1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
|
/* Allocate registers for pseudo-registers that span basic blocks.
Copyright (C) 2007 Free Software Foundation, Inc.
Contributed by Kenneth Zadeck <zadeck@naturalbridge.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "machmode.h"
#include "hard-reg-set.h"
#include "rtl.h"
#include "tm_p.h"
#include "flags.h"
#include "regs.h"
#include "function.h"
#include "insn-config.h"
#include "recog.h"
#include "reload.h"
#include "output.h"
#include "toplev.h"
#include "tree-pass.h"
#include "timevar.h"
#include "df.h"
#include "vecprim.h"
#include "ra.h"
#include "sbitmap.h"
#include "sparseset.h"
/* Externs defined in regs.h. */
int max_allocno;
struct allocno *allocno;
HOST_WIDEST_FAST_INT *conflicts;
int *reg_allocno;
HOST_WIDE_INT *partial_bitnum;
HOST_WIDE_INT max_bitnum;
alloc_pool adjacency_pool;
adjacency_t **adjacency;
typedef struct df_ref * df_ref_t;
DEF_VEC_P(df_ref_t);
DEF_VEC_ALLOC_P(df_ref_t,heap);
/* Macros to determine the bit number within the triangular bit matrix for
the two allocnos Low and HIGH, with LOW strictly less than HIGH. */
#define CONFLICT_BITNUM(I, J) \
(((I) < (J)) ? (partial_bitnum[I] + (J)) : (partial_bitnum[J] + (I)))
#define CONFLICT_BITNUM_FAST(I, I_PARTIAL_BITNUM, J) \
(((I) < (J)) ? ((I_PARTIAL_BITNUM) + (J)) : (partial_bitnum[J] + (I)))
bool
conflict_p (int allocno1, int allocno2)
{
HOST_WIDE_INT bitnum;
HOST_WIDEST_FAST_INT word, mask;
#ifdef ENABLE_CHECKING
int blk1, blk2;
gcc_assert (allocno1 >= 0 && allocno1 < max_allocno);
gcc_assert (allocno2 >= 0 && allocno2 < max_allocno);
blk1 = regno_basic_block (allocno[allocno1].reg);
blk2 = regno_basic_block (allocno[allocno2].reg);
gcc_assert (blk1 == 0 || blk2 == 0 || blk1 == blk2);
#endif
if (allocno1 == allocno2)
/* By definition, an allocno does not conflict with itself. */
return 0;
bitnum = CONFLICT_BITNUM (allocno1, allocno2);
#ifdef ENABLE_CHECKING
gcc_assert (bitnum >= 0 && bitnum < max_bitnum);
#endif
word = conflicts[bitnum / HOST_BITS_PER_WIDEST_FAST_INT];
mask = (HOST_WIDEST_FAST_INT) 1 << (bitnum % HOST_BITS_PER_WIDEST_FAST_INT);
return (word & mask) != 0;
}
/* Add conflict edges between ALLOCNO1 and ALLOCNO2. */
static void
set_conflict (int allocno1, int allocno2)
{
HOST_WIDE_INT bitnum, index;
HOST_WIDEST_FAST_INT word, mask;
#ifdef ENABLE_CHECKING
int blk1, blk2;
gcc_assert (allocno1 >= 0 && allocno1 < max_allocno);
gcc_assert (allocno2 >= 0 && allocno2 < max_allocno);
blk1 = regno_basic_block (allocno[allocno1].reg);
blk2 = regno_basic_block (allocno[allocno2].reg);
gcc_assert (blk1 == 0 || blk2 == 0 || blk1 == blk2);
#endif
/* By definition, an allocno does not conflict with itself. */
if (allocno1 == allocno2)
return;
bitnum = CONFLICT_BITNUM (allocno1, allocno2);
#ifdef ENABLE_CHECKING
gcc_assert (bitnum >= 0 && bitnum < max_bitnum);
#endif
index = bitnum / HOST_BITS_PER_WIDEST_FAST_INT;
word = conflicts[index];
mask = (HOST_WIDEST_FAST_INT) 1 << (bitnum % HOST_BITS_PER_WIDEST_FAST_INT);
if ((word & mask) == 0)
{
conflicts[index] = word | mask;
add_neighbor (allocno1, allocno2);
add_neighbor (allocno2, allocno1);
}
}
/* Add conflict edges between ALLOCNO1 and all allocnos currently live. */
static void
set_conflicts (int allocno1, sparseset live)
{
int i;
HOST_WIDE_INT bitnum, index;
HOST_WIDEST_FAST_INT word, mask;
HOST_WIDE_INT partial_bitnum_allocno1;
#ifdef ENABLE_CHECKING
gcc_assert (allocno1 >= 0 && allocno1 < max_allocno);
#endif
partial_bitnum_allocno1 = partial_bitnum[allocno1];
EXECUTE_IF_SET_IN_SPARSESET (live, i)
{
/* By definition, an allocno does not conflict with itself. */
if (allocno1 == i)
continue;
#ifdef ENABLE_CHECKING
gcc_assert (i >= 0 && i < max_allocno);
#endif
bitnum = CONFLICT_BITNUM_FAST (allocno1, partial_bitnum_allocno1, i);
#ifdef ENABLE_CHECKING
gcc_assert (bitnum >= 0 && bitnum < max_bitnum);
#endif
index = bitnum / HOST_BITS_PER_WIDEST_FAST_INT;
word = conflicts[index];
mask = (HOST_WIDEST_FAST_INT) 1 << (bitnum % HOST_BITS_PER_WIDEST_FAST_INT);
if ((word & mask) == 0)
{
conflicts[index] = word | mask;
add_neighbor (allocno1, i);
add_neighbor (i, allocno1);
}
}
}
/* Add a conflict between R1 and R2. */
static void
record_one_conflict_between_regnos (enum machine_mode mode1, int r1,
enum machine_mode mode2, int r2)
{
int allocno1 = reg_allocno[r1];
int allocno2 = reg_allocno[r2];
if (dump_file)
fprintf (dump_file, " rocbr adding %d<=>%d\n", r1, r2);
if (allocno1 >= 0 && allocno2 >= 0)
set_conflict (allocno1, allocno2);
else if (allocno1 >= 0)
{
if (r2 < FIRST_PSEUDO_REGISTER)
add_to_hard_reg_set (&allocno[allocno1].hard_reg_conflicts, mode2, r2);
}
else if (allocno2 >= 0)
{
if (r1 < FIRST_PSEUDO_REGISTER)
add_to_hard_reg_set (&allocno[allocno2].hard_reg_conflicts, mode1, r1);
}
/* Now, recursively handle the reg_renumber cases. */
if (reg_renumber[r1] >= 0)
record_one_conflict_between_regnos (mode1, reg_renumber[r1], mode2, r2);
if (reg_renumber[r2] >= 0)
record_one_conflict_between_regnos (mode1, r1, mode2, reg_renumber[r2]);
}
/* Record a conflict between register REGNO and everything currently
live. REGNO must not be a pseudo reg that was allocated by
local_alloc; such numbers must be translated through reg_renumber
before calling here. */
static void
record_one_conflict (sparseset allocnos_live,
HARD_REG_SET *hard_regs_live, int regno)
{
int i;
if (regno < FIRST_PSEUDO_REGISTER)
/* When a hard register becomes live, record conflicts with live
pseudo regs. */
EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, i)
{
SET_HARD_REG_BIT (allocno[i].hard_reg_conflicts, regno);
if (dump_file)
fprintf (dump_file, " roc adding %d<=>%d\n", allocno[i].reg, regno);
}
else
/* When a pseudo-register becomes live, record conflicts first
with hard regs, then with other pseudo regs. */
{
int ialloc = reg_allocno[regno];
if (dump_file)
{
fprintf (dump_file, " roc adding %d<=>(", regno);
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (TEST_HARD_REG_BIT (*hard_regs_live, i)
&& !TEST_HARD_REG_BIT (allocno[ialloc].hard_reg_conflicts, i))
fprintf (dump_file, "%d ", i);
EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, i)
{
if (!conflict_p (ialloc, i))
fprintf (dump_file, "%d ", allocno[i].reg);
}
fprintf (dump_file, ")\n");
}
IOR_HARD_REG_SET (allocno[ialloc].hard_reg_conflicts, *hard_regs_live);
set_conflicts (ialloc, allocnos_live);
}
}
/* Handle the case where REG is set by the insn being scanned, during
the backward scan to accumulate conflicts. Record a conflict with
all other registers already live.
REG might actually be something other than a register; if so, we do
nothing. */
static void
mark_reg_store (sparseset allocnos_live,
HARD_REG_SET *hard_regs_live,
struct df_ref *ref)
{
rtx reg = DF_REF_REG (ref);
unsigned int regno = DF_REF_REGNO (ref);
enum machine_mode mode = GET_MODE (reg);
/* Either this is one of the max_allocno pseudo regs not allocated,
or it is or has a hardware reg. First handle the pseudo-regs. */
if (regno >= FIRST_PSEUDO_REGISTER && reg_allocno[regno] >= 0)
record_one_conflict (allocnos_live, hard_regs_live, regno);
if (reg_renumber[regno] >= 0)
regno = reg_renumber[regno];
/* Handle hardware regs (and pseudos allocated to hard regs). */
if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno])
{
unsigned int start = regno;
unsigned int last = end_hard_regno (mode, regno);
if ((GET_CODE (reg) == SUBREG) && !DF_REF_FLAGS_IS_SET (ref, DF_REF_EXTRACT))
{
start += subreg_regno_offset (regno, GET_MODE (SUBREG_REG (reg)),
SUBREG_BYTE (reg), GET_MODE (reg));
last = start + subreg_nregs_with_regno (regno, reg);
}
regno = start;
while (regno < last)
record_one_conflict (allocnos_live, hard_regs_live, regno++);
}
}
/* Return true if REGNO with MODE can be assigned to a register in
CL. */
static bool
may_overlap_class_p (enum machine_mode mode, unsigned int regno,
enum reg_class rc)
{
if (regno >= FIRST_PSEUDO_REGISTER)
{
enum reg_class pref_class = reg_preferred_class (regno);
enum reg_class alt_class = reg_alternate_class (regno);
return (reg_classes_intersect_p (rc, pref_class)
|| reg_classes_intersect_p (rc, alt_class));
}
else
return in_hard_reg_set_p (reg_class_contents[rc], mode, regno);
}
/* SRC is an input operand to an instruction in which register DEST is
an output operand. SRC may be bound to a member of class SRC_CLASS
and DEST may be bound to an earlyclobbered register that overlaps
SRC_CLASS. If SRC is a register that might be allocated a member
of SRC_CLASS, add a conflict between it and DEST. */
static void
add_conflicts_for_earlyclobber (rtx dest, enum reg_class src_class, rtx src)
{
if (GET_CODE (src) == SUBREG)
src = SUBREG_REG (src);
if (REG_P (src)
&& may_overlap_class_p (GET_MODE (src), REGNO (src), src_class))
record_one_conflict_between_regnos (GET_MODE (src), REGNO (src),
GET_MODE (dest), REGNO (dest));
}
/* Look at the defs in INSN and determine if any of them are marked as
early clobber. If they are marked as early clobber, add a conflict
between any input operand that could be allocated to the same
register. */
static void
set_conflicts_for_earlyclobber (rtx insn)
{
int alt;
int def;
int use;
extract_insn (insn);
preprocess_constraints ();
if (dump_file)
fprintf (dump_file, " starting early clobber conflicts.\n");
for (alt = 0; alt < recog_data.n_alternatives; alt++)
for (def = 0; def < recog_data.n_operands; def++)
if ((recog_op_alt[def][alt].earlyclobber)
&& (recog_op_alt[def][alt].cl != NO_REGS))
{
rtx dreg = recog_data.operand[def];
enum machine_mode dmode = recog_data.operand_mode[def];
if (GET_CODE (dreg) == SUBREG)
dreg = SUBREG_REG (dreg);
if (REG_P (dreg)
&& may_overlap_class_p (dmode, REGNO (dreg), recog_op_alt[def][alt].cl))
for (use = 0; use < recog_data.n_operands; use++)
if (use != def
&& recog_data.operand_type[use] != OP_OUT
&& reg_classes_intersect_p (recog_op_alt[def][alt].cl,
recog_op_alt[use][alt].cl))
{
add_conflicts_for_earlyclobber (dreg,
recog_op_alt[use][alt].cl,
recog_data.operand[use]);
/* Reload may end up swapping commutative operands,
so you have to take both orderings into account.
The constraints for the two operands can be
completely different. (Indeed, if the
constraints for the two operands are the same
for all alternatives, there's no point marking
them as commutative.) */
if (use < recog_data.n_operands + 1
&& recog_data.constraints[use][0] == '%')
add_conflicts_for_earlyclobber (dreg,
recog_op_alt[use][alt].cl,
recog_data.operand[use + 1]);
}
}
}
/* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
REG to the the number of nregs, and INIT_VALUE to get the
initialization. ALLOCNUM need not be the regno of REG. */
void
ra_init_live_subregs (bool init_value,
sbitmap *live_subregs,
int *live_subregs_used,
int allocnum,
rtx reg)
{
unsigned int regno = REGNO (SUBREG_REG (reg));
int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
gcc_assert (size > 0);
/* Been there, done that. */
if (live_subregs_used[allocnum])
return;
/* Create a new one with zeros. */
if (live_subregs[allocnum] == NULL)
live_subregs[allocnum] = sbitmap_alloc (size);
/* If the entire reg was live before blasting into subregs, we need
to init all of the subregs to ones else init to 0. */
if (init_value)
sbitmap_ones (live_subregs[allocnum]);
else
sbitmap_zero (live_subregs[allocnum]);
/* Set the number of bits that we really want. */
live_subregs_used[allocnum] = size;
}
/* Set REG to be not live in the sets ALLOCNOS_LIVE, LIVE_SUBREGS,
HARD_REGS_LIVE. If EXTRACT is false, assume that the entire reg is
set not live even if REG is a subreg. */
inline static void
clear_reg_in_live (sparseset allocnos_live,
sbitmap *live_subregs,
int *live_subregs_used,
HARD_REG_SET *hard_regs_live,
rtx reg,
bool extract)
{
unsigned int regno = (GET_CODE (reg) == SUBREG)
? REGNO (SUBREG_REG (reg)): REGNO (reg);
int allocnum = reg_allocno[regno];
if (allocnum >= 0)
{
if ((GET_CODE (reg) == SUBREG) && !extract)
{
unsigned int start = SUBREG_BYTE (reg);
unsigned int last = start + GET_MODE_SIZE (GET_MODE (reg));
ra_init_live_subregs (sparseset_bit_p (allocnos_live, allocnum),
live_subregs, live_subregs_used, allocnum, reg);
/* Ignore the paradoxical bits. */
if ((int)last > live_subregs_used[allocnum])
last = live_subregs_used[allocnum];
while (start < last)
{
RESET_BIT (live_subregs[allocnum], start);
start++;
}
if (sbitmap_empty_p (live_subregs[allocnum]))
{
live_subregs_used[allocnum] = 0;
sparseset_clear_bit (allocnos_live, allocnum);
}
else
/* Set the allocnos live here because that bit has to be
true to get us to look at the live_subregs fields. */
sparseset_set_bit (allocnos_live, allocnum);
}
else
{
/* Resetting the live_subregs_used is effectively saying do not use the
subregs because we are writing the whole pseudo. */
live_subregs_used[allocnum] = 0;
sparseset_clear_bit (allocnos_live, allocnum);
}
}
if (regno >= FIRST_PSEUDO_REGISTER)
return;
/* Handle hardware regs (and pseudos allocated to hard regs). */
if (! fixed_regs[regno])
{
unsigned int start = regno;
if ((GET_CODE (reg) == SUBREG) && !extract)
{
unsigned int last;
start += SUBREG_BYTE (reg);
last = start + subreg_nregs_with_regno (regno, reg);
regno = start;
while (regno < last)
{
CLEAR_HARD_REG_BIT (*hard_regs_live, regno);
regno++;
}
}
else
remove_from_hard_reg_set (hard_regs_live, GET_MODE (reg), regno);
}
}
/* Set REG to be live in the sets ALLOCNOS_LIVE, LIVE_SUBREGS,
HARD_REGS_LIVE. If EXTRACT is false, assume that the entire reg is
set live even if REG is a subreg. */
inline static void
set_reg_in_live (sparseset allocnos_live,
sbitmap *live_subregs,
int *live_subregs_used,
HARD_REG_SET *hard_regs_live,
rtx reg,
bool extract)
{
unsigned int regno = (GET_CODE (reg) == SUBREG)
? REGNO (SUBREG_REG (reg)): REGNO (reg);
int allocnum = reg_allocno[regno];
if (allocnum >= 0)
{
if ((GET_CODE (reg) == SUBREG) && !extract)
{
unsigned int start = SUBREG_BYTE (reg);
unsigned int last = start + GET_MODE_SIZE (GET_MODE (reg));
ra_init_live_subregs (sparseset_bit_p (allocnos_live, allocnum),
live_subregs, live_subregs_used, allocnum, reg);
/* Ignore the paradoxical bits. */
if ((int)last > live_subregs_used[allocnum])
last = live_subregs_used[allocnum];
while (start < last)
{
SET_BIT (live_subregs[allocnum], start);
start++;
}
}
else
/* Resetting the live_subregs_used is effectively saying do not use the
subregs because we are writing the whole pseudo. */
live_subregs_used[allocnum] = 0;
sparseset_set_bit (allocnos_live, allocnum);
}
if (regno >= FIRST_PSEUDO_REGISTER)
return;
/* Handle hardware regs (and pseudos allocated to hard regs). */
if (! fixed_regs[regno])
{
if ((GET_CODE (reg) == SUBREG) && !extract)
{
unsigned int start = regno;
unsigned int last;
start += subreg_regno_offset (regno, GET_MODE (SUBREG_REG (reg)),
SUBREG_BYTE (reg), GET_MODE (reg));
last = start + subreg_nregs_with_regno (regno, reg);
regno = start;
while (regno < last)
{
SET_HARD_REG_BIT (*hard_regs_live, regno);
regno++;
}
}
else
add_to_hard_reg_set (hard_regs_live, GET_MODE (reg), regno);
}
}
/* Add hard reg conflicts to RENUMBERS_LIVE assuming that pseudo in
allocno[ALLOCNUM] is allocated to a set of hard regs starting at
RENUMBER.
We are smart about the case where only subregs of REG have been
set, as indicated by LIVE_SUBREGS[ALLOCNUM] and
LIVE_SUBREGS_USED[ALLOCNUM]. See global_conflicts for description
of LIVE_SUBREGS and LIVE_SUBREGS_USED. */
inline static void
set_renumbers_live (HARD_REG_SET *renumbers_live,
sbitmap *live_subregs,
int *live_subregs_used,
int allocnum, int renumber)
{
/* The width of the pseudo. */
int nbytes = live_subregs_used[allocnum];
int regno = allocno[allocnum].reg;
enum machine_mode mode = GET_MODE (regno_reg_rtx[regno]);
if (dump_file)
fprintf (dump_file, " set_renumbers_live %d->%d ",
regno, renumber);
if (nbytes > 0)
{
int i;
sbitmap live_subs = live_subregs[allocnum];
/* First figure out how many hard regs we are considering using. */
int target_nregs = hard_regno_nregs[renumber][mode];
/* Now figure out the number of bytes per hard reg. Note that
this may be different that what would be obtained by looking
at the mode in the pseudo. For instance, a complex number
made up of 2 32-bit parts gets mapped to 2 hard regs, even if
the hardregs are 64-bit floating point values. */
int target_width = nbytes / target_nregs;
if (dump_file)
fprintf (dump_file, "target_nregs=%d target_width=%d nbytes=%d",
target_nregs, target_width, nbytes);
for (i = 0; i < target_nregs; i++)
{
int j;
bool set = false;
for (j = 0; j < target_width; j++)
{
int reg_start = i * target_width;
if (reg_start + j >= nbytes)
break;
set |= TEST_BIT (live_subs, reg_start + j);
}
if (set)
SET_HARD_REG_BIT (*renumbers_live, renumber + i);
}
}
else
add_to_hard_reg_set (renumbers_live, mode, renumber);
if (dump_file)
fprintf (dump_file, "\n");
}
/* Dump out a REF with its reg_renumber range to FILE using
PREFIX. */
static void
dump_ref (FILE *file,
const char * prefix,
const char * suffix,
rtx reg,
unsigned int regno,
sbitmap *live_subregs,
int *live_subregs_used
)
{
int allocnum = reg_allocno[regno];
fprintf (file, "%s %d", prefix, regno);
if (allocnum >= 0
&& live_subregs_used[allocnum] > 0)
{
int j;
char s = '[';
for (j = 0; j < live_subregs_used[allocnum]; j++)
if (TEST_BIT (live_subregs[allocnum], j))
{
fprintf (dump_file, "%c%d", s, j);
s = ',';
}
fprintf (dump_file, "]");
}
if (reg_renumber[regno] >= 0)
{
enum machine_mode mode = GET_MODE (reg);
unsigned int start;
unsigned int last;
regno = reg_renumber[regno];
start = regno;
last = end_hard_regno (mode, regno);
if (GET_CODE (reg) == SUBREG)
{
start += subreg_regno_offset (regno, GET_MODE (SUBREG_REG (reg)),
SUBREG_BYTE (reg), GET_MODE (reg));
last = start + subreg_nregs_with_regno (regno, reg);
}
if (start == last - 1)
fprintf (file, "(%d)", start);
else
fprintf (file, "(%d:%d..%d)", regno, start, last-1);
}
fprintf (file, suffix);
}
/* Scan the rtl code and record all conflicts and register preferences in the
conflict matrices and preference tables. */
void
global_conflicts (void)
{
unsigned int i;
basic_block bb;
rtx insn;
/* Regs that have allocnos can be in either
hard_regs_live (if regno < FIRST_PSEUDO_REGISTER) or
allocnos_live (if regno >= FIRST_PSEUDO_REGISTER) or
both if local_alloc has preallocated it and reg_renumber >= 0. */
HARD_REG_SET hard_regs_live;
HARD_REG_SET renumbers_live;
sparseset allocnos_live;
bitmap live = BITMAP_ALLOC (NULL);
VEC (df_ref_t, heap) *clobbers = NULL;
VEC (df_ref_t, heap) *dying_regs = NULL;
/* live_subregs is a vector used to keep accurate information about
which hardregs are live in multiword pseudos. live_subregs and
live_subregs_used are indexed by reg_allocno. The live_subreg
entry for a particular pseudo is a bitmap with one bit per byte
of the register. It is only used if the corresponding element is
non zero in live_subregs_used. The value in live_subregs_used is
number of bytes that the pseudo can occupy. */
sbitmap *live_subregs = XCNEWVEC (sbitmap, max_allocno);
int *live_subregs_used = XNEWVEC (int, max_allocno);
if (dump_file)
{
fprintf (dump_file, "fixed registers : ");
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (fixed_regs[i])
fprintf (dump_file, "%d ", i);
fprintf (dump_file, "\n");
}
allocnos_live = sparseset_alloc (max_allocno);
FOR_EACH_BB (bb)
{
bitmap_iterator bi;
bitmap_copy (live, DF_LIVE_OUT (bb));
df_simulate_artificial_refs_at_end (bb, live);
sparseset_clear (allocnos_live);
memset (live_subregs_used, 0, max_allocno * sizeof (int));
CLEAR_HARD_REG_SET (hard_regs_live);
CLEAR_HARD_REG_SET (renumbers_live);
/* Initialize allocnos_live and hard_regs_live for bottom of block. */
EXECUTE_IF_SET_IN_BITMAP (live, 0, i, bi)
{
if (i >= FIRST_PSEUDO_REGISTER)
break;
if (! fixed_regs[i])
SET_HARD_REG_BIT (hard_regs_live, i);
}
EXECUTE_IF_SET_IN_BITMAP (live, FIRST_PSEUDO_REGISTER, i, bi)
{
int allocnum = reg_allocno[i];
if (allocnum >= 0)
{
int renumber = reg_renumber[i];
rtx reg = regno_reg_rtx[i];
set_reg_in_live (allocnos_live, live_subregs, live_subregs_used,
&hard_regs_live, reg, false);
if (renumber >= 0 && renumber < FIRST_PSEUDO_REGISTER)
set_renumbers_live (&renumbers_live, live_subregs, live_subregs_used,
allocnum, renumber);
}
}
if (dump_file)
fprintf (dump_file, "\nstarting basic block %d\n\n", bb->index);
FOR_BB_INSNS_REVERSE (bb, insn)
{
unsigned int uid = INSN_UID (insn);
struct df_ref **def_rec;
struct df_ref **use_rec;
if (!INSN_P (insn))
continue;
if (dump_file)
{
fprintf (dump_file, "insn = %d live = hardregs [", uid);
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (TEST_HARD_REG_BIT (hard_regs_live, i))
fprintf (dump_file, "%d ", i);
fprintf (dump_file, "] renumbered [");
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (TEST_HARD_REG_BIT (renumbers_live, i))
fprintf (dump_file, "%d ", i);
fprintf (dump_file, "] pseudos [");
EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, i)
{
dump_ref (dump_file, " ", "", regno_reg_rtx[allocno[i].reg],
allocno[i].reg, live_subregs, live_subregs_used);
}
fprintf (dump_file, "]\n");
}
/* Add the defs into live. Most of them will already be
there, the ones that are missing are the unused ones and
the clobbers. We do this in order to make sure that
interferences are added between every def and everything
that is live across the insn. These defs will be removed
later. */
for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
{
struct df_ref *def = *def_rec;
/* FIXME: Ignoring may clobbers is technically the wrong
thing to do. However the old version of the this
code ignores may clobbers (and instead has many
places in the register allocator to handle these
constraints). It is quite likely that with a new
allocator, the correct thing to do is to not ignore
the constraints and then do not put in the large
number of special checks. */
if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
{
rtx reg = DF_REF_REG (def);
set_reg_in_live (allocnos_live, live_subregs, live_subregs_used,
&hard_regs_live, reg,
DF_REF_FLAGS_IS_SET (def, DF_REF_EXTRACT));
if (dump_file)
dump_ref (dump_file, " adding def", "\n",
reg, DF_REF_REGNO (def), live_subregs, live_subregs_used);
}
}
/* Add the hardregs into renumbers_live to build the
interferences. Renumbers_live will be rebuilt in the
next step from scratch, so corrupting it here is no
problem. */
IOR_HARD_REG_SET (renumbers_live, hard_regs_live);
/* Add the interferences for the defs. */
for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
{
struct df_ref *def = *def_rec;
if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
mark_reg_store (allocnos_live, &renumbers_live, def);
}
/* Remove the defs from the live sets. Leave the partial
and conditional defs in the set because they do not
kill. */
VEC_truncate (df_ref_t, clobbers, 0);
for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
{
struct df_ref *def = *def_rec;
if (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL))
{
rtx reg = DF_REF_REG (def);
clear_reg_in_live (allocnos_live, live_subregs, live_subregs_used,
&hard_regs_live, reg,
DF_REF_FLAGS_IS_SET (def, DF_REF_EXTRACT));
if (dump_file)
dump_ref (dump_file, " clearing def", "\n",
reg, DF_REF_REGNO (def), live_subregs, live_subregs_used);
}
if (DF_REF_FLAGS_IS_SET (def, DF_REF_MUST_CLOBBER))
VEC_safe_push (df_ref_t, heap, clobbers, def);
}
/* Go thru all of the live pseudos and reset renumbers_live.
We must start from scratch here because there could have
been several pseudos alive that have the same
reg_renumber and if we see a clobber for one of them, we
cannot not want to kill the renumbers from the other
pseudos. */
CLEAR_HARD_REG_SET (renumbers_live);
EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, i)
{
unsigned int regno = allocno[i].reg;
int renumber = reg_renumber[regno];
if (renumber >= 0 && renumber < FIRST_PSEUDO_REGISTER)
set_renumbers_live (&renumbers_live, live_subregs, live_subregs_used,
i, renumber);
}
/* Add the uses to the live sets. Keep track of the regs
that are dying inside the insn, this set will be useful
later. */
VEC_truncate (df_ref_t, dying_regs, 0);
for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
{
struct df_ref *use = *use_rec;
unsigned int regno = DF_REF_REGNO (use);
bool added = false;
int renumber = reg_renumber[regno];
int allocnum = reg_allocno[regno];
bool renumbering = false;
rtx reg = DF_REF_REG (use);
/* DF_REF_READ_WRITE on a use means that this use is
fabricated from a def that is a partial set to a
multiword reg. Here, we only model the subreg case
precisely so we do not need to look at the fabricated
use unless that set also happens to wrapped in a
ZERO_EXTRACT. */
if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
&& (!DF_REF_FLAGS_IS_SET (use, DF_REF_EXTRACT))
&& DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
continue;
if (dump_file)
dump_ref (dump_file, " seeing use", "\n",
reg, regno, live_subregs, live_subregs_used);
if (allocnum >= 0)
{
if (GET_CODE (reg) == SUBREG
&& !DF_REF_FLAGS_IS_SET (use, DF_REF_EXTRACT))
{
unsigned int start = SUBREG_BYTE (reg);
unsigned int last = start + GET_MODE_SIZE (GET_MODE (reg));
ra_init_live_subregs (sparseset_bit_p (allocnos_live, allocnum),
live_subregs, live_subregs_used, allocnum, reg);
/* Ignore the paradoxical bits. */
if ((int)last > live_subregs_used[allocnum])
last = live_subregs_used[allocnum];
while (start < last)
{
if (!TEST_BIT (live_subregs[allocnum], start))
{
if (dump_file)
fprintf (dump_file, " dying pseudo subreg %d[%d]\n", regno, start);
SET_BIT (live_subregs[allocnum], start);
added = true;
}
start++;
}
sparseset_set_bit (allocnos_live, allocnum);
if (renumber >= 0 && renumber < FIRST_PSEUDO_REGISTER)
set_renumbers_live (&renumbers_live, live_subregs, live_subregs_used,
allocnum, renumber);
}
else if (live_subregs_used[allocnum] > 0
|| !sparseset_bit_p (allocnos_live, allocnum))
{
if (dump_file)
fprintf (dump_file, " %sdying pseudo\n",
(live_subregs_used[allocnum] > 0) ? "partially ": "");
/* Resetting the live_subregs_used is
effectively saying do not use the subregs
because we are reading the whole pseudo. */
live_subregs_used[allocnum] = 0;
sparseset_set_bit (allocnos_live, allocnum);
if (renumber >= 0 && renumber < FIRST_PSEUDO_REGISTER)
set_renumbers_live (&renumbers_live, live_subregs, live_subregs_used,
allocnum, renumber);
added = true;
}
}
if (renumber >= 0 && renumber < FIRST_PSEUDO_REGISTER)
{
regno = renumber;
renumbering = true;
}
if (regno < FIRST_PSEUDO_REGISTER)
{
unsigned int start = regno;
unsigned int last;
if (GET_CODE (reg) == SUBREG)
{
start += subreg_regno_offset (regno, GET_MODE (SUBREG_REG (reg)),
SUBREG_BYTE (reg), GET_MODE (reg));
last = start + subreg_nregs_with_regno (regno, reg);
}
else
last = end_hard_regno (GET_MODE (reg), regno);
regno = start;
while (regno < last)
{
if ((!TEST_HARD_REG_BIT (hard_regs_live, regno))
&& (!TEST_HARD_REG_BIT (renumbers_live, regno))
&& ! fixed_regs[regno])
{
if (dump_file)
fprintf (dump_file, " dying hard reg %d\n", regno);
if (renumbering)
SET_HARD_REG_BIT (renumbers_live, regno);
else
SET_HARD_REG_BIT (hard_regs_live, regno);
added = true;
}
regno++;
}
}
if (added)
VEC_safe_push (df_ref_t, heap, dying_regs, use);
}
/* These three cases are all closely related, they all deal
with some set of outputs of the insn need to conflict
with some of the registers that are used by the insn but
die within the insn. If no registers die within the insn,
the tests can be skipped. */
if (VEC_length (df_ref_t, dying_regs) > 0)
{
int k;
/* There appears to be an ambiguity as to what a clobber
means in an insn. In some cases, the clobber happens
within the processing of the insn and in some cases
it happens at the end of processing the insn. There
is currently no way to distinguish these two cases so
this code causes real clobbers to interfere with
registers that die within an insn.
This is consistent with the prior version of
interference graph builder but is was discovered
while developing this version of the code, that on
some architectures such as the x86-64, the clobbers
only appear to happen at the end of the insn.
However, the ppc-32 contains clobbers for which these
interferences are necessary.
FIXME: We should consider either adding a new kind of
clobber, or adding a flag to the clobber distinguish
these two cases. */
if (dump_file && VEC_length (df_ref_t, clobbers))
fprintf (dump_file, " clobber conflicts\n");
for (k = VEC_length (df_ref_t, clobbers) - 1; k >= 0; k--)
{
struct df_ref *def = VEC_index (df_ref_t, clobbers, k);
int j;
for (j = VEC_length (df_ref_t, dying_regs) - 1; j >= 0; j--)
{
struct df_ref *use = VEC_index (df_ref_t, dying_regs, j);
record_one_conflict_between_regnos (GET_MODE (DF_REF_REG (def)),
DF_REF_REGNO (def),
GET_MODE (DF_REF_REG (use)),
DF_REF_REGNO (use));
}
}
/* Early clobbers, by definition, need to not only
clobber the registers that are live across the insn
but need to clobber the registers that die within the
insn. The clobbering for registers live across the
insn is handled above. */
set_conflicts_for_earlyclobber (insn);
/* If INSN is a store with multiple outputs, then any
reg that dies here and is used inside of the address
of the output must conflict with the other outputs.
FIXME: There has been some discussion as to whether
this is right place to handle this issue. This is a
hold over from an early version global conflicts.
1) There is some evidence that code only deals with a
bug that is only on the m68k. The conditions of this
test are such that this case only triggers for a very
peculiar insn, one that is a parallel where one of
the sets is a store and the other sets a reg that is
used in the address of the store. See
http://gcc.gnu.org/ml/gcc-patches/1998-12/msg00259.html
2) The situation that this is addressing is a bug in
the part of reload that handles stores, adding this
conflict only hides the problem. (Of course no one
really wants to fix reload so it is understandable
why a bandaid was just added here.)
Just because an output is unused does not mean the
compiler can assume the side effect will not occur.
Consider if REG appears in the address of an output
and we reload the output. If we allocate REG to the
same hard register as an unused output we could set
the hard register before the output reload insn.
3) This could actually be handled by making the other
(non store) operand of the insn be an early clobber.
This would insert the same conflict, even if it is
not technically an early clobber. */
/* It is unsafe to use !single_set here since it will ignore an
unused output. */
if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
{
int j;
if (dump_file)
fprintf (dump_file, " multiple sets\n");
for (j = VEC_length (df_ref_t, dying_regs) - 1; j >= 0; j--)
{
int used_in_output = 0;
struct df_ref *use = VEC_index (df_ref_t, dying_regs, j);
rtx reg = DF_REF_REG (use);
int uregno = DF_REF_REGNO (use);
enum machine_mode umode = GET_MODE (DF_REF_REG (use));
int k;
for (k = XVECLEN (PATTERN (insn), 0) - 1; k >= 0; k--)
{
rtx set = XVECEXP (PATTERN (insn), 0, k);
if (GET_CODE (set) == SET
&& !REG_P (SET_DEST (set))
&& !rtx_equal_p (reg, SET_DEST (set))
&& reg_overlap_mentioned_p (reg, SET_DEST (set)))
used_in_output = 1;
}
if (used_in_output)
for (k = XVECLEN (PATTERN (insn), 0) - 1; k >= 0; k--)
{
rtx set = XVECEXP (PATTERN (insn), 0, k);
if (GET_CODE (set) == SET
&& REG_P (SET_DEST (set))
&& !rtx_equal_p (reg, SET_DEST (set)))
record_one_conflict_between_regnos (GET_MODE (SET_DEST (set)),
REGNO (SET_DEST (set)),
umode, uregno);
}
}
}
}
}
/* Add the renumbers live to the hard_regs_live for the next few
calls. All of this gets recomputed at the top of the loop so
there is no harm. */
IOR_HARD_REG_SET (hard_regs_live, renumbers_live);
#ifdef EH_RETURN_DATA_REGNO
if (bb_has_eh_pred (bb))
{
unsigned int i;
for (i = 0; ; ++i)
{
unsigned int regno = EH_RETURN_DATA_REGNO (i);
if (regno == INVALID_REGNUM)
break;
record_one_conflict (allocnos_live, &hard_regs_live, regno);
}
}
#endif
if (bb_has_abnormal_pred (bb))
{
unsigned int i;
#ifdef STACK_REGS
/* Pseudos can't go in stack regs at the start of a basic block that
is reached by an abnormal edge. Likewise for call clobbered regs,
because caller-save, fixup_abnormal_edges and possibly the table
driven EH machinery are not quite ready to handle such regs live
across such edges. */
EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, i)
{
allocno[i].no_stack_reg = 1;
}
for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
record_one_conflict (allocnos_live, &hard_regs_live, i);
#endif
/* No need to record conflicts for call clobbered regs if we have
nonlocal labels around, as we don't ever try to allocate such
regs in this case. */
if (! current_function_has_nonlocal_label)
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (call_used_regs [i])
record_one_conflict (allocnos_live, &hard_regs_live, i);
}
}
for (i = 0; i < (unsigned int)max_allocno; i++)
if (live_subregs[i])
free (live_subregs[i]);
/* Clean up. */
free (allocnos_live);
free (live_subregs);
free (live_subregs_used);
VEC_free (df_ref_t, heap, dying_regs);
VEC_free (df_ref_t, heap, clobbers);
BITMAP_FREE (live);
}
|