summaryrefslogtreecommitdiff
path: root/gcc/range-op.c
blob: 6333238356c8b6721d3c852ef6bf9e8d400d5799 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
/* Code for range operators.
   Copyright (C) 2017 Free Software Foundation, Inc.
   Contributed by Andrew MacLeod <amacleod@redhat.com>.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "insn-codes.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "ssa.h"
#include "optabs-tree.h"
#include "gimple-pretty-print.h"
#include "diagnostic-core.h"
#include "flags.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "calls.h"
#include "cfganal.h"
#include "gimple-fold.h"
#include "tree-eh.h"
#include "gimple-iterator.h"
#include "gimple-walk.h"
#include "tree-cfg.h"
#include "wide-int.h"
#include "range.h"
#include "range-op.h"

inline wide_int
max_limit (const_tree type)
{
  return wi::max_value (TYPE_PRECISION (type) , TYPE_SIGN (type));
}

inline wide_int
min_limit (const_tree type)
{
  return wi::min_value (TYPE_PRECISION (type) , TYPE_SIGN (type));
}


/* Given newly calcuclated lbound and ubound, examine the overflow bits to 
   determine where the various ranges belong.  */
static void
add_to_range (irange& r, wide_int& lb, bool ov_lb, wide_int& ub, bool ov_ub)
{
  if (ov_lb)
    {
      if (ov_ub)
        {
	  /* Both overflow, so result is all overflow.  */
	  if (TYPE_OVERFLOW_WRAPS (r.get_type ()))
	    r.union_ (lb, ub);
	}
      else
	{
	  /* lbound overflow, ubound doesn't, must be underflow.  */
	  r.union_ (min_limit (r.get_type ()), ub);
	  if (TYPE_OVERFLOW_WRAPS (r.get_type ()))
	    r.union_ (lb, max_limit (r.get_type ()));
	}
      if (!TYPE_OVERFLOW_WRAPS (r.get_type ()))
	r.set_overflow ();
    }
  else
    if (ov_ub)
      {
	/* Ubound overflow, lboudn doesnt, must be an overflow.  */
	r.union_ (lb, max_limit (r.get_type ()));
	if (TYPE_OVERFLOW_WRAPS (r.get_type ()))
	  r.union_ (min_limit (r.get_type ()), ub);
	if (!TYPE_OVERFLOW_WRAPS (r.get_type ()))
	  r.set_overflow ();
      }
    else
      r.union_ (lb, ub);
}

/* Handle the first addition to a range while handling the overflow bits.  */
static void
set_range (const_tree type, irange& r, wide_int& lb, bool ov_lb, wide_int& ub,
	   bool ov_ub)
{
  r.clear (type);
  add_to_range (r, lb, ov_lb, ub, ov_ub);
}

/*  ------------------------------------------------------------------------  */

/* Defaults for all remaining operations are to return NULL. This means no
   additional range info is available beyond that of the type.  */


bool
irange_operator::fold_range (irange& r ATTRIBUTE_UNUSED,
			     const irange& op1 ATTRIBUTE_UNUSED,
			     const irange& op2 ATTRIBUTE_UNUSED) const
{
  return false;
}


bool
irange_operator::op1_irange (irange& r ATTRIBUTE_UNUSED,
			     const irange& lhs ATTRIBUTE_UNUSED,
			     const irange& op2 ATTRIBUTE_UNUSED) const
{
  return false;
}

bool
irange_operator::op2_irange (irange& r ATTRIBUTE_UNUSED,
			     const irange& lhs ATTRIBUTE_UNUSED,
			     const irange& op1 ATTRIBUTE_UNUSED) const
{
  return false;
}

/*  -----------------------------------------------------------------------  */

enum bool_range_state { BRS_FALSE, BRS_TRUE, BRS_EMPTY, BRS_FULL };

/* Return the summary information about boolean range LHS.
   Return an "interesting" range in R.  
   for EMPTY or FULL, return the equivilent range for TYPE,
   for BRS_TRUE and BRS false, return the negatiuon of the bool range.  */
static bool_range_state
get_bool_state (irange& r, const irange& lhs, const_tree val_type)
{
  /* If there is no result, then this is unexectuable, so no range. */
  if (lhs.empty_p ())
    {
      r.clear (val_type);
      return BRS_EMPTY;
    }

  // if the bounds arent the same, then its not a constant.  */
  if (!wi::eq_p (lhs.upper_bound (), lhs.lower_bound ()))
    {
      r.set_range_for_type (val_type);
      return BRS_FULL;
    }

  if (lhs.zero_p ())
    return BRS_FALSE;

  return BRS_TRUE;
}


class operator_equal : public irange_operator
{
public:
  virtual void dump (FILE *f) const;

  virtual bool fold_range (irange& r, const irange& op1,
			   const irange& op2) const;
  virtual bool op1_irange (irange& r, const irange& lhs,
			       const irange& val) const;
  virtual bool op2_irange (irange& r, const irange& lhs,
			       const irange& val) const;
} op_equal;

void 
operator_equal::dump (FILE *f) const
{
  fprintf (f, " == ");
}

/* Fold comparison of the 2 ranges.  */
bool
operator_equal::fold_range (irange& r, const irange& op1,
			    const irange& op2) const
{
  /* We can be sure the values are always equal or not if both ranges
     consist of a single value, and then compare them.  */
  if (wi::eq_p (op1.lower_bound (), op1.upper_bound ())
      && wi::eq_p (op2.lower_bound (), op2.upper_bound ()))
    {
      if (wi::eq_p (op1.lower_bound (), op2.upper_bound()))
	r.set_range (boolean_type_node, 1, 1);
      else
	r.set_range (boolean_type_node, 0, 0);
    }
  else
    {
      /* If ranges do not intersect, we know the range is not equal, otherwise
         we don;t really know anything for sure.  */
      r = irange_intersect (op1, op2);
      if (r.empty_p ())
	r.set_range (boolean_type_node, 0, 0);
      else
	r.set_range_for_type (boolean_type_node);
    }

  return true;
}

bool
operator_equal::op1_irange (irange& r, const irange& lhs,
			    const irange& op2) const
{
  switch (get_bool_state (r, lhs, op2.get_type ()))
    {
      case BRS_FALSE:
        /* If the result is false, the only time we know anything is if OP2 is
	   a constant.  */
	if (wi::eq_p (op2.lower_bound(), op2.upper_bound()))
	  r = irange_invert (op2);
	else
	  r.set_range_for_type (op2.get_type ());
	break;

      case BRS_TRUE:
        /* If its true, the result is the same as OP2.  */
        r = op2;
	break;

      default:
        break;
    }
  return true;
}


bool
operator_equal::op2_irange (irange& r, const irange& lhs,
			    const irange& op1) const
{
  return operator_equal::op1_irange (r, lhs, op1);
}


/*  -----------------------------------------------------------------------  */

/* Range operator for def = op1 != op2. */

class operator_not_equal : public irange_operator
{
public:
  virtual void dump (FILE *f) const;

  virtual bool fold_range (irange& r, const irange& op1,
			   const irange& op2) const;
  virtual bool op1_irange (irange& r, const irange& lhs,
			   const irange& op2) const;
  virtual bool op2_irange (irange& r, const irange& lhs,
			   const irange& op1) const;
} op_not_equal;

void 
operator_not_equal::dump (FILE *f) const
{
  fprintf (f, " != ");
}

/* Fold comparison of the 2 ranges.  */
bool
operator_not_equal::fold_range (irange& r, const irange& op1,
				const irange& op2) const
{
  /* We can be sure the values are always equal or not if both ranges
     consist of a single value, and then compare them.  */
  if (wi::eq_p (op1.lower_bound (), op1.upper_bound ())
      && wi::eq_p (op2.lower_bound (), op2.upper_bound ()))
    {
      if (wi::ne_p (op1.lower_bound (), op2.upper_bound()))
	r.set_range (boolean_type_node, 1, 1);
      else
	r.set_range (boolean_type_node, 0, 0);
    }
  else
    {
      /* If ranges do not intersect, we know the range is not equal, otherwise
         we don;t really know anything for sure.  */
      r = irange_intersect (op1, op2);
      if (r.empty_p ())
	r.set_range (boolean_type_node, 1, 1);
      else
	r.set_range_for_type (boolean_type_node);
    }

  return true;
}

/* Calculate the range of op1 being == to VAL based on LHS.  */
bool
operator_not_equal::op1_irange (irange& r, const irange& lhs,
				const irange& op2) const
{
  switch (get_bool_state (r, lhs, op2.get_type ()))
    {
      case BRS_TRUE:
        /* If the result is true, the only time we know anything is if OP2 is
	   a constant.  */
	if (wi::eq_p (op2.lower_bound(), op2.upper_bound()))
	  r = irange_invert (op2);
	else
	  r.set_range_for_type (op2.get_type ());
	break;

      case BRS_FALSE:
        /* If its true, the result is the same as OP2.  */
        r = op2;
	break;

      default:
        break;
    }
  return true;
}


bool
operator_not_equal::op2_irange (irange& r, const irange& lhs,
				const irange& op1) const
{
  return operator_not_equal::op1_irange (r, lhs, op1);
}


/*  -----------------------------------------------------------------------  */


/* (X < VAL) produces the a range of [MIN, VAL - 1]  */
static void
build_lt (irange& r, const_tree type, const wide_int& val)
{
  bool ov;
  wide_int lim = wi::sub (val, 1, TYPE_SIGN (type), &ov);

  /* If val - 1 underflows, check is X < MIN, which is an empty range.  */
  if (ov)
    r.clear (type);
  else
    r.set_range (type, min_limit (type), lim);
}

/* (X <= VAL) produces the a range of [MIN, VAL]  */
static void
build_le (irange& r, const_tree type, const wide_int& val)
{
  r.set_range (type, min_limit (type), val);
}

/* (X > VAL) produces the a range of [VAL + 1, MAX]  */
static void
build_gt (irange& r, const_tree type, const wide_int& val)
{
  bool ov;
  wide_int lim = wi::add (val, 1, TYPE_SIGN (type), &ov);
  /* If val + 1 overflows, check is for X > MAX , which is an empty range.  */
  if (ov)
    r.clear (type);
  else
    r.set_range (type, lim, max_limit (type));
}

/* (X >= val) produces the a range of [VAL, MAX]  */
static void
build_ge (irange& r, const_tree type, const wide_int& val)
{
  r.set_range (type, val, max_limit (type));
}



class operator_lt :  public irange_operator
{
public:
  virtual bool fold_range (irange& r, const irange& op1,
			   const irange& op2) const;
  virtual bool op1_irange (irange& r, const irange& lhs,
			   const irange& op2) const;
  virtual bool op2_irange (irange& r, const irange& lhs,
			   const irange& op1) const;

  virtual void dump (FILE *f) const;
} op_lt;

void 
operator_lt::dump (FILE *f) const
{
  fprintf (f, " < ");
}

bool
operator_lt::fold_range (irange& r, const irange& op1, const irange& op2) const
{
  signop sign = TYPE_SIGN (op1.get_type ());
  gcc_checking_assert (sign == TYPE_SIGN (op2.get_type ()));

  if (wi::lt_p (op1.upper_bound (), op2.lower_bound (), sign))
    r.set_range (boolean_type_node, 1, 1);
  else
    if (!wi::lt_p (op1.lower_bound (), op2.upper_bound (), sign))
      r.set_range (boolean_type_node, 0 ,0);
    else 
      r.set_range_for_type (boolean_type_node);
  return true;
}


bool
operator_lt::op1_irange (irange& r, const irange& lhs, const irange& op2) const
{
  switch (get_bool_state (r, lhs, op2.get_type ()))
    {
      case BRS_TRUE:
	build_lt (r, op2.get_type (), op2.upper_bound ());
	break;

      case BRS_FALSE:
	build_ge (r, op2.get_type (), op2.lower_bound ());
	break;

      default:
        break;
    }
  return true;
}


bool
operator_lt::op2_irange (irange& r, const irange& lhs, const irange& op1) const
{
  switch (get_bool_state (r, lhs, op1.get_type ()))
    {
      case BRS_FALSE:
	build_le (r, op1.get_type (), op1.upper_bound ());
	break;

      case BRS_TRUE:
	build_gt (r, op1.get_type (), op1.lower_bound ());
	break;

      default:
        break;
    }
  return true;

}

class operator_le :  public irange_operator
{
public:
  virtual bool fold_range (irange& r, const irange& op1,
			   const irange& op2) const;
  virtual bool op1_irange (irange& r, const irange& lhs,
			   const irange& op2) const;
  virtual bool op2_irange (irange& r, const irange& lhs,
			   const irange& op1) const;

  virtual void dump (FILE *f) const;
} op_le;

void 
operator_le::dump (FILE *f) const
{
  fprintf (f, " <= ");
}

bool
operator_le::fold_range (irange& r, const irange& op1, const irange& op2) const
{
  signop sign = TYPE_SIGN (op1.get_type ());
  gcc_checking_assert (sign == TYPE_SIGN (op2.get_type ()));

  if (wi::le_p (op1.upper_bound (), op2.lower_bound (), sign))
    r.set_range (boolean_type_node, 1, 1);
  else
    if (!wi::le_p (op1.lower_bound (), op2.upper_bound (), sign))
      r.set_range (boolean_type_node, 0 ,0);
    else 
      r.set_range_for_type (boolean_type_node);
  return true;
}

bool
operator_le::op1_irange (irange& r, const irange& lhs, const irange& op2) const
{
  switch (get_bool_state (r, lhs, op2.get_type ()))
    {
      case BRS_TRUE:
	build_le (r, op2.get_type (), op2.upper_bound ());
	break;

      case BRS_FALSE:
	build_gt (r, op2.get_type (), op2.lower_bound ());
	break;

      default:
        break;
    }
  return true;
}


bool
operator_le::op2_irange (irange& r, const irange& lhs, const irange& op1) const
{
  switch (get_bool_state (r, lhs, op1.get_type ()))
    {
      case BRS_FALSE:
	build_lt (r, op1.get_type (), op1.upper_bound ());
	break;

      case BRS_TRUE:
	build_ge (r, op1.get_type (), op1.lower_bound ());
	break;

      default:
        break;
    }
  return true;

}


class operator_gt :  public irange_operator
{
public:
  virtual bool fold_range (irange& r, const irange& op1,
			   const irange& op2) const;
  virtual bool op1_irange (irange& r, const irange& lhs,
			   const irange& op2) const;
  virtual bool op2_irange (irange& r, const irange& lhs,
			   const irange& op1) const;

  virtual void dump (FILE *f) const;
} op_gt;

void 
operator_gt::dump (FILE *f) const
{
  fprintf (f, " > ");
}

bool
operator_gt::fold_range (irange& r, const irange& op1, const irange& op2) const
{
  signop sign = TYPE_SIGN (op1.get_type ());
  gcc_checking_assert (sign == TYPE_SIGN (op2.get_type ()));

  if (wi::gt_p (op1.lower_bound (), op2.upper_bound (), sign))
    r.set_range (boolean_type_node, 1, 1);
  else
    if (!wi::gt_p (op1.upper_bound (), op2.lower_bound (), sign))
    r.set_range (boolean_type_node, 0, 0);
    else 
      r.set_range_for_type (boolean_type_node);

  return true;
}

bool
operator_gt::op1_irange (irange& r, const irange& lhs, const irange& op2) const
{
  switch (get_bool_state (r, lhs, op2.get_type ()))
    {
      case BRS_TRUE:
	build_gt (r, op2.get_type (), op2.lower_bound ());
	break;

      case BRS_FALSE:
	build_le (r, op2.get_type (), op2.upper_bound ());
	break;

      default:
        break;
    }
  return true;
}


bool
operator_gt::op2_irange (irange& r, const irange& lhs, const irange& op1) const
{
  switch (get_bool_state (r, lhs, op1.get_type ()))
    {
      case BRS_FALSE:
	build_ge (r, op1.get_type (), op1.lower_bound ());
	break;

      case BRS_TRUE:
	build_lt (r, op1.get_type (), op1.upper_bound ());
	break;

      default:
        break;
    }
  return true;

}


class operator_ge :  public irange_operator
{
public:
  virtual bool fold_range (irange& r, const irange& op1,
			   const irange& op2) const;
  virtual bool op1_irange (irange& r, const irange& lhs,
			   const irange& op2) const;
  virtual bool op2_irange (irange& r, const irange& lhs,
			   const irange& op1) const;

  virtual void dump (FILE *f) const;
} op_ge;

void 
operator_ge::dump (FILE *f) const
{
  fprintf (f, " >= ");
}

bool
operator_ge::fold_range (irange& r, const irange& op1, const irange& op2) const
{
  signop sign = TYPE_SIGN (op1.get_type ());
  gcc_checking_assert (sign == TYPE_SIGN (op2.get_type ()));

  if (wi::ge_p (op1.lower_bound (), op2.upper_bound (), sign))
    r.set_range (boolean_type_node, 1 , 1);
  else
    if (!wi::ge_p (op1.upper_bound (), op2.lower_bound (), sign))
      r.set_range (boolean_type_node, 0 , 0);
    else 
      r.set_range_for_type (boolean_type_node);

  return true;
} 

bool
operator_ge::op1_irange (irange& r, const irange& lhs, const irange& op2) const
{
  switch (get_bool_state (r, lhs, op2.get_type ()))
    {
      case BRS_TRUE:
	build_ge (r, op2.get_type (), op2.lower_bound ());
	break;

      case BRS_FALSE:
	build_lt (r, op2.get_type (), op2.upper_bound ());
	break;

      default:
        break;
    }
  return true;
}


bool
operator_ge::op2_irange (irange& r, const irange& lhs, const irange& op1) const
{
  switch (get_bool_state (r, lhs, op1.get_type ()))
    {
      case BRS_FALSE:
	build_gt (r, op1.get_type (), op1.lower_bound ());
	break;

      case BRS_TRUE:
	build_le (r, op1.get_type (), op1.upper_bound ());
	break;

      default:
        break;
    }
  return true;

}



/*  -----------------------------------------------------------------------  */

/*  -----------------------------------------------------------------------  */
/* Range operator for     def = op1 + op2. */

enum opm_mode { OPM_ADD, OPM_SUB, OPM_MUL, OPM_DIV, OPM_EXACTDIV };

/* Perform an operation between a constant and a range.  */
static bool
op_ir (opm_mode mode, irange& r, const wide_int& lh, const irange& rh)
{
  bool ov_lb, ov_ub;
  unsigned x;
  wide_int lb, ub, new_lb, new_ub;
  const_tree type = rh.get_type ();
  signop s = TYPE_SIGN (type);

  r.clear (type);
  for (x = 0; x < rh.num_pairs () ; x++)
    {
      lb = rh.lower_bound (x);
      ub = rh.upper_bound (x);
      switch (mode)
        {
        case OPM_ADD:
	  new_lb = wi::add (lh, lb, s, &ov_lb);
	  new_ub = wi::add (lh, ub, s, &ov_ub);
	  break;

        case OPM_SUB:
	  new_lb = wi::sub (lh, ub, s, &ov_lb);
	  new_ub = wi::sub (lh, lb, s, &ov_ub);
	  break;

        case OPM_MUL:
	  new_lb = wi::mul (lh, lb, s, &ov_lb);
	  new_ub = wi::mul (lh, ub, s, &ov_ub);
	  // Multiply by large numbers can cause multiple overflows.
	  if (ov_lb || ov_ub)
	    return false;
	  // Multiply by a negative number can cause bound reversals.
	  if (wi::gt_p (new_lb, new_ub, s))
	    {
	      wide_int tmp = new_lb;
	      new_lb = new_ub;
	      new_ub = tmp;
	    }
	  break;

        case OPM_DIV:
	  // 0 / anything is [0,0]
	  if (wi::eq_p (lh, 0))
	    {
	      new_lb = lh;
	      new_ub = lh;
	      ov_lb = ov_ub = false;
	    }
	  else
	    return false;
	  break;

	default:
	  gcc_unreachable ();
	}
      add_to_range (r, new_lb, ov_lb, new_ub, ov_ub);
    }
  return true;
}

/* Perform an operation between a range and a constant.  */
static bool
op_ri (opm_mode mode, irange& r, const irange& lh, const wide_int& rh)
{
  bool ov_lb, ov_ub;
  unsigned x;
  wide_int lb, ub, new_lb, new_ub;
  const_tree type = lh.get_type ();
  signop s = TYPE_SIGN (type);

  r.clear (type);
  for (x = 0; x < lh.num_pairs () ; x++)
    {
      lb = lh.lower_bound (x);
      ub = lh.upper_bound (x);
      switch (mode)
        {
	case OPM_ADD:
	  new_lb = wi::add (lb, rh, s, &ov_lb);
	  new_ub = wi::add (ub, rh, s, &ov_ub);
	  break;

	case OPM_SUB:
	  new_lb = wi::sub (lb, rh, s, &ov_lb);
	  new_ub = wi::sub (ub, rh, s, &ov_ub);
	  break;

        case OPM_MUL:
	  // Multiply is symetrical
	  return op_ir (mode, r, rh, lh);

        case OPM_DIV:
	  // anything / [0,0] traps, so abort.
	  if (wi::eq_p (rh, 0))
	    return false;
	  new_lb = wi::div_trunc (lb, rh, s, &ov_lb);
	  new_ub = wi::div_trunc (ub, rh, s, &ov_ub);
	  // The sign of the divisor can reverse the bounds.
	  if (wi::gt_p (new_lb, new_ub, s))
	    {
	      wide_int tmp = new_lb;
	      new_lb = new_ub;
	      new_ub = tmp;
	    }
	  break;
	default:
	  return false;
	}
      add_to_range (r, new_lb, ov_lb, new_ub, ov_ub);
    }
  return true;
}

/* Perform an operation between 2 ranges.  */
static bool
op_rr (opm_mode mode, irange& r, const irange& lh, const irange& rh)
{
  bool res = false;
  if (lh.empty_p () || rh.empty_p ())
    {
      r.clear (lh.get_type ());
      return true;
    }

  // There is a bug in 128 bit operations which dont set the overflow
  // bits properly. PR 82547.  This can cause an ICE because we dont
  // properly handle the overflow, resulting in ranges with LB and UB reversed.
  if (TYPE_PRECISION (lh.get_type ()) > HOST_BITS_PER_WIDE_INT)
    return false;

  /* Try constant cases first to see if we do anything special with them. */
  if (wi::eq_p (lh.upper_bound (), lh.lower_bound ()))
    res = op_ir (mode, r, lh.upper_bound (), rh);
  else
    if (wi::eq_p (rh.upper_bound (), rh.lower_bound ()))
      res = op_ri (mode, r, lh, rh.upper_bound ());\

  if (!res)
    {
      wide_int lb, ub, new_lb, new_ub;
      bool ov_lb, ov_ub;
      const_tree type = lh.get_type ();
      signop s = TYPE_SIGN (type);

      switch (mode)
	{
	case OPM_ADD:
	  /* Add the 2 lower and upper bounds togther and see what we get.  */
	  new_lb = wi::add (lh.lower_bound (), rh.lower_bound (), s, &ov_lb);
	  new_ub = wi::add (lh.upper_bound (), rh.upper_bound (), s, &ov_ub);
	  break;

	case OPM_SUB:
	  /* New possible range is [lb1-ub2, ub1-lb2].  */
	  new_lb = wi::sub (lh.lower_bound (), rh.upper_bound (), s, &ov_lb);
	  new_ub = wi::sub (lh.upper_bound (), rh.lower_bound (), s, &ov_ub);
	  break;

	case OPM_MUL:
	  // Changing signs makes it complicated. we have to break any ranges
	  // which cross 0 into sub ranges with same signs.  punt for now.
	  ov_lb = ov_ub = true;
	  break;

	case OPM_DIV:
	  ov_lb = ov_ub = true;
	  break;

	case OPM_EXACTDIV:
	  // any range without 0 EXACT_DIV anything results in ~[0,0]
	  if (!lh.contains_p (0))
	    {
	      r.set_range (type, 0, 0, irange::INVERSE);
	      return true;
	    }
	  return false;
	default:
	  gcc_unreachable ();
	}

      /* If both overflow, we can't be sure of the final range. */
      if (ov_lb && ov_ub)
	r.set_range_for_type (type);
      else
	set_range (type, r, new_lb, ov_lb, new_ub, ov_ub);
      res = true;
    }
  return res;
}



class operator_plus : public irange_operator
{
public:
  virtual void dump (FILE *f) const;
  virtual bool fold_range (irange& r, const irange& op1,
			   const irange& op2) const;
  virtual bool op1_irange (irange& r, const irange& lhs,
			   const irange& op2) const;
  virtual bool op2_irange (irange& r, const irange& lhs,
			   const irange& op1) const;

} op_plus;

void 
operator_plus::dump (FILE *f) const
{
  fprintf (f, " + ");
}


bool
operator_plus::fold_range (irange& r, const irange& lh, const irange& rh) const
{
  return op_rr (OPM_ADD, r, lh, rh);
}


/* Adjust irange to be in terms of op1. 
   Given [range] = op1 + val,  op1 = [range] - val.  */
bool
operator_plus::op1_irange (irange& r, const irange& lhs,
			   const irange& op2) const
{
  return op_rr (OPM_SUB, r, lhs, op2);
}

bool
operator_plus::op2_irange (irange& r, const irange& lhs,
			   const irange& op1) const
{
  return op_rr (OPM_SUB, r, lhs, op1);
}


class operator_minus : public irange_operator
{
public:
  virtual void dump (FILE *f) const;
  virtual bool fold_range (irange& r, const irange& op1,
			   const irange& op2) const;
  virtual bool op1_irange (irange& r, const irange& lhs,
			   const irange& op2) const;
  virtual bool op2_irange (irange& r, const irange& lhs,
			   const irange& op1) const;

} op_minus;

void 
operator_minus::dump (FILE *f) const
{
  fprintf (f, " - ");
}


bool
operator_minus::fold_range (irange& r, const irange& lh, const irange& rh) const
{
  return op_rr (OPM_SUB, r, lh, rh);
}


/* Adjust irange to be in terms of op1. 
   Given lhs = op1 - op2,  op1 = lhs + op2.  */
bool
operator_minus::op1_irange (irange& r, const irange& lhs,
			    const irange& op2) const
{
  return op_rr (OPM_ADD, r, lhs, op2);
}

/* Adjust irange to be in terms of op2. 
   Given lhs = op1 - op2,  -op2 = lhs - op1, therefore op2 = op1 - lhs.  */
bool
operator_minus::op2_irange (irange& r, const irange& lhs,
			   const irange& op1) const
{
  return op_rr (OPM_SUB, r, op1 ,lhs);
}


class operator_multiply : public irange_operator
{
public:
  virtual void dump (FILE *f) const;
  virtual bool fold_range (irange& r, const irange& op1,
			   const irange& op2) const;
  virtual bool op1_irange (irange& r, const irange& lhs,
			   const irange& op2) const;
  virtual bool op2_irange (irange& r, const irange& lhs,
			   const irange& op1) const;

} op_multiply;

void 
operator_multiply::dump (FILE *f) const
{
  fprintf (f, " * ");
}


bool
operator_multiply::fold_range (irange& r, const irange& lh,
			      const irange& rh) const
{
  return op_rr (OPM_MUL, r, lh, rh);
}


/* Adjust irange to be in terms of op1. 
   Given [range] = op1 + val,  op1 = [range] - val.  */
bool
operator_multiply::op1_irange (irange& r, const irange& lhs,
			       const irange& op2) const
{
  return op_rr (OPM_DIV, r, lhs, op2);
}

bool
operator_multiply::op2_irange (irange& r, const irange& lhs,
			       const irange& op1) const
{
  return op_rr (OPM_DIV, r, lhs, op1);
}


class operator_divide : public irange_operator
{
public:
  virtual void dump (FILE *f) const;
  virtual bool fold_range (irange& r, const irange& op1,
			   const irange& op2) const;
  virtual bool op1_irange (irange& r, const irange& lhs,
			   const irange& op2) const;
  virtual bool op2_irange (irange& r, const irange& lhs,
			   const irange& op1) const;

} op_divide;

void 
operator_divide::dump (FILE *f) const
{
  fprintf (f, " / ");
}


bool
operator_divide::fold_range (irange& r, const irange& lh,
			     const irange& rh) const
{
  return op_rr (OPM_DIV, r, lh, rh);
}


// Adjust irange to be in terms of op1. 
bool
operator_divide::op1_irange (irange& r ATTRIBUTE_UNUSED,
			     const irange& lhs ATTRIBUTE_UNUSED,
			     const irange& op2 ATTRIBUTE_UNUSED) const
{
  // 	a_6 = foo ()
  // 	a_7 = a_6 / 4
  // if a_7 is [4,4], a_6 is actually [16,19] so ranges are trickier to
  // calulate.  punt for now.
  return false;
}

bool
operator_divide::op2_irange (irange& r ATTRIBUTE_UNUSED,
			     const irange& lhs ATTRIBUTE_UNUSED,
			     const irange& op1 ATTRIBUTE_UNUSED) const
{
  return false;
}


class operator_exact_divide : public irange_operator
{
public:
  virtual void dump (FILE *f) const;
  virtual bool fold_range (irange& r, const irange& op1,
			   const irange& op2) const;

} op_exact_divide;

void 
operator_exact_divide::dump (FILE *f) const
{
  fprintf (f, " exact_div ");
}


bool
operator_exact_divide::fold_range (irange& r, const irange& lh,
			     const irange& rh) const
{
  return op_rr (OPM_EXACTDIV, r, lh, rh);
}





/*  ----------------------------------------------------------------------  */

class operator_cast: public irange_operator
{
public:
  virtual void dump (FILE *f) const;
  virtual bool fold_range (irange& r, const irange& op1,
			   const irange& op2) const;
  virtual bool op1_irange (irange& r, const irange& lhs,
			   const irange& op2) const;

} op_cast;

/* Unary operators put the range for the type of the expression as op2.  */

void
operator_cast::dump (FILE *f) const
{
  fprintf (f, "(cast)");
}

/* Return the range of lh converted to the type of rh.  */
bool
operator_cast::fold_range (irange& r, const irange& lh, const irange& rh) const
{
  if (lh.get_type () != rh.get_type ())
    {
      /* Handle conversion so they become the same type.  */
      r = lh;
      r.cast (rh.get_type ());
      r.intersect (rh);
    }
  else
    /* If they are the same type, the result should be the intersection of
       the two ranges.  */
    r = irange_intersect (lh, rh);
  return true;
}

bool
operator_cast::op1_irange (irange& r, const irange& lhs,
			   const irange& op2) const
{
  const_tree lhs_type = lhs.get_type ();
  const_tree op2_type = op2.get_type ();
  irange op_type;

  /* if the precision of the LHS is smaller than the precision of the RHS,
     then there would be truncation of the value on the RHS, and so we can tell
     nothing about it.  */
  if (TYPE_PRECISION (lhs_type) < TYPE_PRECISION (op2_type))
    {
      r.set_range_for_type (op2_type);
      return true;
    }

  /* If the LHS precision is greater than the rhs precision, the LHS range
     is resticted to the range of the RHS by this assignment.  */
  if (TYPE_PRECISION (lhs_type) > TYPE_PRECISION (op2_type))
    {
      /* Cast the range of the RHS to the type of the LHS. */
      op_type.set_range_for_type (op2_type);
      op_type.cast (lhs_type);

      /* Intersect this with the LHS range will produce the RHS range.  */
      r = irange_intersect (lhs, op_type);
    }
  else
    r = lhs;

  /* Cast the calculated range to the type of the RHS.  */
  r.cast (op2.get_type ());

  return true;
}

/*  ----------------------------------------------------------------------  */

// Bitwise and logical ops. 

class operator_logical_and : public irange_operator
{
public:
  void dump (FILE *f) const;
  virtual bool fold_range (irange& r, const irange& lh, const irange& rh) const;
  virtual bool op1_irange (irange& r, const irange& lhs,
			   const irange& op2) const;
  virtual bool op2_irange (irange& r, const irange& lhs,
			   const irange& op1) const;
} op_logical_and;

void 
operator_logical_and::dump (FILE *f) const
{
  fprintf (f, " && ");
}


bool
operator_logical_and::fold_range (irange& r, const irange& lh,
				  const irange& rh) const
{
  
  // Empty ranges are viral.
  if (lh.empty_p () || rh.empty_p ())
    {
      r.clear (boolean_type_node);
      return true;
    }

  // 0 && anything is 0
  if ((wi::eq_p (lh.lower_bound (), 0) && wi::eq_p (lh.upper_bound (), 0))
      || (wi::eq_p (lh.lower_bound (), 0) && wi::eq_p (rh.upper_bound (), 0)))
    {
      r.set_range (boolean_type_node, boolean_false_node, boolean_false_node);
      return true;
    }

  // To reach this point, there must be a logical 1 on each side, and the only
  // remaining question is whether there is a zero or not.

  if (lh.contains_p (0) || rh.contains_p (0))
    r.set_range (boolean_type_node, boolean_false_node, boolean_true_node);
  else
    r.set_range (boolean_type_node, boolean_true_node, boolean_true_node);
  
  return true;
}



bool
operator_logical_and::op1_irange (irange& r, const irange& lhs,
				  const irange& op2) const
{
   switch (get_bool_state (r, lhs, op2.get_type ()))
     {
       /* A true result means both sides of the AND must be true.  */
       case BRS_TRUE:
         r.set_range (boolean_type_node, 1, 1);
	 break;
     
       /* Any other result means only one side has to be false, the other
	  side can be anything. SO we cant be sure of any result here.  */
      default:
        r.set_range_for_type (boolean_type_node);
	break;
    }
  return true;
}

bool
operator_logical_and::op2_irange (irange& r, const irange& lhs,
				  const irange& op1) const
{
  return operator_logical_and::op1_irange (r, lhs, op1);
}

class operator_bitwise_and : public irange_operator
{
public:
  void dump (FILE *f) const;
  virtual bool fold_range (irange& r, const irange& lh, const irange& rh) const;
  virtual bool op1_irange (irange& r, const irange& lhs,
			   const irange& op2) const;
  virtual bool op2_irange (irange& r, const irange& lhs,
			   const irange& op1) const;
} op_bitwise_and;

void 
operator_bitwise_and::dump (FILE *f) const
{
  fprintf (f, " & ");
}


/* A bitwise AND of two ranges is executed when we are walking forward with
   ranges that have been determined.   x_8 is an unsigned char.
	 b_1 = x_8 < 20
	 b_2 = x_8 > 5
	 c_2 = b_1 && b_2
   if we are looking for the range of x_8, the ranges on each side of the AND
   will be:   b_1 carries x_8 = [0, 19],   b_2 carries [6, 255]
   the result of the AND is the intersection of the 2 ranges, [6, 255]. */
bool
operator_bitwise_and::fold_range (irange& r, const irange& lh,
				  const irange& rh) const
{
  /* If this is really a logical operation, call that.  */
  if (types_compatible_p (const_cast <tree> (lh.get_type ()),
			  boolean_type_node))
    return op_logical_and.fold_range (r, lh, rh);

  /* For now do nothing with bitwise AND of iranges, just return the type. */
  r.set_range_for_type (lh.get_type ());
  return true;
}

bool
operator_bitwise_and::op1_irange (irange& r, const irange& lhs,
				  const irange& op2) const
{
  /* If this is really a logical operation, call that.  */
  if (types_compatible_p (const_cast <tree> (lhs.get_type ()),
			  boolean_type_node))
    return op_logical_and.op1_irange (r, lhs, op2);

  /* For now do nothing with bitwise AND of iranges, just return the type. */
  r.set_range_for_type (lhs.get_type ());
  return true;
}

bool
operator_bitwise_and::op2_irange (irange& r, const irange& lhs,
				  const irange& op1) const
{
  return operator_bitwise_and::op1_irange (r, lhs, op1);
}


class operator_logical_or : public irange_operator
{
public:
  void dump (FILE *f) const;
  virtual bool fold_range (irange& r, const irange& lh, const irange& rh) const;
  virtual bool op1_irange (irange& r, const irange& lhs,
			   const irange& op2) const;
  virtual bool op2_irange (irange& r, const irange& lhs,
			   const irange& op1) const;
} op_logical_or;

void 
operator_logical_or::dump (FILE *f) const
{
  fprintf (f, " || ");
}


bool
operator_logical_or::fold_range (irange& r, const irange& lh,
				  const irange& rh) const
{
  r = irange_union (lh, rh);
  return true;
}

bool
operator_logical_or::op1_irange (irange& r, const irange& lhs,
				  const irange& op2) const
{
   switch (get_bool_state (r, lhs, op2.get_type ()))
     {
       /* A false result means both sides of the OR must be false.  */
       case BRS_FALSE:
         r.set_range (boolean_type_node, 0 , 0);
	 break;
     
       /* Any other result means only one side has to be true, the other
	  side can be anything. SO we cant be sure of any result here.  */
      default:
        r.set_range_for_type (boolean_type_node);
	break;
    }
  return true;
}

bool
operator_logical_or::op2_irange (irange& r, const irange& lhs,
				  const irange& op1) const
{
  return operator_logical_or::op1_irange (r, lhs, op1);
}

class operator_bitwise_or : public irange_operator
{
public:
  void dump (FILE *f) const;
  virtual bool fold_range (irange& r, const irange& lh, const irange& rh) const;
  virtual bool op1_irange (irange& r, const irange& lhs,
			   const irange& op2) const;
  virtual bool op2_irange (irange& r, const irange& lhs,
			   const irange& op1) const;
} op_bitwise_or;

void 
operator_bitwise_or::dump (FILE *f) const
{
  fprintf (f, " | ");
}


/* A bitwise AND of two ranges is executed when we are walking forward with
   ranges that have been determined.   x_8 is an unsigned char.
	 b_1 = x_8 < 20
	 b_2 = x_8 > 5
	 c_2 = b_1 && b_2
   if we are looking for the range of x_8, the ranges on each side of the AND
   will be:   b_1 carries x_8 = [0, 19],   b_2 carries [6, 255]
   the result of the AND is the intersection of the 2 ranges, [6, 255]. */
bool
operator_bitwise_or::fold_range (irange& r, const irange& lh,
				  const irange& rh) const
{
  /* If this is really a logical operation, call that.  */
  if (types_compatible_p (const_cast <tree> (lh.get_type ()),
			  boolean_type_node))
    return op_logical_or.fold_range (r, lh, rh);

  /* For now do nothing with bitwise AND of iranges, just return the type. */
  r.set_range_for_type (lh.get_type ());
  return true;
}

bool
operator_bitwise_or::op1_irange (irange& r, const irange& lhs,
				  const irange& op2) const
{
  /* If this is really a logical operation, call that.  */
  if (types_compatible_p (const_cast <tree> (lhs.get_type ()),
			  boolean_type_node))
    return op_logical_or.op1_irange (r, lhs, op2);

  /* For now do nothing with bitwise AND of iranges, just return the type. */
  r.set_range_for_type (lhs.get_type ());
  return true;
}

bool
operator_bitwise_or::op2_irange (irange& r, const irange& lhs,
				  const irange& op1) const
{
  return operator_bitwise_or::op1_irange (r, lhs, op1);
}



class operator_logical_not : public irange_operator
{
public:
  void dump (FILE *f) const;
  virtual bool fold_range (irange& r, const irange& lh, const irange& rh) const;
  virtual bool op1_irange (irange& r, const irange& lhs,
			   const irange& op2) const;
} op_logical_not;

void 
operator_logical_not::dump (FILE *f) const
{
  fprintf (f, " ! ");
}

/* Folding a logical NOT, oddly enough, invlves doing nothing on the
   forward pass thru.  During the initial walk backwards, the logical NOT
   reversed the desired outcome on the way back, so on the way forward all
   we do is pass the range forward.
	b_2 = x_1 < 20
	b_3 = !b_2
	if (b_3)
    to determine the TRUE branch, walking  backward
         if (b_3)		if ([1,1])
         b_3 = !b_2		[1,1] = ![0,0]
	 b_2 = x_1 < 20		[0,0] = x_1 < 20,   false, so x_1 == [20, 255]
     which is te result we are looking for.. so.. pass it thru.  */
      
bool
operator_logical_not::fold_range (irange& r, const irange& lh,
				  const irange& rh ATTRIBUTE_UNUSED) const
{
  r = lh;
  return true;
}

bool
operator_logical_not::op1_irange (irange& r, const irange& lhs,
				  const irange& op2 ATTRIBUTE_UNUSED) const
{
  r = irange_invert (lhs);
  return true;
}


class operator_bitwise_not : public irange_operator
{
public:
  void dump (FILE *f) const;
  virtual bool fold_range (irange& r, const irange& lh, const irange& rh) const;
  virtual bool op1_irange (irange& r, const irange& lhs,
			   const irange& op2) const;
} op_bitwise_not;

void 
operator_bitwise_not::dump (FILE *f) const
{
  fprintf (f, " ~ ");
}

bool
operator_bitwise_not::fold_range (irange& r, const irange& lh,
				  const irange& rh) const
{
  /* If this is a boolean not, call the logical version.  */
  if (types_compatible_p (const_cast <tree> (lh.get_type ()),
			  boolean_type_node))
    return op_logical_not.fold_range (r, lh, rh);

  /* Not sure how to logical not a range, add bitpattern support.  */
  r.set_range_for_type (lh.get_type ());
  return true;
}

bool
operator_bitwise_not::op1_irange (irange& r, const irange& lhs,
				  const irange& op2 ATTRIBUTE_UNUSED) const
{
  /* If this is a boolean not, call the logical version.  */
  if (types_compatible_p (const_cast <tree> (lhs.get_type ()),
			  boolean_type_node))
    return op_logical_not.op1_irange (r, lhs, op2);

  /* Not sure how to logical not a range, add bitpattern support.  */
  r.set_range_for_type (lhs.get_type ());
  return true;
}


/*  ----------------------------------------------------------------------  */


class operator_cst : public irange_operator
{
public:
  virtual void dump (FILE *f) const;

  virtual bool fold_range (irange& r, const irange& op1,
			   const irange& op2) const;
} op_integer_cst;

void 
operator_cst::dump (FILE *f) const
{
  fprintf (f, " const ");
}

bool
operator_cst::fold_range (irange& r, const irange& lh,
			  const irange& rh ATTRIBUTE_UNUSED) const
{
  r = lh;
  return true;
}



class operator_ssa_name : public irange_operator
{
public:
  virtual void dump (FILE *f) const;

  virtual bool fold_range (irange& r, const irange& op1,
			   const irange& op2) const;
  virtual bool op1_irange (irange& r, const irange& lhs,
			   const irange& op2) const;
} op_ssa_name;

void 
operator_ssa_name::dump (FILE *f) const
{
  fprintf (f, " SSA_NAME ");
}

bool
operator_ssa_name::fold_range (irange& r, const irange& lh,
			  const irange& rh ATTRIBUTE_UNUSED) const
{
  r = lh;
  return true;
}

bool
operator_ssa_name::op1_irange (irange& r, const irange& lhs,
			       const irange& op2 ATTRIBUTE_UNUSED) const
{
  r = lhs;
  return true;
}



/*  ----------------------------------------------------------------------  */

/* Create the irange operator table as a local object in this file, and the
   constructor should be automatically called before it is used.  */

class irange_op_table
{
  irange_operator *irange_tree[MAX_TREE_CODES];
public:
  irange_op_table ();
  inline irange_operator *operator[] (enum tree_code code);
} irange_tree;

irange_operator *irange_op_table::operator[] (enum tree_code code)
{
  gcc_assert (code > 0 && code < MAX_TREE_CODES);
  return irange_tree[code];
}

irange_op_table::irange_op_table ()
{
  irange_tree[LT_EXPR] = &op_lt;
  irange_tree[LE_EXPR] = &op_le;
  irange_tree[GT_EXPR] = &op_gt;
  irange_tree[GE_EXPR] = &op_ge;
  irange_tree[NE_EXPR] = &op_not_equal;
  irange_tree[EQ_EXPR] = &op_equal;

  irange_tree[PLUS_EXPR] = &op_plus;
  irange_tree[MINUS_EXPR] = &op_minus;
  irange_tree[MULT_EXPR] = &op_multiply;
  irange_tree[TRUNC_DIV_EXPR] = &op_divide;
  irange_tree[EXACT_DIV_EXPR] = &op_exact_divide;
  
  irange_tree[NOP_EXPR] = &op_cast;
  irange_tree[CONVERT_EXPR] = &op_cast;

  irange_tree[TRUTH_AND_EXPR] = &op_logical_and;
  irange_tree[TRUTH_OR_EXPR] = &op_logical_or;
  irange_tree[TRUTH_NOT_EXPR] = &op_logical_not;

  irange_tree[BIT_AND_EXPR] = &op_bitwise_and;
  irange_tree[BIT_IOR_EXPR] = &op_bitwise_or;
  irange_tree[BIT_NOT_EXPR] = &op_bitwise_not;

  irange_tree[INTEGER_CST] = &op_integer_cst;
  irange_tree[SSA_NAME] = &op_ssa_name;
}

/* The table is hidden and accessed via a simple extern function.  */

irange_operator *
irange_op_handler (enum tree_code code)
{
  return irange_tree[code];
}