1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
|
/* Analyze RTL for GNU compiler.
Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "toplev.h"
#include "rtl.h"
#include "hard-reg-set.h"
#include "insn-config.h"
#include "recog.h"
#include "target.h"
#include "output.h"
#include "tm_p.h"
#include "flags.h"
#include "real.h"
#include "regs.h"
#include "function.h"
#include "df.h"
#include "tree.h"
/* Forward declarations */
static void set_of_1 (rtx, const_rtx, void *);
static bool covers_regno_p (const_rtx, unsigned int);
static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
static int rtx_referenced_p_1 (rtx *, void *);
static int computed_jump_p_1 (const_rtx);
static void parms_set (rtx, const_rtx, void *);
static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
const_rtx, enum machine_mode,
unsigned HOST_WIDE_INT);
static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
const_rtx, enum machine_mode,
unsigned HOST_WIDE_INT);
static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
enum machine_mode,
unsigned int);
static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
enum machine_mode, unsigned int);
/* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
-1 if a code has no such operand. */
static int non_rtx_starting_operands[NUM_RTX_CODE];
/* Bit flags that specify the machine subtype we are compiling for.
Bits are tested using macros TARGET_... defined in the tm.h file
and set by `-m...' switches. Must be defined in rtlanal.c. */
int target_flags;
/* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
SIGN_EXTEND then while narrowing we also have to enforce the
representation and sign-extend the value to mode DESTINATION_REP.
If the value is already sign-extended to DESTINATION_REP mode we
can just switch to DESTINATION mode on it. For each pair of
integral modes SOURCE and DESTINATION, when truncating from SOURCE
to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
contains the number of high-order bits in SOURCE that have to be
copies of the sign-bit so that we can do this mode-switch to
DESTINATION. */
static unsigned int
num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
/* Return 1 if the value of X is unstable
(would be different at a different point in the program).
The frame pointer, arg pointer, etc. are considered stable
(within one function) and so is anything marked `unchanging'. */
int
rtx_unstable_p (const_rtx x)
{
const RTX_CODE code = GET_CODE (x);
int i;
const char *fmt;
switch (code)
{
case MEM:
return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
case CONST:
case CONST_INT:
case CONST_DOUBLE:
case CONST_FIXED:
case CONST_VECTOR:
case SYMBOL_REF:
case LABEL_REF:
return 0;
case REG:
/* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
/* The arg pointer varies if it is not a fixed register. */
|| (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
return 0;
#ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
/* ??? When call-clobbered, the value is stable modulo the restore
that must happen after a call. This currently screws up local-alloc
into believing that the restore is not needed. */
if (x == pic_offset_table_rtx)
return 0;
#endif
return 1;
case ASM_OPERANDS:
if (MEM_VOLATILE_P (x))
return 1;
/* Fall through. */
default:
break;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
if (fmt[i] == 'e')
{
if (rtx_unstable_p (XEXP (x, i)))
return 1;
}
else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++)
if (rtx_unstable_p (XVECEXP (x, i, j)))
return 1;
}
return 0;
}
/* Return 1 if X has a value that can vary even between two
executions of the program. 0 means X can be compared reliably
against certain constants or near-constants.
FOR_ALIAS is nonzero if we are called from alias analysis; if it is
zero, we are slightly more conservative.
The frame pointer and the arg pointer are considered constant. */
bool
rtx_varies_p (const_rtx x, bool for_alias)
{
RTX_CODE code;
int i;
const char *fmt;
if (!x)
return 0;
code = GET_CODE (x);
switch (code)
{
case MEM:
return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
case CONST:
case CONST_INT:
case CONST_DOUBLE:
case CONST_FIXED:
case CONST_VECTOR:
case SYMBOL_REF:
case LABEL_REF:
return 0;
case REG:
/* Note that we have to test for the actual rtx used for the frame
and arg pointers and not just the register number in case we have
eliminated the frame and/or arg pointer and are using it
for pseudos. */
if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
/* The arg pointer varies if it is not a fixed register. */
|| (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
return 0;
if (x == pic_offset_table_rtx
#ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
/* ??? When call-clobbered, the value is stable modulo the restore
that must happen after a call. This currently screws up
local-alloc into believing that the restore is not needed, so we
must return 0 only if we are called from alias analysis. */
&& for_alias
#endif
)
return 0;
return 1;
case LO_SUM:
/* The operand 0 of a LO_SUM is considered constant
(in fact it is related specifically to operand 1)
during alias analysis. */
return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
|| rtx_varies_p (XEXP (x, 1), for_alias);
case ASM_OPERANDS:
if (MEM_VOLATILE_P (x))
return 1;
/* Fall through. */
default:
break;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
if (fmt[i] == 'e')
{
if (rtx_varies_p (XEXP (x, i), for_alias))
return 1;
}
else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++)
if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
return 1;
}
return 0;
}
/* Return nonzero if the use of X as an address in a MEM can cause a trap.
MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
whether nonzero is returned for unaligned memory accesses on strict
alignment machines. */
static int
rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
enum machine_mode mode, bool unaligned_mems)
{
enum rtx_code code = GET_CODE (x);
if (STRICT_ALIGNMENT
&& unaligned_mems
&& GET_MODE_SIZE (mode) != 0)
{
HOST_WIDE_INT actual_offset = offset;
#ifdef SPARC_STACK_BOUNDARY_HACK
/* ??? The SPARC port may claim a STACK_BOUNDARY higher than
the real alignment of %sp. However, when it does this, the
alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
if (SPARC_STACK_BOUNDARY_HACK
&& (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
actual_offset -= STACK_POINTER_OFFSET;
#endif
if (actual_offset % GET_MODE_SIZE (mode) != 0)
return 1;
}
switch (code)
{
case SYMBOL_REF:
if (SYMBOL_REF_WEAK (x))
return 1;
if (!CONSTANT_POOL_ADDRESS_P (x))
{
tree decl;
HOST_WIDE_INT decl_size;
if (offset < 0)
return 1;
if (size == 0)
size = GET_MODE_SIZE (mode);
if (size == 0)
return offset != 0;
/* If the size of the access or of the symbol is unknown,
assume the worst. */
decl = SYMBOL_REF_DECL (x);
/* Else check that the access is in bounds. TODO: restructure
expr_size/lhd_expr_size/int_expr_size and just use the latter. */
if (!decl)
decl_size = -1;
else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
decl_size = (host_integerp (DECL_SIZE_UNIT (decl), 0)
? tree_low_cst (DECL_SIZE_UNIT (decl), 0)
: -1);
else if (TREE_CODE (decl) == STRING_CST)
decl_size = TREE_STRING_LENGTH (decl);
else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
decl_size = int_size_in_bytes (TREE_TYPE (decl));
else
decl_size = -1;
return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
}
return 0;
case LABEL_REF:
return 0;
case REG:
/* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
|| x == stack_pointer_rtx
/* The arg pointer varies if it is not a fixed register. */
|| (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
return 0;
/* All of the virtual frame registers are stack references. */
if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
&& REGNO (x) <= LAST_VIRTUAL_REGISTER)
return 0;
return 1;
case CONST:
return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
mode, unaligned_mems);
case PLUS:
/* An address is assumed not to trap if:
- it is the pic register plus a constant. */
if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
return 0;
/* - or it is an address that can't trap plus a constant integer,
with the proper remainder modulo the mode size if we are
considering unaligned memory references. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
size, mode, unaligned_mems))
return 0;
return 1;
case LO_SUM:
case PRE_MODIFY:
return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
mode, unaligned_mems);
case PRE_DEC:
case PRE_INC:
case POST_DEC:
case POST_INC:
case POST_MODIFY:
return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
mode, unaligned_mems);
default:
break;
}
/* If it isn't one of the case above, it can cause a trap. */
return 1;
}
/* Return nonzero if the use of X as an address in a MEM can cause a trap. */
int
rtx_addr_can_trap_p (const_rtx x)
{
return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
}
/* Return true if X is an address that is known to not be zero. */
bool
nonzero_address_p (const_rtx x)
{
const enum rtx_code code = GET_CODE (x);
switch (code)
{
case SYMBOL_REF:
return !SYMBOL_REF_WEAK (x);
case LABEL_REF:
return true;
case REG:
/* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
|| x == stack_pointer_rtx
|| (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
return true;
/* All of the virtual frame registers are stack references. */
if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
&& REGNO (x) <= LAST_VIRTUAL_REGISTER)
return true;
return false;
case CONST:
return nonzero_address_p (XEXP (x, 0));
case PLUS:
if (GET_CODE (XEXP (x, 1)) == CONST_INT)
return nonzero_address_p (XEXP (x, 0));
/* Handle PIC references. */
else if (XEXP (x, 0) == pic_offset_table_rtx
&& CONSTANT_P (XEXP (x, 1)))
return true;
return false;
case PRE_MODIFY:
/* Similar to the above; allow positive offsets. Further, since
auto-inc is only allowed in memories, the register must be a
pointer. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) > 0)
return true;
return nonzero_address_p (XEXP (x, 0));
case PRE_INC:
/* Similarly. Further, the offset is always positive. */
return true;
case PRE_DEC:
case POST_DEC:
case POST_INC:
case POST_MODIFY:
return nonzero_address_p (XEXP (x, 0));
case LO_SUM:
return nonzero_address_p (XEXP (x, 1));
default:
break;
}
/* If it isn't one of the case above, might be zero. */
return false;
}
/* Return 1 if X refers to a memory location whose address
cannot be compared reliably with constant addresses,
or if X refers to a BLKmode memory object.
FOR_ALIAS is nonzero if we are called from alias analysis; if it is
zero, we are slightly more conservative. */
bool
rtx_addr_varies_p (const_rtx x, bool for_alias)
{
enum rtx_code code;
int i;
const char *fmt;
if (x == 0)
return 0;
code = GET_CODE (x);
if (code == MEM)
return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
if (fmt[i] == 'e')
{
if (rtx_addr_varies_p (XEXP (x, i), for_alias))
return 1;
}
else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++)
if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
return 1;
}
return 0;
}
/* Return the value of the integer term in X, if one is apparent;
otherwise return 0.
Only obvious integer terms are detected.
This is used in cse.c with the `related_value' field. */
HOST_WIDE_INT
get_integer_term (const_rtx x)
{
if (GET_CODE (x) == CONST)
x = XEXP (x, 0);
if (GET_CODE (x) == MINUS
&& GET_CODE (XEXP (x, 1)) == CONST_INT)
return - INTVAL (XEXP (x, 1));
if (GET_CODE (x) == PLUS
&& GET_CODE (XEXP (x, 1)) == CONST_INT)
return INTVAL (XEXP (x, 1));
return 0;
}
/* If X is a constant, return the value sans apparent integer term;
otherwise return 0.
Only obvious integer terms are detected. */
rtx
get_related_value (const_rtx x)
{
if (GET_CODE (x) != CONST)
return 0;
x = XEXP (x, 0);
if (GET_CODE (x) == PLUS
&& GET_CODE (XEXP (x, 1)) == CONST_INT)
return XEXP (x, 0);
else if (GET_CODE (x) == MINUS
&& GET_CODE (XEXP (x, 1)) == CONST_INT)
return XEXP (x, 0);
return 0;
}
/* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
to somewhere in the same object or object_block as SYMBOL. */
bool
offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
{
tree decl;
if (GET_CODE (symbol) != SYMBOL_REF)
return false;
if (offset == 0)
return true;
if (offset > 0)
{
if (CONSTANT_POOL_ADDRESS_P (symbol)
&& offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
return true;
decl = SYMBOL_REF_DECL (symbol);
if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
return true;
}
if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
&& SYMBOL_REF_BLOCK (symbol)
&& SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
&& ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
< (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
return true;
return false;
}
/* Split X into a base and a constant offset, storing them in *BASE_OUT
and *OFFSET_OUT respectively. */
void
split_const (rtx x, rtx *base_out, rtx *offset_out)
{
if (GET_CODE (x) == CONST)
{
x = XEXP (x, 0);
if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
{
*base_out = XEXP (x, 0);
*offset_out = XEXP (x, 1);
return;
}
}
*base_out = x;
*offset_out = const0_rtx;
}
/* Return the number of places FIND appears within X. If COUNT_DEST is
zero, we do not count occurrences inside the destination of a SET. */
int
count_occurrences (const_rtx x, const_rtx find, int count_dest)
{
int i, j;
enum rtx_code code;
const char *format_ptr;
int count;
if (x == find)
return 1;
code = GET_CODE (x);
switch (code)
{
case REG:
case CONST_INT:
case CONST_DOUBLE:
case CONST_FIXED:
case CONST_VECTOR:
case SYMBOL_REF:
case CODE_LABEL:
case PC:
case CC0:
return 0;
case EXPR_LIST:
count = count_occurrences (XEXP (x, 0), find, count_dest);
if (XEXP (x, 1))
count += count_occurrences (XEXP (x, 1), find, count_dest);
return count;
case MEM:
if (MEM_P (find) && rtx_equal_p (x, find))
return 1;
break;
case SET:
if (SET_DEST (x) == find && ! count_dest)
return count_occurrences (SET_SRC (x), find, count_dest);
break;
default:
break;
}
format_ptr = GET_RTX_FORMAT (code);
count = 0;
for (i = 0; i < GET_RTX_LENGTH (code); i++)
{
switch (*format_ptr++)
{
case 'e':
count += count_occurrences (XEXP (x, i), find, count_dest);
break;
case 'E':
for (j = 0; j < XVECLEN (x, i); j++)
count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
break;
}
}
return count;
}
/* Nonzero if register REG appears somewhere within IN.
Also works if REG is not a register; in this case it checks
for a subexpression of IN that is Lisp "equal" to REG. */
int
reg_mentioned_p (const_rtx reg, const_rtx in)
{
const char *fmt;
int i;
enum rtx_code code;
if (in == 0)
return 0;
if (reg == in)
return 1;
if (GET_CODE (in) == LABEL_REF)
return reg == XEXP (in, 0);
code = GET_CODE (in);
switch (code)
{
/* Compare registers by number. */
case REG:
return REG_P (reg) && REGNO (in) == REGNO (reg);
/* These codes have no constituent expressions
and are unique. */
case SCRATCH:
case CC0:
case PC:
return 0;
case CONST_INT:
case CONST_VECTOR:
case CONST_DOUBLE:
case CONST_FIXED:
/* These are kept unique for a given value. */
return 0;
default:
break;
}
if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
return 1;
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'E')
{
int j;
for (j = XVECLEN (in, i) - 1; j >= 0; j--)
if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
return 1;
}
else if (fmt[i] == 'e'
&& reg_mentioned_p (reg, XEXP (in, i)))
return 1;
}
return 0;
}
/* Return 1 if in between BEG and END, exclusive of BEG and END, there is
no CODE_LABEL insn. */
int
no_labels_between_p (const_rtx beg, const_rtx end)
{
rtx p;
if (beg == end)
return 0;
for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
if (LABEL_P (p))
return 0;
return 1;
}
/* Nonzero if register REG is used in an insn between
FROM_INSN and TO_INSN (exclusive of those two). */
int
reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
{
rtx insn;
if (from_insn == to_insn)
return 0;
for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
if (INSN_P (insn)
&& (reg_overlap_mentioned_p (reg, PATTERN (insn))
|| (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
return 1;
return 0;
}
/* Nonzero if the old value of X, a register, is referenced in BODY. If X
is entirely replaced by a new value and the only use is as a SET_DEST,
we do not consider it a reference. */
int
reg_referenced_p (const_rtx x, const_rtx body)
{
int i;
switch (GET_CODE (body))
{
case SET:
if (reg_overlap_mentioned_p (x, SET_SRC (body)))
return 1;
/* If the destination is anything other than CC0, PC, a REG or a SUBREG
of a REG that occupies all of the REG, the insn references X if
it is mentioned in the destination. */
if (GET_CODE (SET_DEST (body)) != CC0
&& GET_CODE (SET_DEST (body)) != PC
&& !REG_P (SET_DEST (body))
&& ! (GET_CODE (SET_DEST (body)) == SUBREG
&& REG_P (SUBREG_REG (SET_DEST (body)))
&& (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
== ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
&& reg_overlap_mentioned_p (x, SET_DEST (body)))
return 1;
return 0;
case ASM_OPERANDS:
for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
return 1;
return 0;
case CALL:
case USE:
case IF_THEN_ELSE:
return reg_overlap_mentioned_p (x, body);
case TRAP_IF:
return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
case PREFETCH:
return reg_overlap_mentioned_p (x, XEXP (body, 0));
case UNSPEC:
case UNSPEC_VOLATILE:
for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
return 1;
return 0;
case PARALLEL:
for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
if (reg_referenced_p (x, XVECEXP (body, 0, i)))
return 1;
return 0;
case CLOBBER:
if (MEM_P (XEXP (body, 0)))
if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
return 1;
return 0;
case COND_EXEC:
if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
return 1;
return reg_referenced_p (x, COND_EXEC_CODE (body));
default:
return 0;
}
}
/* Nonzero if register REG is set or clobbered in an insn between
FROM_INSN and TO_INSN (exclusive of those two). */
int
reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
{
const_rtx insn;
if (from_insn == to_insn)
return 0;
for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
if (INSN_P (insn) && reg_set_p (reg, insn))
return 1;
return 0;
}
/* Internals of reg_set_between_p. */
int
reg_set_p (const_rtx reg, const_rtx insn)
{
/* We can be passed an insn or part of one. If we are passed an insn,
check if a side-effect of the insn clobbers REG. */
if (INSN_P (insn)
&& (FIND_REG_INC_NOTE (insn, reg)
|| (CALL_P (insn)
&& ((REG_P (reg)
&& REGNO (reg) < FIRST_PSEUDO_REGISTER
&& overlaps_hard_reg_set_p (regs_invalidated_by_call,
GET_MODE (reg), REGNO (reg)))
|| MEM_P (reg)
|| find_reg_fusage (insn, CLOBBER, reg)))))
return 1;
return set_of (reg, insn) != NULL_RTX;
}
/* Similar to reg_set_between_p, but check all registers in X. Return 0
only if none of them are modified between START and END. Return 1 if
X contains a MEM; this routine does use memory aliasing. */
int
modified_between_p (const_rtx x, const_rtx start, const_rtx end)
{
const enum rtx_code code = GET_CODE (x);
const char *fmt;
int i, j;
rtx insn;
if (start == end)
return 0;
switch (code)
{
case CONST_INT:
case CONST_DOUBLE:
case CONST_FIXED:
case CONST_VECTOR:
case CONST:
case SYMBOL_REF:
case LABEL_REF:
return 0;
case PC:
case CC0:
return 1;
case MEM:
if (modified_between_p (XEXP (x, 0), start, end))
return 1;
if (MEM_READONLY_P (x))
return 0;
for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
if (memory_modified_in_insn_p (x, insn))
return 1;
return 0;
break;
case REG:
return reg_set_between_p (x, start, end);
default:
break;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
return 1;
else if (fmt[i] == 'E')
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
if (modified_between_p (XVECEXP (x, i, j), start, end))
return 1;
}
return 0;
}
/* Similar to reg_set_p, but check all registers in X. Return 0 only if none
of them are modified in INSN. Return 1 if X contains a MEM; this routine
does use memory aliasing. */
int
modified_in_p (const_rtx x, const_rtx insn)
{
const enum rtx_code code = GET_CODE (x);
const char *fmt;
int i, j;
switch (code)
{
case CONST_INT:
case CONST_DOUBLE:
case CONST_FIXED:
case CONST_VECTOR:
case CONST:
case SYMBOL_REF:
case LABEL_REF:
return 0;
case PC:
case CC0:
return 1;
case MEM:
if (modified_in_p (XEXP (x, 0), insn))
return 1;
if (MEM_READONLY_P (x))
return 0;
if (memory_modified_in_insn_p (x, insn))
return 1;
return 0;
break;
case REG:
return reg_set_p (x, insn);
default:
break;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
return 1;
else if (fmt[i] == 'E')
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
if (modified_in_p (XVECEXP (x, i, j), insn))
return 1;
}
return 0;
}
/* Helper function for set_of. */
struct set_of_data
{
const_rtx found;
const_rtx pat;
};
static void
set_of_1 (rtx x, const_rtx pat, void *data1)
{
struct set_of_data *const data = (struct set_of_data *) (data1);
if (rtx_equal_p (x, data->pat)
|| (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
data->found = pat;
}
/* Give an INSN, return a SET or CLOBBER expression that does modify PAT
(either directly or via STRICT_LOW_PART and similar modifiers). */
const_rtx
set_of (const_rtx pat, const_rtx insn)
{
struct set_of_data data;
data.found = NULL_RTX;
data.pat = pat;
note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
return data.found;
}
/* Given an INSN, return a SET expression if this insn has only a single SET.
It may also have CLOBBERs, USEs, or SET whose output
will not be used, which we ignore. */
rtx
single_set_2 (const_rtx insn, const_rtx pat)
{
rtx set = NULL;
int set_verified = 1;
int i;
if (GET_CODE (pat) == PARALLEL)
{
for (i = 0; i < XVECLEN (pat, 0); i++)
{
rtx sub = XVECEXP (pat, 0, i);
switch (GET_CODE (sub))
{
case USE:
case CLOBBER:
break;
case SET:
/* We can consider insns having multiple sets, where all
but one are dead as single set insns. In common case
only single set is present in the pattern so we want
to avoid checking for REG_UNUSED notes unless necessary.
When we reach set first time, we just expect this is
the single set we are looking for and only when more
sets are found in the insn, we check them. */
if (!set_verified)
{
if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
&& !side_effects_p (set))
set = NULL;
else
set_verified = 1;
}
if (!set)
set = sub, set_verified = 0;
else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
|| side_effects_p (sub))
return NULL_RTX;
break;
default:
return NULL_RTX;
}
}
}
return set;
}
/* Given an INSN, return nonzero if it has more than one SET, else return
zero. */
int
multiple_sets (const_rtx insn)
{
int found;
int i;
/* INSN must be an insn. */
if (! INSN_P (insn))
return 0;
/* Only a PARALLEL can have multiple SETs. */
if (GET_CODE (PATTERN (insn)) == PARALLEL)
{
for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
{
/* If we have already found a SET, then return now. */
if (found)
return 1;
else
found = 1;
}
}
/* Either zero or one SET. */
return 0;
}
/* Return nonzero if the destination of SET equals the source
and there are no side effects. */
int
set_noop_p (const_rtx set)
{
rtx src = SET_SRC (set);
rtx dst = SET_DEST (set);
if (dst == pc_rtx && src == pc_rtx)
return 1;
if (MEM_P (dst) && MEM_P (src))
return rtx_equal_p (dst, src) && !side_effects_p (dst);
if (GET_CODE (dst) == ZERO_EXTRACT)
return rtx_equal_p (XEXP (dst, 0), src)
&& ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
&& !side_effects_p (src);
if (GET_CODE (dst) == STRICT_LOW_PART)
dst = XEXP (dst, 0);
if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
{
if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
return 0;
src = SUBREG_REG (src);
dst = SUBREG_REG (dst);
}
return (REG_P (src) && REG_P (dst)
&& REGNO (src) == REGNO (dst));
}
/* Return nonzero if an insn consists only of SETs, each of which only sets a
value to itself. */
int
noop_move_p (const_rtx insn)
{
rtx pat = PATTERN (insn);
if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
return 1;
/* Insns carrying these notes are useful later on. */
if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
return 0;
if (GET_CODE (pat) == SET && set_noop_p (pat))
return 1;
if (GET_CODE (pat) == PARALLEL)
{
int i;
/* If nothing but SETs of registers to themselves,
this insn can also be deleted. */
for (i = 0; i < XVECLEN (pat, 0); i++)
{
rtx tem = XVECEXP (pat, 0, i);
if (GET_CODE (tem) == USE
|| GET_CODE (tem) == CLOBBER)
continue;
if (GET_CODE (tem) != SET || ! set_noop_p (tem))
return 0;
}
return 1;
}
return 0;
}
/* Return the last thing that X was assigned from before *PINSN. If VALID_TO
is not NULL_RTX then verify that the object is not modified up to VALID_TO.
If the object was modified, if we hit a partial assignment to X, or hit a
CODE_LABEL first, return X. If we found an assignment, update *PINSN to
point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
be the src. */
rtx
find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
{
rtx p;
for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
p = PREV_INSN (p))
if (INSN_P (p))
{
rtx set = single_set (p);
rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
if (set && rtx_equal_p (x, SET_DEST (set)))
{
rtx src = SET_SRC (set);
if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
src = XEXP (note, 0);
if ((valid_to == NULL_RTX
|| ! modified_between_p (src, PREV_INSN (p), valid_to))
/* Reject hard registers because we don't usually want
to use them; we'd rather use a pseudo. */
&& (! (REG_P (src)
&& REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
{
*pinsn = p;
return src;
}
}
/* If set in non-simple way, we don't have a value. */
if (reg_set_p (x, p))
break;
}
return x;
}
/* Return nonzero if register in range [REGNO, ENDREGNO)
appears either explicitly or implicitly in X
other than being stored into.
References contained within the substructure at LOC do not count.
LOC may be zero, meaning don't ignore anything. */
int
refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
rtx *loc)
{
int i;
unsigned int x_regno;
RTX_CODE code;
const char *fmt;
repeat:
/* The contents of a REG_NONNEG note is always zero, so we must come here
upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
if (x == 0)
return 0;
code = GET_CODE (x);
switch (code)
{
case REG:
x_regno = REGNO (x);
/* If we modifying the stack, frame, or argument pointer, it will
clobber a virtual register. In fact, we could be more precise,
but it isn't worth it. */
if ((x_regno == STACK_POINTER_REGNUM
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|| x_regno == ARG_POINTER_REGNUM
#endif
|| x_regno == FRAME_POINTER_REGNUM)
&& regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
return 1;
return endregno > x_regno && regno < END_REGNO (x);
case SUBREG:
/* If this is a SUBREG of a hard reg, we can see exactly which
registers are being modified. Otherwise, handle normally. */
if (REG_P (SUBREG_REG (x))
&& REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
{
unsigned int inner_regno = subreg_regno (x);
unsigned int inner_endregno
= inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
? subreg_nregs (x) : 1);
return endregno > inner_regno && regno < inner_endregno;
}
break;
case CLOBBER:
case SET:
if (&SET_DEST (x) != loc
/* Note setting a SUBREG counts as referring to the REG it is in for
a pseudo but not for hard registers since we can
treat each word individually. */
&& ((GET_CODE (SET_DEST (x)) == SUBREG
&& loc != &SUBREG_REG (SET_DEST (x))
&& REG_P (SUBREG_REG (SET_DEST (x)))
&& REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
&& refers_to_regno_p (regno, endregno,
SUBREG_REG (SET_DEST (x)), loc))
|| (!REG_P (SET_DEST (x))
&& refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
return 1;
if (code == CLOBBER || loc == &SET_SRC (x))
return 0;
x = SET_SRC (x);
goto repeat;
default:
break;
}
/* X does not match, so try its subexpressions. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e' && loc != &XEXP (x, i))
{
if (i == 0)
{
x = XEXP (x, 0);
goto repeat;
}
else
if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
return 1;
}
else if (fmt[i] == 'E')
{
int j;
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
if (loc != &XVECEXP (x, i, j)
&& refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
return 1;
}
}
return 0;
}
/* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
we check if any register number in X conflicts with the relevant register
numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
contains a MEM (we don't bother checking for memory addresses that can't
conflict because we expect this to be a rare case. */
int
reg_overlap_mentioned_p (const_rtx x, const_rtx in)
{
unsigned int regno, endregno;
/* If either argument is a constant, then modifying X can not
affect IN. Here we look at IN, we can profitably combine
CONSTANT_P (x) with the switch statement below. */
if (CONSTANT_P (in))
return 0;
recurse:
switch (GET_CODE (x))
{
case STRICT_LOW_PART:
case ZERO_EXTRACT:
case SIGN_EXTRACT:
/* Overly conservative. */
x = XEXP (x, 0);
goto recurse;
case SUBREG:
regno = REGNO (SUBREG_REG (x));
if (regno < FIRST_PSEUDO_REGISTER)
regno = subreg_regno (x);
endregno = regno + (regno < FIRST_PSEUDO_REGISTER
? subreg_nregs (x) : 1);
goto do_reg;
case REG:
regno = REGNO (x);
endregno = END_REGNO (x);
do_reg:
return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
case MEM:
{
const char *fmt;
int i;
if (MEM_P (in))
return 1;
fmt = GET_RTX_FORMAT (GET_CODE (in));
for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
if (fmt[i] == 'e')
{
if (reg_overlap_mentioned_p (x, XEXP (in, i)))
return 1;
}
else if (fmt[i] == 'E')
{
int j;
for (j = XVECLEN (in, i) - 1; j >= 0; --j)
if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
return 1;
}
return 0;
}
case SCRATCH:
case PC:
case CC0:
return reg_mentioned_p (x, in);
case PARALLEL:
{
int i;
/* If any register in here refers to it we return true. */
for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
if (XEXP (XVECEXP (x, 0, i), 0) != 0
&& reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
return 1;
return 0;
}
default:
gcc_assert (CONSTANT_P (x));
return 0;
}
}
/* Call FUN on each register or MEM that is stored into or clobbered by X.
(X would be the pattern of an insn). DATA is an arbitrary pointer,
ignored by note_stores, but passed to FUN.
FUN receives three arguments:
1. the REG, MEM, CC0 or PC being stored in or clobbered,
2. the SET or CLOBBER rtx that does the store,
3. the pointer DATA provided to note_stores.
If the item being stored in or clobbered is a SUBREG of a hard register,
the SUBREG will be passed. */
void
note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
{
int i;
if (GET_CODE (x) == COND_EXEC)
x = COND_EXEC_CODE (x);
if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
{
rtx dest = SET_DEST (x);
while ((GET_CODE (dest) == SUBREG
&& (!REG_P (SUBREG_REG (dest))
|| REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
|| GET_CODE (dest) == ZERO_EXTRACT
|| GET_CODE (dest) == STRICT_LOW_PART)
dest = XEXP (dest, 0);
/* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
each of whose first operand is a register. */
if (GET_CODE (dest) == PARALLEL)
{
for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
(*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
}
else
(*fun) (dest, x, data);
}
else if (GET_CODE (x) == PARALLEL)
for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
note_stores (XVECEXP (x, 0, i), fun, data);
}
/* Like notes_stores, but call FUN for each expression that is being
referenced in PBODY, a pointer to the PATTERN of an insn. We only call
FUN for each expression, not any interior subexpressions. FUN receives a
pointer to the expression and the DATA passed to this function.
Note that this is not quite the same test as that done in reg_referenced_p
since that considers something as being referenced if it is being
partially set, while we do not. */
void
note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
{
rtx body = *pbody;
int i;
switch (GET_CODE (body))
{
case COND_EXEC:
(*fun) (&COND_EXEC_TEST (body), data);
note_uses (&COND_EXEC_CODE (body), fun, data);
return;
case PARALLEL:
for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
note_uses (&XVECEXP (body, 0, i), fun, data);
return;
case SEQUENCE:
for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
return;
case USE:
(*fun) (&XEXP (body, 0), data);
return;
case ASM_OPERANDS:
for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
(*fun) (&ASM_OPERANDS_INPUT (body, i), data);
return;
case TRAP_IF:
(*fun) (&TRAP_CONDITION (body), data);
return;
case PREFETCH:
(*fun) (&XEXP (body, 0), data);
return;
case UNSPEC:
case UNSPEC_VOLATILE:
for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
(*fun) (&XVECEXP (body, 0, i), data);
return;
case CLOBBER:
if (MEM_P (XEXP (body, 0)))
(*fun) (&XEXP (XEXP (body, 0), 0), data);
return;
case SET:
{
rtx dest = SET_DEST (body);
/* For sets we replace everything in source plus registers in memory
expression in store and operands of a ZERO_EXTRACT. */
(*fun) (&SET_SRC (body), data);
if (GET_CODE (dest) == ZERO_EXTRACT)
{
(*fun) (&XEXP (dest, 1), data);
(*fun) (&XEXP (dest, 2), data);
}
while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
dest = XEXP (dest, 0);
if (MEM_P (dest))
(*fun) (&XEXP (dest, 0), data);
}
return;
default:
/* All the other possibilities never store. */
(*fun) (pbody, data);
return;
}
}
/* Return nonzero if X's old contents don't survive after INSN.
This will be true if X is (cc0) or if X is a register and
X dies in INSN or because INSN entirely sets X.
"Entirely set" means set directly and not through a SUBREG, or
ZERO_EXTRACT, so no trace of the old contents remains.
Likewise, REG_INC does not count.
REG may be a hard or pseudo reg. Renumbering is not taken into account,
but for this use that makes no difference, since regs don't overlap
during their lifetimes. Therefore, this function may be used
at any time after deaths have been computed.
If REG is a hard reg that occupies multiple machine registers, this
function will only return 1 if each of those registers will be replaced
by INSN. */
int
dead_or_set_p (const_rtx insn, const_rtx x)
{
unsigned int regno, end_regno;
unsigned int i;
/* Can't use cc0_rtx below since this file is used by genattrtab.c. */
if (GET_CODE (x) == CC0)
return 1;
gcc_assert (REG_P (x));
regno = REGNO (x);
end_regno = END_REGNO (x);
for (i = regno; i < end_regno; i++)
if (! dead_or_set_regno_p (insn, i))
return 0;
return 1;
}
/* Return TRUE iff DEST is a register or subreg of a register and
doesn't change the number of words of the inner register, and any
part of the register is TEST_REGNO. */
static bool
covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
{
unsigned int regno, endregno;
if (GET_CODE (dest) == SUBREG
&& (((GET_MODE_SIZE (GET_MODE (dest))
+ UNITS_PER_WORD - 1) / UNITS_PER_WORD)
== ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
+ UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
dest = SUBREG_REG (dest);
if (!REG_P (dest))
return false;
regno = REGNO (dest);
endregno = END_REGNO (dest);
return (test_regno >= regno && test_regno < endregno);
}
/* Like covers_regno_no_parallel_p, but also handles PARALLELs where
any member matches the covers_regno_no_parallel_p criteria. */
static bool
covers_regno_p (const_rtx dest, unsigned int test_regno)
{
if (GET_CODE (dest) == PARALLEL)
{
/* Some targets place small structures in registers for return
values of functions, and those registers are wrapped in
PARALLELs that we may see as the destination of a SET. */
int i;
for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
{
rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
if (inner != NULL_RTX
&& covers_regno_no_parallel_p (inner, test_regno))
return true;
}
return false;
}
else
return covers_regno_no_parallel_p (dest, test_regno);
}
/* Utility function for dead_or_set_p to check an individual register. */
int
dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
{
const_rtx pattern;
/* See if there is a death note for something that includes TEST_REGNO. */
if (find_regno_note (insn, REG_DEAD, test_regno))
return 1;
if (CALL_P (insn)
&& find_regno_fusage (insn, CLOBBER, test_regno))
return 1;
pattern = PATTERN (insn);
if (GET_CODE (pattern) == COND_EXEC)
pattern = COND_EXEC_CODE (pattern);
if (GET_CODE (pattern) == SET)
return covers_regno_p (SET_DEST (pattern), test_regno);
else if (GET_CODE (pattern) == PARALLEL)
{
int i;
for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
{
rtx body = XVECEXP (pattern, 0, i);
if (GET_CODE (body) == COND_EXEC)
body = COND_EXEC_CODE (body);
if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
&& covers_regno_p (SET_DEST (body), test_regno))
return 1;
}
}
return 0;
}
/* Return the reg-note of kind KIND in insn INSN, if there is one.
If DATUM is nonzero, look for one whose datum is DATUM. */
rtx
find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
{
rtx link;
gcc_assert (insn);
/* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
if (! INSN_P (insn))
return 0;
if (datum == 0)
{
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == kind)
return link;
return 0;
}
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
return link;
return 0;
}
/* Return the reg-note of kind KIND in insn INSN which applies to register
number REGNO, if any. Return 0 if there is no such reg-note. Note that
the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
it might be the case that the note overlaps REGNO. */
rtx
find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
{
rtx link;
/* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
if (! INSN_P (insn))
return 0;
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == kind
/* Verify that it is a register, so that scratch and MEM won't cause a
problem here. */
&& REG_P (XEXP (link, 0))
&& REGNO (XEXP (link, 0)) <= regno
&& END_REGNO (XEXP (link, 0)) > regno)
return link;
return 0;
}
/* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
has such a note. */
rtx
find_reg_equal_equiv_note (const_rtx insn)
{
rtx link;
if (!INSN_P (insn))
return 0;
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == REG_EQUAL
|| REG_NOTE_KIND (link) == REG_EQUIV)
{
/* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
insns that have multiple sets. Checking single_set to
make sure of this is not the proper check, as explained
in the comment in set_unique_reg_note.
This should be changed into an assert. */
if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
return 0;
return link;
}
return NULL;
}
/* Check whether INSN is a single_set whose source is known to be
equivalent to a constant. Return that constant if so, otherwise
return null. */
rtx
find_constant_src (const_rtx insn)
{
rtx note, set, x;
set = single_set (insn);
if (set)
{
x = avoid_constant_pool_reference (SET_SRC (set));
if (CONSTANT_P (x))
return x;
}
note = find_reg_equal_equiv_note (insn);
if (note && CONSTANT_P (XEXP (note, 0)))
return XEXP (note, 0);
return NULL_RTX;
}
/* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
in the CALL_INSN_FUNCTION_USAGE information of INSN. */
int
find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
{
/* If it's not a CALL_INSN, it can't possibly have a
CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
if (!CALL_P (insn))
return 0;
gcc_assert (datum);
if (!REG_P (datum))
{
rtx link;
for (link = CALL_INSN_FUNCTION_USAGE (insn);
link;
link = XEXP (link, 1))
if (GET_CODE (XEXP (link, 0)) == code
&& rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
return 1;
}
else
{
unsigned int regno = REGNO (datum);
/* CALL_INSN_FUNCTION_USAGE information cannot contain references
to pseudo registers, so don't bother checking. */
if (regno < FIRST_PSEUDO_REGISTER)
{
unsigned int end_regno = END_HARD_REGNO (datum);
unsigned int i;
for (i = regno; i < end_regno; i++)
if (find_regno_fusage (insn, code, i))
return 1;
}
}
return 0;
}
/* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
in the CALL_INSN_FUNCTION_USAGE information of INSN. */
int
find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
{
rtx link;
/* CALL_INSN_FUNCTION_USAGE information cannot contain references
to pseudo registers, so don't bother checking. */
if (regno >= FIRST_PSEUDO_REGISTER
|| !CALL_P (insn) )
return 0;
for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
{
rtx op, reg;
if (GET_CODE (op = XEXP (link, 0)) == code
&& REG_P (reg = XEXP (op, 0))
&& REGNO (reg) <= regno
&& END_HARD_REGNO (reg) > regno)
return 1;
}
return 0;
}
/* Allocate a register note with kind KIND and datum DATUM. LIST is
stored as the pointer to the next register note. */
rtx
alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
{
rtx note;
switch (kind)
{
case REG_CC_SETTER:
case REG_CC_USER:
case REG_LABEL_TARGET:
case REG_LABEL_OPERAND:
/* These types of register notes use an INSN_LIST rather than an
EXPR_LIST, so that copying is done right and dumps look
better. */
note = alloc_INSN_LIST (datum, list);
PUT_REG_NOTE_KIND (note, kind);
break;
default:
note = alloc_EXPR_LIST (kind, datum, list);
break;
}
return note;
}
/* Add register note with kind KIND and datum DATUM to INSN. */
void
add_reg_note (rtx insn, enum reg_note kind, rtx datum)
{
REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
}
/* Remove register note NOTE from the REG_NOTES of INSN. */
void
remove_note (rtx insn, const_rtx note)
{
rtx link;
if (note == NULL_RTX)
return;
if (REG_NOTES (insn) == note)
REG_NOTES (insn) = XEXP (note, 1);
else
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
if (XEXP (link, 1) == note)
{
XEXP (link, 1) = XEXP (note, 1);
break;
}
switch (REG_NOTE_KIND (note))
{
case REG_EQUAL:
case REG_EQUIV:
df_notes_rescan (insn);
break;
default:
break;
}
}
/* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
void
remove_reg_equal_equiv_notes (rtx insn)
{
rtx *loc;
loc = ®_NOTES (insn);
while (*loc)
{
enum reg_note kind = REG_NOTE_KIND (*loc);
if (kind == REG_EQUAL || kind == REG_EQUIV)
*loc = XEXP (*loc, 1);
else
loc = &XEXP (*loc, 1);
}
}
/* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
return 1 if it is found. A simple equality test is used to determine if
NODE matches. */
int
in_expr_list_p (const_rtx listp, const_rtx node)
{
const_rtx x;
for (x = listp; x; x = XEXP (x, 1))
if (node == XEXP (x, 0))
return 1;
return 0;
}
/* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
remove that entry from the list if it is found.
A simple equality test is used to determine if NODE matches. */
void
remove_node_from_expr_list (const_rtx node, rtx *listp)
{
rtx temp = *listp;
rtx prev = NULL_RTX;
while (temp)
{
if (node == XEXP (temp, 0))
{
/* Splice the node out of the list. */
if (prev)
XEXP (prev, 1) = XEXP (temp, 1);
else
*listp = XEXP (temp, 1);
return;
}
prev = temp;
temp = XEXP (temp, 1);
}
}
/* Nonzero if X contains any volatile instructions. These are instructions
which may cause unpredictable machine state instructions, and thus no
instructions should be moved or combined across them. This includes
only volatile asms and UNSPEC_VOLATILE instructions. */
int
volatile_insn_p (const_rtx x)
{
const RTX_CODE code = GET_CODE (x);
switch (code)
{
case LABEL_REF:
case SYMBOL_REF:
case CONST_INT:
case CONST:
case CONST_DOUBLE:
case CONST_FIXED:
case CONST_VECTOR:
case CC0:
case PC:
case REG:
case SCRATCH:
case CLOBBER:
case ADDR_VEC:
case ADDR_DIFF_VEC:
case CALL:
case MEM:
return 0;
case UNSPEC_VOLATILE:
/* case TRAP_IF: This isn't clear yet. */
return 1;
case ASM_INPUT:
case ASM_OPERANDS:
if (MEM_VOLATILE_P (x))
return 1;
default:
break;
}
/* Recursively scan the operands of this expression. */
{
const char *const fmt = GET_RTX_FORMAT (code);
int i;
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if (volatile_insn_p (XEXP (x, i)))
return 1;
}
else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++)
if (volatile_insn_p (XVECEXP (x, i, j)))
return 1;
}
}
}
return 0;
}
/* Nonzero if X contains any volatile memory references
UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
int
volatile_refs_p (const_rtx x)
{
const RTX_CODE code = GET_CODE (x);
switch (code)
{
case LABEL_REF:
case SYMBOL_REF:
case CONST_INT:
case CONST:
case CONST_DOUBLE:
case CONST_FIXED:
case CONST_VECTOR:
case CC0:
case PC:
case REG:
case SCRATCH:
case CLOBBER:
case ADDR_VEC:
case ADDR_DIFF_VEC:
return 0;
case UNSPEC_VOLATILE:
return 1;
case MEM:
case ASM_INPUT:
case ASM_OPERANDS:
if (MEM_VOLATILE_P (x))
return 1;
default:
break;
}
/* Recursively scan the operands of this expression. */
{
const char *const fmt = GET_RTX_FORMAT (code);
int i;
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if (volatile_refs_p (XEXP (x, i)))
return 1;
}
else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++)
if (volatile_refs_p (XVECEXP (x, i, j)))
return 1;
}
}
}
return 0;
}
/* Similar to above, except that it also rejects register pre- and post-
incrementing. */
int
side_effects_p (const_rtx x)
{
const RTX_CODE code = GET_CODE (x);
switch (code)
{
case LABEL_REF:
case SYMBOL_REF:
case CONST_INT:
case CONST:
case CONST_DOUBLE:
case CONST_FIXED:
case CONST_VECTOR:
case CC0:
case PC:
case REG:
case SCRATCH:
case ADDR_VEC:
case ADDR_DIFF_VEC:
return 0;
case CLOBBER:
/* Reject CLOBBER with a non-VOID mode. These are made by combine.c
when some combination can't be done. If we see one, don't think
that we can simplify the expression. */
return (GET_MODE (x) != VOIDmode);
case PRE_INC:
case PRE_DEC:
case POST_INC:
case POST_DEC:
case PRE_MODIFY:
case POST_MODIFY:
case CALL:
case UNSPEC_VOLATILE:
/* case TRAP_IF: This isn't clear yet. */
return 1;
case MEM:
case ASM_INPUT:
case ASM_OPERANDS:
if (MEM_VOLATILE_P (x))
return 1;
default:
break;
}
/* Recursively scan the operands of this expression. */
{
const char *fmt = GET_RTX_FORMAT (code);
int i;
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if (side_effects_p (XEXP (x, i)))
return 1;
}
else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++)
if (side_effects_p (XVECEXP (x, i, j)))
return 1;
}
}
}
return 0;
}
/* Return nonzero if evaluating rtx X might cause a trap.
FLAGS controls how to consider MEMs. A nonzero means the context
of the access may have changed from the original, such that the
address may have become invalid. */
int
may_trap_p_1 (const_rtx x, unsigned flags)
{
int i;
enum rtx_code code;
const char *fmt;
/* We make no distinction currently, but this function is part of
the internal target-hooks ABI so we keep the parameter as
"unsigned flags". */
bool code_changed = flags != 0;
if (x == 0)
return 0;
code = GET_CODE (x);
switch (code)
{
/* Handle these cases quickly. */
case CONST_INT:
case CONST_DOUBLE:
case CONST_FIXED:
case CONST_VECTOR:
case SYMBOL_REF:
case LABEL_REF:
case CONST:
case PC:
case CC0:
case REG:
case SCRATCH:
return 0;
case UNSPEC:
case UNSPEC_VOLATILE:
return targetm.unspec_may_trap_p (x, flags);
case ASM_INPUT:
case TRAP_IF:
return 1;
case ASM_OPERANDS:
return MEM_VOLATILE_P (x);
/* Memory ref can trap unless it's a static var or a stack slot. */
case MEM:
if (/* MEM_NOTRAP_P only relates to the actual position of the memory
reference; moving it out of context such as when moving code
when optimizing, might cause its address to become invalid. */
code_changed
|| !MEM_NOTRAP_P (x))
{
HOST_WIDE_INT size = MEM_SIZE (x) ? INTVAL (MEM_SIZE (x)) : 0;
return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
GET_MODE (x), code_changed);
}
return 0;
/* Division by a non-constant might trap. */
case DIV:
case MOD:
case UDIV:
case UMOD:
if (HONOR_SNANS (GET_MODE (x)))
return 1;
if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
return flag_trapping_math;
if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
return 1;
break;
case EXPR_LIST:
/* An EXPR_LIST is used to represent a function call. This
certainly may trap. */
return 1;
case GE:
case GT:
case LE:
case LT:
case LTGT:
case COMPARE:
/* Some floating point comparisons may trap. */
if (!flag_trapping_math)
break;
/* ??? There is no machine independent way to check for tests that trap
when COMPARE is used, though many targets do make this distinction.
For instance, sparc uses CCFPE for compares which generate exceptions
and CCFP for compares which do not generate exceptions. */
if (HONOR_NANS (GET_MODE (x)))
return 1;
/* But often the compare has some CC mode, so check operand
modes as well. */
if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
|| HONOR_NANS (GET_MODE (XEXP (x, 1))))
return 1;
break;
case EQ:
case NE:
if (HONOR_SNANS (GET_MODE (x)))
return 1;
/* Often comparison is CC mode, so check operand modes. */
if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
|| HONOR_SNANS (GET_MODE (XEXP (x, 1))))
return 1;
break;
case FIX:
/* Conversion of floating point might trap. */
if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
return 1;
break;
case NEG:
case ABS:
case SUBREG:
/* These operations don't trap even with floating point. */
break;
default:
/* Any floating arithmetic may trap. */
if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
&& flag_trapping_math)
return 1;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if (may_trap_p_1 (XEXP (x, i), flags))
return 1;
}
else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++)
if (may_trap_p_1 (XVECEXP (x, i, j), flags))
return 1;
}
}
return 0;
}
/* Return nonzero if evaluating rtx X might cause a trap. */
int
may_trap_p (const_rtx x)
{
return may_trap_p_1 (x, 0);
}
/* Same as above, but additionally return nonzero if evaluating rtx X might
cause a fault. We define a fault for the purpose of this function as a
erroneous execution condition that cannot be encountered during the normal
execution of a valid program; the typical example is an unaligned memory
access on a strict alignment machine. The compiler guarantees that it
doesn't generate code that will fault from a valid program, but this
guarantee doesn't mean anything for individual instructions. Consider
the following example:
struct S { int d; union { char *cp; int *ip; }; };
int foo(struct S *s)
{
if (s->d == 1)
return *s->ip;
else
return *s->cp;
}
on a strict alignment machine. In a valid program, foo will never be
invoked on a structure for which d is equal to 1 and the underlying
unique field of the union not aligned on a 4-byte boundary, but the
expression *s->ip might cause a fault if considered individually.
At the RTL level, potentially problematic expressions will almost always
verify may_trap_p; for example, the above dereference can be emitted as
(mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
However, suppose that foo is inlined in a caller that causes s->cp to
point to a local character variable and guarantees that s->d is not set
to 1; foo may have been effectively translated into pseudo-RTL as:
if ((reg:SI) == 1)
(set (reg:SI) (mem:SI (%fp - 7)))
else
(set (reg:QI) (mem:QI (%fp - 7)))
Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
memory reference to a stack slot, but it will certainly cause a fault
on a strict alignment machine. */
int
may_trap_or_fault_p (const_rtx x)
{
return may_trap_p_1 (x, 1);
}
/* Return nonzero if X contains a comparison that is not either EQ or NE,
i.e., an inequality. */
int
inequality_comparisons_p (const_rtx x)
{
const char *fmt;
int len, i;
const enum rtx_code code = GET_CODE (x);
switch (code)
{
case REG:
case SCRATCH:
case PC:
case CC0:
case CONST_INT:
case CONST_DOUBLE:
case CONST_FIXED:
case CONST_VECTOR:
case CONST:
case LABEL_REF:
case SYMBOL_REF:
return 0;
case LT:
case LTU:
case GT:
case GTU:
case LE:
case LEU:
case GE:
case GEU:
return 1;
default:
break;
}
len = GET_RTX_LENGTH (code);
fmt = GET_RTX_FORMAT (code);
for (i = 0; i < len; i++)
{
if (fmt[i] == 'e')
{
if (inequality_comparisons_p (XEXP (x, i)))
return 1;
}
else if (fmt[i] == 'E')
{
int j;
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
if (inequality_comparisons_p (XVECEXP (x, i, j)))
return 1;
}
}
return 0;
}
/* Replace any occurrence of FROM in X with TO. The function does
not enter into CONST_DOUBLE for the replace.
Note that copying is not done so X must not be shared unless all copies
are to be modified. */
rtx
replace_rtx (rtx x, rtx from, rtx to)
{
int i, j;
const char *fmt;
/* The following prevents loops occurrence when we change MEM in
CONST_DOUBLE onto the same CONST_DOUBLE. */
if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
return x;
if (x == from)
return to;
/* Allow this function to make replacements in EXPR_LISTs. */
if (x == 0)
return 0;
if (GET_CODE (x) == SUBREG)
{
rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
if (GET_CODE (new_rtx) == CONST_INT)
{
x = simplify_subreg (GET_MODE (x), new_rtx,
GET_MODE (SUBREG_REG (x)),
SUBREG_BYTE (x));
gcc_assert (x);
}
else
SUBREG_REG (x) = new_rtx;
return x;
}
else if (GET_CODE (x) == ZERO_EXTEND)
{
rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
if (GET_CODE (new_rtx) == CONST_INT)
{
x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
new_rtx, GET_MODE (XEXP (x, 0)));
gcc_assert (x);
}
else
XEXP (x, 0) = new_rtx;
return x;
}
fmt = GET_RTX_FORMAT (GET_CODE (x));
for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
else if (fmt[i] == 'E')
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
}
return x;
}
/* Replace occurrences of the old label in *X with the new one.
DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
int
replace_label (rtx *x, void *data)
{
rtx l = *x;
rtx old_label = ((replace_label_data *) data)->r1;
rtx new_label = ((replace_label_data *) data)->r2;
bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
if (l == NULL_RTX)
return 0;
if (GET_CODE (l) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (l))
{
rtx c = get_pool_constant (l);
if (rtx_referenced_p (old_label, c))
{
rtx new_c, new_l;
replace_label_data *d = (replace_label_data *) data;
/* Create a copy of constant C; replace the label inside
but do not update LABEL_NUSES because uses in constant pool
are not counted. */
new_c = copy_rtx (c);
d->update_label_nuses = false;
for_each_rtx (&new_c, replace_label, data);
d->update_label_nuses = update_label_nuses;
/* Add the new constant NEW_C to constant pool and replace
the old reference to constant by new reference. */
new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
*x = replace_rtx (l, l, new_l);
}
return 0;
}
/* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
field. This is not handled by for_each_rtx because it doesn't
handle unprinted ('0') fields. */
if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
JUMP_LABEL (l) = new_label;
if ((GET_CODE (l) == LABEL_REF
|| GET_CODE (l) == INSN_LIST)
&& XEXP (l, 0) == old_label)
{
XEXP (l, 0) = new_label;
if (update_label_nuses)
{
++LABEL_NUSES (new_label);
--LABEL_NUSES (old_label);
}
return 0;
}
return 0;
}
/* When *BODY is equal to X or X is directly referenced by *BODY
return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
too, otherwise FOR_EACH_RTX continues traversing *BODY. */
static int
rtx_referenced_p_1 (rtx *body, void *x)
{
rtx y = (rtx) x;
if (*body == NULL_RTX)
return y == NULL_RTX;
/* Return true if a label_ref *BODY refers to label Y. */
if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
return XEXP (*body, 0) == y;
/* If *BODY is a reference to pool constant traverse the constant. */
if (GET_CODE (*body) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (*body))
return rtx_referenced_p (y, get_pool_constant (*body));
/* By default, compare the RTL expressions. */
return rtx_equal_p (*body, y);
}
/* Return true if X is referenced in BODY. */
int
rtx_referenced_p (rtx x, rtx body)
{
return for_each_rtx (&body, rtx_referenced_p_1, x);
}
/* If INSN is a tablejump return true and store the label (before jump table) to
*LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
bool
tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
{
rtx label, table;
if (JUMP_P (insn)
&& (label = JUMP_LABEL (insn)) != NULL_RTX
&& (table = next_active_insn (label)) != NULL_RTX
&& JUMP_P (table)
&& (GET_CODE (PATTERN (table)) == ADDR_VEC
|| GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
{
if (labelp)
*labelp = label;
if (tablep)
*tablep = table;
return true;
}
return false;
}
/* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
constant that is not in the constant pool and not in the condition
of an IF_THEN_ELSE. */
static int
computed_jump_p_1 (const_rtx x)
{
const enum rtx_code code = GET_CODE (x);
int i, j;
const char *fmt;
switch (code)
{
case LABEL_REF:
case PC:
return 0;
case CONST:
case CONST_INT:
case CONST_DOUBLE:
case CONST_FIXED:
case CONST_VECTOR:
case SYMBOL_REF:
case REG:
return 1;
case MEM:
return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
case IF_THEN_ELSE:
return (computed_jump_p_1 (XEXP (x, 1))
|| computed_jump_p_1 (XEXP (x, 2)));
default:
break;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e'
&& computed_jump_p_1 (XEXP (x, i)))
return 1;
else if (fmt[i] == 'E')
for (j = 0; j < XVECLEN (x, i); j++)
if (computed_jump_p_1 (XVECEXP (x, i, j)))
return 1;
}
return 0;
}
/* Return nonzero if INSN is an indirect jump (aka computed jump).
Tablejumps and casesi insns are not considered indirect jumps;
we can recognize them by a (use (label_ref)). */
int
computed_jump_p (const_rtx insn)
{
int i;
if (JUMP_P (insn))
{
rtx pat = PATTERN (insn);
/* If we have a JUMP_LABEL set, we're not a computed jump. */
if (JUMP_LABEL (insn) != NULL)
return 0;
if (GET_CODE (pat) == PARALLEL)
{
int len = XVECLEN (pat, 0);
int has_use_labelref = 0;
for (i = len - 1; i >= 0; i--)
if (GET_CODE (XVECEXP (pat, 0, i)) == USE
&& (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
== LABEL_REF))
has_use_labelref = 1;
if (! has_use_labelref)
for (i = len - 1; i >= 0; i--)
if (GET_CODE (XVECEXP (pat, 0, i)) == SET
&& SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
&& computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
return 1;
}
else if (GET_CODE (pat) == SET
&& SET_DEST (pat) == pc_rtx
&& computed_jump_p_1 (SET_SRC (pat)))
return 1;
}
return 0;
}
/* Optimized loop of for_each_rtx, trying to avoid useless recursive
calls. Processes the subexpressions of EXP and passes them to F. */
static int
for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
{
int result, i, j;
const char *format = GET_RTX_FORMAT (GET_CODE (exp));
rtx *x;
for (; format[n] != '\0'; n++)
{
switch (format[n])
{
case 'e':
/* Call F on X. */
x = &XEXP (exp, n);
result = (*f) (x, data);
if (result == -1)
/* Do not traverse sub-expressions. */
continue;
else if (result != 0)
/* Stop the traversal. */
return result;
if (*x == NULL_RTX)
/* There are no sub-expressions. */
continue;
i = non_rtx_starting_operands[GET_CODE (*x)];
if (i >= 0)
{
result = for_each_rtx_1 (*x, i, f, data);
if (result != 0)
return result;
}
break;
case 'V':
case 'E':
if (XVEC (exp, n) == 0)
continue;
for (j = 0; j < XVECLEN (exp, n); ++j)
{
/* Call F on X. */
x = &XVECEXP (exp, n, j);
result = (*f) (x, data);
if (result == -1)
/* Do not traverse sub-expressions. */
continue;
else if (result != 0)
/* Stop the traversal. */
return result;
if (*x == NULL_RTX)
/* There are no sub-expressions. */
continue;
i = non_rtx_starting_operands[GET_CODE (*x)];
if (i >= 0)
{
result = for_each_rtx_1 (*x, i, f, data);
if (result != 0)
return result;
}
}
break;
default:
/* Nothing to do. */
break;
}
}
return 0;
}
/* Traverse X via depth-first search, calling F for each
sub-expression (including X itself). F is also passed the DATA.
If F returns -1, do not traverse sub-expressions, but continue
traversing the rest of the tree. If F ever returns any other
nonzero value, stop the traversal, and return the value returned
by F. Otherwise, return 0. This function does not traverse inside
tree structure that contains RTX_EXPRs, or into sub-expressions
whose format code is `0' since it is not known whether or not those
codes are actually RTL.
This routine is very general, and could (should?) be used to
implement many of the other routines in this file. */
int
for_each_rtx (rtx *x, rtx_function f, void *data)
{
int result;
int i;
/* Call F on X. */
result = (*f) (x, data);
if (result == -1)
/* Do not traverse sub-expressions. */
return 0;
else if (result != 0)
/* Stop the traversal. */
return result;
if (*x == NULL_RTX)
/* There are no sub-expressions. */
return 0;
i = non_rtx_starting_operands[GET_CODE (*x)];
if (i < 0)
return 0;
return for_each_rtx_1 (*x, i, f, data);
}
/* Searches X for any reference to REGNO, returning the rtx of the
reference found if any. Otherwise, returns NULL_RTX. */
rtx
regno_use_in (unsigned int regno, rtx x)
{
const char *fmt;
int i, j;
rtx tem;
if (REG_P (x) && REGNO (x) == regno)
return x;
fmt = GET_RTX_FORMAT (GET_CODE (x));
for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if ((tem = regno_use_in (regno, XEXP (x, i))))
return tem;
}
else if (fmt[i] == 'E')
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
return tem;
}
return NULL_RTX;
}
/* Return a value indicating whether OP, an operand of a commutative
operation, is preferred as the first or second operand. The higher
the value, the stronger the preference for being the first operand.
We use negative values to indicate a preference for the first operand
and positive values for the second operand. */
int
commutative_operand_precedence (rtx op)
{
enum rtx_code code = GET_CODE (op);
/* Constants always come the second operand. Prefer "nice" constants. */
if (code == CONST_INT)
return -8;
if (code == CONST_DOUBLE)
return -7;
if (code == CONST_FIXED)
return -7;
op = avoid_constant_pool_reference (op);
code = GET_CODE (op);
switch (GET_RTX_CLASS (code))
{
case RTX_CONST_OBJ:
if (code == CONST_INT)
return -6;
if (code == CONST_DOUBLE)
return -5;
if (code == CONST_FIXED)
return -5;
return -4;
case RTX_EXTRA:
/* SUBREGs of objects should come second. */
if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
return -3;
return 0;
case RTX_OBJ:
/* Complex expressions should be the first, so decrease priority
of objects. Prefer pointer objects over non pointer objects. */
if ((REG_P (op) && REG_POINTER (op))
|| (MEM_P (op) && MEM_POINTER (op)))
return -1;
return -2;
case RTX_COMM_ARITH:
/* Prefer operands that are themselves commutative to be first.
This helps to make things linear. In particular,
(and (and (reg) (reg)) (not (reg))) is canonical. */
return 4;
case RTX_BIN_ARITH:
/* If only one operand is a binary expression, it will be the first
operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
is canonical, although it will usually be further simplified. */
return 2;
case RTX_UNARY:
/* Then prefer NEG and NOT. */
if (code == NEG || code == NOT)
return 1;
default:
return 0;
}
}
/* Return 1 iff it is necessary to swap operands of commutative operation
in order to canonicalize expression. */
bool
swap_commutative_operands_p (rtx x, rtx y)
{
return (commutative_operand_precedence (x)
< commutative_operand_precedence (y));
}
/* Return 1 if X is an autoincrement side effect and the register is
not the stack pointer. */
int
auto_inc_p (const_rtx x)
{
switch (GET_CODE (x))
{
case PRE_INC:
case POST_INC:
case PRE_DEC:
case POST_DEC:
case PRE_MODIFY:
case POST_MODIFY:
/* There are no REG_INC notes for SP. */
if (XEXP (x, 0) != stack_pointer_rtx)
return 1;
default:
break;
}
return 0;
}
/* Return nonzero if IN contains a piece of rtl that has the address LOC. */
int
loc_mentioned_in_p (rtx *loc, const_rtx in)
{
enum rtx_code code;
const char *fmt;
int i, j;
if (!in)
return 0;
code = GET_CODE (in);
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
return 1;
}
else if (fmt[i] == 'E')
for (j = XVECLEN (in, i) - 1; j >= 0; j--)
if (loc == &XVECEXP (in, i, j)
|| loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
return 1;
}
return 0;
}
/* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
and SUBREG_BYTE, return the bit offset where the subreg begins
(counting from the least significant bit of the operand). */
unsigned int
subreg_lsb_1 (enum machine_mode outer_mode,
enum machine_mode inner_mode,
unsigned int subreg_byte)
{
unsigned int bitpos;
unsigned int byte;
unsigned int word;
/* A paradoxical subreg begins at bit position 0. */
if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
return 0;
if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
/* If the subreg crosses a word boundary ensure that
it also begins and ends on a word boundary. */
gcc_assert (!((subreg_byte % UNITS_PER_WORD
+ GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
&& (subreg_byte % UNITS_PER_WORD
|| GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
if (WORDS_BIG_ENDIAN)
word = (GET_MODE_SIZE (inner_mode)
- (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
else
word = subreg_byte / UNITS_PER_WORD;
bitpos = word * BITS_PER_WORD;
if (BYTES_BIG_ENDIAN)
byte = (GET_MODE_SIZE (inner_mode)
- (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
else
byte = subreg_byte % UNITS_PER_WORD;
bitpos += byte * BITS_PER_UNIT;
return bitpos;
}
/* Given a subreg X, return the bit offset where the subreg begins
(counting from the least significant bit of the reg). */
unsigned int
subreg_lsb (const_rtx x)
{
return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
SUBREG_BYTE (x));
}
/* Fill in information about a subreg of a hard register.
xregno - A regno of an inner hard subreg_reg (or what will become one).
xmode - The mode of xregno.
offset - The byte offset.
ymode - The mode of a top level SUBREG (or what may become one).
info - Pointer to structure to fill in. */
void
subreg_get_info (unsigned int xregno, enum machine_mode xmode,
unsigned int offset, enum machine_mode ymode,
struct subreg_info *info)
{
int nregs_xmode, nregs_ymode;
int mode_multiple, nregs_multiple;
int offset_adj, y_offset, y_offset_adj;
int regsize_xmode, regsize_ymode;
bool rknown;
gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
rknown = false;
/* If there are holes in a non-scalar mode in registers, we expect
that it is made up of its units concatenated together. */
if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
{
enum machine_mode xmode_unit;
nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
if (GET_MODE_INNER (xmode) == VOIDmode)
xmode_unit = xmode;
else
xmode_unit = GET_MODE_INNER (xmode);
gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
gcc_assert (nregs_xmode
== (GET_MODE_NUNITS (xmode)
* HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
gcc_assert (hard_regno_nregs[xregno][xmode]
== (hard_regno_nregs[xregno][xmode_unit]
* GET_MODE_NUNITS (xmode)));
/* You can only ask for a SUBREG of a value with holes in the middle
if you don't cross the holes. (Such a SUBREG should be done by
picking a different register class, or doing it in memory if
necessary.) An example of a value with holes is XCmode on 32-bit
x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3 for each part, but in memory it's two 128-bit parts.
Padding is assumed to be at the end (not necessarily the 'high part')
of each unit. */
if ((offset / GET_MODE_SIZE (xmode_unit) + 1
< GET_MODE_NUNITS (xmode))
&& (offset / GET_MODE_SIZE (xmode_unit)
!= ((offset + GET_MODE_SIZE (ymode) - 1)
/ GET_MODE_SIZE (xmode_unit))))
{
info->representable_p = false;
rknown = true;
}
}
else
nregs_xmode = hard_regno_nregs[xregno][xmode];
nregs_ymode = hard_regno_nregs[xregno][ymode];
/* Paradoxical subregs are otherwise valid. */
if (!rknown
&& offset == 0
&& GET_MODE_SIZE (ymode) > GET_MODE_SIZE (xmode))
{
info->representable_p = true;
/* If this is a big endian paradoxical subreg, which uses more
actual hard registers than the original register, we must
return a negative offset so that we find the proper highpart
of the register. */
if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
info->offset = nregs_xmode - nregs_ymode;
else
info->offset = 0;
info->nregs = nregs_ymode;
return;
}
/* If registers store different numbers of bits in the different
modes, we cannot generally form this subreg. */
if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
&& !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
&& (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
&& (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
{
regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
{
info->representable_p = false;
info->nregs
= (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
info->offset = offset / regsize_xmode;
return;
}
if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
{
info->representable_p = false;
info->nregs
= (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
info->offset = offset / regsize_xmode;
return;
}
}
/* Lowpart subregs are otherwise valid. */
if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
{
info->representable_p = true;
rknown = true;
if (offset == 0 || nregs_xmode == nregs_ymode)
{
info->offset = 0;
info->nregs = nregs_ymode;
return;
}
}
/* This should always pass, otherwise we don't know how to verify
the constraint. These conditions may be relaxed but
subreg_regno_offset would need to be redesigned. */
gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
gcc_assert ((nregs_xmode % nregs_ymode) == 0);
/* The XMODE value can be seen as a vector of NREGS_XMODE
values. The subreg must represent a lowpart of given field.
Compute what field it is. */
offset_adj = offset;
offset_adj -= subreg_lowpart_offset (ymode,
mode_for_size (GET_MODE_BITSIZE (xmode)
/ nregs_xmode,
MODE_INT, 0));
/* Size of ymode must not be greater than the size of xmode. */
mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
gcc_assert (mode_multiple != 0);
y_offset = offset / GET_MODE_SIZE (ymode);
y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
nregs_multiple = nregs_xmode / nregs_ymode;
gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
gcc_assert ((mode_multiple % nregs_multiple) == 0);
if (!rknown)
{
info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
rknown = true;
}
info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
info->nregs = nregs_ymode;
}
/* This function returns the regno offset of a subreg expression.
xregno - A regno of an inner hard subreg_reg (or what will become one).
xmode - The mode of xregno.
offset - The byte offset.
ymode - The mode of a top level SUBREG (or what may become one).
RETURN - The regno offset which would be used. */
unsigned int
subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
unsigned int offset, enum machine_mode ymode)
{
struct subreg_info info;
subreg_get_info (xregno, xmode, offset, ymode, &info);
return info.offset;
}
/* This function returns true when the offset is representable via
subreg_offset in the given regno.
xregno - A regno of an inner hard subreg_reg (or what will become one).
xmode - The mode of xregno.
offset - The byte offset.
ymode - The mode of a top level SUBREG (or what may become one).
RETURN - Whether the offset is representable. */
bool
subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
unsigned int offset, enum machine_mode ymode)
{
struct subreg_info info;
subreg_get_info (xregno, xmode, offset, ymode, &info);
return info.representable_p;
}
/* Return the number of a YMODE register to which
(subreg:YMODE (reg:XMODE XREGNO) OFFSET)
can be simplified. Return -1 if the subreg can't be simplified.
XREGNO is a hard register number. */
int
simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
unsigned int offset, enum machine_mode ymode)
{
struct subreg_info info;
unsigned int yregno;
#ifdef CANNOT_CHANGE_MODE_CLASS
/* Give the backend a chance to disallow the mode change. */
if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
&& GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
&& REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode))
return -1;
#endif
/* We shouldn't simplify stack-related registers. */
if ((!reload_completed || frame_pointer_needed)
&& (xregno == FRAME_POINTER_REGNUM
|| xregno == HARD_FRAME_POINTER_REGNUM))
return -1;
if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
&& xregno == ARG_POINTER_REGNUM)
return -1;
if (xregno == STACK_POINTER_REGNUM)
return -1;
/* Try to get the register offset. */
subreg_get_info (xregno, xmode, offset, ymode, &info);
if (!info.representable_p)
return -1;
/* Make sure that the offsetted register value is in range. */
yregno = xregno + info.offset;
if (!HARD_REGISTER_NUM_P (yregno))
return -1;
/* See whether (reg:YMODE YREGNO) is valid.
??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
This is a kludge to work around how float/complex arguments are passed
on 32-bit SPARC and should be fixed. */
if (!HARD_REGNO_MODE_OK (yregno, ymode)
&& HARD_REGNO_MODE_OK (xregno, xmode))
return -1;
return (int) yregno;
}
/* Return the final regno that a subreg expression refers to. */
unsigned int
subreg_regno (const_rtx x)
{
unsigned int ret;
rtx subreg = SUBREG_REG (x);
int regno = REGNO (subreg);
ret = regno + subreg_regno_offset (regno,
GET_MODE (subreg),
SUBREG_BYTE (x),
GET_MODE (x));
return ret;
}
/* Return the number of registers that a subreg expression refers
to. */
unsigned int
subreg_nregs (const_rtx x)
{
return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
}
/* Return the number of registers that a subreg REG with REGNO
expression refers to. This is a copy of the rtlanal.c:subreg_nregs
changed so that the regno can be passed in. */
unsigned int
subreg_nregs_with_regno (unsigned int regno, const_rtx x)
{
struct subreg_info info;
rtx subreg = SUBREG_REG (x);
subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
&info);
return info.nregs;
}
struct parms_set_data
{
int nregs;
HARD_REG_SET regs;
};
/* Helper function for noticing stores to parameter registers. */
static void
parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
{
struct parms_set_data *const d = (struct parms_set_data *) data;
if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
&& TEST_HARD_REG_BIT (d->regs, REGNO (x)))
{
CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
d->nregs--;
}
}
/* Look backward for first parameter to be loaded.
Note that loads of all parameters will not necessarily be
found if CSE has eliminated some of them (e.g., an argument
to the outer function is passed down as a parameter).
Do not skip BOUNDARY. */
rtx
find_first_parameter_load (rtx call_insn, rtx boundary)
{
struct parms_set_data parm;
rtx p, before, first_set;
/* Since different machines initialize their parameter registers
in different orders, assume nothing. Collect the set of all
parameter registers. */
CLEAR_HARD_REG_SET (parm.regs);
parm.nregs = 0;
for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
if (GET_CODE (XEXP (p, 0)) == USE
&& REG_P (XEXP (XEXP (p, 0), 0)))
{
gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
/* We only care about registers which can hold function
arguments. */
if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
continue;
SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
parm.nregs++;
}
before = call_insn;
first_set = call_insn;
/* Search backward for the first set of a register in this set. */
while (parm.nregs && before != boundary)
{
before = PREV_INSN (before);
/* It is possible that some loads got CSEed from one call to
another. Stop in that case. */
if (CALL_P (before))
break;
/* Our caller needs either ensure that we will find all sets
(in case code has not been optimized yet), or take care
for possible labels in a way by setting boundary to preceding
CODE_LABEL. */
if (LABEL_P (before))
{
gcc_assert (before == boundary);
break;
}
if (INSN_P (before))
{
int nregs_old = parm.nregs;
note_stores (PATTERN (before), parms_set, &parm);
/* If we found something that did not set a parameter reg,
we're done. Do not keep going, as that might result
in hoisting an insn before the setting of a pseudo
that is used by the hoisted insn. */
if (nregs_old != parm.nregs)
first_set = before;
else
break;
}
}
return first_set;
}
/* Return true if we should avoid inserting code between INSN and preceding
call instruction. */
bool
keep_with_call_p (const_rtx insn)
{
rtx set;
if (INSN_P (insn) && (set = single_set (insn)) != NULL)
{
if (REG_P (SET_DEST (set))
&& REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
&& fixed_regs[REGNO (SET_DEST (set))]
&& general_operand (SET_SRC (set), VOIDmode))
return true;
if (REG_P (SET_SRC (set))
&& FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
&& REG_P (SET_DEST (set))
&& REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
return true;
/* There may be a stack pop just after the call and before the store
of the return register. Search for the actual store when deciding
if we can break or not. */
if (SET_DEST (set) == stack_pointer_rtx)
{
/* This CONST_CAST is okay because next_nonnote_insn just
returns its argument and we assign it to a const_rtx
variable. */
const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
if (i2 && keep_with_call_p (i2))
return true;
}
}
return false;
}
/* Return true if LABEL is a target of JUMP_INSN. This applies only
to non-complex jumps. That is, direct unconditional, conditional,
and tablejumps, but not computed jumps or returns. It also does
not apply to the fallthru case of a conditional jump. */
bool
label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
{
rtx tmp = JUMP_LABEL (jump_insn);
if (label == tmp)
return true;
if (tablejump_p (jump_insn, NULL, &tmp))
{
rtvec vec = XVEC (PATTERN (tmp),
GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
int i, veclen = GET_NUM_ELEM (vec);
for (i = 0; i < veclen; ++i)
if (XEXP (RTVEC_ELT (vec, i), 0) == label)
return true;
}
if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
return true;
return false;
}
/* Return an estimate of the cost of computing rtx X.
One use is in cse, to decide which expression to keep in the hash table.
Another is in rtl generation, to pick the cheapest way to multiply.
Other uses like the latter are expected in the future.
SPEED parameter specify whether costs optimized for speed or size should
be returned. */
int
rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED, bool speed)
{
int i, j;
enum rtx_code code;
const char *fmt;
int total;
if (x == 0)
return 0;
/* Compute the default costs of certain things.
Note that targetm.rtx_costs can override the defaults. */
code = GET_CODE (x);
switch (code)
{
case MULT:
total = COSTS_N_INSNS (5);
break;
case DIV:
case UDIV:
case MOD:
case UMOD:
total = COSTS_N_INSNS (7);
break;
case USE:
/* Used in combine.c as a marker. */
total = 0;
break;
default:
total = COSTS_N_INSNS (1);
}
switch (code)
{
case REG:
return 0;
case SUBREG:
total = 0;
/* If we can't tie these modes, make this expensive. The larger
the mode, the more expensive it is. */
if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
return COSTS_N_INSNS (2
+ GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
break;
default:
if (targetm.rtx_costs (x, code, outer_code, &total, speed))
return total;
break;
}
/* Sum the costs of the sub-rtx's, plus cost of this operation,
which is already in total. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
if (fmt[i] == 'e')
total += rtx_cost (XEXP (x, i), code, speed);
else if (fmt[i] == 'E')
for (j = 0; j < XVECLEN (x, i); j++)
total += rtx_cost (XVECEXP (x, i, j), code, speed);
return total;
}
/* Return cost of address expression X.
Expect that X is properly formed address reference.
SPEED parameter specify whether costs optimized for speed or size should
be returned. */
int
address_cost (rtx x, enum machine_mode mode, bool speed)
{
/* We may be asked for cost of various unusual addresses, such as operands
of push instruction. It is not worthwhile to complicate writing
of the target hook by such cases. */
if (!memory_address_p (mode, x))
return 1000;
return targetm.address_cost (x, speed);
}
/* If the target doesn't override, compute the cost as with arithmetic. */
int
default_address_cost (rtx x, bool speed)
{
return rtx_cost (x, MEM, speed);
}
unsigned HOST_WIDE_INT
nonzero_bits (const_rtx x, enum machine_mode mode)
{
return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
}
unsigned int
num_sign_bit_copies (const_rtx x, enum machine_mode mode)
{
return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
}
/* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
It avoids exponential behavior in nonzero_bits1 when X has
identical subexpressions on the first or the second level. */
static unsigned HOST_WIDE_INT
cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
enum machine_mode known_mode,
unsigned HOST_WIDE_INT known_ret)
{
if (x == known_x && mode == known_mode)
return known_ret;
/* Try to find identical subexpressions. If found call
nonzero_bits1 on X with the subexpressions as KNOWN_X and the
precomputed value for the subexpression as KNOWN_RET. */
if (ARITHMETIC_P (x))
{
rtx x0 = XEXP (x, 0);
rtx x1 = XEXP (x, 1);
/* Check the first level. */
if (x0 == x1)
return nonzero_bits1 (x, mode, x0, mode,
cached_nonzero_bits (x0, mode, known_x,
known_mode, known_ret));
/* Check the second level. */
if (ARITHMETIC_P (x0)
&& (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
return nonzero_bits1 (x, mode, x1, mode,
cached_nonzero_bits (x1, mode, known_x,
known_mode, known_ret));
if (ARITHMETIC_P (x1)
&& (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
return nonzero_bits1 (x, mode, x0, mode,
cached_nonzero_bits (x0, mode, known_x,
known_mode, known_ret));
}
return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
}
/* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
We don't let nonzero_bits recur into num_sign_bit_copies, because that
is less useful. We can't allow both, because that results in exponential
run time recursion. There is a nullstone testcase that triggered
this. This macro avoids accidental uses of num_sign_bit_copies. */
#define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
/* Given an expression, X, compute which bits in X can be nonzero.
We don't care about bits outside of those defined in MODE.
For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
an arithmetic operation, we can do better. */
static unsigned HOST_WIDE_INT
nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
enum machine_mode known_mode,
unsigned HOST_WIDE_INT known_ret)
{
unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
unsigned HOST_WIDE_INT inner_nz;
enum rtx_code code;
unsigned int mode_width = GET_MODE_BITSIZE (mode);
/* For floating-point and vector values, assume all bits are needed. */
if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
|| VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
return nonzero;
/* If X is wider than MODE, use its mode instead. */
if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
{
mode = GET_MODE (x);
nonzero = GET_MODE_MASK (mode);
mode_width = GET_MODE_BITSIZE (mode);
}
if (mode_width > HOST_BITS_PER_WIDE_INT)
/* Our only callers in this case look for single bit values. So
just return the mode mask. Those tests will then be false. */
return nonzero;
#ifndef WORD_REGISTER_OPERATIONS
/* If MODE is wider than X, but both are a single word for both the host
and target machines, we can compute this from which bits of the
object might be nonzero in its own mode, taking into account the fact
that on many CISC machines, accessing an object in a wider mode
causes the high-order bits to become undefined. So they are
not known to be zero. */
if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
&& GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
&& GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
&& GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
{
nonzero &= cached_nonzero_bits (x, GET_MODE (x),
known_x, known_mode, known_ret);
nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
return nonzero;
}
#endif
code = GET_CODE (x);
switch (code)
{
case REG:
#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
/* If pointers extend unsigned and this is a pointer in Pmode, say that
all the bits above ptr_mode are known to be zero. */
if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
&& REG_POINTER (x))
nonzero &= GET_MODE_MASK (ptr_mode);
#endif
/* Include declared information about alignment of pointers. */
/* ??? We don't properly preserve REG_POINTER changes across
pointer-to-integer casts, so we can't trust it except for
things that we know must be pointers. See execute/960116-1.c. */
if ((x == stack_pointer_rtx
|| x == frame_pointer_rtx
|| x == arg_pointer_rtx)
&& REGNO_POINTER_ALIGN (REGNO (x)))
{
unsigned HOST_WIDE_INT alignment
= REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
#ifdef PUSH_ROUNDING
/* If PUSH_ROUNDING is defined, it is possible for the
stack to be momentarily aligned only to that amount,
so we pick the least alignment. */
if (x == stack_pointer_rtx && PUSH_ARGS)
alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
alignment);
#endif
nonzero &= ~(alignment - 1);
}
{
unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
known_mode, known_ret,
&nonzero_for_hook);
if (new_rtx)
nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
known_mode, known_ret);
return nonzero_for_hook;
}
case CONST_INT:
#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
/* If X is negative in MODE, sign-extend the value. */
if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
&& 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
#endif
return INTVAL (x);
case MEM:
#ifdef LOAD_EXTEND_OP
/* In many, if not most, RISC machines, reading a byte from memory
zeros the rest of the register. Noticing that fact saves a lot
of extra zero-extends. */
if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
nonzero &= GET_MODE_MASK (GET_MODE (x));
#endif
break;
case EQ: case NE:
case UNEQ: case LTGT:
case GT: case GTU: case UNGT:
case LT: case LTU: case UNLT:
case GE: case GEU: case UNGE:
case LE: case LEU: case UNLE:
case UNORDERED: case ORDERED:
/* If this produces an integer result, we know which bits are set.
Code here used to clear bits outside the mode of X, but that is
now done above. */
/* Mind that MODE is the mode the caller wants to look at this
operation in, and not the actual operation mode. We can wind
up with (subreg:DI (gt:V4HI x y)), and we don't have anything
that describes the results of a vector compare. */
if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
&& mode_width <= HOST_BITS_PER_WIDE_INT)
nonzero = STORE_FLAG_VALUE;
break;
case NEG:
#if 0
/* Disabled to avoid exponential mutual recursion between nonzero_bits
and num_sign_bit_copies. */
if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
== GET_MODE_BITSIZE (GET_MODE (x)))
nonzero = 1;
#endif
if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
break;
case ABS:
#if 0
/* Disabled to avoid exponential mutual recursion between nonzero_bits
and num_sign_bit_copies. */
if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
== GET_MODE_BITSIZE (GET_MODE (x)))
nonzero = 1;
#endif
break;
case TRUNCATE:
nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
known_x, known_mode, known_ret)
& GET_MODE_MASK (mode));
break;
case ZERO_EXTEND:
nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
known_x, known_mode, known_ret);
if (GET_MODE (XEXP (x, 0)) != VOIDmode)
nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
break;
case SIGN_EXTEND:
/* If the sign bit is known clear, this is the same as ZERO_EXTEND.
Otherwise, show all the bits in the outer mode but not the inner
may be nonzero. */
inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
known_x, known_mode, known_ret);
if (GET_MODE (XEXP (x, 0)) != VOIDmode)
{
inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
if (inner_nz
& (((HOST_WIDE_INT) 1
<< (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
inner_nz |= (GET_MODE_MASK (mode)
& ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
}
nonzero &= inner_nz;
break;
case AND:
nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
known_x, known_mode, known_ret)
& cached_nonzero_bits (XEXP (x, 1), mode,
known_x, known_mode, known_ret);
break;
case XOR: case IOR:
case UMIN: case UMAX: case SMIN: case SMAX:
{
unsigned HOST_WIDE_INT nonzero0 =
cached_nonzero_bits (XEXP (x, 0), mode,
known_x, known_mode, known_ret);
/* Don't call nonzero_bits for the second time if it cannot change
anything. */
if ((nonzero & nonzero0) != nonzero)
nonzero &= nonzero0
| cached_nonzero_bits (XEXP (x, 1), mode,
known_x, known_mode, known_ret);
}
break;
case PLUS: case MINUS:
case MULT:
case DIV: case UDIV:
case MOD: case UMOD:
/* We can apply the rules of arithmetic to compute the number of
high- and low-order zero bits of these operations. We start by
computing the width (position of the highest-order nonzero bit)
and the number of low-order zero bits for each value. */
{
unsigned HOST_WIDE_INT nz0 =
cached_nonzero_bits (XEXP (x, 0), mode,
known_x, known_mode, known_ret);
unsigned HOST_WIDE_INT nz1 =
cached_nonzero_bits (XEXP (x, 1), mode,
known_x, known_mode, known_ret);
int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
int width0 = floor_log2 (nz0) + 1;
int width1 = floor_log2 (nz1) + 1;
int low0 = floor_log2 (nz0 & -nz0);
int low1 = floor_log2 (nz1 & -nz1);
HOST_WIDE_INT op0_maybe_minusp
= (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
HOST_WIDE_INT op1_maybe_minusp
= (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
unsigned int result_width = mode_width;
int result_low = 0;
switch (code)
{
case PLUS:
result_width = MAX (width0, width1) + 1;
result_low = MIN (low0, low1);
break;
case MINUS:
result_low = MIN (low0, low1);
break;
case MULT:
result_width = width0 + width1;
result_low = low0 + low1;
break;
case DIV:
if (width1 == 0)
break;
if (! op0_maybe_minusp && ! op1_maybe_minusp)
result_width = width0;
break;
case UDIV:
if (width1 == 0)
break;
result_width = width0;
break;
case MOD:
if (width1 == 0)
break;
if (! op0_maybe_minusp && ! op1_maybe_minusp)
result_width = MIN (width0, width1);
result_low = MIN (low0, low1);
break;
case UMOD:
if (width1 == 0)
break;
result_width = MIN (width0, width1);
result_low = MIN (low0, low1);
break;
default:
gcc_unreachable ();
}
if (result_width < mode_width)
nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
if (result_low > 0)
nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
#ifdef POINTERS_EXTEND_UNSIGNED
/* If pointers extend unsigned and this is an addition or subtraction
to a pointer in Pmode, all the bits above ptr_mode are known to be
zero. */
if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
&& (code == PLUS || code == MINUS)
&& REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
nonzero &= GET_MODE_MASK (ptr_mode);
#endif
}
break;
case ZERO_EXTRACT:
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
break;
case SUBREG:
/* If this is a SUBREG formed for a promoted variable that has
been zero-extended, we know that at least the high-order bits
are zero, though others might be too. */
if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
nonzero = GET_MODE_MASK (GET_MODE (x))
& cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
known_x, known_mode, known_ret);
/* If the inner mode is a single word for both the host and target
machines, we can compute this from which bits of the inner
object might be nonzero. */
if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
&& (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
<= HOST_BITS_PER_WIDE_INT))
{
nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
known_x, known_mode, known_ret);
#if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
/* If this is a typical RISC machine, we only have to worry
about the way loads are extended. */
if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
? (((nonzero
& (((unsigned HOST_WIDE_INT) 1
<< (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
!= 0))
: LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
|| !MEM_P (SUBREG_REG (x)))
#endif
{
/* On many CISC machines, accessing an object in a wider mode
causes the high-order bits to become undefined. So they are
not known to be zero. */
if (GET_MODE_SIZE (GET_MODE (x))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
nonzero |= (GET_MODE_MASK (GET_MODE (x))
& ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
}
}
break;
case ASHIFTRT:
case LSHIFTRT:
case ASHIFT:
case ROTATE:
/* The nonzero bits are in two classes: any bits within MODE
that aren't in GET_MODE (x) are always significant. The rest of the
nonzero bits are those that are significant in the operand of
the shift when shifted the appropriate number of bits. This
shows that high-order bits are cleared by the right shift and
low-order bits by left shifts. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) >= 0
&& INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
&& INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x)))
{
enum machine_mode inner_mode = GET_MODE (x);
unsigned int width = GET_MODE_BITSIZE (inner_mode);
int count = INTVAL (XEXP (x, 1));
unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
unsigned HOST_WIDE_INT op_nonzero =
cached_nonzero_bits (XEXP (x, 0), mode,
known_x, known_mode, known_ret);
unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
unsigned HOST_WIDE_INT outer = 0;
if (mode_width > width)
outer = (op_nonzero & nonzero & ~mode_mask);
if (code == LSHIFTRT)
inner >>= count;
else if (code == ASHIFTRT)
{
inner >>= count;
/* If the sign bit may have been nonzero before the shift, we
need to mark all the places it could have been copied to
by the shift as possibly nonzero. */
if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
}
else if (code == ASHIFT)
inner <<= count;
else
inner = ((inner << (count % width)
| (inner >> (width - (count % width)))) & mode_mask);
nonzero &= (outer | inner);
}
break;
case FFS:
case POPCOUNT:
/* This is at most the number of bits in the mode. */
nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
break;
case CLZ:
/* If CLZ has a known value at zero, then the nonzero bits are
that value, plus the number of bits in the mode minus one. */
if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
else
nonzero = -1;
break;
case CTZ:
/* If CTZ has a known value at zero, then the nonzero bits are
that value, plus the number of bits in the mode minus one. */
if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
else
nonzero = -1;
break;
case PARITY:
nonzero = 1;
break;
case IF_THEN_ELSE:
{
unsigned HOST_WIDE_INT nonzero_true =
cached_nonzero_bits (XEXP (x, 1), mode,
known_x, known_mode, known_ret);
/* Don't call nonzero_bits for the second time if it cannot change
anything. */
if ((nonzero & nonzero_true) != nonzero)
nonzero &= nonzero_true
| cached_nonzero_bits (XEXP (x, 2), mode,
known_x, known_mode, known_ret);
}
break;
default:
break;
}
return nonzero;
}
/* See the macro definition above. */
#undef cached_num_sign_bit_copies
/* The function cached_num_sign_bit_copies is a wrapper around
num_sign_bit_copies1. It avoids exponential behavior in
num_sign_bit_copies1 when X has identical subexpressions on the
first or the second level. */
static unsigned int
cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
enum machine_mode known_mode,
unsigned int known_ret)
{
if (x == known_x && mode == known_mode)
return known_ret;
/* Try to find identical subexpressions. If found call
num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
the precomputed value for the subexpression as KNOWN_RET. */
if (ARITHMETIC_P (x))
{
rtx x0 = XEXP (x, 0);
rtx x1 = XEXP (x, 1);
/* Check the first level. */
if (x0 == x1)
return
num_sign_bit_copies1 (x, mode, x0, mode,
cached_num_sign_bit_copies (x0, mode, known_x,
known_mode,
known_ret));
/* Check the second level. */
if (ARITHMETIC_P (x0)
&& (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
return
num_sign_bit_copies1 (x, mode, x1, mode,
cached_num_sign_bit_copies (x1, mode, known_x,
known_mode,
known_ret));
if (ARITHMETIC_P (x1)
&& (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
return
num_sign_bit_copies1 (x, mode, x0, mode,
cached_num_sign_bit_copies (x0, mode, known_x,
known_mode,
known_ret));
}
return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
}
/* Return the number of bits at the high-order end of X that are known to
be equal to the sign bit. X will be used in mode MODE; if MODE is
VOIDmode, X will be used in its own mode. The returned value will always
be between 1 and the number of bits in MODE. */
static unsigned int
num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
enum machine_mode known_mode,
unsigned int known_ret)
{
enum rtx_code code = GET_CODE (x);
unsigned int bitwidth = GET_MODE_BITSIZE (mode);
int num0, num1, result;
unsigned HOST_WIDE_INT nonzero;
/* If we weren't given a mode, use the mode of X. If the mode is still
VOIDmode, we don't know anything. Likewise if one of the modes is
floating-point. */
if (mode == VOIDmode)
mode = GET_MODE (x);
if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
|| VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
return 1;
/* For a smaller object, just ignore the high bits. */
if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
{
num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
known_x, known_mode, known_ret);
return MAX (1,
num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
}
if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
{
#ifndef WORD_REGISTER_OPERATIONS
/* If this machine does not do all register operations on the entire
register and MODE is wider than the mode of X, we can say nothing
at all about the high-order bits. */
return 1;
#else
/* Likewise on machines that do, if the mode of the object is smaller
than a word and loads of that size don't sign extend, we can say
nothing about the high order bits. */
if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
#ifdef LOAD_EXTEND_OP
&& LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
#endif
)
return 1;
#endif
}
switch (code)
{
case REG:
#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
/* If pointers extend signed and this is a pointer in Pmode, say that
all the bits above ptr_mode are known to be sign bit copies. */
if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
&& REG_POINTER (x))
return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
#endif
{
unsigned int copies_for_hook = 1, copies = 1;
rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
known_mode, known_ret,
&copies_for_hook);
if (new_rtx)
copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
known_mode, known_ret);
if (copies > 1 || copies_for_hook > 1)
return MAX (copies, copies_for_hook);
/* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
}
break;
case MEM:
#ifdef LOAD_EXTEND_OP
/* Some RISC machines sign-extend all loads of smaller than a word. */
if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
return MAX (1, ((int) bitwidth
- (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
#endif
break;
case CONST_INT:
/* If the constant is negative, take its 1's complement and remask.
Then see how many zero bits we have. */
nonzero = INTVAL (x) & GET_MODE_MASK (mode);
if (bitwidth <= HOST_BITS_PER_WIDE_INT
&& (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
nonzero = (~nonzero) & GET_MODE_MASK (mode);
return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
case SUBREG:
/* If this is a SUBREG for a promoted object that is sign-extended
and we are looking at it in a wider mode, we know that at least the
high-order bits are known to be sign bit copies. */
if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
{
num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
known_x, known_mode, known_ret);
return MAX ((int) bitwidth
- (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
num0);
}
/* For a smaller object, just ignore the high bits. */
if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
{
num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
known_x, known_mode, known_ret);
return MAX (1, (num0
- (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
- bitwidth)));
}
#ifdef WORD_REGISTER_OPERATIONS
#ifdef LOAD_EXTEND_OP
/* For paradoxical SUBREGs on machines where all register operations
affect the entire register, just look inside. Note that we are
passing MODE to the recursive call, so the number of sign bit copies
will remain relative to that mode, not the inner mode. */
/* This works only if loads sign extend. Otherwise, if we get a
reload for the inner part, it may be loaded from the stack, and
then we lose all sign bit copies that existed before the store
to the stack. */
if ((GET_MODE_SIZE (GET_MODE (x))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
&& LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
&& MEM_P (SUBREG_REG (x)))
return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
known_x, known_mode, known_ret);
#endif
#endif
break;
case SIGN_EXTRACT:
if (GET_CODE (XEXP (x, 1)) == CONST_INT)
return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
break;
case SIGN_EXTEND:
return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
+ cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
known_x, known_mode, known_ret));
case TRUNCATE:
/* For a smaller object, just ignore the high bits. */
num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
known_x, known_mode, known_ret);
return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
- bitwidth)));
case NOT:
return cached_num_sign_bit_copies (XEXP (x, 0), mode,
known_x, known_mode, known_ret);
case ROTATE: case ROTATERT:
/* If we are rotating left by a number of bits less than the number
of sign bit copies, we can just subtract that amount from the
number. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) >= 0
&& INTVAL (XEXP (x, 1)) < (int) bitwidth)
{
num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
known_x, known_mode, known_ret);
return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
: (int) bitwidth - INTVAL (XEXP (x, 1))));
}
break;
case NEG:
/* In general, this subtracts one sign bit copy. But if the value
is known to be positive, the number of sign bit copies is the
same as that of the input. Finally, if the input has just one bit
that might be nonzero, all the bits are copies of the sign bit. */
num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
known_x, known_mode, known_ret);
if (bitwidth > HOST_BITS_PER_WIDE_INT)
return num0 > 1 ? num0 - 1 : 1;
nonzero = nonzero_bits (XEXP (x, 0), mode);
if (nonzero == 1)
return bitwidth;
if (num0 > 1
&& (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
num0--;
return num0;
case IOR: case AND: case XOR:
case SMIN: case SMAX: case UMIN: case UMAX:
/* Logical operations will preserve the number of sign-bit copies.
MIN and MAX operations always return one of the operands. */
num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
known_x, known_mode, known_ret);
num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
known_x, known_mode, known_ret);
/* If num1 is clearing some of the top bits then regardless of
the other term, we are guaranteed to have at least that many
high-order zero bits. */
if (code == AND
&& num1 > 1
&& bitwidth <= HOST_BITS_PER_WIDE_INT
&& GET_CODE (XEXP (x, 1)) == CONST_INT
&& !(INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
return num1;
/* Similarly for IOR when setting high-order bits. */
if (code == IOR
&& num1 > 1
&& bitwidth <= HOST_BITS_PER_WIDE_INT
&& GET_CODE (XEXP (x, 1)) == CONST_INT
&& (INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
return num1;
return MIN (num0, num1);
case PLUS: case MINUS:
/* For addition and subtraction, we can have a 1-bit carry. However,
if we are subtracting 1 from a positive number, there will not
be such a carry. Furthermore, if the positive number is known to
be 0 or 1, we know the result is either -1 or 0. */
if (code == PLUS && XEXP (x, 1) == constm1_rtx
&& bitwidth <= HOST_BITS_PER_WIDE_INT)
{
nonzero = nonzero_bits (XEXP (x, 0), mode);
if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
return (nonzero == 1 || nonzero == 0 ? bitwidth
: bitwidth - floor_log2 (nonzero) - 1);
}
num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
known_x, known_mode, known_ret);
num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
known_x, known_mode, known_ret);
result = MAX (1, MIN (num0, num1) - 1);
#ifdef POINTERS_EXTEND_UNSIGNED
/* If pointers extend signed and this is an addition or subtraction
to a pointer in Pmode, all the bits above ptr_mode are known to be
sign bit copies. */
if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
&& (code == PLUS || code == MINUS)
&& REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
- GET_MODE_BITSIZE (ptr_mode) + 1),
result);
#endif
return result;
case MULT:
/* The number of bits of the product is the sum of the number of
bits of both terms. However, unless one of the terms if known
to be positive, we must allow for an additional bit since negating
a negative number can remove one sign bit copy. */
num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
known_x, known_mode, known_ret);
num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
known_x, known_mode, known_ret);
result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
if (result > 0
&& (bitwidth > HOST_BITS_PER_WIDE_INT
|| (((nonzero_bits (XEXP (x, 0), mode)
& ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
&& ((nonzero_bits (XEXP (x, 1), mode)
& ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
result--;
return MAX (1, result);
case UDIV:
/* The result must be <= the first operand. If the first operand
has the high bit set, we know nothing about the number of sign
bit copies. */
if (bitwidth > HOST_BITS_PER_WIDE_INT)
return 1;
else if ((nonzero_bits (XEXP (x, 0), mode)
& ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
return 1;
else
return cached_num_sign_bit_copies (XEXP (x, 0), mode,
known_x, known_mode, known_ret);
case UMOD:
/* The result must be <= the second operand. */
return cached_num_sign_bit_copies (XEXP (x, 1), mode,
known_x, known_mode, known_ret);
case DIV:
/* Similar to unsigned division, except that we have to worry about
the case where the divisor is negative, in which case we have
to add 1. */
result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
known_x, known_mode, known_ret);
if (result > 1
&& (bitwidth > HOST_BITS_PER_WIDE_INT
|| (nonzero_bits (XEXP (x, 1), mode)
& ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
result--;
return result;
case MOD:
result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
known_x, known_mode, known_ret);
if (result > 1
&& (bitwidth > HOST_BITS_PER_WIDE_INT
|| (nonzero_bits (XEXP (x, 1), mode)
& ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
result--;
return result;
case ASHIFTRT:
/* Shifts by a constant add to the number of bits equal to the
sign bit. */
num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
known_x, known_mode, known_ret);
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) > 0
&& INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x)))
num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
return num0;
case ASHIFT:
/* Left shifts destroy copies. */
if (GET_CODE (XEXP (x, 1)) != CONST_INT
|| INTVAL (XEXP (x, 1)) < 0
|| INTVAL (XEXP (x, 1)) >= (int) bitwidth
|| INTVAL (XEXP (x, 1)) >= GET_MODE_BITSIZE (GET_MODE (x)))
return 1;
num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
known_x, known_mode, known_ret);
return MAX (1, num0 - INTVAL (XEXP (x, 1)));
case IF_THEN_ELSE:
num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
known_x, known_mode, known_ret);
num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
known_x, known_mode, known_ret);
return MIN (num0, num1);
case EQ: case NE: case GE: case GT: case LE: case LT:
case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
case GEU: case GTU: case LEU: case LTU:
case UNORDERED: case ORDERED:
/* If the constant is negative, take its 1's complement and remask.
Then see how many zero bits we have. */
nonzero = STORE_FLAG_VALUE;
if (bitwidth <= HOST_BITS_PER_WIDE_INT
&& (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
nonzero = (~nonzero) & GET_MODE_MASK (mode);
return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
default:
break;
}
/* If we haven't been able to figure it out by one of the above rules,
see if some of the high-order bits are known to be zero. If so,
count those bits and return one less than that amount. If we can't
safely compute the mask for this mode, always return BITWIDTH. */
bitwidth = GET_MODE_BITSIZE (mode);
if (bitwidth > HOST_BITS_PER_WIDE_INT)
return 1;
nonzero = nonzero_bits (x, mode);
return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
? 1 : bitwidth - floor_log2 (nonzero) - 1;
}
/* Calculate the rtx_cost of a single instruction. A return value of
zero indicates an instruction pattern without a known cost. */
int
insn_rtx_cost (rtx pat, bool speed)
{
int i, cost;
rtx set;
/* Extract the single set rtx from the instruction pattern.
We can't use single_set since we only have the pattern. */
if (GET_CODE (pat) == SET)
set = pat;
else if (GET_CODE (pat) == PARALLEL)
{
set = NULL_RTX;
for (i = 0; i < XVECLEN (pat, 0); i++)
{
rtx x = XVECEXP (pat, 0, i);
if (GET_CODE (x) == SET)
{
if (set)
return 0;
set = x;
}
}
if (!set)
return 0;
}
else
return 0;
cost = rtx_cost (SET_SRC (set), SET, speed);
return cost > 0 ? cost : COSTS_N_INSNS (1);
}
/* Given an insn INSN and condition COND, return the condition in a
canonical form to simplify testing by callers. Specifically:
(1) The code will always be a comparison operation (EQ, NE, GT, etc.).
(2) Both operands will be machine operands; (cc0) will have been replaced.
(3) If an operand is a constant, it will be the second operand.
(4) (LE x const) will be replaced with (LT x <const+1>) and similarly
for GE, GEU, and LEU.
If the condition cannot be understood, or is an inequality floating-point
comparison which needs to be reversed, 0 will be returned.
If REVERSE is nonzero, then reverse the condition prior to canonizing it.
If EARLIEST is nonzero, it is a pointer to a place where the earliest
insn used in locating the condition was found. If a replacement test
of the condition is desired, it should be placed in front of that
insn and we will be sure that the inputs are still valid.
If WANT_REG is nonzero, we wish the condition to be relative to that
register, if possible. Therefore, do not canonicalize the condition
further. If ALLOW_CC_MODE is nonzero, allow the condition returned
to be a compare to a CC mode register.
If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
and at INSN. */
rtx
canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
{
enum rtx_code code;
rtx prev = insn;
const_rtx set;
rtx tem;
rtx op0, op1;
int reverse_code = 0;
enum machine_mode mode;
basic_block bb = BLOCK_FOR_INSN (insn);
code = GET_CODE (cond);
mode = GET_MODE (cond);
op0 = XEXP (cond, 0);
op1 = XEXP (cond, 1);
if (reverse)
code = reversed_comparison_code (cond, insn);
if (code == UNKNOWN)
return 0;
if (earliest)
*earliest = insn;
/* If we are comparing a register with zero, see if the register is set
in the previous insn to a COMPARE or a comparison operation. Perform
the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
in cse.c */
while ((GET_RTX_CLASS (code) == RTX_COMPARE
|| GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
&& op1 == CONST0_RTX (GET_MODE (op0))
&& op0 != want_reg)
{
/* Set nonzero when we find something of interest. */
rtx x = 0;
#ifdef HAVE_cc0
/* If comparison with cc0, import actual comparison from compare
insn. */
if (op0 == cc0_rtx)
{
if ((prev = prev_nonnote_insn (prev)) == 0
|| !NONJUMP_INSN_P (prev)
|| (set = single_set (prev)) == 0
|| SET_DEST (set) != cc0_rtx)
return 0;
op0 = SET_SRC (set);
op1 = CONST0_RTX (GET_MODE (op0));
if (earliest)
*earliest = prev;
}
#endif
/* If this is a COMPARE, pick up the two things being compared. */
if (GET_CODE (op0) == COMPARE)
{
op1 = XEXP (op0, 1);
op0 = XEXP (op0, 0);
continue;
}
else if (!REG_P (op0))
break;
/* Go back to the previous insn. Stop if it is not an INSN. We also
stop if it isn't a single set or if it has a REG_INC note because
we don't want to bother dealing with it. */
if ((prev = prev_nonnote_insn (prev)) == 0
|| !NONJUMP_INSN_P (prev)
|| FIND_REG_INC_NOTE (prev, NULL_RTX)
/* In cfglayout mode, there do not have to be labels at the
beginning of a block, or jumps at the end, so the previous
conditions would not stop us when we reach bb boundary. */
|| BLOCK_FOR_INSN (prev) != bb)
break;
set = set_of (op0, prev);
if (set
&& (GET_CODE (set) != SET
|| !rtx_equal_p (SET_DEST (set), op0)))
break;
/* If this is setting OP0, get what it sets it to if it looks
relevant. */
if (set)
{
enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
#ifdef FLOAT_STORE_FLAG_VALUE
REAL_VALUE_TYPE fsfv;
#endif
/* ??? We may not combine comparisons done in a CCmode with
comparisons not done in a CCmode. This is to aid targets
like Alpha that have an IEEE compliant EQ instruction, and
a non-IEEE compliant BEQ instruction. The use of CCmode is
actually artificial, simply to prevent the combination, but
should not affect other platforms.
However, we must allow VOIDmode comparisons to match either
CCmode or non-CCmode comparison, because some ports have
modeless comparisons inside branch patterns.
??? This mode check should perhaps look more like the mode check
in simplify_comparison in combine. */
if ((GET_CODE (SET_SRC (set)) == COMPARE
|| (((code == NE
|| (code == LT
&& GET_MODE_CLASS (inner_mode) == MODE_INT
&& (GET_MODE_BITSIZE (inner_mode)
<= HOST_BITS_PER_WIDE_INT)
&& (STORE_FLAG_VALUE
& ((HOST_WIDE_INT) 1
<< (GET_MODE_BITSIZE (inner_mode) - 1))))
#ifdef FLOAT_STORE_FLAG_VALUE
|| (code == LT
&& SCALAR_FLOAT_MODE_P (inner_mode)
&& (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
REAL_VALUE_NEGATIVE (fsfv)))
#endif
))
&& COMPARISON_P (SET_SRC (set))))
&& (((GET_MODE_CLASS (mode) == MODE_CC)
== (GET_MODE_CLASS (inner_mode) == MODE_CC))
|| mode == VOIDmode || inner_mode == VOIDmode))
x = SET_SRC (set);
else if (((code == EQ
|| (code == GE
&& (GET_MODE_BITSIZE (inner_mode)
<= HOST_BITS_PER_WIDE_INT)
&& GET_MODE_CLASS (inner_mode) == MODE_INT
&& (STORE_FLAG_VALUE
& ((HOST_WIDE_INT) 1
<< (GET_MODE_BITSIZE (inner_mode) - 1))))
#ifdef FLOAT_STORE_FLAG_VALUE
|| (code == GE
&& SCALAR_FLOAT_MODE_P (inner_mode)
&& (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
REAL_VALUE_NEGATIVE (fsfv)))
#endif
))
&& COMPARISON_P (SET_SRC (set))
&& (((GET_MODE_CLASS (mode) == MODE_CC)
== (GET_MODE_CLASS (inner_mode) == MODE_CC))
|| mode == VOIDmode || inner_mode == VOIDmode))
{
reverse_code = 1;
x = SET_SRC (set);
}
else
break;
}
else if (reg_set_p (op0, prev))
/* If this sets OP0, but not directly, we have to give up. */
break;
if (x)
{
/* If the caller is expecting the condition to be valid at INSN,
make sure X doesn't change before INSN. */
if (valid_at_insn_p)
if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
break;
if (COMPARISON_P (x))
code = GET_CODE (x);
if (reverse_code)
{
code = reversed_comparison_code (x, prev);
if (code == UNKNOWN)
return 0;
reverse_code = 0;
}
op0 = XEXP (x, 0), op1 = XEXP (x, 1);
if (earliest)
*earliest = prev;
}
}
/* If constant is first, put it last. */
if (CONSTANT_P (op0))
code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
/* If OP0 is the result of a comparison, we weren't able to find what
was really being compared, so fail. */
if (!allow_cc_mode
&& GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
return 0;
/* Canonicalize any ordered comparison with integers involving equality
if we can do computations in the relevant mode and we do not
overflow. */
if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
&& GET_CODE (op1) == CONST_INT
&& GET_MODE (op0) != VOIDmode
&& GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
{
HOST_WIDE_INT const_val = INTVAL (op1);
unsigned HOST_WIDE_INT uconst_val = const_val;
unsigned HOST_WIDE_INT max_val
= (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
switch (code)
{
case LE:
if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
break;
/* When cross-compiling, const_val might be sign-extended from
BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
case GE:
if ((HOST_WIDE_INT) (const_val & max_val)
!= (((HOST_WIDE_INT) 1
<< (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
break;
case LEU:
if (uconst_val < max_val)
code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
break;
case GEU:
if (uconst_val != 0)
code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
break;
default:
break;
}
}
/* Never return CC0; return zero instead. */
if (CC0_P (op0))
return 0;
return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
}
/* Given a jump insn JUMP, return the condition that will cause it to branch
to its JUMP_LABEL. If the condition cannot be understood, or is an
inequality floating-point comparison which needs to be reversed, 0 will
be returned.
If EARLIEST is nonzero, it is a pointer to a place where the earliest
insn used in locating the condition was found. If a replacement test
of the condition is desired, it should be placed in front of that
insn and we will be sure that the inputs are still valid. If EARLIEST
is null, the returned condition will be valid at INSN.
If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
compare CC mode register.
VALID_AT_INSN_P is the same as for canonicalize_condition. */
rtx
get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
{
rtx cond;
int reverse;
rtx set;
/* If this is not a standard conditional jump, we can't parse it. */
if (!JUMP_P (jump)
|| ! any_condjump_p (jump))
return 0;
set = pc_set (jump);
cond = XEXP (SET_SRC (set), 0);
/* If this branches to JUMP_LABEL when the condition is false, reverse
the condition. */
reverse
= GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
&& XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
allow_cc_mode, valid_at_insn_p);
}
/* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
TARGET_MODE_REP_EXTENDED.
Note that we assume that the property of
TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
narrower than mode B. I.e., if A is a mode narrower than B then in
order to be able to operate on it in mode B, mode A needs to
satisfy the requirements set by the representation of mode B. */
static void
init_num_sign_bit_copies_in_rep (void)
{
enum machine_mode mode, in_mode;
for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
in_mode = GET_MODE_WIDER_MODE (mode))
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
mode = GET_MODE_WIDER_MODE (mode))
{
enum machine_mode i;
/* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
extends to the next widest mode. */
gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
|| GET_MODE_WIDER_MODE (mode) == in_mode);
/* We are in in_mode. Count how many bits outside of mode
have to be copies of the sign-bit. */
for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
{
enum machine_mode wider = GET_MODE_WIDER_MODE (i);
if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
/* We can only check sign-bit copies starting from the
top-bit. In order to be able to check the bits we
have already seen we pretend that subsequent bits
have to be sign-bit copies too. */
|| num_sign_bit_copies_in_rep [in_mode][mode])
num_sign_bit_copies_in_rep [in_mode][mode]
+= GET_MODE_BITSIZE (wider) - GET_MODE_BITSIZE (i);
}
}
}
/* Suppose that truncation from the machine mode of X to MODE is not a
no-op. See if there is anything special about X so that we can
assume it already contains a truncated value of MODE. */
bool
truncated_to_mode (enum machine_mode mode, const_rtx x)
{
/* This register has already been used in MODE without explicit
truncation. */
if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
return true;
/* See if we already satisfy the requirements of MODE. If yes we
can just switch to MODE. */
if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
&& (num_sign_bit_copies (x, GET_MODE (x))
>= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
return true;
return false;
}
/* Initialize non_rtx_starting_operands, which is used to speed up
for_each_rtx. */
void
init_rtlanal (void)
{
int i;
for (i = 0; i < NUM_RTX_CODE; i++)
{
const char *format = GET_RTX_FORMAT (i);
const char *first = strpbrk (format, "eEV");
non_rtx_starting_operands[i] = first ? first - format : -1;
}
init_num_sign_bit_copies_in_rep ();
}
/* Check whether this is a constant pool constant. */
bool
constant_pool_constant_p (rtx x)
{
x = avoid_constant_pool_reference (x);
return GET_CODE (x) == CONST_DOUBLE;
}
|