, 1) == XEXP (cond2, 1))
return 1;
return 0;
}
/* Add ELEM wrapped in an INSN_LIST with reg note kind DEP_TYPE to the
LOG_LINKS of INSN, if not already there. DEP_TYPE indicates the
type of dependence that this link represents. The function returns
nonzero if a new entry has been added to insn's LOG_LINK. */
int
add_dependence (rtx insn, rtx elem, enum reg_note dep_type)
{
rtx link;
int present_p;
rtx cond1, cond2;
/* Don't depend an insn on itself. */
if (insn == elem)
return 0;
/* We can get a dependency on deleted insns due to optimizations in
the register allocation and reloading or due to splitting. Any
such dependency is useless and can be ignored. */
if (GET_CODE (elem) == NOTE)
return 0;
/* flow.c doesn't handle conditional lifetimes entirely correctly;
calls mess up the conditional lifetimes. */
/* ??? add_dependence is the wrong place to be eliding dependencies,
as that forgets that the condition expressions themselves may
be dependent. */
if (GET_CODE (insn) != CALL_INSN && GET_CODE (elem) != CALL_INSN)
{
cond1 = get_condition (insn);
cond2 = get_condition (elem);
if (cond1 && cond2
&& conditions_mutex_p (cond1, cond2)
/* Make sure first instruction doesn't affect condition of second
instruction if switched. */
&& !modified_in_p (cond1, elem)
/* Make sure second instruction doesn't affect condition of first
instruction if switched. */
&& !modified_in_p (cond2, insn))
return 0;
}
present_p = 1;
#ifdef INSN_SCHEDULING
/* ??? No good way to tell from here whether we're doing interblock
scheduling. Possibly add another callback. */
#if 0
/* (This code is guarded by INSN_SCHEDULING, otherwise INSN_BB is undefined.)
No need for interblock dependences with calls, since
calls are not moved between blocks. Note: the edge where
elem is a CALL is still required. */
if (GET_CODE (insn) == CALL_INSN
&& (INSN_BB (elem) != INSN_BB (insn)))
return 0;
#endif
/* If we already have a dependency for ELEM, then we do not need to
do anything. Avoiding the list walk below can cut compile times
dramatically for some code. */
if (true_dependency_cache != NULL)
{
enum reg_note present_dep_type = 0;
if (anti_dependency_cache == NULL || output_dependency_cache == NULL)
abort ();
if (bitmap_bit_p (&true_dependency_cache[INSN_LUID (insn)],
INSN_LUID (elem)))
/* Do nothing (present_set_type is already 0). */
;
else if (bitmap_bit_p (&anti_dependency_cache[INSN_LUID (insn)],
INSN_LUID (elem)))
present_dep_type = REG_DEP_ANTI;
else if (bitmap_bit_p (&output_dependency_cache[INSN_LUID (insn)],
INSN_LUID (elem)))
present_dep_type = REG_DEP_OUTPUT;
else
present_p = 0;
if (present_p && (int) dep_type >= (int) present_dep_type)
return 0;
}
#endif
/* Check that we don't already have this dependence. */
if (present_p)
for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
if (XEXP (link, 0) == elem)
{
#ifdef INSN_SCHEDULING
/* Clear corresponding cache entry because type of the link
may be changed. */
if (true_dependency_cache != NULL)
{
if (REG_NOTE_KIND (link) == REG_DEP_ANTI)
bitmap_clear_bit (&anti_dependency_cache[INSN_LUID (insn)],
INSN_LUID (elem));
else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT
&& output_dependency_cache)
bitmap_clear_bit (&output_dependency_cache[INSN_LUID (insn)],
INSN_LUID (elem));
else
abort ();
}
#endif
/* If this is a more restrictive type of dependence than the existing
one, then change the existing dependence to this type. */
if ((int) dep_type < (int) REG_NOTE_KIND (link))
PUT_REG_NOTE_KIND (link, dep_type);
#ifdef INSN_SCHEDULING
/* If we are adding a dependency to INSN's LOG_LINKs, then
note that in the bitmap caches of dependency information. */
if (true_dependency_cache != NULL)
{
if ((int) REG_NOTE_KIND (link) == 0)
bitmap_set_bit (&true_dependency_cache[INSN_LUID (insn)],
INSN_LUID (elem));
else if (REG_NOTE_KIND (link) == REG_DEP_ANTI)
bitmap_set_bit (&anti_dependency_cache[INSN_LUID (insn)],
INSN_LUID (elem));
else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
bitmap_set_bit (&output_dependency_cache[INSN_LUID (insn)],
INSN_LUID (elem));
}
#endif
return 0;
}
/* Might want to check one level of transitivity to save conses. */
link = alloc_INSN_LIST (elem, LOG_LINKS (insn));
LOG_LINKS (insn) = link;
/* Insn dependency, not data dependency. */
PUT_REG_NOTE_KIND (link, dep_type);
#ifdef INSN_SCHEDULING
/* If we are adding a dependency to INSN's LOG_LINKs, then note that
in the bitmap caches of dependency information. */
if (true_dependency_cache != NULL)
{
if ((int) dep_type == 0)
bitmap_set_bit (&true_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem));
else if (dep_type == REG_DEP_ANTI)
bitmap_set_bit (&anti_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem));
else if (dep_type == REG_DEP_OUTPUT)
bitmap_set_bit (&output_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem));
}
#endif
return 1;
}
/* A convenience wrapper to operate on an entire list. */
static void
add_dependence_list (rtx insn, rtx list, enum reg_note dep_type)
{
for (; list; list = XEXP (list, 1))
add_dependence (insn, XEXP (list, 0), dep_type);
}
/* Similar, but free *LISTP at the same time. */
static void
add_dependence_list_and_free (rtx insn, rtx *listp, enum reg_note dep_type)
{
rtx list, next;
for (list = *listp, *listp = NULL; list ; list = next)
{
next = XEXP (list, 1);
add_dependence (insn, XEXP (list, 0), dep_type);
free_INSN_LIST_node (list);
}
}
/* Set SCHED_GROUP_P and care for the rest of the bookkeeping that
goes along with that. */
static void
set_sched_group_p (rtx insn)
{
rtx prev;
SCHED_GROUP_P (insn) = 1;
prev = prev_nonnote_insn (insn);
add_dependence (insn, prev, REG_DEP_ANTI);
}
/* Process an insn's memory dependencies. There are four kinds of
dependencies:
(0) read dependence: read follows read
(1) true dependence: read follows write
(2) anti dependence: write follows read
(3) output dependence: write follows write
We are careful to build only dependencies which actually exist, and
use transitivity to avoid building too many links. */
/* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
The MEM is a memory reference contained within INSN, which we are saving
so that we can do memory aliasing on it. */
void
add_insn_mem_dependence (struct deps *deps, rtx *insn_list, rtx *mem_list,
rtx insn, rtx mem)
{
rtx link;
link = alloc_INSN_LIST (insn, *insn_list);
*insn_list = link;
if (current_sched_info->use_cselib)
{
mem = shallow_copy_rtx (mem);
XEXP (mem, 0) = cselib_subst_to_values (XEXP (mem, 0));
}
link = alloc_EXPR_LIST (VOIDmode, canon_rtx (mem), *mem_list);
*mem_list = link;
deps->pending_lists_length++;
}
/* Make a dependency between every memory reference on the pending lists
and INSN, thus flushing the pending lists. FOR_READ is true if emitting
dependencies for a read operation, similarly with FOR_WRITE. */
static void
flush_pending_lists (struct deps *deps, rtx insn, int for_read,
int for_write)
{
if (for_write)
{
add_dependence_list_and_free (insn, &deps->pending_read_insns,
REG_DEP_ANTI);
free_EXPR_LIST_list (&deps->pending_read_mems);
}
add_dependence_list_and_free (insn, &deps->pending_write_insns,
for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT);
free_EXPR_LIST_list (&deps->pending_write_mems);
deps->pending_lists_length = 0;
add_dependence_list_and_free (insn, &deps->last_pending_memory_flush,
for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT);
deps->last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX);
deps->pending_flush_length = 1;
}
/* Analyze a single SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC or POST_INC
rtx, X, creating all dependencies generated by the write to the
destination of X, and reads of everything mentioned. */
static void
sched_analyze_1 (struct deps *deps, rtx x, rtx insn)
{
int regno;
rtx dest = XEXP (x, 0);
enum rtx_code code = GET_CODE (x);
if (dest == 0)
return;
if (GET_CODE (dest) == PARALLEL)
{
int i;
for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
sched_analyze_1 (deps,
gen_rtx_CLOBBER (VOIDmode,
XEXP (XVECEXP (dest, 0, i), 0)),
insn);
if (GET_CODE (x) == SET)
sched_analyze_2 (deps, SET_SRC (x), insn);
return;
}
while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
|| GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
{
if (GET_CODE (dest) == STRICT_LOW_PART
|| GET_CODE (dest) == ZERO_EXTRACT
|| GET_CODE (dest) == SIGN_EXTRACT
|| read_modify_subreg_p (dest))
{
/* These both read and modify the result. We must handle
them as writes to get proper dependencies for following
instructions. We must handle them as reads to get proper
dependencies from this to previous instructions.
Thus we need to call sched_analyze_2. */
sched_analyze_2 (deps, XEXP (dest, 0), insn);
}
if (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
{
/* The second and third arguments are values read by this insn. */
sched_analyze_2 (deps, XEXP (dest, 1), insn);
sched_analyze_2 (deps, XEXP (dest, 2), insn);
}
dest = XEXP (dest, 0);
}
if (REG_P (dest))
{
regno = REGNO (dest);
/* A hard reg in a wide mode may really be multiple registers.
If so, mark all of them just like the first. */
if (regno < FIRST_PSEUDO_REGISTER)
{
int i = hard_regno_nregs[regno][GET_MODE (dest)];
if (code == SET)
{
while (--i >= 0)
SET_REGNO_REG_SET (reg_pending_sets, regno + i);
}
else
{
while (--i >= 0)
SET_REGNO_REG_SET (reg_pending_clobbers, regno + i);
}
}
/* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
it does not reload. Ignore these as they have served their
purpose already. */
else if (regno >= deps->max_reg)
{
if (GET_CODE (PATTERN (insn)) != USE
&& GET_CODE (PATTERN (insn)) != CLOBBER)
abort ();
}
else
{
if (code == SET)
SET_REGNO_REG_SET (reg_pending_sets, regno);
else
SET_REGNO_REG_SET (reg_pending_clobbers, regno);
/* Pseudos that are REG_EQUIV to something may be replaced
by that during reloading. We need only add dependencies for
the address in the REG_EQUIV note. */
if (!reload_completed && get_reg_known_equiv_p (regno))
{
rtx t = get_reg_known_value (regno);
if (MEM_P (t))
sched_analyze_2 (deps, XEXP (t, 0), insn);
}
/* Don't let it cross a call after scheduling if it doesn't
already cross one. */
if (REG_N_CALLS_CROSSED (regno) == 0)
add_dependence_list (insn, deps->last_function_call, REG_DEP_ANTI);
}
}
else if (MEM_P (dest))
{
/* Writing memory. */
rtx t = dest;
if (current_sched_info->use_cselib)
{
t = shallow_copy_rtx (dest);
cselib_lookup (XEXP (t, 0), Pmode, 1);
XEXP (t, 0) = cselib_subst_to_values (XEXP (t, 0));
}
t = canon_rtx (t);
if (deps->pending_lists_length > MAX_PENDING_LIST_LENGTH)
{
/* Flush all pending reads and writes to prevent the pending lists
from getting any larger. Insn scheduling runs too slowly when
these lists get long. When compiling GCC with itself,
this flush occurs 8 times for sparc, and 10 times for m88k using
the default value of 32. */
flush_pending_lists (deps, insn, false, true);
}
else
{
rtx pending, pending_mem;
pending = deps->pending_read_insns;
pending_mem = deps->pending_read_mems;
while (pending)
{
if (anti_dependence (XEXP (pending_mem, 0), t))
add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI);
pending = XEXP (pending, 1);
pending_mem = XEXP (pending_mem, 1);
}
pending = deps->pending_write_insns;
pending_mem = deps->pending_write_mems;
while (pending)
{
if (output_dependence (XEXP (pending_mem, 0), t))
add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
pending = XEXP (pending, 1);
pending_mem = XEXP (pending_mem, 1);
}
add_dependence_list (insn, deps->last_pending_memory_flush,
REG_DEP_ANTI);
add_insn_mem_dependence (deps, &deps->pending_write_insns,
&deps->pending_write_mems, insn, dest);
}
sched_analyze_2 (deps, XEXP (dest, 0), insn);
}
/* Analyze reads. */
if (GET_CODE (x) == SET)
sched_analyze_2 (deps, SET_SRC (x), insn);
}
/* Analyze the uses of memory and registers in rtx X in INSN. */
static void
sched_analyze_2 (struct deps *deps, rtx x, rtx insn)
{
int i;
int j;
enum rtx_code code;
const char *fmt;
if (x == 0)
return;
code = GET_CODE (x);
switch (code)
{
case CONST_INT:
case CONST_DOUBLE:
case CONST_VECTOR:
case SYMBOL_REF:
case CONST:
case LABEL_REF:
/* Ignore constants. Note that we must handle CONST_DOUBLE here
because it may have a cc0_rtx in its CONST_DOUBLE_CHAIN field, but
this does not mean that this insn is using cc0. */
return;
#ifdef HAVE_cc0
case CC0:
/* User of CC0 depends on immediately preceding insn. */
set_sched_group_p (insn);
/* Don't move CC0 setter to another block (it can set up the
same flag for previous CC0 users which is safe). */
CANT_MOVE (prev_nonnote_insn (insn)) = 1;
return;
#endif
case REG:
{
int regno = REGNO (x);
if (regno < FIRST_PSEUDO_REGISTER)
{
int i = hard_regno_nregs[regno][GET_MODE (x)];
while (--i >= 0)
SET_REGNO_REG_SET (reg_pending_uses, regno + i);
}
/* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
it does not reload. Ignore these as they have served their
purpose already. */
else if (regno >= deps->max_reg)
{
if (GET_CODE (PATTERN (insn)) != USE
&& GET_CODE (PATTERN (insn)) != CLOBBER)
abort ();
}
else
{
SET_REGNO_REG_SET (reg_pending_uses, regno);
/* Pseudos that are REG_EQUIV to something may be replaced
by that during reloading. We need only add dependencies for
the address in the REG_EQUIV note. */
if (!reload_completed && get_reg_known_equiv_p (regno))
{
rtx t = get_reg_known_value (regno);
if (MEM_P (t))
sched_analyze_2 (deps, XEXP (t, 0), insn);
}
/* If the register does not already cross any calls, then add this
insn to the sched_before_next_call list so that it will still
not cross calls after scheduling. */
if (REG_N_CALLS_CROSSED (regno) == 0)
deps->sched_before_next_call
= alloc_INSN_LIST (insn, deps->sched_before_next_call);
}
return;
}
case MEM:
{
/* Reading memory. */
rtx u;
rtx pending, pending_mem;
rtx t = x;
if (current_sched_info->use_cselib)
{
t = shallow_copy_rtx (t);
cselib_lookup (XEXP (t, 0), Pmode, 1);
XEXP (t, 0) = cselib_subst_to_values (XEXP (t, 0));
}
t = canon_rtx (t);
pending = deps->pending_read_insns;
pending_mem = deps->pending_read_mems;
while (pending)
{
if (read_dependence (XEXP (pending_mem, 0), t))
add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI);
pending = XEXP (pending, 1);
pending_mem = XEXP (pending_mem, 1);
}
pending = deps->pending_write_insns;
pending_mem = deps->pending_write_mems;
while (pending)
{
if (true_dependence (XEXP (pending_mem, 0), VOIDmode,
t, rtx_varies_p))
add_dependence (insn, XEXP (pending, 0), 0);
pending = XEXP (pending, 1);
pending_mem = XEXP (pending_mem, 1);
}
for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
if (GET_CODE (XEXP (u, 0)) != JUMP_INSN
|| deps_may_trap_p (x))
add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
/* Always add these dependencies to pending_reads, since
this insn may be followed by a write. */
add_insn_mem_dependence (deps, &deps->pending_read_insns,
&deps->pending_read_mems, insn, x);
/* Take advantage of tail recursion here. */
sched_analyze_2 (deps, XEXP (x, 0), insn);
return;
}
/* Force pending stores to memory in case a trap handler needs them. */
case TRAP_IF:
flush_pending_lists (deps, insn, true, false);
break;
case ASM_OPERANDS:
case ASM_INPUT:
case UNSPEC_VOLATILE:
{
/* Traditional and volatile asm instructions must be considered to use
and clobber all hard registers, all pseudo-registers and all of
memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
Consider for instance a volatile asm that changes the fpu rounding
mode. An insn should not be moved across this even if it only uses
pseudo-regs because it might give an incorrectly rounded result. */
if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
reg_pending_barrier = TRUE_BARRIER;
/* For all ASM_OPERANDS, we must traverse the vector of input operands.
We can not just fall through here since then we would be confused
by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
traditional asms unlike their normal usage. */
if (code == ASM_OPERANDS)
{
for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
sched_analyze_2 (deps, ASM_OPERANDS_INPUT (x, j), insn);
return;
}
break;
}
case PRE_DEC:
case POST_DEC:
case PRE_INC:
case POST_INC:
/* These both read and modify the result. We must handle them as writes
to get proper dependencies for following instructions. We must handle
them as reads to get proper dependencies from this to previous
instructions. Thus we need to pass them to both sched_analyze_1
and sched_analyze_2. We must call sched_analyze_2 first in order
to get the proper antecedent for the read. */
sched_analyze_2 (deps, XEXP (x, 0), insn);
sched_analyze_1 (deps, x, insn);
return;
case POST_MODIFY:
case PRE_MODIFY:
/* op0 = op0 + op1 */
sched_analyze_2 (deps, XEXP (x, 0), insn);
sched_analyze_2 (deps, XEXP (x, 1), insn);
sched_analyze_1 (deps, x, insn);
return;
default:
break;
}
/* Other cases: walk the insn. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
sched_analyze_2 (deps, XEXP (x, i), insn);
else if (fmt[i] == 'E')
for (j = 0; j < XVECLEN (x, i); j++)
sched_analyze_2 (deps, XVECEXP (x, i, j), insn);
}
}
/* Analyze an INSN with pattern X to find all dependencies. */
static void
sched_analyze_insn (struct deps *deps, rtx x, rtx insn, rtx loop_notes)
{
RTX_CODE code = GET_CODE (x);
rtx link;
int i;
if (code == COND_EXEC)
{
sched_analyze_2 (deps, COND_EXEC_TEST (x), insn);
/* ??? Should be recording conditions so we reduce the number of
false dependencies. */
x = COND_EXEC_CODE (x);
code = GET_CODE (x);
}
if (code == SET || code == CLOBBER)
{
sched_analyze_1 (deps, x, insn);
/* Bare clobber insns are used for letting life analysis, reg-stack
and others know that a value is dead. Depend on the last call
instruction so that reg-stack won't get confused. */
if (code == CLOBBER)
add_dependence_list (insn, deps->last_function_call, REG_DEP_OUTPUT);
}
else if (code == PARALLEL)
{
int i;
for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
{
rtx sub = XVECEXP (x, 0, i);
code = GET_CODE (sub);
if (code == COND_EXEC)
{
sched_analyze_2 (deps, COND_EXEC_TEST (sub), insn);
sub = COND_EXEC_CODE (sub);
code = GET_CODE (sub);
}
if (code == SET || code == CLOBBER)
sched_analyze_1 (deps, sub, insn);
else
sched_analyze_2 (deps, sub, insn);
}
}
else
sched_analyze_2 (deps, x, insn);
/* Mark registers CLOBBERED or used by called function. */
if (GET_CODE (insn) == CALL_INSN)
{
for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
{
if (GET_CODE (XEXP (link, 0)) == CLOBBER)
sched_analyze_1 (deps, XEXP (link, 0), insn);
else
sched_analyze_2 (deps, XEXP (link, 0), insn);
}
if (find_reg_note (insn, REG_SETJMP, NULL))
reg_pending_barrier = MOVE_BARRIER;
}
if (GET_CODE (insn) == JUMP_INSN)
{
rtx next;
next = next_nonnote_insn (insn);
if (next && GET_CODE (next) == BARRIER)
reg_pending_barrier = TRUE_BARRIER;
else
{
rtx pending, pending_mem;
regset_head tmp_uses, tmp_sets;
INIT_REG_SET (&tmp_uses);
INIT_REG_SET (&tmp_sets);
(*current_sched_info->compute_jump_reg_dependencies)
(insn, &deps->reg_conditional_sets, &tmp_uses, &tmp_sets);
/* Make latency of jump equal to 0 by using anti-dependence. */
EXECUTE_IF_SET_IN_REG_SET (&tmp_uses, 0, i,
{
struct deps_reg *reg_last = &deps->reg_last[i];
add_dependence_list (insn, reg_last->sets, REG_DEP_ANTI);
add_dependence_list (insn, reg_last->clobbers, REG_DEP_ANTI);
reg_last->uses_length++;
reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
});
IOR_REG_SET (reg_pending_sets, &tmp_sets);
CLEAR_REG_SET (&tmp_uses);
CLEAR_REG_SET (&tmp_sets);
/* All memory writes and volatile reads must happen before the
jump. Non-volatile reads must happen before the jump iff
the result is needed by the above register used mask. */
pending = deps->pending_write_insns;
pending_mem = deps->pending_write_mems;
while (pending)
{
add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
pending = XEXP (pending, 1);
pending_mem = XEXP (pending_mem, 1);
}
pending = deps->pending_read_insns;
pending_mem = deps->pending_read_mems;
while (pending)
{
if (MEM_VOLATILE_P (XEXP (pending_mem, 0)))
add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
pending = XEXP (pending, 1);
pending_mem = XEXP (pending_mem, 1);
}
add_dependence_list (insn, deps->last_pending_memory_flush,
REG_DEP_ANTI);
}
}
/* If there is a {LOOP,EHREGION}_{BEG,END} note in the middle of a basic
block, then we must be sure that no instructions are scheduled across it.
Otherwise, the reg_n_refs info (which depends on loop_depth) would
become incorrect. */
if (loop_notes)
{
rtx link;
/* Update loop_notes with any notes from this insn. Also determine
if any of the notes on the list correspond to instruction scheduling
barriers (loop, eh & setjmp notes, but not range notes). */
link = loop_notes;
while (XEXP (link, 1))
{
if (INTVAL (XEXP (link, 0)) == NOTE_INSN_LOOP_BEG
|| INTVAL (XEXP (link, 0)) == NOTE_INSN_LOOP_END
|| INTVAL (XEXP (link, 0)) == NOTE_INSN_EH_REGION_BEG
|| INTVAL (XEXP (link, 0)) == NOTE_INSN_EH_REGION_END)
reg_pending_barrier = MOVE_BARRIER;
link = XEXP (link, 1);
}
XEXP (link, 1) = REG_NOTES (insn);
REG_NOTES (insn) = loop_notes;
}
/* If this instruction can throw an exception, then moving it changes
where block boundaries fall. This is mighty confusing elsewhere.
Therefore, prevent such an instruction from being moved. */
if (can_throw_internal (insn))
reg_pending_barrier = MOVE_BARRIER;
/* Add dependencies if a scheduling barrier was found. */
if (reg_pending_barrier)
{
/* In the case of barrier the most added dependencies are not
real, so we use anti-dependence here. */
if (GET_CODE (PATTERN (insn)) == COND_EXEC)
{
EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i,
{
struct deps_reg *reg_last = &deps->reg_last[i];
add_dependence_list (insn, reg_last->uses, REG_DEP_ANTI);
add_dependence_list
(insn, reg_last->sets,
reg_pending_barrier == TRUE_BARRIER ? 0 : REG_DEP_ANTI);
add_dependence_list
(insn, reg_last->clobbers,
reg_pending_barrier == TRUE_BARRIER ? 0 : REG_DEP_ANTI);
});
}
else
{
EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i,
{
struct deps_reg *reg_last = &deps->reg_last[i];
add_dependence_list_and_free (insn, ®_last->uses,
REG_DEP_ANTI);
add_dependence_list_and_free
(insn, ®_last->sets,
reg_pending_barrier == TRUE_BARRIER ? 0 : REG_DEP_ANTI);
add_dependence_list_and_free
(insn, ®_last->clobbers,
reg_pending_barrier == TRUE_BARRIER ? 0 : REG_DEP_ANTI);
reg_last->uses_length = 0;
reg_last->clobbers_length = 0;
});
}
for (i = 0; i < deps->max_reg; i++)
{
struct deps_reg *reg_last = &deps->reg_last[i];
reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
}
flush_pending_lists (deps, insn, true, true);
CLEAR_REG_SET (&deps->reg_conditional_sets);
reg_pending_barrier = NOT_A_BARRIER;
}
else
{
/* If the current insn is conditional, we can't free any
of the lists. */
if (GET_CODE (PATTERN (insn)) == COND_EXEC)
{
EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i,
{
struct deps_reg *reg_last = &deps->reg_last[i];
add_dependence_list (insn, reg_last->sets, 0);
add_dependence_list (insn, reg_last->clobbers, 0);
reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
reg_last->uses_length++;
});
EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i,
{
struct deps_reg *reg_last = &deps->reg_last[i];
add_dependence_list (insn, reg_last->sets, REG_DEP_OUTPUT);
add_dependence_list (insn, reg_last->uses, REG_DEP_ANTI);
reg_last->clobbers = alloc_INSN_LIST (insn, reg_last->clobbers);
reg_last->clobbers_length++;
});
EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i,
{
struct deps_reg *reg_last = &deps->reg_last[i];
add_dependence_list (insn, reg_last->sets, REG_DEP_OUTPUT);
add_dependence_list (insn, reg_last->clobbers, REG_DEP_OUTPUT);
add_dependence_list (insn, reg_last->uses, REG_DEP_ANTI);
reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
SET_REGNO_REG_SET (&deps->reg_conditional_sets, i);
});
}
else
{
EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i,
{
struct deps_reg *reg_last = &deps->reg_last[i];
add_dependence_list (insn, reg_last->sets, 0);
add_dependence_list (insn, reg_last->clobbers, 0);
reg_last->uses_length++;
reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
});
EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i,
{
struct deps_reg *reg_last = &deps->reg_last[i];
if (reg_last->uses_length > MAX_PENDING_LIST_LENGTH
|| reg_last->clobbers_length > MAX_PENDING_LIST_LENGTH)
{
add_dependence_list_and_free (insn, ®_last->sets,
REG_DEP_OUTPUT);
add_dependence_list_and_free (insn, ®_last->uses,
REG_DEP_ANTI);
add_dependence_list_and_free (insn, ®_last->clobbers,
REG_DEP_OUTPUT);
reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
reg_last->clobbers_length = 0;
reg_last->uses_length = 0;
}
else
{
add_dependence_list (insn, reg_last->sets, REG_DEP_OUTPUT);
add_dependence_list (insn, reg_last->uses, REG_DEP_ANTI);
}
reg_last->clobbers_length++;
reg_last->clobbers = alloc_INSN_LIST (insn, reg_last->clobbers);
});
EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i,
{
struct deps_reg *reg_last = &deps->reg_last[i];
add_dependence_list_and_free (insn, ®_last->sets,
REG_DEP_OUTPUT);
add_dependence_list_and_free (insn, ®_last->clobbers,
REG_DEP_OUTPUT);
add_dependence_list_and_free (insn, ®_last->uses,
REG_DEP_ANTI);
reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
reg_last->uses_length = 0;
reg_last->clobbers_length = 0;
CLEAR_REGNO_REG_SET (&deps->reg_conditional_sets, i);
});
}
IOR_REG_SET (&deps->reg_last_in_use, reg_pending_uses);
IOR_REG_SET (&deps->reg_last_in_use, reg_pending_clobbers);
IOR_REG_SET (&deps->reg_last_in_use, reg_pending_sets);
}
CLEAR_REG_SET (reg_pending_uses);
CLEAR_REG_SET (reg_pending_clobbers);
CLEAR_REG_SET (reg_pending_sets);
/* If we are currently in a libcall scheduling group, then mark the
current insn as being in a scheduling group and that it can not
be moved into a different basic block. */
if (deps->libcall_block_tail_insn)
{
set_sched_group_p (insn);
CANT_MOVE (insn) = 1;
}
/* If a post-call group is still open, see if it should remain so.
This insn must be a simple move of a hard reg to a pseudo or
vice-versa.
We must avoid moving these insns for correctness on
SMALL_REGISTER_CLASS machines, and for special registers like
PIC_OFFSET_TABLE_REGNUM. For simplicity, extend this to all
hard regs for all targets. */
if (deps->in_post_call_group_p)
{
rtx tmp, set = single_set (insn);
int src_regno, dest_regno;
if (set == NULL)
goto end_call_group;
tmp = SET_DEST (set);
if (GET_CODE (tmp) == SUBREG)
tmp = SUBREG_REG (tmp);
if (REG_P (tmp))
dest_regno = REGNO (tmp);
else
goto end_call_group;
tmp = SET_SRC (set);
if (GET_CODE (tmp) == SUBREG)
tmp = SUBREG_REG (tmp);
if ((GET_CODE (tmp) == PLUS
|| GET_CODE (tmp) == MINUS)
&& REG_P (XEXP (tmp, 0))
&& REGNO (XEXP (tmp, 0)) == STACK_POINTER_REGNUM
&& dest_regno == STACK_POINTER_REGNUM)
src_regno = STACK_POINTER_REGNUM;
else if (REG_P (tmp))
src_regno = REGNO (tmp);
else
goto end_call_group;
if (src_regno < FIRST_PSEUDO_REGISTER
|| dest_regno < FIRST_PSEUDO_REGISTER)
{
/* If we are inside a post-call group right at the start of the
scheduling region, we must not add a dependency. */
if (deps->in_post_call_group_p == post_call_initial)
{
SCHED_GROUP_P (insn) = 1;
deps->in_post_call_group_p = post_call;
}
else
set_sched_group_p (insn);
CANT_MOVE (insn) = 1;
}
else
{
end_call_group:
deps->in_post_call_group_p = not_post_call;
}
}
}
/* Analyze every insn between HEAD and TAIL inclusive, creating LOG_LINKS
for every dependency. */
void
sched_analyze (struct deps *deps, rtx head, rtx tail)
{
rtx insn;
rtx loop_notes = 0;
if (current_sched_info->use_cselib)
cselib_init (true);
/* Before reload, if the previous block ended in a call, show that
we are inside a post-call group, so as to keep the lifetimes of
hard registers correct. */
if (! reload_completed && GET_CODE (head) != CODE_LABEL)
{
insn = prev_nonnote_insn (head);
if (insn && GET_CODE (insn) == CALL_INSN)
deps->in_post_call_group_p = post_call_initial;
}
for (insn = head;; insn = NEXT_INSN (insn))
{
rtx link, end_seq, r0, set;
if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
{
/* Clear out the stale LOG_LINKS from flow. */
free_INSN_LIST_list (&LOG_LINKS (insn));
/* Make each JUMP_INSN a scheduling barrier for memory
references. */
if (GET_CODE (insn) == JUMP_INSN)
{
/* Keep the list a reasonable size. */
if (deps->pending_flush_length++ > MAX_PENDING_LIST_LENGTH)
flush_pending_lists (deps, insn, true, true);
else
deps->last_pending_memory_flush
= alloc_INSN_LIST (insn, deps->last_pending_memory_flush);
}
sched_analyze_insn (deps, PATTERN (insn), insn, loop_notes);
loop_notes = 0;
}
else if (GET_CODE (insn) == CALL_INSN)
{
int i;
CANT_MOVE (insn) = 1;
/* Clear out the stale LOG_LINKS from flow. */
free_INSN_LIST_list (&LOG_LINKS (insn));
if (find_reg_note (insn, REG_SETJMP, NULL))
{
/* This is setjmp. Assume that all registers, not just
hard registers, may be clobbered by this call. */
reg_pending_barrier = MOVE_BARRIER;
}
else
{
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
/* A call may read and modify global register variables. */
if (global_regs[i])
{
SET_REGNO_REG_SET (reg_pending_sets, i);
SET_REGNO_REG_SET (reg_pending_uses, i);
}
/* Other call-clobbered hard regs may be clobbered.
Since we only have a choice between 'might be clobbered'
and 'definitely not clobbered', we must include all
partly call-clobbered registers here. */
else if (HARD_REGNO_CALL_PART_CLOBBERED (i, reg_raw_mode[i])
|| TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
SET_REGNO_REG_SET (reg_pending_clobbers, i);
/* We don't know what set of fixed registers might be used
by the function, but it is certain that the stack pointer
is among them, but be conservative. */
else if (fixed_regs[i])
SET_REGNO_REG_SET (reg_pending_uses, i);
/* The frame pointer is normally not used by the function
itself, but by the debugger. */
/* ??? MIPS o32 is an exception. It uses the frame pointer
in the macro expansion of jal but does not represent this
fact in the call_insn rtl. */
else if (i == FRAME_POINTER_REGNUM
|| (i == HARD_FRAME_POINTER_REGNUM
&& (! reload_completed || frame_pointer_needed)))
SET_REGNO_REG_SET (reg_pending_uses, i);
}
/* For each insn which shouldn't cross a call, add a dependence
between that insn and this call insn. */
add_dependence_list_and_free (insn, &deps->sched_before_next_call,
REG_DEP_ANTI);
sched_analyze_insn (deps, PATTERN (insn), insn, loop_notes);
loop_notes = 0;
/* In the absence of interprocedural alias analysis, we must flush
all pending reads and writes, and start new dependencies starting
from here. But only flush writes for constant calls (which may
be passed a pointer to something we haven't written yet). */
flush_pending_lists (deps, insn, true, !CONST_OR_PURE_CALL_P (insn));
/* Remember the last function call for limiting lifetimes. */
free_INSN_LIST_list (&deps->last_function_call);
deps->last_function_call = alloc_INSN_LIST (insn, NULL_RTX);
/* Before reload, begin a post-call group, so as to keep the
lifetimes of hard registers correct. */
if (! reload_completed)
deps->in_post_call_group_p = post_call;
}
/* See comments on reemit_notes as to why we do this.
??? Actually, the reemit_notes just say what is done, not why. */
if (GET_CODE (insn) == NOTE
&& (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
|| NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END
|| NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
|| NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
{
rtx rtx_region;
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
|| NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
rtx_region = GEN_INT (NOTE_EH_HANDLER (insn));
else
rtx_region = const0_rtx;
loop_notes = alloc_EXPR_LIST (REG_SAVE_NOTE,
rtx_region,
loop_notes);
loop_notes = alloc_EXPR_LIST (REG_SAVE_NOTE,
GEN_INT (NOTE_LINE_NUMBER (insn)),
loop_notes);
CONST_OR_PURE_CALL_P (loop_notes) = CONST_OR_PURE_CALL_P (insn);
}
if (current_sched_info->use_cselib)
cselib_process_insn (insn);
/* Now that we have completed handling INSN, check and see if it is
a CLOBBER beginning a libcall block. If it is, record the
end of the libcall sequence.
We want to schedule libcall blocks as a unit before reload. While
this restricts scheduling, it preserves the meaning of a libcall
block.
As a side effect, we may get better code due to decreased register
pressure as well as less chance of a foreign insn appearing in
a libcall block. */
if (!reload_completed
/* Note we may have nested libcall sequences. We only care about
the outermost libcall sequence. */
&& deps->libcall_block_tail_insn == 0
/* The sequence must start with a clobber of a register. */
&& GET_CODE (insn) == INSN
&& GET_CODE (PATTERN (insn)) == CLOBBER
&& (r0 = XEXP (PATTERN (insn), 0), REG_P (r0))
&& REG_P (XEXP (PATTERN (insn), 0))
/* The CLOBBER must also have a REG_LIBCALL note attached. */
&& (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
&& (end_seq = XEXP (link, 0)) != 0
/* The insn referenced by the REG_LIBCALL note must be a
simple nop copy with the same destination as the register
mentioned in the clobber. */
&& (set = single_set (end_seq)) != 0
&& SET_DEST (set) == r0 && SET_SRC (set) == r0
/* And finally the insn referenced by the REG_LIBCALL must
also contain a REG_EQUAL note and a REG_RETVAL note. */
&& find_reg_note (end_seq, REG_EQUAL, NULL_RTX) != 0
&& find_reg_note (end_seq, REG_RETVAL, NULL_RTX) != 0)
deps->libcall_block_tail_insn = XEXP (link, 0);
/* If we have reached the end of a libcall block, then close the
block. */
if (deps->libcall_block_tail_insn == insn)
deps->libcall_block_tail_insn = 0;
if (insn == tail)
{
if (current_sched_info->use_cselib)
cselib_finish ();
return;
}
}
abort ();
}
/* The following function adds forward dependence (FROM, TO) with
given DEP_TYPE. The forward dependence should be not exist before. */
void
add_forward_dependence (rtx from, rtx to, enum reg_note dep_type)
{
rtx new_link;
#ifdef ENABLE_CHECKING
/* If add_dependence is working properly there should never
be notes, deleted insns or duplicates in the backward
links. Thus we need not check for them here.
However, if we have enabled checking we might as well go
ahead and verify that add_dependence worked properly. */
if (GET_CODE (from) == NOTE
|| INSN_DELETED_P (from)
|| (forward_dependency_cache != NULL
&& bitmap_bit_p (&forward_dependency_cache[INSN_LUID (from)],
INSN_LUID (to)))
|| (forward_dependency_cache == NULL
&& find_insn_list (to, INSN_DEPEND (from))))
abort ();
if (forward_dependency_cache != NULL)
bitmap_bit_p (&forward_dependency_cache[INSN_LUID (from)],
INSN_LUID (to));
#endif
new_link = alloc_INSN_LIST (to, INSN_DEPEND (from));
PUT_REG_NOTE_KIND (new_link, dep_type);
INSN_DEPEND (from) = new_link;
INSN_DEP_COUNT (to) += 1;
}
/* Examine insns in the range [ HEAD, TAIL ] and Use the backward
dependences from LOG_LINKS to build forward dependences in
INSN_DEPEND. */
void
compute_forward_dependences (rtx head, rtx tail)
{
rtx insn, link;
rtx next_tail;
next_tail = NEXT_INSN (tail);
for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
{
if (! INSN_P (insn))
continue;
for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
add_forward_dependence (XEXP (link, 0), insn, REG_NOTE_KIND (link));
}
}
/* Initialize variables for region data dependence analysis.
n_bbs is the number of region blocks. */
void
init_deps (struct deps *deps)
{
int max_reg = (reload_completed ? FIRST_PSEUDO_REGISTER : max_reg_num ());
deps->max_reg = max_reg;
deps->reg_last = xcalloc (max_reg, sizeof (struct deps_reg));
INIT_REG_SET (&deps->reg_last_in_use);
INIT_REG_SET (&deps->reg_conditional_sets);
deps->pending_read_insns = 0;
deps->pending_read_mems = 0;
deps->pending_write_insns = 0;
deps->pending_write_mems = 0;
deps->pending_lists_length = 0;
deps->pending_flush_length = 0;
deps->last_pending_memory_flush = 0;
deps->last_function_call = 0;
deps->sched_before_next_call = 0;
deps->in_post_call_group_p = not_post_call;
deps->libcall_block_tail_insn = 0;
}
/* Free insn lists found in DEPS. */
void
free_deps (struct deps *deps)
{
int i;
free_INSN_LIST_list (&deps->pending_read_insns);
free_EXPR_LIST_list (&deps->pending_read_mems);
free_INSN_LIST_list (&deps->pending_write_insns);
free_EXPR_LIST_list (&deps->pending_write_mems);
free_INSN_LIST_list (&deps->last_pending_memory_flush);
/* Without the EXECUTE_IF_SET, this loop is executed max_reg * nr_regions
times. For a testcase with 42000 regs and 8000 small basic blocks,
this loop accounted for nearly 60% (84 sec) of the total -O2 runtime. */
EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i,
{
struct deps_reg *reg_last = &deps->reg_last[i];
if (reg_last->uses)
free_INSN_LIST_list (®_last->uses);
if (reg_last->sets)
free_INSN_LIST_list (®_last->sets);
if (reg_last->clobbers)
free_INSN_LIST_list (®_last->clobbers);
});
CLEAR_REG_SET (&deps->reg_last_in_use);
CLEAR_REG_SET (&deps->reg_conditional_sets);
free (deps->reg_last);
}
/* If it is profitable to use them, initialize caches for tracking
dependency information. LUID is the number of insns to be scheduled,
it is used in the estimate of profitability. */
void
init_dependency_caches (int luid)
{
/* ?!? We could save some memory by computing a per-region luid mapping
which could reduce both the number of vectors in the cache and the size
of each vector. Instead we just avoid the cache entirely unless the
average number of instructions in a basic block is very high. See
the comment before the declaration of true_dependency_cache for
what we consider "very high". */
if (luid / n_basic_blocks > 100 * 5)
{
int i;
true_dependency_cache = xmalloc (luid * sizeof (bitmap_head));
anti_dependency_cache = xmalloc (luid * sizeof (bitmap_head));
output_dependency_cache = xmalloc (luid * sizeof (bitmap_head));
#ifdef ENABLE_CHECKING
forward_dependency_cache = xmalloc (luid * sizeof (bitmap_head));
#endif
for (i = 0; i < luid; i++)
{
bitmap_initialize (&true_dependency_cache[i], 0);
bitmap_initialize (&anti_dependency_cache[i], 0);
bitmap_initialize (&output_dependency_cache[i], 0);
#ifdef ENABLE_CHECKING
bitmap_initialize (&forward_dependency_cache[i], 0);
#endif
}
cache_size = luid;
}
}
/* Free the caches allocated in init_dependency_caches. */
void
free_dependency_caches (void)
{
if (true_dependency_cache)
{
int i;
for (i = 0; i < cache_size; i++)
{
bitmap_clear (&true_dependency_cache[i]);
bitmap_clear (&anti_dependency_cache[i]);
bitmap_clear (&output_dependency_cache[i]);
#ifdef ENABLE_CHECKING
bitmap_clear (&forward_dependency_cache[i]);
#endif
}
free (true_dependency_cache);
true_dependency_cache = NULL;
free (anti_dependency_cache);
anti_dependency_cache = NULL;
free (output_dependency_cache);
output_dependency_cache = NULL;
#ifdef ENABLE_CHECKING
free (forward_dependency_cache);
forward_dependency_cache = NULL;
#endif
}
}
/* Initialize some global variables needed by the dependency analysis
code. */
void
init_deps_global (void)
{
reg_pending_sets = INITIALIZE_REG_SET (reg_pending_sets_head);
reg_pending_clobbers = INITIALIZE_REG_SET (reg_pending_clobbers_head);
reg_pending_uses = INITIALIZE_REG_SET (reg_pending_uses_head);
reg_pending_barrier = NOT_A_BARRIER;
}
/* Free everything used by the dependency analysis code. */
void
finish_deps_global (void)
{
FREE_REG_SET (reg_pending_sets);
FREE_REG_SET (reg_pending_clobbers);
FREE_REG_SET (reg_pending_uses);
}
|