summaryrefslogtreecommitdiff
path: root/gcc/predict.c
blob: 516cfbcc1c57e3eab26d4b3cb82f604e0e787742 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
/* Branch prediction routines for the GNU compiler.
   Copyright (C) 2000, 2001 Free Software Foundation, Inc.

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2, or (at your option)
   any later version.

   GCC is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING.  If not, write to the Free
   Software Foundation, 59 Temple Place - Suite 330, Boston, MA
   02111-1307, USA.  */

/* References:

   [1] "Branch Prediction for Free"
       Ball and Larus; PLDI '93.
   [2] "Static Branch Frequency and Program Profile Analysis"
       Wu and Larus; MICRO-27.
   [3] "Corpus-based Static Branch Prediction"
       Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95.

*/


#include "config.h"
#include "system.h"
#include "tree.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "insn-config.h"
#include "regs.h"
#include "flags.h"
#include "output.h"
#include "function.h"
#include "except.h"
#include "toplev.h"
#include "recog.h"
#include "expr.h"
#include "predict.h"

/* Random guesstimation given names.  */
#define PROB_NEVER		(0)
#define PROB_VERY_UNLIKELY	(REG_BR_PROB_BASE / 10 - 1)
#define PROB_UNLIKELY		(REG_BR_PROB_BASE * 4 / 10 - 1)
#define PROB_EVEN		(REG_BR_PROB_BASE / 2)
#define PROB_LIKELY		(REG_BR_PROB_BASE - PROB_UNLIKELY)
#define PROB_VERY_LIKELY	(REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
#define PROB_ALWAYS		(REG_BR_PROB_BASE)

static void combine_predictions_for_insn PARAMS ((rtx, basic_block));
static void dump_prediction		 PARAMS ((enum br_predictor, int,
						  basic_block, int));
static void estimate_loops_at_level	 PARAMS ((struct loop *loop));
static void propagate_freq		 PARAMS ((basic_block));
static void estimate_bb_frequencies	 PARAMS ((struct loops *));
static void counts_to_freqs		 PARAMS ((void));

/* Information we hold about each branch predictor.
   Filled using information from predict.def.  */
struct predictor_info
{
  const char *const name;	/* Name used in the debugging dumps.  */
  const int hitrate;		/* Expected hitrate used by
				   predict_insn_def call.  */
  const int flags;
};

/* Use given predictor without Dempster-Shaffer theory if it matches
   using first_match heuristics.  */
#define PRED_FLAG_FIRST_MATCH 1

/* Recompute hitrate in percent to our representation.  */

#define HITRATE(VAL) ((int)((VAL) * REG_BR_PROB_BASE + 50) / 100)

#define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
static const struct predictor_info predictor_info[] = {
#include "predict.def"

  /* Upper bound on predictors.  */
  {NULL, 0, 0}
};
#undef DEF_PREDICTOR

void
predict_insn (insn, predictor, probability)
     rtx insn;
     int probability;
     enum br_predictor predictor;
{
  if (!any_condjump_p (insn))
    abort ();
  REG_NOTES (insn)
    = gen_rtx_EXPR_LIST (REG_BR_PRED,
			 gen_rtx_CONCAT (VOIDmode,
					 GEN_INT ((int) predictor),
					 GEN_INT ((int) probability)),
			 REG_NOTES (insn));
}

/* Predict insn by given predictor.  */
void
predict_insn_def (insn, predictor, taken)
     rtx insn;
     enum br_predictor predictor;
     enum prediction taken;
{
   int probability = predictor_info[(int) predictor].hitrate;
   if (taken != TAKEN)
     probability = REG_BR_PROB_BASE - probability;
   predict_insn (insn, predictor, probability);
}

/* Predict edge E with given probability if possible.  */
void
predict_edge (e, predictor, probability)
     edge e;
     int probability;
     enum br_predictor predictor;
{
  rtx last_insn;
  last_insn = e->src->end;

  /* We can store the branch prediction information only about
     conditional jumps.  */
  if (!any_condjump_p (last_insn))
    return;

  /* We always store probability of branching.  */
  if (e->flags & EDGE_FALLTHRU)
    probability = REG_BR_PROB_BASE - probability;

  predict_insn (last_insn, predictor, probability);
}

/* Predict edge E by given predictor if possible.  */
void
predict_edge_def (e, predictor, taken)
     edge e;
     enum br_predictor predictor;
     enum prediction taken;
{
   int probability = predictor_info[(int) predictor].hitrate;

   if (taken != TAKEN)
     probability = REG_BR_PROB_BASE - probability;
   predict_edge (e, predictor, probability);
}

/* Invert all branch predictions or probability notes in the INSN.  This needs
   to be done each time we invert the condition used by the jump.  */
void
invert_br_probabilities (insn)
     rtx insn;
{
  rtx note = REG_NOTES (insn);

  while (note)
    {
      if (REG_NOTE_KIND (note) == REG_BR_PROB)
	XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
      else if (REG_NOTE_KIND (note) == REG_BR_PRED)
	XEXP (XEXP (note, 0), 1)
	  = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
      note = XEXP (note, 1);
    }
}

/* Dump information about the branch prediction to the output file.  */
static void
dump_prediction (predictor, probability, bb, used)
     enum br_predictor predictor;
     int probability;
     basic_block bb;
     int used;
{
  edge e = bb->succ;

  if (!rtl_dump_file)
    return;

  while (e->flags & EDGE_FALLTHRU)
    e = e->succ_next;

  fprintf (rtl_dump_file, "  %s heuristics%s: %.1f%%",
	   predictor_info[predictor].name,
	   used ? "" : " (ignored)",
	   probability * 100.0 / REG_BR_PROB_BASE);

  if (bb->count)
    {
      fprintf (rtl_dump_file, "  exec ");
      fprintf (rtl_dump_file, HOST_WIDEST_INT_PRINT_DEC,
	       (HOST_WIDEST_INT) bb->count);
      fprintf (rtl_dump_file, " hit ");
      fprintf (rtl_dump_file, HOST_WIDEST_INT_PRINT_DEC,
	       (HOST_WIDEST_INT) e->count);
      fprintf (rtl_dump_file, " (%.1f%%)",
	       e->count * 100.0 / bb->count);
    }
  fprintf (rtl_dump_file, "\n");
}

/* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
   note if not already present.  Remove now useless REG_BR_PRED notes.  */
static void
combine_predictions_for_insn (insn, bb)
     rtx insn;
     basic_block bb;
{
  rtx prob_note = find_reg_note (insn, REG_BR_PROB, 0);
  rtx *pnote = &REG_NOTES (insn);
  rtx note = REG_NOTES (insn);
  int best_probability = PROB_EVEN;
  int best_predictor = END_PREDICTORS;
  int combined_probability = REG_BR_PROB_BASE / 2;
  int d;
  bool first_match = false;
  bool found = false;

  if (rtl_dump_file)
    fprintf (rtl_dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
	     bb->index);

  /* We implement "first match" heuristics and use probability guessed
     by predictor with smallest index.  In the future we will use better
     probability combination techniques.  */
  while (note)
    {
      if (REG_NOTE_KIND (note) == REG_BR_PRED)
	{
	  int predictor = INTVAL (XEXP (XEXP (note, 0), 0));
	  int probability = INTVAL (XEXP (XEXP (note, 0), 1));

	  found = true;
	  if (best_predictor > predictor)
	    best_probability = probability, best_predictor = predictor;

	  d = (combined_probability * probability
	       + (REG_BR_PROB_BASE - combined_probability)
	       * (REG_BR_PROB_BASE - probability));
	  /* An FP math to avoid overflows of 32bit integers.  */
	  combined_probability = (((double)combined_probability) * probability
				  * REG_BR_PROB_BASE / d + 0.5);
	}
      note = XEXP (note, 1);
    }

  /* Decide heuristic to use.  In case we didn't match anything, use
     no_prediction heuristic, in case we did match, use either
     first match or Dempster-Shaffer theory depending on the flags.  */

  if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
    first_match = true;

  if (!found)
    dump_prediction (PRED_NO_PREDICTION, combined_probability, bb, true);
  else
    {
      dump_prediction (PRED_DS_THEORY, combined_probability, bb,
		       !first_match);
      dump_prediction (PRED_FIRST_MATCH, best_probability, bb, first_match);
    }

  if (first_match)
    combined_probability = best_probability;
  dump_prediction (PRED_COMBINED, combined_probability, bb, true);

  while (*pnote)
    {
      if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
	{
	  int predictor = INTVAL (XEXP (XEXP (*pnote, 0), 0));
	  int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));

	  dump_prediction (predictor, probability, bb,
			   !first_match || best_predictor == predictor);
          *pnote = XEXP (*pnote, 1);
	}
      else
        pnote = &XEXP (*pnote, 1);
    }
  if (!prob_note)
    {
      REG_NOTES (insn)
	= gen_rtx_EXPR_LIST (REG_BR_PROB,
			     GEN_INT (combined_probability), REG_NOTES (insn));
      /* Save the prediction into CFG in case we are seeing non-degenerated
	 conditional jump.  */
      if (bb->succ->succ_next)
	{
	  BRANCH_EDGE (bb)->probability = combined_probability;
	  FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - combined_probability;
	}
    }
}

/* Statically estimate the probability that a branch will be taken.
   ??? In the next revision there will be a number of other predictors added
   from the above references. Further, each heuristic will be factored out
   into its own function for clarity (and to facilitate the combination of
   predictions).  */

void
estimate_probability (loops_info)
     struct loops *loops_info;
{
  sbitmap *dominators, *post_dominators;
  int i;
  int found_noreturn = 0;

  dominators = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
  post_dominators = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
  calculate_dominance_info (NULL, dominators, CDI_DOMINATORS);
  calculate_dominance_info (NULL, post_dominators, CDI_POST_DOMINATORS);

  /* Try to predict out blocks in a loop that are not part of a
     natural loop.  */
  for (i = 0; i < loops_info->num; i++)
    {
      int j;

      for (j = loops_info->array[i].first->index;
	   j <= loops_info->array[i].last->index;
	   ++j)
	{
	  if (TEST_BIT (loops_info->array[i].nodes, j))
	    {
	      int header_found = 0;
	      edge e;

	      /* Loop branch heuristics - predict as taken an edge back to
	         a loop's head.  */
	      for (e = BASIC_BLOCK(j)->succ; e; e = e->succ_next)
		if (e->dest == loops_info->array[i].header
		    && e->src == loops_info->array[i].latch)
		  {
		    header_found = 1;
		    predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
		  }
	      /* Loop exit heuristics - predict as not taken an edge
	         exiting the loop if the conditinal has no loop header
	         successors.  */
	      if (!header_found)
		for (e = BASIC_BLOCK(j)->succ; e; e = e->succ_next)
		  if (e->dest->index <= 0
		      || !TEST_BIT (loops_info->array[i].nodes, e->dest->index))
		    predict_edge_def (e, PRED_LOOP_EXIT, NOT_TAKEN);
	    }
	}
    }

  /* Attempt to predict conditional jumps using a number of heuristics.  */
  for (i = 0; i < n_basic_blocks; i++)
    {
      basic_block bb = BASIC_BLOCK (i);
      rtx last_insn = bb->end;
      rtx cond, earliest;
      edge e;

      /* If block has no successor, predict all possible paths to
         it as improbable, as the block contains a call to a noreturn
	 function and thus can be executed only once.  */
      if (bb->succ == NULL && !found_noreturn)
	{
	  int y;

	  /* ??? Postdominator claims each noreturn block to be postdominated
	     by each, so we need to run only once.  This needs to be changed
	     once postdominace algorithm is updated to say something more sane.
	     */
	  found_noreturn = 1;
	  for (y = 0; y < n_basic_blocks; y++)
	    if (!TEST_BIT (post_dominators[y], i))
	      {
		for (e = BASIC_BLOCK (y)->succ; e; e = e->succ_next)
		if (e->dest->index >= 0
		    && TEST_BIT (post_dominators[e->dest->index], i))
		  predict_edge_def (e, PRED_NORETURN, NOT_TAKEN);
	      }
	}

      if (GET_CODE (last_insn) != JUMP_INSN
	  || ! any_condjump_p (last_insn))
	continue;

      for (e = bb->succ; e; e = e->succ_next)
	{
	  /* Predict edges to blocks that return immediately to be
	     improbable.  These are usually used to signal error states.  */
	  if (e->dest == EXIT_BLOCK_PTR
	      || (e->dest->succ && !e->dest->succ->succ_next
		  && e->dest->succ->dest == EXIT_BLOCK_PTR))
	    predict_edge_def (e, PRED_ERROR_RETURN, NOT_TAKEN);

	  /* Look for block we are guarding (ie we dominate it,
	     but it doesn't postdominate us).  */
	  if (e->dest != EXIT_BLOCK_PTR
	      && e->dest != bb
	      && TEST_BIT (dominators[e->dest->index], e->src->index)
	      && !TEST_BIT (post_dominators[e->src->index], e->dest->index))
	    {
	      rtx insn;
	      /* The call heuristic claims that a guarded function call
		 is improbable.  This is because such calls are often used
		 to signal exceptional situations such as printing error
		 messages.  */
	      for (insn = e->dest->head; insn != NEXT_INSN (e->dest->end);
		   insn = NEXT_INSN (insn))
		if (GET_CODE (insn) == CALL_INSN
		    /* Constant and pure calls are hardly used to signalize
		       something exceptional.  */
		    && ! CONST_OR_PURE_CALL_P (insn))
		  {
		    predict_edge_def (e, PRED_CALL, NOT_TAKEN);
		    break;
		  }
	    }
	}

      cond = get_condition (last_insn, &earliest);
      if (! cond)
	continue;

      /* Try "pointer heuristic."
	 A comparison ptr == 0 is predicted as false.
	 Similarly, a comparison ptr1 == ptr2 is predicted as false.  */
      switch (GET_CODE (cond))
	{
	case EQ:
	  if (GET_CODE (XEXP (cond, 0)) == REG
	      && REG_POINTER (XEXP (cond, 0))
	      && (XEXP (cond, 1) == const0_rtx
		  || (GET_CODE (XEXP (cond, 1)) == REG
		      && REG_POINTER (XEXP (cond, 1)))))

	    predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
	  break;
	case NE:
	  if (GET_CODE (XEXP (cond, 0)) == REG
	      && REG_POINTER (XEXP (cond, 0))
	      && (XEXP (cond, 1) == const0_rtx
		  || (GET_CODE (XEXP (cond, 1)) == REG
		      && REG_POINTER (XEXP (cond, 1)))))
	    predict_insn_def (last_insn, PRED_POINTER, TAKEN);
	  break;

	default:
	  break;
	}

      /* Try "opcode heuristic."
	 EQ tests are usually false and NE tests are usually true. Also,
	 most quantities are positive, so we can make the appropriate guesses
	 about signed comparisons against zero.  */
      switch (GET_CODE (cond))
	{
	case CONST_INT:
	  /* Unconditional branch.  */
	  predict_insn_def (last_insn, PRED_UNCONDITIONAL,
			    cond == const0_rtx ? NOT_TAKEN : TAKEN);
	  break;

	case EQ:
	case UNEQ:
	  predict_insn_def (last_insn, PRED_OPCODE, NOT_TAKEN);
	  break;
	case NE:
	case LTGT:
	  predict_insn_def (last_insn, PRED_OPCODE, TAKEN);
	  break;
	case ORDERED:
	  predict_insn_def (last_insn, PRED_OPCODE, TAKEN);
	  break;
	case UNORDERED:
	  predict_insn_def (last_insn, PRED_OPCODE, NOT_TAKEN);
	  break;
	case LE:
	case LT:
	  if (XEXP (cond, 1) == const0_rtx
	      || (GET_CODE (XEXP (cond, 1)) == CONST_INT
		  && INTVAL (XEXP (cond, 1)) == -1))
	    predict_insn_def (last_insn, PRED_OPCODE, NOT_TAKEN);
	  break;
	case GE:
	case GT:
	  if (XEXP (cond, 1) == const0_rtx
	      || (GET_CODE (XEXP (cond, 1)) == CONST_INT
		  && INTVAL (XEXP (cond, 1)) == -1))
	    predict_insn_def (last_insn, PRED_OPCODE, TAKEN);
	  break;

	default:
	  break;
	}
    }

  /* Attach the combined probability to each conditional jump.  */
  for (i = 0; i < n_basic_blocks; i++)
    {
      rtx last_insn = BLOCK_END (i);

      if (GET_CODE (last_insn) != JUMP_INSN
	  || ! any_condjump_p (last_insn))
	continue;
      combine_predictions_for_insn (last_insn, BASIC_BLOCK (i));
    }
  sbitmap_vector_free (post_dominators);
  sbitmap_vector_free (dominators);

  estimate_bb_frequencies (loops_info);
}

/* __builtin_expect dropped tokens into the insn stream describing
   expected values of registers.  Generate branch probabilities
   based off these values.  */

void
expected_value_to_br_prob ()
{
  rtx insn, cond, ev = NULL_RTX, ev_reg = NULL_RTX;

  for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
    {
      switch (GET_CODE (insn))
	{
	case NOTE:
	  /* Look for expected value notes.  */
	  if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EXPECTED_VALUE)
	    {
	      ev = NOTE_EXPECTED_VALUE (insn);
	      ev_reg = XEXP (ev, 0);
	      delete_insn (insn);
	    }
	  continue;

	case CODE_LABEL:
	  /* Never propagate across labels.  */
	  ev = NULL_RTX;
	  continue;

	default:
	  /* Look for insns that clobber the EV register.  */
	  if (ev && reg_set_p (ev_reg, insn))
	    ev = NULL_RTX;
	  continue;

	case JUMP_INSN:
	  /* Look for simple conditional branches.  If we haven't got an
	     expected value yet, no point going further.  */
	  if (GET_CODE (insn) != JUMP_INSN || ev == NULL_RTX)
	    continue;
	  if (! any_condjump_p (insn))
	    continue;
	  break;
	}

      /* Collect the branch condition, hopefully relative to EV_REG.  */
      /* ???  At present we'll miss things like
		(expected_value (eq r70 0))
		(set r71 -1)
		(set r80 (lt r70 r71))
		(set pc (if_then_else (ne r80 0) ...))
	 as canonicalize_condition will render this to us as
		(lt r70, r71)
	 Could use cselib to try and reduce this further.  */
      cond = XEXP (SET_SRC (pc_set (insn)), 0);
      cond = canonicalize_condition (insn, cond, 0, NULL, ev_reg);
      if (! cond
	  || XEXP (cond, 0) != ev_reg
	  || GET_CODE (XEXP (cond, 1)) != CONST_INT)
	continue;

      /* Substitute and simplify.  Given that the expression we're
	 building involves two constants, we should wind up with either
	 true or false.  */
      cond = gen_rtx_fmt_ee (GET_CODE (cond), VOIDmode,
			     XEXP (ev, 1), XEXP (cond, 1));
      cond = simplify_rtx (cond);

      /* Turn the condition into a scaled branch probability.  */
      if (cond != const_true_rtx && cond != const0_rtx)
	abort ();
      predict_insn_def (insn, PRED_BUILTIN_EXPECT,
		        cond == const_true_rtx ? TAKEN : NOT_TAKEN);
    }
}

/* This is used to carry information about basic blocks.  It is
   attached to the AUX field of the standard CFG block.  */

typedef struct block_info_def
{
  /* Estimated frequency of execution of basic_block.  */
  volatile double frequency;

  /* To keep queue of basic blocks to process.  */
  basic_block next;

  /* True if block needs to be visited in prop_freqency.  */
  int tovisit:1;

  /* Number of predecessors we need to visit first.  */
  int npredecessors;
} *block_info;

/* Similar information for edges.  */
typedef struct edge_info_def
{
  /* In case edge is an loopback edge, the probability edge will be reached
     in case header is.  Estimated number of iterations of the loop can be
     then computed as 1 / (1 - back_edge_prob).

     Volatile is needed to avoid differences in the optimized and unoptimized
     builds on machines where FP registers are wider than double.  */
  volatile double back_edge_prob;
  /* True if the edge is an loopback edge in the natural loop.  */
  int back_edge:1;
} *edge_info;

#define BLOCK_INFO(B)	((block_info) (B)->aux)
#define EDGE_INFO(E)	((edge_info) (E)->aux)

/* Helper function for estimate_bb_frequencies.
   Propagate the frequencies for loops headed by HEAD.  */
static void
propagate_freq (head)
     basic_block head;
{
  basic_block bb = head;
  basic_block last = bb;
  edge e;
  basic_block nextbb;
  int n;

  /* For each basic block we need to visit count number of his predecessors
     we need to visit first.  */
  for (n = 0; n < n_basic_blocks; n++)
    {
      basic_block bb = BASIC_BLOCK (n);
      if (BLOCK_INFO (bb)->tovisit)
	{
	  int count = 0;
	  for (e = bb->pred; e; e = e->pred_next)
	    if (BLOCK_INFO (e->src)->tovisit && !(e->flags & EDGE_DFS_BACK))
	      count++;
	    else if (BLOCK_INFO (e->src)->tovisit
		     && rtl_dump_file && !EDGE_INFO (e)->back_edge)
	      fprintf (rtl_dump_file,
		       "Irreducible region hit, ignoring edge to %i->%i\n",
		       e->src->index, bb->index);
	  BLOCK_INFO (bb)->npredecessors = count;
	}
    }

  BLOCK_INFO (head)->frequency = 1;
  for (; bb; bb = nextbb)
    {
      volatile double cyclic_probability = 0, frequency = 0;

      nextbb = BLOCK_INFO (bb)->next;
      BLOCK_INFO (bb)->next = NULL;

      /* Compute frequency of basic block.  */
      if (bb != head)
	{
#ifdef ENABLE_CHECKING
	  for (e = bb->pred; e; e = e->pred_next)
	    if (BLOCK_INFO (e->src)->tovisit && !(e->flags & EDGE_DFS_BACK))
	      abort ();
#endif

	  for (e = bb->pred; e; e = e->pred_next)
	    if (EDGE_INFO (e)->back_edge)
	      cyclic_probability += EDGE_INFO (e)->back_edge_prob;
	    else if (!(e->flags & EDGE_DFS_BACK))
	      frequency += (e->probability
			    * BLOCK_INFO (e->src)->frequency /
			    REG_BR_PROB_BASE);

	  if (cyclic_probability > 1.0 - 1.0 / REG_BR_PROB_BASE)
	    cyclic_probability = 1.0 - 1.0 / REG_BR_PROB_BASE;

	  BLOCK_INFO (bb)->frequency = frequency / (1 - cyclic_probability);
	}

      BLOCK_INFO (bb)->tovisit = 0;

      /* Compute back edge frequencies.  */
      for (e = bb->succ; e; e = e->succ_next)
	if (e->dest == head)
	  EDGE_INFO (e)->back_edge_prob = (e->probability
					   * BLOCK_INFO (bb)->frequency
					   / REG_BR_PROB_BASE);

      /* Propagate to successor blocks.  */
      for (e = bb->succ; e; e = e->succ_next)
	if (!(e->flags & EDGE_DFS_BACK)
	    && BLOCK_INFO (e->dest)->npredecessors)
	  {
	    BLOCK_INFO (e->dest)->npredecessors--;
	    if (!BLOCK_INFO (e->dest)->npredecessors)
	      {
		if (!nextbb)
		  nextbb = e->dest;
		else
		  BLOCK_INFO (last)->next = e->dest;
		last = e->dest;
	      }
	   }
    }
}

/* Estimate probabilities of loopback edges in loops at same nest level.  */
static void
estimate_loops_at_level (first_loop)
     struct loop *first_loop;
{
  struct loop *l, *loop = first_loop;

  for (loop = first_loop; loop; loop = loop->next)
    {
      int n;
      edge e;

      estimate_loops_at_level (loop->inner);

      /* Find current loop back edge and mark it.  */
      for (e = loop->latch->succ; e->dest != loop->header; e = e->succ_next);

      EDGE_INFO (e)->back_edge = 1;

      /* In case the loop header is shared, ensure that it is the last
	 one sharing the same header, so we avoid redundant work.  */
      if (loop->shared)
	{
	  for (l = loop->next; l; l = l->next)
	    if (l->header == loop->header)
	      break;
	  if (l)
	    continue;
	}

      /* Now merge all nodes of all loops with given header as not visited.  */
      for (l = loop->shared ? first_loop : loop; l != loop->next; l = l->next)
	if (loop->header == l->header)
	  EXECUTE_IF_SET_IN_SBITMAP (l->nodes, 0, n,
				     BLOCK_INFO (BASIC_BLOCK (n))->tovisit = 1
				     );
      propagate_freq (loop->header);
    }
}

/* Convert counts measured by profile driven feedback to frequencies.  */
static void
counts_to_freqs ()
{
  HOST_WIDEST_INT count_max = 1;
  int i;

  for (i = 0; i < n_basic_blocks; i++)
    if (BASIC_BLOCK (i)->count > count_max)
      count_max = BASIC_BLOCK (i)->count;

  for (i = -2; i < n_basic_blocks; i++)
    {
      basic_block bb;
      if (i == -2)
	bb = ENTRY_BLOCK_PTR;
      else if (i == -1)
	bb = EXIT_BLOCK_PTR;
      else
	bb = BASIC_BLOCK (i);
      bb->frequency = ((bb->count * BB_FREQ_MAX + count_max / 2)
		       / count_max);
    }
}

/* Return true if function is likely to be expensive, so there is no point
   to optimizer performance of prologue, epilogue or do inlining at the
   expense of code size growth.  THRESHOLD is the limit of number
   of isntructions function can execute at average to be still considered
   not expensive.  */
bool
expensive_function_p (threshold)
	int threshold;
{
  unsigned int sum = 0;
  int i;
  unsigned int limit;

  /* We can not compute accurately for large thresholds due to scaled
     frequencies.  */
  if (threshold > BB_FREQ_MAX)
    abort ();

  /* Frequencies are out of range.  This either means that function contains
     internal loop executing more than BB_FREQ_MAX times or profile feedback
     is available and function has not been executed at all.  */
  if (ENTRY_BLOCK_PTR->frequency == 0)
    return true;
    
  /* Maximally BB_FREQ_MAX^2 so overflow won't happen.  */
  limit = ENTRY_BLOCK_PTR->frequency * threshold;
  for (i = 0; i < n_basic_blocks; i++)
    {
      basic_block bb = BASIC_BLOCK (i);
      rtx insn;

      for (insn = bb->head; insn != NEXT_INSN (bb->end);
	   insn = NEXT_INSN (insn))
	{
	  if (active_insn_p (insn))
	    {
	      sum += bb->frequency;
	      if (sum > limit)
		return true;
	    }
	}
    }
  return false;
}

/* Estimate basic blocks frequency by given branch probabilities.  */
static void
estimate_bb_frequencies (loops)
     struct loops *loops;
{
  int i;
  double freq_max = 0;

  mark_dfs_back_edges ();
  if (flag_branch_probabilities)
    {
      counts_to_freqs ();
      return;
    }

  /* Fill in the probability values in flowgraph based on the REG_BR_PROB
     notes.  */
  for (i = 0; i < n_basic_blocks; i++)
    {
      rtx last_insn = BLOCK_END (i);
      int probability;
      edge fallthru, branch;

      if (GET_CODE (last_insn) != JUMP_INSN || !any_condjump_p (last_insn)
	  /* Avoid handling of conditional jumps jumping to fallthru edge.  */
	  || BASIC_BLOCK (i)->succ->succ_next == NULL)
	{
	  /* We can predict only conditional jumps at the moment.
	     Expect each edge to be equally probable.
	     ?? In the future we want to make abnormal edges improbable.  */
	  int nedges = 0;
	  edge e;

	  for (e = BASIC_BLOCK (i)->succ; e; e = e->succ_next)
	    {
	      nedges++;
	      if (e->probability != 0)
		break;
	    }
	  if (!e)
	    for (e = BASIC_BLOCK (i)->succ; e; e = e->succ_next)
	      e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
	}
      else
	{
	  probability = INTVAL (XEXP (find_reg_note (last_insn,
						     REG_BR_PROB, 0), 0));
	  fallthru = BASIC_BLOCK (i)->succ;
	  if (!fallthru->flags & EDGE_FALLTHRU)
	    fallthru = fallthru->succ_next;
	  branch = BASIC_BLOCK (i)->succ;
	  if (branch->flags & EDGE_FALLTHRU)
	    branch = branch->succ_next;

	  branch->probability = probability;
	  fallthru->probability = REG_BR_PROB_BASE - probability;
	}
    }
  ENTRY_BLOCK_PTR->succ->probability = REG_BR_PROB_BASE;

  /* Set up block info for each basic block.  */
  alloc_aux_for_blocks (sizeof (struct block_info_def));
  alloc_aux_for_edges (sizeof (struct edge_info_def));
  for (i = -2; i < n_basic_blocks; i++)
    {
      edge e;
      basic_block bb;

      if (i == -2)
	bb = ENTRY_BLOCK_PTR;
      else if (i == -1)
	bb = EXIT_BLOCK_PTR;
      else
	bb = BASIC_BLOCK (i);
      BLOCK_INFO (bb)->tovisit = 0;
      for (e = bb->succ; e; e = e->succ_next)
	EDGE_INFO (e)->back_edge_prob = ((double) e->probability
					 / REG_BR_PROB_BASE);
    }
  /* First compute probabilities locally for each loop from innermost
     to outermost to examine probabilities for back edges.  */
  estimate_loops_at_level (loops->tree_root);

  /* Now fake loop around whole function to finalize probabilities.  */
  for (i = 0; i < n_basic_blocks; i++)
    BLOCK_INFO (BASIC_BLOCK (i))->tovisit = 1;
  BLOCK_INFO (ENTRY_BLOCK_PTR)->tovisit = 1;
  BLOCK_INFO (EXIT_BLOCK_PTR)->tovisit = 1;
  propagate_freq (ENTRY_BLOCK_PTR);

  for (i = 0; i < n_basic_blocks; i++)
    if (BLOCK_INFO (BASIC_BLOCK (i))->frequency > freq_max)
      freq_max = BLOCK_INFO (BASIC_BLOCK (i))->frequency;
  for (i = -2; i < n_basic_blocks; i++)
    {
      basic_block bb;
      if (i == -2)
	bb = ENTRY_BLOCK_PTR;
      else if (i == -1)
	bb = EXIT_BLOCK_PTR;
      else
	bb = BASIC_BLOCK (i);
      bb->frequency = (BLOCK_INFO (bb)->frequency * BB_FREQ_MAX / freq_max
		       + 0.5);
    }

  free_aux_for_blocks ();
  free_aux_for_edges ();
}