1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
|
/* Set operations on pointers
Copyright (C) 2004-2013 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "pointer-set.h"
/* Use the multiplicative method, as described in Knuth 6.4, to obtain
a hash code for P in the range [0, MAX). MAX == 2^LOGMAX.
Summary of this method: Multiply p by some number A that's
relatively prime to 2^sizeof(size_t). The result is two words.
Discard the most significant word, and return the most significant
N bits of the least significant word. As suggested by Knuth, our
choice for A is the integer part of (ULONG_MAX + 1.0) / phi, where phi
is the golden ratio.
We don't need to do anything special for full-width multiplication
because we're only interested in the least significant word of the
product, and unsigned arithmetic in C is modulo the word size. */
static inline size_t
hash1 (const void *p, unsigned long max, unsigned long logmax)
{
#if HOST_BITS_PER_LONG == 32
const unsigned long A = 0x9e3779b9u;
#elif HOST_BITS_PER_LONG == 64
const unsigned long A = 0x9e3779b97f4a7c16ul;
#else
const unsigned long A
= (ULONG_MAX + 1.0L) * 0.6180339887498948482045868343656381177203L;
#endif
const unsigned long shift = HOST_BITS_PER_LONG - logmax;
return ((A * (uintptr_t) p) >> shift) & (max - 1);
}
/* Allocate an empty pointer set. */
struct pointer_set_t *
pointer_set_create (void)
{
struct pointer_set_t *result = XNEW (struct pointer_set_t);
result->n_elements = 0;
result->log_slots = 8;
result->n_slots = (size_t) 1 << result->log_slots;
result->slots = XCNEWVEC (const void *, result->n_slots);
return result;
}
/* Reclaims all memory associated with PSET. */
void
pointer_set_destroy (struct pointer_set_t *pset)
{
XDELETEVEC (pset->slots);
XDELETE (pset);
}
/* Lookup the slot for the pointer P and return true if it exists,
otherwise return false in which case *IX points to the slot that
would be used on insertion. */
bool
pointer_set_lookup (const pointer_set_t *pset, const void *p, size_t *ix)
{
size_t n = hash1 (p, pset->n_slots, pset->log_slots);
while (true)
{
if (pset->slots[n] == p)
{
*ix = n;
return true;
}
else if (pset->slots[n] == 0)
{
*ix = n;
return false;
}
else
{
++n;
if (n == pset->n_slots)
n = 0;
}
}
}
/* Returns nonzero if PSET contains P. P must be nonnull.
Collisions are resolved by linear probing. */
int
pointer_set_contains (const struct pointer_set_t *pset, const void *p)
{
size_t n;
return pointer_set_lookup (pset, p, &n);
}
/* Inserts P into PSET if it wasn't already there. Returns nonzero
if it was already there. P must be nonnull. */
int
pointer_set_insert (struct pointer_set_t *pset, const void *p)
{
size_t n;
/* For simplicity, expand the set even if P is already there. This can be
superfluous but can happen at most once. */
if (pset->n_elements > pset->n_slots / 4)
{
size_t old_n_slots = pset->n_slots;
const void **old_slots = pset->slots;
pset->log_slots = pset->log_slots + 1;
pset->n_slots = pset->n_slots * 2;
pset->slots = XCNEWVEC (const void *, pset->n_slots);
size_t i;
for (i = 0; i < old_n_slots; ++i)
{
const void *value = old_slots[i];
pointer_set_lookup (pset, value, &n);
pset->slots[n] = value;
}
XDELETEVEC (old_slots);
}
if (pointer_set_lookup (pset, p, &n))
return 1;
pset->slots[n] = p;
++pset->n_elements;
return 0;
}
/* Pass each pointer in PSET to the function in FN, together with the fixed
parameter DATA. If FN returns false, the iteration stops. */
void pointer_set_traverse (const struct pointer_set_t *pset,
bool (*fn) (const void *, void *), void *data)
{
size_t i;
for (i = 0; i < pset->n_slots; ++i)
if (pset->slots[i] && !fn (pset->slots[i], data))
break;
}
/* A pointer map is represented the same way as a pointer_set, so
the hash code is based on the address of the key, rather than
its contents. Null keys are a reserved value. Deletion is not
supported (yet). There is no mechanism for user control of hash
function, equality comparison, initial size, or resizing policy. */
struct pointer_map_t
{
pointer_set_t pset;
void **values;
};
/* Allocate an empty pointer map. */
struct pointer_map_t *
pointer_map_create (void)
{
struct pointer_map_t *result = XNEW (struct pointer_map_t);
result->pset.n_elements = 0;
result->pset.log_slots = 8;
result->pset.n_slots = (size_t) 1 << result->pset.log_slots;
result->pset.slots = XCNEWVEC (const void *, result->pset.n_slots);
result->values = XCNEWVEC (void *, result->pset.n_slots);
return result;
}
/* Reclaims all memory associated with PMAP. */
void pointer_map_destroy (struct pointer_map_t *pmap)
{
XDELETEVEC (pmap->pset.slots);
XDELETEVEC (pmap->values);
XDELETE (pmap);
}
/* Returns a pointer to the value to which P maps, if PMAP contains P. P
must be nonnull. Return NULL if PMAP does not contain P.
Collisions are resolved by linear probing. */
void **
pointer_map_contains (const struct pointer_map_t *pmap, const void *p)
{
size_t n;
if (pointer_set_lookup (&pmap->pset, p, &n))
return &pmap->values[n];
else
return NULL;
}
/* Inserts P into PMAP if it wasn't already there. Returns a pointer
to the value. P must be nonnull. */
void **
pointer_map_insert (struct pointer_map_t *pmap, const void *p)
{
size_t n;
/* For simplicity, expand the map even if P is already there. This can be
superfluous but can happen at most once. */
if (pmap->pset.n_elements > pmap->pset.n_slots / 4)
{
size_t old_n_slots = pmap->pset.n_slots;
const void **old_keys = pmap->pset.slots;
void **old_values = pmap->values;
pmap->pset.log_slots = pmap->pset.log_slots + 1;
pmap->pset.n_slots = pmap->pset.n_slots * 2;
pmap->pset.slots = XCNEWVEC (const void *, pmap->pset.n_slots);
pmap->values = XCNEWVEC (void *, pmap->pset.n_slots);
size_t i;
for (i = 0; i < old_n_slots; ++i)
if (old_keys[i])
{
const void *key = old_keys[i];
pointer_set_lookup (&pmap->pset, key, &n);
pmap->pset.slots[n] = key;
pmap->values[n] = old_values[i];
}
XDELETEVEC (old_keys);
XDELETEVEC (old_values);
}
if (!pointer_set_lookup (&pmap->pset, p, &n))
{
++pmap->pset.n_elements;
pmap->pset.slots[n] = p;
}
return &pmap->values[n];
}
/* Pass each pointer in PMAP to the function in FN, together with the pointer
to the value and the fixed parameter DATA. If FN returns false, the
iteration stops. */
void pointer_map_traverse (const struct pointer_map_t *pmap,
bool (*fn) (const void *, void **, void *), void *data)
{
size_t i;
for (i = 0; i < pmap->pset.n_slots; ++i)
if (pmap->pset.slots[i]
&& !fn (pmap->pset.slots[i], &pmap->values[i], data))
break;
}
|