1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
|
/* Expand the basic unary and binary arithmetic operations, for GNU compiler.
Copyright (C) 1987, 1988, 1992 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "config.h"
#include "rtl.h"
#include "tree.h"
#include "flags.h"
#include "insn-flags.h"
#include "insn-codes.h"
#include "expr.h"
#include "insn-config.h"
#include "recog.h"
/* Each optab contains info on how this target machine
can perform a particular operation
for all sizes and kinds of operands.
The operation to be performed is often specified
by passing one of these optabs as an argument.
See expr.h for documentation of these optabs. */
optab add_optab;
optab sub_optab;
optab smul_optab;
optab smul_widen_optab;
optab umul_widen_optab;
optab sdiv_optab;
optab sdivmod_optab;
optab udiv_optab;
optab udivmod_optab;
optab smod_optab;
optab umod_optab;
optab flodiv_optab;
optab ftrunc_optab;
optab and_optab;
optab ior_optab;
optab xor_optab;
optab ashl_optab;
optab lshr_optab;
optab lshl_optab;
optab ashr_optab;
optab rotl_optab;
optab rotr_optab;
optab smin_optab;
optab smax_optab;
optab umin_optab;
optab umax_optab;
optab mov_optab;
optab movstrict_optab;
optab neg_optab;
optab abs_optab;
optab one_cmpl_optab;
optab ffs_optab;
optab sqrt_optab;
optab cmp_optab;
optab ucmp_optab; /* Used only for libcalls for unsigned comparisons. */
optab tst_optab;
optab strlen_optab;
/* SYMBOL_REF rtx's for the library functions that are called
implicitly and not via optabs. */
rtx extendsfdf2_libfunc;
rtx truncdfsf2_libfunc;
rtx memcpy_libfunc;
rtx bcopy_libfunc;
rtx memcmp_libfunc;
rtx bcmp_libfunc;
rtx memset_libfunc;
rtx bzero_libfunc;
rtx eqsf2_libfunc;
rtx nesf2_libfunc;
rtx gtsf2_libfunc;
rtx gesf2_libfunc;
rtx ltsf2_libfunc;
rtx lesf2_libfunc;
rtx eqdf2_libfunc;
rtx nedf2_libfunc;
rtx gtdf2_libfunc;
rtx gedf2_libfunc;
rtx ltdf2_libfunc;
rtx ledf2_libfunc;
rtx floatdisf_libfunc;
rtx floatsisf_libfunc;
rtx floatdidf_libfunc;
rtx floatsidf_libfunc;
rtx fixsfsi_libfunc;
rtx fixsfdi_libfunc;
rtx fixdfsi_libfunc;
rtx fixdfdi_libfunc;
rtx fixunssfsi_libfunc;
rtx fixunssfdi_libfunc;
rtx fixunsdfsi_libfunc;
rtx fixunsdfdi_libfunc;
/* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
gives the gen_function to make a branch to test that condition. */
rtxfun bcc_gen_fctn[NUM_RTX_CODE];
/* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
gives the insn code to make a store-condition insn
to test that condition. */
enum insn_code setcc_gen_code[NUM_RTX_CODE];
static void emit_float_lib_cmp ();
/* Add a REG_EQUAL note to the last insn in SEQ. TARGET is being set to
the result of operation CODE applied to OP0 (and OP1 if it is a binary
operation).
If the last insn does not set TARGET, don't do anything, but return 1.
If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
don't add the REG_EQUAL note but return 0. Our caller can then try
again, ensuring that TARGET is not one of the operands. */
static int
add_equal_note (seq, target, code, op0, op1)
rtx seq;
rtx target;
enum rtx_code code;
rtx op0, op1;
{
rtx set;
int i;
rtx note;
if ((GET_RTX_CLASS (code) != '1' && GET_RTX_CLASS (code) != '2'
&& GET_RTX_CLASS (code) != 'c' && GET_RTX_CLASS (code) != '<')
|| GET_CODE (seq) != SEQUENCE
|| (set = single_set (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1))) == 0
|| GET_CODE (target) == ZERO_EXTRACT
|| (! rtx_equal_p (SET_DEST (set), target)
/* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside the
SUBREG. */
&& (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
|| ! rtx_equal_p (SUBREG_REG (XEXP (SET_DEST (set), 0)),
target))))
return 1;
/* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
besides the last insn. */
if (reg_overlap_mentioned_p (target, op0)
|| (op1 && reg_overlap_mentioned_p (target, op1)))
for (i = XVECLEN (seq, 0) - 2; i >= 0; i--)
if (reg_set_p (target, XVECEXP (seq, 0, i)))
return 0;
if (GET_RTX_CLASS (code) == '1')
note = gen_rtx (code, GET_MODE (target), op0);
else
note = gen_rtx (code, GET_MODE (target), op0, op1);
REG_NOTES (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1))
= gen_rtx (EXPR_LIST, REG_EQUAL, note,
REG_NOTES (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1)));
return 1;
}
/* Generate code to perform an operation specified by BINOPTAB
on operands OP0 and OP1, with result having machine-mode MODE.
UNSIGNEDP is for the case where we have to widen the operands
to perform the operation. It says to use zero-extension.
If TARGET is nonzero, the value
is generated there, if it is convenient to do so.
In all cases an rtx is returned for the locus of the value;
this may or may not be TARGET. */
rtx
expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods)
enum machine_mode mode;
optab binoptab;
rtx op0, op1;
rtx target;
int unsignedp;
enum optab_methods methods;
{
enum mode_class class;
enum machine_mode wider_mode;
register rtx temp;
int commutative_op = 0;
int shift_op = (binoptab->code == ASHIFT
|| binoptab->code == ASHIFTRT
|| binoptab->code == LSHIFT
|| binoptab->code == LSHIFTRT
|| binoptab->code == ROTATE
|| binoptab->code == ROTATERT);
rtx last;
class = GET_MODE_CLASS (mode);
op0 = protect_from_queue (op0, 0);
op1 = protect_from_queue (op1, 0);
if (target)
target = protect_from_queue (target, 1);
if (flag_force_mem)
{
op0 = force_not_mem (op0);
op1 = force_not_mem (op1);
}
/* If we are inside an appropriately-short loop and one operand is an
expensive constant, force it into a register. */
if (CONSTANT_P (op0) && preserve_subexpressions_p ()
&& rtx_cost (op0, binoptab->code) > 2)
op0 = force_reg (mode, op0);
if (CONSTANT_P (op1) && preserve_subexpressions_p ()
&& rtx_cost (op1, binoptab->code) > 2)
op1 = force_reg (shift_op ? word_mode : mode, op1);
#if 0 /* Turned off because it seems to be a kludgy method. */
/* If subtracting integer from pointer, and the pointer has a special mode,
then change it to an add. We use the add insn of Pmode for combining
integers with pointers, and the sub insn to subtract two pointers. */
if (binoptab == sub_optab
&& GET_MODE (op0) == Pmode && GET_MODE (op1) != Pmode)
{
op1 = negate_rtx (GET_MODE(op1), op1);
binoptab = add_optab;
}
#endif /* 0 */
/* Record where to delete back to if we backtrack. */
last = get_last_insn ();
/* If operation is commutative,
try to make the first operand a register.
Even better, try to make it the same as the target.
Also try to make the last operand a constant. */
if (GET_RTX_CLASS (binoptab->code) == 'c'
|| binoptab == smul_widen_optab
|| binoptab == umul_widen_optab)
{
commutative_op = 1;
if (((target == 0 || GET_CODE (target) == REG)
? ((GET_CODE (op1) == REG
&& GET_CODE (op0) != REG)
|| target == op1)
: rtx_equal_p (op1, target))
|| GET_CODE (op0) == CONST_INT)
{
temp = op1;
op1 = op0;
op0 = temp;
}
}
/* If we can do it with a three-operand insn, do so. */
if (methods != OPTAB_MUST_WIDEN
&& binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
{
int icode = (int) binoptab->handlers[(int) mode].insn_code;
enum machine_mode mode0 = insn_operand_mode[icode][1];
enum machine_mode mode1 = insn_operand_mode[icode][2];
rtx pat;
rtx xop0 = op0, xop1 = op1;
if (target)
temp = target;
else
temp = gen_reg_rtx (mode);
/* If it is a commutative operator and the modes would match
if we would swap the operands, we can save the conversions. */
if (commutative_op)
{
if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1
&& GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0)
{
register rtx tmp;
tmp = op0; op0 = op1; op1 = tmp;
tmp = xop0; xop0 = xop1; xop1 = tmp;
}
}
/* In case the insn wants input operands in modes different from
the result, convert the operands. */
if (GET_MODE (op0) != VOIDmode
&& GET_MODE (op0) != mode0)
xop0 = convert_to_mode (mode0, xop0, unsignedp);
if (GET_MODE (xop1) != VOIDmode
&& GET_MODE (xop1) != mode1)
xop1 = convert_to_mode (mode1, xop1, unsignedp);
/* Now, if insn's predicates don't allow our operands, put them into
pseudo regs. */
if (! (*insn_operand_predicate[icode][1]) (xop0, mode0))
xop0 = copy_to_mode_reg (mode0, xop0);
if (! (*insn_operand_predicate[icode][2]) (xop1, mode1))
xop1 = copy_to_mode_reg (mode1, xop1);
if (! (*insn_operand_predicate[icode][0]) (temp, mode))
temp = gen_reg_rtx (mode);
pat = GEN_FCN (icode) (temp, xop0, xop1);
if (pat)
{
/* If PAT is a multi-insn sequence, try to add an appropriate
REG_EQUAL note to it. If we can't because TEMP conflicts with an
operand, call ourselves again, this time without a target. */
if (GET_CODE (pat) == SEQUENCE
&& ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
{
delete_insns_since (last);
return expand_binop (mode, binoptab, op0, op1, 0, unsignedp,
methods);
}
emit_insn (pat);
return temp;
}
else
delete_insns_since (last);
}
/* These can be done a word at a time. */
if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
&& class == MODE_INT
&& GET_MODE_SIZE (mode) > UNITS_PER_WORD
&& binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
{
int i;
rtx insns;
rtx equiv_value;
/* If TARGET is the same as one of the operands, the REG_EQUAL note
won't be accurate, so use a new target. */
if (target == 0 || target == op0 || target == op1)
target = gen_reg_rtx (mode);
start_sequence ();
/* Do the actual arithmetic. */
for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
{
rtx target_piece = operand_subword (target, i, 1, mode);
rtx x = expand_binop (word_mode, binoptab,
operand_subword_force (op0, i, mode),
operand_subword_force (op1, i, mode),
target_piece, unsignedp, methods);
if (target_piece != x)
emit_move_insn (target_piece, x);
}
insns = get_insns ();
end_sequence ();
if (binoptab->code != UNKNOWN)
equiv_value = gen_rtx (binoptab->code, mode, op0, op1);
else
equiv_value = 0;
emit_no_conflict_block (insns, target, op0, op1, equiv_value);
return target;
}
/* These can be done a word at a time by propagating carries. */
if ((binoptab == add_optab || binoptab == sub_optab)
&& class == MODE_INT
&& GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
&& binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
{
int i;
rtx carry_tmp = gen_reg_rtx (word_mode);
optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
rtx carry_in, carry_out;
/* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
value is one of those, use it. Otherwise, use 1 since it is the
one easiest to get. */
#if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
int normalizep = STORE_FLAG_VALUE;
#else
int normalizep = 1;
#endif
/* Prepare the operands. */
op0 = force_reg (mode, op0);
op1 = force_reg (mode, op1);
if (target == 0 || GET_CODE (target) != REG
|| target == op0 || target == op1)
target = gen_reg_rtx (mode);
/* Do the actual arithmetic. */
for (i = 0; i < nwords; i++)
{
int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
rtx target_piece = operand_subword (target, index, 1, mode);
rtx op0_piece = operand_subword_force (op0, index, mode);
rtx op1_piece = operand_subword_force (op1, index, mode);
rtx x;
/* Main add/subtract of the input operands. */
x = expand_binop (word_mode, binoptab,
op0_piece, op1_piece,
target_piece, unsignedp, methods);
if (x == 0)
break;
if (i + 1 < nwords)
{
/* Store carry from main add/subtract. */
carry_out = gen_reg_rtx (word_mode);
carry_out = emit_store_flag (carry_out,
binoptab == add_optab ? LTU : GTU,
x, op0_piece,
word_mode, 1, normalizep);
if (!carry_out)
break;
}
if (i > 0)
{
/* Add/subtract previous carry to main result. */
x = expand_binop (word_mode,
normalizep == 1 ? binoptab : otheroptab,
x, carry_in,
target_piece, 1, methods);
if (target_piece != x)
emit_move_insn (target_piece, x);
if (i + 1 < nwords)
{
/* THIS CODE HAS NOT BEEN TESTED. */
/* Get out carry from adding/subtracting carry in. */
carry_tmp = emit_store_flag (carry_tmp,
binoptab == add_optab
? LTU : GTU,
x, carry_in,
word_mode, 1, normalizep);
/* Logical-ior the two poss. carry together. */
carry_out = expand_binop (word_mode, ior_optab,
carry_out, carry_tmp,
carry_out, 0, methods);
if (!carry_out)
break;
}
}
carry_in = carry_out;
}
if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
{
rtx temp;
temp = emit_move_insn (target, target);
REG_NOTES (temp) = gen_rtx (EXPR_LIST, REG_EQUAL,
gen_rtx (binoptab->code, mode, op0, op1),
REG_NOTES (temp));
return target;
}
else
delete_insns_since (last);
}
/* If we want to multiply two two-word values and have normal and widening
multiplies of single-word values, we can do this with three smaller
multiplications. Note that we do not make a REG_NO_CONFLICT block here
because we are not operating on one word at a time.
The multiplication proceeds as follows:
_______________________
[__op0_high_|__op0_low__]
_______________________
* [__op1_high_|__op1_low__]
_______________________________________________
_______________________
(1) [__op0_low__*__op1_low__]
_______________________
(2a) [__op0_low__*__op1_high_]
_______________________
(2b) [__op0_high_*__op1_low__]
_______________________
(3) [__op0_high_*__op1_high_]
This gives a 4-word result. Since we are only interested in the
lower 2 words, partial result (3) and the upper words of (2a) and
(2b) don't need to be calculated. Hence (2a) and (2b) can be
calculated using non-widening multiplication.
(1), however, needs to be calculated with an unsigned widening
multiplication. If this operation is not directly supported we
try using a signed widening multiplication and adjust the result.
This adjustment works as follows:
If both operands are positive then no adjustment is needed.
If the operands have different signs, for example op0_low < 0 and
op1_low >= 0, the instruction treats the most significant bit of
op0_low as a sign bit instead of a bit with significance
2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
with 2**BITS_PER_WORD - op0_low, and two's complements the
result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
the result.
Similarly, if both operands are negative, we need to add
(op0_low + op1_low) * 2**BITS_PER_WORD.
We use a trick to adjust quickly. We logically shift op0_low right
(op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
op0_high (op1_high) before it is used to calculate 2b (2a). If no
logical shift exists, we do an arithmetic right shift and subtract
the 0 or -1. */
if (binoptab == smul_optab
&& class == MODE_INT
&& GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
&& smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
&& add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
&& ((umul_widen_optab->handlers[(int) mode].insn_code
!= CODE_FOR_nothing)
|| (smul_widen_optab->handlers[(int) mode].insn_code
!= CODE_FOR_nothing)))
{
int low = (WORDS_BIG_ENDIAN ? 1 : 0);
int high = (WORDS_BIG_ENDIAN ? 0 : 1);
rtx op0_high = operand_subword_force (op0, high, mode);
rtx op0_low = operand_subword_force (op0, low, mode);
rtx op1_high = operand_subword_force (op1, high, mode);
rtx op1_low = operand_subword_force (op1, low, mode);
rtx product = 0;
rtx op0_xhigh;
rtx op1_xhigh;
/* If the target is the same as one of the inputs, don't use it. This
prevents problems with the REG_EQUAL note. */
if (target == op0 || target == op1)
target = 0;
/* Multiply the two lower words to get a double-word product.
If unsigned widening multiplication is available, use that;
otherwise use the signed form and compensate. */
if (umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
{
product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
target, 1, OPTAB_DIRECT);
/* If we didn't succeed, delete everything we did so far. */
if (product == 0)
delete_insns_since (last);
else
op0_xhigh = op0_high, op1_xhigh = op1_high;
}
if (product == 0
&& smul_widen_optab->handlers[(int) mode].insn_code
!= CODE_FOR_nothing)
{
rtx wordm1 = gen_rtx (CONST_INT, VOIDmode, BITS_PER_WORD - 1);
product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
target, 1, OPTAB_DIRECT);
op0_xhigh = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
0, 1, OPTAB_DIRECT);
if (op0_xhigh)
op0_xhigh = expand_binop (word_mode, add_optab, op0_high,
op0_xhigh, op0_xhigh, 0, OPTAB_DIRECT);
else
{
op0_xhigh = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
0, 0, OPTAB_DIRECT);
if (op0_xhigh)
op0_xhigh = expand_binop (word_mode, sub_optab, op0_high,
op0_xhigh, op0_xhigh, 0,
OPTAB_DIRECT);
}
op1_xhigh = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
0, 1, OPTAB_DIRECT);
if (op1_xhigh)
op1_xhigh = expand_binop (word_mode, add_optab, op1_high,
op1_xhigh, op1_xhigh, 0, OPTAB_DIRECT);
else
{
op1_xhigh = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
0, 0, OPTAB_DIRECT);
if (op1_xhigh)
op1_xhigh = expand_binop (word_mode, sub_optab, op1_high,
op1_xhigh, op1_xhigh, 0,
OPTAB_DIRECT);
}
}
/* If we have been able to directly compute the product of the
low-order words of the operands and perform any required adjustments
of the operands, we proceed by trying two more multiplications
and then computing the appropriate sum.
We have checked above that the required addition is provided.
Full-word addition will normally always succeed, especially if
it is provided at all, so we don't worry about its failure. The
multiplication may well fail, however, so we do handle that. */
if (product && op0_xhigh && op1_xhigh)
{
rtx product_piece;
rtx product_high = operand_subword (product, high, 1, mode);
rtx temp = expand_binop (word_mode, binoptab, op0_low, op1_xhigh, 0,
0, OPTAB_DIRECT);
if (temp)
{
product_piece = expand_binop (word_mode, add_optab, temp,
product_high, product_high,
0, OPTAB_LIB_WIDEN);
if (product_piece != product_high)
emit_move_insn (product_high, product_piece);
temp = expand_binop (word_mode, binoptab, op1_low, op0_xhigh, 0,
0, OPTAB_DIRECT);
product_piece = expand_binop (word_mode, add_optab, temp,
product_high, product_high,
0, OPTAB_LIB_WIDEN);
if (product_piece != product_high)
emit_move_insn (product_high, product_piece);
temp = emit_move_insn (product, product);
REG_NOTES (temp) = gen_rtx (EXPR_LIST, REG_EQUAL,
gen_rtx (MULT, mode, op0, op1),
REG_NOTES (temp));
return product;
}
}
/* If we get here, we couldn't do it for some reason even though we
originally thought we could. Delete anything we've emitted in
trying to do it. */
delete_insns_since (last);
}
/* It can't be open-coded in this mode.
Use a library call if one is available and caller says that's ok. */
if (binoptab->handlers[(int) mode].libfunc
&& (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
{
rtx insns;
rtx funexp = binoptab->handlers[(int) mode].libfunc;
start_sequence ();
/* Pass 1 for NO_QUEUE so we don't lose any increments
if the libcall is cse'd or moved. */
emit_library_call (binoptab->handlers[(int) mode].libfunc,
1, mode, 2, op0, mode, op1,
(shift_op ? word_mode : mode));
insns = get_insns ();
end_sequence ();
target = gen_reg_rtx (mode);
emit_libcall_block (insns, target, hard_libcall_value (mode),
gen_rtx (binoptab->code, mode, op0, op1));
return target;
}
delete_insns_since (last);
/* It can't be done in this mode. Can we do it in a wider mode? */
if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
|| methods == OPTAB_MUST_WIDEN))
return 0; /* Caller says, don't even try. */
/* Compute the value of METHODS to pass to recursive calls.
Don't allow widening to be tried recursively. */
methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
/* Look for a wider mode of the same class for which it appears we can do
the operation. */
if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
{
for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
{
if ((binoptab->handlers[(int) wider_mode].insn_code
!= CODE_FOR_nothing)
|| (methods == OPTAB_LIB
&& binoptab->handlers[(int) wider_mode].libfunc))
{
rtx xop0 = op0, xop1 = op1;
int no_extend = 0;
/* For certain integer operations, we need not actually extend
the narrow operands, as long as we will truncate
the results to the same narrowness. */
if ((binoptab == ior_optab || binoptab == and_optab
|| binoptab == xor_optab
|| binoptab == add_optab || binoptab == sub_optab
|| binoptab == smul_optab
|| binoptab == ashl_optab || binoptab == lshl_optab)
&& class == MODE_INT)
no_extend = 1;
/* If an operand is a constant integer, we might as well
convert it since that is more efficient than using a SUBREG,
unlike the case for other operands. */
if (no_extend && GET_MODE (xop0) != VOIDmode)
xop0 = gen_rtx (SUBREG, wider_mode,
force_reg (GET_MODE (xop0), xop0), 0);
else
xop0 = convert_to_mode (wider_mode, xop0, unsignedp);
if (no_extend && GET_MODE (xop1) != VOIDmode)
xop1 = gen_rtx (SUBREG, wider_mode,
force_reg (GET_MODE (xop1), xop1), 0);
else
xop1 = convert_to_mode (wider_mode, xop1, unsignedp);
temp = expand_binop (wider_mode, binoptab, xop0, xop1, 0,
unsignedp, methods);
if (temp)
{
if (class != MODE_INT)
{
if (target == 0)
target = gen_reg_rtx (mode);
convert_move (target, temp, 0);
return target;
}
else
return gen_lowpart (mode, temp);
}
else
delete_insns_since (last);
}
}
}
return 0;
}
/* Expand a binary operator which has both signed and unsigned forms.
UOPTAB is the optab for unsigned operations, and SOPTAB is for
signed operations.
If we widen unsigned operands, we may use a signed wider operation instead
of an unsigned wider operation, since the result would be the same. */
rtx
sign_expand_binop (mode, uoptab, soptab, op0, op1, target, unsignedp, methods)
enum machine_mode mode;
optab uoptab, soptab;
rtx op0, op1, target;
int unsignedp;
enum optab_methods methods;
{
register rtx temp;
optab direct_optab = unsignedp ? uoptab : soptab;
struct optab wide_soptab;
/* Do it without widening, if possible. */
temp = expand_binop (mode, direct_optab, op0, op1, target,
unsignedp, OPTAB_DIRECT);
if (temp || methods == OPTAB_DIRECT)
return temp;
/* Try widening to a signed int. Make a fake signed optab that
hides any signed insn for direct use. */
wide_soptab = *soptab;
wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing;
wide_soptab.handlers[(int) mode].libfunc = 0;
temp = expand_binop (mode, &wide_soptab, op0, op1, target,
unsignedp, OPTAB_WIDEN);
/* For unsigned operands, try widening to an unsigned int. */
if (temp == 0 && unsignedp)
temp = expand_binop (mode, uoptab, op0, op1, target,
unsignedp, OPTAB_WIDEN);
if (temp || methods == OPTAB_WIDEN)
return temp;
/* Use the right width lib call if that exists. */
temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
if (temp || methods == OPTAB_LIB)
return temp;
/* Must widen and use a lib call, use either signed or unsigned. */
temp = expand_binop (mode, &wide_soptab, op0, op1, target,
unsignedp, methods);
if (temp != 0)
return temp;
if (unsignedp)
return expand_binop (mode, uoptab, op0, op1, target,
unsignedp, methods);
return 0;
}
/* Generate code to perform an operation specified by BINOPTAB
on operands OP0 and OP1, with two results to TARG1 and TARG2.
We assume that the order of the operands for the instruction
is TARG0, OP0, OP1, TARG1, which would fit a pattern like
[(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
Either TARG0 or TARG1 may be zero, but what that means is that
that result is not actually wanted. We will generate it into
a dummy pseudo-reg and discard it. They may not both be zero.
Returns 1 if this operation can be performed; 0 if not. */
int
expand_twoval_binop (binoptab, op0, op1, targ0, targ1, unsignedp)
optab binoptab;
rtx op0, op1;
rtx targ0, targ1;
int unsignedp;
{
enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
enum mode_class class;
enum machine_mode wider_mode;
rtx last;
class = GET_MODE_CLASS (mode);
op0 = protect_from_queue (op0, 0);
op1 = protect_from_queue (op1, 0);
if (flag_force_mem)
{
op0 = force_not_mem (op0);
op1 = force_not_mem (op1);
}
/* If we are inside an appropriately-short loop and one operand is an
expensive constant, force it into a register. */
if (CONSTANT_P (op0) && preserve_subexpressions_p ()
&& rtx_cost (op0, binoptab->code) > 2)
op0 = force_reg (mode, op0);
if (CONSTANT_P (op1) && preserve_subexpressions_p ()
&& rtx_cost (op1, binoptab->code) > 2)
op1 = force_reg (mode, op1);
if (targ0)
targ0 = protect_from_queue (targ0, 1);
else
targ0 = gen_reg_rtx (mode);
if (targ1)
targ1 = protect_from_queue (targ1, 1);
else
targ1 = gen_reg_rtx (mode);
/* Record where to go back to if we fail. */
last = get_last_insn ();
if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
{
int icode = (int) binoptab->handlers[(int) mode].insn_code;
enum machine_mode mode0 = insn_operand_mode[icode][1];
enum machine_mode mode1 = insn_operand_mode[icode][2];
rtx pat;
rtx xop0 = op0, xop1 = op1;
/* In case this insn wants input operands in modes different from the
result, convert the operands. */
if (GET_MODE (op0) != VOIDmode && GET_MODE (op0) != mode0)
xop0 = convert_to_mode (mode0, xop0, unsignedp);
if (GET_MODE (op1) != VOIDmode && GET_MODE (op1) != mode1)
xop1 = convert_to_mode (mode1, xop1, unsignedp);
/* Now, if insn doesn't accept these operands, put them into pseudos. */
if (! (*insn_operand_predicate[icode][1]) (xop0, mode0))
xop0 = copy_to_mode_reg (mode0, xop0);
if (! (*insn_operand_predicate[icode][2]) (xop1, mode1))
xop1 = copy_to_mode_reg (mode1, xop1);
/* We could handle this, but we should always be called with a pseudo
for our targets and all insns should take them as outputs. */
if (! (*insn_operand_predicate[icode][0]) (targ0, mode)
|| ! (*insn_operand_predicate[icode][3]) (targ1, mode))
abort ();
pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
if (pat)
{
emit_insn (pat);
return 1;
}
else
delete_insns_since (last);
}
/* It can't be done in this mode. Can we do it in a wider mode? */
if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
{
for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
{
if (binoptab->handlers[(int) wider_mode].insn_code
!= CODE_FOR_nothing)
{
register rtx t0 = gen_reg_rtx (wider_mode);
register rtx t1 = gen_reg_rtx (wider_mode);
if (expand_twoval_binop (binoptab,
convert_to_mode (wider_mode, op0,
unsignedp),
convert_to_mode (wider_mode, op1,
unsignedp),
t0, t1, unsignedp))
{
convert_move (targ0, t0, unsignedp);
convert_move (targ1, t1, unsignedp);
return 1;
}
else
delete_insns_since (last);
}
}
}
return 0;
}
/* Generate code to perform an operation specified by UNOPTAB
on operand OP0, with result having machine-mode MODE.
UNSIGNEDP is for the case where we have to widen the operands
to perform the operation. It says to use zero-extension.
If TARGET is nonzero, the value
is generated there, if it is convenient to do so.
In all cases an rtx is returned for the locus of the value;
this may or may not be TARGET. */
rtx
expand_unop (mode, unoptab, op0, target, unsignedp)
enum machine_mode mode;
optab unoptab;
rtx op0;
rtx target;
int unsignedp;
{
enum mode_class class;
enum machine_mode wider_mode;
register rtx temp;
rtx last = get_last_insn ();
rtx pat;
class = GET_MODE_CLASS (mode);
op0 = protect_from_queue (op0, 0);
if (flag_force_mem)
{
op0 = force_not_mem (op0);
}
if (target)
target = protect_from_queue (target, 1);
if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
{
int icode = (int) unoptab->handlers[(int) mode].insn_code;
enum machine_mode mode0 = insn_operand_mode[icode][1];
rtx xop0 = op0;
if (target)
temp = target;
else
temp = gen_reg_rtx (mode);
if (GET_MODE (xop0) != VOIDmode
&& GET_MODE (xop0) != mode0)
xop0 = convert_to_mode (mode0, xop0, unsignedp);
/* Now, if insn doesn't accept our operand, put it into a pseudo. */
if (! (*insn_operand_predicate[icode][1]) (xop0, mode0))
xop0 = copy_to_mode_reg (mode0, xop0);
if (! (*insn_operand_predicate[icode][0]) (temp, mode))
temp = gen_reg_rtx (mode);
pat = GEN_FCN (icode) (temp, xop0);
if (pat)
{
if (GET_CODE (pat) == SEQUENCE
&& ! add_equal_note (pat, temp, unoptab->code, xop0, 0))
{
delete_insns_since (last);
return expand_unop (mode, unoptab, op0, 0, unsignedp);
}
emit_insn (pat);
return temp;
}
else
delete_insns_since (last);
}
/* These can be done a word at a time. */
if (unoptab == one_cmpl_optab
&& class == MODE_INT
&& GET_MODE_SIZE (mode) > UNITS_PER_WORD
&& unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
{
int i;
rtx insns;
if (target == 0 || target == op0)
target = gen_reg_rtx (mode);
start_sequence ();
/* Do the actual arithmetic. */
for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
{
rtx target_piece = operand_subword (target, i, 1, mode);
rtx x = expand_unop (word_mode, unoptab,
operand_subword_force (op0, i, mode),
target_piece, unsignedp);
if (target_piece != x)
emit_move_insn (target_piece, x);
}
insns = get_insns ();
end_sequence ();
emit_no_conflict_block (insns, target, op0, 0,
gen_rtx (unoptab->code, mode, op0));
return target;
}
if (unoptab->handlers[(int) mode].libfunc)
{
rtx insns;
rtx funexp = unoptab->handlers[(int) mode].libfunc;
start_sequence ();
/* Pass 1 for NO_QUEUE so we don't lose any increments
if the libcall is cse'd or moved. */
emit_library_call (unoptab->handlers[(int) mode].libfunc,
1, mode, 1, op0, mode);
insns = get_insns ();
end_sequence ();
target = gen_reg_rtx (mode);
emit_libcall_block (insns, target, hard_libcall_value (mode),
gen_rtx (unoptab->code, mode, op0));
return target;
}
/* It can't be done in this mode. Can we do it in a wider mode? */
if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
{
for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
{
if ((unoptab->handlers[(int) wider_mode].insn_code
!= CODE_FOR_nothing)
|| unoptab->handlers[(int) wider_mode].libfunc)
{
rtx xop0 = op0;
/* For certain operations, we need not actually extend
the narrow operand, as long as we will truncate the
results to the same narrowness. */
if ((unoptab == neg_optab || unoptab == one_cmpl_optab)
&& class == MODE_INT)
xop0 = gen_rtx (SUBREG, wider_mode, force_reg (mode, xop0), 0);
else
xop0 = convert_to_mode (wider_mode, xop0, unsignedp);
temp = expand_unop (wider_mode, unoptab, xop0, 0, unsignedp);
if (temp)
{
if (class != MODE_INT)
{
if (target == 0)
target = gen_reg_rtx (mode);
convert_move (target, temp, 0);
return target;
}
else
return gen_lowpart (mode, temp);
}
else
delete_insns_since (last);
}
}
}
return 0;
}
/* Generate an instruction whose insn-code is INSN_CODE,
with two operands: an output TARGET and an input OP0.
TARGET *must* be nonzero, and the output is always stored there.
CODE is an rtx code such that (CODE OP0) is an rtx that describes
the value that is stored into TARGET. */
void
emit_unop_insn (icode, target, op0, code)
int icode;
rtx target;
rtx op0;
enum rtx_code code;
{
register rtx temp;
enum machine_mode mode0 = insn_operand_mode[icode][1];
rtx pat;
temp = target = protect_from_queue (target, 1);
op0 = protect_from_queue (op0, 0);
if (flag_force_mem)
op0 = force_not_mem (op0);
/* Now, if insn does not accept our operands, put them into pseudos. */
if (! (*insn_operand_predicate[icode][1]) (op0, mode0))
op0 = copy_to_mode_reg (mode0, op0);
if (! (*insn_operand_predicate[icode][0]) (temp, GET_MODE (temp))
|| (flag_force_mem && GET_CODE (temp) == MEM))
temp = gen_reg_rtx (GET_MODE (temp));
pat = GEN_FCN (icode) (temp, op0);
if (GET_CODE (pat) == SEQUENCE && code != UNKNOWN)
add_equal_note (pat, temp, code, op0, 0);
emit_insn (pat);
if (temp != target)
emit_move_insn (target, temp);
}
/* Emit code to perform a series of operations on a multi-word quantity, one
word at a time.
Such a block is preceded by a CLOBBER of the output, consists of multiple
insns, each setting one word of the output, and followed by a SET copying
the output to itself.
Each of the insns setting words of the output receives a REG_NO_CONFLICT
note indicating that it doesn't conflict with the (also multi-word)
inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL
notes.
INSNS is a block of code generated to perform the operation, not including
the CLOBBER and final copy. All insns that compute intermediate values
are first emitted, followed by the block as described above. Only
INSNs are allowed in the block; no library calls or jumps may be
present.
TARGET, OP0, and OP1 are the output and inputs of the operations,
respectively. OP1 may be zero for a unary operation.
EQUIV, if non-zero, is an expression to be placed into a REG_EQUAL note
on the last insn.
If TARGET is not a register, INSNS is simply emitted with no special
processing.
The final insn emitted is returned. */
rtx
emit_no_conflict_block (insns, target, op0, op1, equiv)
rtx insns;
rtx target;
rtx op0, op1;
rtx equiv;
{
rtx prev, next, first, last, insn;
if (GET_CODE (target) != REG || reload_in_progress)
return emit_insns (insns);
/* First emit all insns that do not store into words of the output and remove
these from the list. */
for (insn = insns; insn; insn = next)
{
rtx set = 0;
int i;
next = NEXT_INSN (insn);
if (GET_CODE (insn) != INSN)
abort ();
if (GET_CODE (PATTERN (insn)) == SET)
set = PATTERN (insn);
else if (GET_CODE (PATTERN (insn)) == PARALLEL)
{
for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
{
set = XVECEXP (PATTERN (insn), 0, i);
break;
}
}
if (set == 0)
abort ();
if (! reg_overlap_mentioned_p (target, SET_DEST (set)))
{
if (PREV_INSN (insn))
NEXT_INSN (PREV_INSN (insn)) = next;
else
insns = next;
if (next)
PREV_INSN (next) = PREV_INSN (insn);
add_insn (insn);
}
}
prev = get_last_insn ();
/* Now write the CLOBBER of the output, followed by the setting of each
of the words, followed by the final copy. */
if (target != op0 && target != op1)
emit_insn (gen_rtx (CLOBBER, VOIDmode, target));
for (insn = insns; insn; insn = next)
{
next = NEXT_INSN (insn);
add_insn (insn);
if (op1 && GET_CODE (op1) == REG)
REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_NO_CONFLICT, op1,
REG_NOTES (insn));
if (op0 && GET_CODE (op0) == REG)
REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_NO_CONFLICT, op0,
REG_NOTES (insn));
}
last = emit_move_insn (target, target);
if (equiv)
REG_NOTES (last) = gen_rtx (EXPR_LIST, REG_EQUAL, equiv, REG_NOTES (last));
if (prev == 0)
first = get_insns ();
else
first = NEXT_INSN (prev);
/* Encapsulate the block so it gets manipulated as a unit. */
REG_NOTES (first) = gen_rtx (INSN_LIST, REG_LIBCALL, last,
REG_NOTES (first));
REG_NOTES (last) = gen_rtx (INSN_LIST, REG_RETVAL, first, REG_NOTES (last));
return last;
}
/* Emit code to make a call to a constant function or a library call.
INSNS is a list containing all insns emitted in the call.
These insns leave the result in RESULT. Our block is to copy RESULT
to TARGET, which is logically equivalent to EQUIV.
We first emit any insns that set a pseudo on the assumption that these are
loading constants into registers; doing so allows them to be safely cse'ed
between blocks. Then we emit all the other insns in the block, followed by
an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
note with an operand of EQUIV.
Moving assignments to pseudos outside of the block is done to improve
the generated code, but is not required to generate correct code,
hence being unable to move an assignment is not grounds for not making
a libcall block. There are two reasons why it is safe to leave these
insns inside the block: First, we know that these pseudos cannot be
used in generated RTL outside the block since they are created for
temporary purposes within the block. Second, CSE will not record the
values of anything set inside a libcall block, so we know they must
be dead at the end of the block.
Except for the first group of insns (the ones setting pseudos), the
block is delimited by REG_RETVAL and REG_LIBCALL notes. */
void
emit_libcall_block (insns, target, result, equiv)
rtx insns;
rtx target;
rtx result;
rtx equiv;
{
rtx prev, next, first, last, insn;
/* First emit all insns that set pseudos. Remove them from the list as
we go. Avoid insns that set pseudo which were referenced in previous
insns. These can be generated by move_by_pieces, for example,
to update an address. */
for (insn = insns; insn; insn = next)
{
rtx set = single_set (insn);
next = NEXT_INSN (insn);
if (set != 0 && GET_CODE (SET_DEST (set)) == REG
&& REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
&& (insn == insns
|| (! reg_mentioned_p (SET_DEST (set), PATTERN (insns))
&& ! reg_used_between_p (SET_DEST (set), insns, insn))))
{
if (PREV_INSN (insn))
NEXT_INSN (PREV_INSN (insn)) = next;
else
insns = next;
if (next)
PREV_INSN (next) = PREV_INSN (insn);
add_insn (insn);
}
}
prev = get_last_insn ();
/* Write the remaining insns followed by the final copy. */
for (insn = insns; insn; insn = next)
{
next = NEXT_INSN (insn);
add_insn (insn);
}
last = emit_move_insn (target, result);
REG_NOTES (last) = gen_rtx (EXPR_LIST, REG_EQUAL, equiv, REG_NOTES (last));
if (prev == 0)
first = get_insns ();
else
first = NEXT_INSN (prev);
/* Encapsulate the block so it gets manipulated as a unit. */
REG_NOTES (first) = gen_rtx (INSN_LIST, REG_LIBCALL, last,
REG_NOTES (first));
REG_NOTES (last) = gen_rtx (INSN_LIST, REG_RETVAL, first, REG_NOTES (last));
}
/* Generate code to store zero in X. */
void
emit_clr_insn (x)
rtx x;
{
emit_move_insn (x, const0_rtx);
}
/* Generate code to store 1 in X
assuming it contains zero beforehand. */
void
emit_0_to_1_insn (x)
rtx x;
{
emit_move_insn (x, const1_rtx);
}
/* Generate code to compare X with Y
so that the condition codes are set.
MODE is the mode of the inputs (in case they are const_int).
UNSIGNEDP nonzero says that X and Y are unsigned;
this matters if they need to be widened.
If they have mode BLKmode, then SIZE specifies the size of both X and Y,
and ALIGN specifies the known shared alignment of X and Y.
COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
It is ignored for fixed-point and block comparisons;
it is used only for floating-point comparisons. */
void
emit_cmp_insn (x, y, comparison, size, mode, unsignedp, align)
rtx x, y;
enum rtx_code comparison;
rtx size;
enum machine_mode mode;
int unsignedp;
int align;
{
enum mode_class class;
enum machine_mode wider_mode;
class = GET_MODE_CLASS (mode);
/* They could both be VOIDmode if both args are immediate constants,
but we should fold that at an earlier stage.
With no special code here, this will call abort,
reminding the programmer to implement such folding. */
if (mode != BLKmode && flag_force_mem)
{
x = force_not_mem (x);
y = force_not_mem (y);
}
/* If we are inside an appropriately-short loop and one operand is an
expensive constant, force it into a register. */
if (CONSTANT_P (x) && preserve_subexpressions_p () && rtx_cost (x, COMPARE) > 2)
x = force_reg (mode, x);
if (CONSTANT_P (y) && preserve_subexpressions_p () && rtx_cost (y, COMPARE) > 2)
y = force_reg (mode, y);
/* Don't let both operands fail to indicate the mode. */
if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
x = force_reg (mode, x);
/* Handle all BLKmode compares. */
if (mode == BLKmode)
{
emit_queue ();
x = protect_from_queue (x, 0);
y = protect_from_queue (y, 0);
if (size == 0)
abort ();
#ifdef HAVE_cmpstrqi
if (HAVE_cmpstrqi
&& GET_CODE (size) == CONST_INT
&& INTVAL (size) < (1 << GET_MODE_BITSIZE (QImode)))
{
enum machine_mode result_mode
= insn_operand_mode[(int) CODE_FOR_cmpstrqi][0];
rtx result = gen_reg_rtx (result_mode);
emit_insn (gen_cmpstrqi (result, x, y, size,
gen_rtx (CONST_INT, VOIDmode, align)));
emit_cmp_insn (result, const0_rtx, comparison, 0, result_mode, 0, 0);
}
else
#endif
#ifdef HAVE_cmpstrhi
if (HAVE_cmpstrhi
&& GET_CODE (size) == CONST_INT
&& INTVAL (size) < (1 << GET_MODE_BITSIZE (HImode)))
{
enum machine_mode result_mode
= insn_operand_mode[(int) CODE_FOR_cmpstrhi][0];
rtx result = gen_reg_rtx (result_mode);
emit_insn (gen_cmpstrhi (result, x, y, size,
gen_rtx (CONST_INT, VOIDmode, align)));
emit_cmp_insn (result, const0_rtx, comparison, 0, result_mode, 0, 0);
}
else
#endif
#ifdef HAVE_cmpstrsi
if (HAVE_cmpstrsi)
{
enum machine_mode result_mode
= insn_operand_mode[(int) CODE_FOR_cmpstrsi][0];
rtx result = gen_reg_rtx (result_mode);
emit_insn (gen_cmpstrsi (result, x, y,
convert_to_mode (SImode, size, 1),
gen_rtx (CONST_INT, VOIDmode, align)));
emit_cmp_insn (result, const0_rtx, comparison, 0, result_mode, 0, 0);
}
else
#endif
{
#ifdef TARGET_MEM_FUNCTIONS
emit_library_call (memcmp_libfunc, 1,
TYPE_MODE (integer_type_node), 3,
XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
size, Pmode);
#else
emit_library_call (bcmp_libfunc, 1,
TYPE_MODE (integer_type_node), 3,
XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
size, Pmode);
#endif
emit_cmp_insn (hard_libcall_value (TYPE_MODE (integer_type_node)),
const0_rtx, comparison, 0,
TYPE_MODE (integer_type_node), 0, 0);
}
return;
}
/* Handle some compares against zero. */
if (y == CONST0_RTX (mode)
&& tst_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
{
int icode = (int) tst_optab->handlers[(int) mode].insn_code;
emit_queue ();
x = protect_from_queue (x, 0);
y = protect_from_queue (y, 0);
/* Now, if insn does accept these operands, put them into pseudos. */
if (! (*insn_operand_predicate[icode][0])
(x, insn_operand_mode[icode][0]))
x = copy_to_mode_reg (insn_operand_mode[icode][0], x);
emit_insn (GEN_FCN (icode) (x));
return;
}
/* Handle compares for which there is a directly suitable insn. */
if (cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
{
int icode = (int) cmp_optab->handlers[(int) mode].insn_code;
emit_queue ();
x = protect_from_queue (x, 0);
y = protect_from_queue (y, 0);
/* Now, if insn doesn't accept these operands, put them into pseudos. */
if (! (*insn_operand_predicate[icode][0])
(x, insn_operand_mode[icode][0]))
x = copy_to_mode_reg (insn_operand_mode[icode][0], x);
if (! (*insn_operand_predicate[icode][1])
(y, insn_operand_mode[icode][1]))
y = copy_to_mode_reg (insn_operand_mode[icode][1], y);
emit_insn (GEN_FCN (icode) (x, y));
return;
}
/* Try widening if we can find a direct insn that way. */
if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
{
for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
{
if (cmp_optab->handlers[(int) wider_mode].insn_code
!= CODE_FOR_nothing)
{
x = convert_to_mode (wider_mode, x, unsignedp);
y = convert_to_mode (wider_mode, y, unsignedp);
emit_cmp_insn (x, y, comparison, 0,
wider_mode, unsignedp, align);
return;
}
}
}
/* Handle a lib call just for the mode we are using. */
if (cmp_optab->handlers[(int) mode].libfunc
&& class != MODE_FLOAT)
{
rtx libfunc = cmp_optab->handlers[(int) mode].libfunc;
/* If we want unsigned, and this mode has a distinct unsigned
comparison routine, use that. */
if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc)
libfunc = ucmp_optab->handlers[(int) mode].libfunc;
emit_library_call (libfunc, 1,
SImode, 2, x, mode, y, mode);
/* Integer comparison returns a result that must be compared against 1,
so that even if we do an unsigned compare afterward,
there is still a value that can represent the result "less than". */
emit_cmp_insn (hard_libcall_value (SImode), const1_rtx,
comparison, 0, SImode, unsignedp, 0);
return;
}
if (class == MODE_FLOAT)
emit_float_lib_cmp (x, y, comparison);
else
abort ();
}
/* Nonzero if a compare of mode MODE can be done straightforwardly
(without splitting it into pieces). */
int
can_compare_p (mode)
enum machine_mode mode;
{
do
{
if (cmp_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
return 1;
mode = GET_MODE_WIDER_MODE (mode);
} while (mode != VOIDmode);
return 0;
}
/* Emit a library call comparison between floating point X and Y.
COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
static void
emit_float_lib_cmp (x, y, comparison)
rtx x, y;
enum rtx_code comparison;
{
enum machine_mode mode = GET_MODE (x);
rtx libfunc;
if (mode == SFmode)
switch (comparison)
{
case EQ:
libfunc = eqsf2_libfunc;
break;
case NE:
libfunc = nesf2_libfunc;
break;
case GT:
libfunc = gtsf2_libfunc;
break;
case GE:
libfunc = gesf2_libfunc;
break;
case LT:
libfunc = ltsf2_libfunc;
break;
case LE:
libfunc = lesf2_libfunc;
break;
}
else if (mode == DFmode)
switch (comparison)
{
case EQ:
libfunc = eqdf2_libfunc;
break;
case NE:
libfunc = nedf2_libfunc;
break;
case GT:
libfunc = gtdf2_libfunc;
break;
case GE:
libfunc = gedf2_libfunc;
break;
case LT:
libfunc = ltdf2_libfunc;
break;
case LE:
libfunc = ledf2_libfunc;
break;
}
else
{
enum machine_mode wider_mode;
for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
{
if ((cmp_optab->handlers[(int) wider_mode].insn_code
!= CODE_FOR_nothing)
|| (cmp_optab->handlers[(int) wider_mode].libfunc != 0))
{
x = convert_to_mode (wider_mode, x, 0);
y = convert_to_mode (wider_mode, y, 0);
emit_float_lib_cmp (x, y, comparison);
return;
}
}
abort ();
}
emit_library_call (libfunc, 1,
SImode, 2, x, mode, y, mode);
emit_cmp_insn (hard_libcall_value (SImode), const0_rtx, comparison,
0, SImode, 0, 0);
}
/* Generate code to indirectly jump to a location given in the rtx LOC. */
void
emit_indirect_jump (loc)
rtx loc;
{
if (! ((*insn_operand_predicate[(int)CODE_FOR_indirect_jump][0])
(loc, VOIDmode)))
loc = copy_to_mode_reg (insn_operand_mode[(int)CODE_FOR_indirect_jump][0],
loc);
emit_jump_insn (gen_indirect_jump (loc));
emit_barrier ();
}
/* These three functions generate an insn body and return it
rather than emitting the insn.
They do not protect from queued increments,
because they may be used 1) in protect_from_queue itself
and 2) in other passes where there is no queue. */
/* Generate and return an insn body to add Y to X. */
rtx
gen_add2_insn (x, y)
rtx x, y;
{
int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
if (! (*insn_operand_predicate[icode][0]) (x, insn_operand_mode[icode][0])
|| ! (*insn_operand_predicate[icode][1]) (x, insn_operand_mode[icode][1])
|| ! (*insn_operand_predicate[icode][2]) (y, insn_operand_mode[icode][2]))
abort ();
return (GEN_FCN (icode) (x, x, y));
}
int
have_add2_insn (mode)
enum machine_mode mode;
{
return add_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing;
}
/* Generate and return an insn body to subtract Y from X. */
rtx
gen_sub2_insn (x, y)
rtx x, y;
{
int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
if (! (*insn_operand_predicate[icode][0]) (x, insn_operand_mode[icode][0])
|| ! (*insn_operand_predicate[icode][1]) (x, insn_operand_mode[icode][1])
|| ! (*insn_operand_predicate[icode][2]) (y, insn_operand_mode[icode][2]))
abort ();
return (GEN_FCN (icode) (x, x, y));
}
int
have_sub2_insn (mode)
enum machine_mode mode;
{
return sub_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing;
}
/* Generate the body of an instruction to copy Y into X. */
rtx
gen_move_insn (x, y)
rtx x, y;
{
register enum machine_mode mode = GET_MODE (x);
enum insn_code insn_code;
if (mode == VOIDmode)
mode = GET_MODE (y);
insn_code = mov_optab->handlers[(int) mode].insn_code;
/* Handle MODE_CC modes: If we don't have a special move insn for this mode,
find a mode to do it in. If we have a movcc, use it. Otherwise,
find the MODE_INT mode of the same width. */
if (insn_code == CODE_FOR_nothing)
{
enum machine_mode tmode = VOIDmode;
rtx x1 = x, y1 = y;
if (GET_MODE_CLASS (mode) == MODE_CC && mode != CCmode
&& mov_optab->handlers[(int) CCmode].insn_code != CODE_FOR_nothing)
tmode = CCmode;
else if (GET_MODE_CLASS (mode) == MODE_CC)
for (tmode = QImode; tmode != VOIDmode;
tmode = GET_MODE_WIDER_MODE (tmode))
if (GET_MODE_SIZE (tmode) == GET_MODE_SIZE (mode))
break;
if (tmode == VOIDmode)
abort ();
/* Get X and Y in TMODE. We can't use gen_lowpart here because it
may call change_address which is not appropriate if we were
called when a reload was in progress. We don't have to worry
about changing the address since the size in bytes is supposed to
be the same. Copy the MEM to change the mode and move any
substitutions from the old MEM to the new one. */
if (reload_in_progress)
{
x = gen_lowpart_common (tmode, x1);
if (x == 0 && GET_CODE (x1) == MEM)
{
x = gen_rtx (MEM, tmode, XEXP (x1, 0));
RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (x1);
MEM_IN_STRUCT_P (x) = MEM_IN_STRUCT_P (x1);
MEM_VOLATILE_P (x) = MEM_VOLATILE_P (x1);
copy_replacements (x1, x);
}
y = gen_lowpart_common (tmode, y1);
if (y == 0 && GET_CODE (y1) == MEM)
{
y = gen_rtx (MEM, tmode, XEXP (y1, 0));
RTX_UNCHANGING_P (y) = RTX_UNCHANGING_P (y1);
MEM_IN_STRUCT_P (y) = MEM_IN_STRUCT_P (y1);
MEM_VOLATILE_P (y) = MEM_VOLATILE_P (y1);
copy_replacements (y1, y);
}
}
else
{
x = gen_lowpart (tmode, x);
y = gen_lowpart (tmode, y);
}
insn_code = mov_optab->handlers[(int) tmode].insn_code;
}
return (GEN_FCN (insn_code) (x, y));
}
/* Tables of patterns for extending one integer mode to another. */
static enum insn_code extendtab[MAX_MACHINE_MODE][MAX_MACHINE_MODE][2];
/* Return the insn code used to extend FROM_MODE to TO_MODE.
UNSIGNEDP specifies zero-extension instead of sign-extension. If
no such operation exists, CODE_FOR_nothing will be returned. */
enum insn_code
can_extend_p (to_mode, from_mode, unsignedp)
enum machine_mode to_mode, from_mode;
int unsignedp;
{
return extendtab[(int) to_mode][(int) from_mode][unsignedp];
}
/* Generate the body of an insn to extend Y (with mode MFROM)
into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
rtx
gen_extend_insn (x, y, mto, mfrom, unsignedp)
rtx x, y;
enum machine_mode mto, mfrom;
int unsignedp;
{
return (GEN_FCN (extendtab[(int) mto][(int) mfrom][unsignedp]) (x, y));
}
static void
init_extends ()
{
enum insn_code *p;
for (p = extendtab[0][0];
p < extendtab[0][0] + sizeof extendtab / sizeof extendtab[0][0][0];
p++)
*p = CODE_FOR_nothing;
#ifdef HAVE_extendditi2
if (HAVE_extendditi2)
extendtab[(int) TImode][(int) DImode][0] = CODE_FOR_extendditi2;
#endif
#ifdef HAVE_extendsiti2
if (HAVE_extendsiti2)
extendtab[(int) TImode][(int) SImode][0] = CODE_FOR_extendsiti2;
#endif
#ifdef HAVE_extendhiti2
if (HAVE_extendhiti2)
extendtab[(int) TImode][(int) HImode][0] = CODE_FOR_extendhiti2;
#endif
#ifdef HAVE_extendqiti2
if (HAVE_extendqiti2)
extendtab[(int) TImode][(int) QImode][0] = CODE_FOR_extendqiti2;
#endif
#ifdef HAVE_extendsidi2
if (HAVE_extendsidi2)
extendtab[(int) DImode][(int) SImode][0] = CODE_FOR_extendsidi2;
#endif
#ifdef HAVE_extendhidi2
if (HAVE_extendhidi2)
extendtab[(int) DImode][(int) HImode][0] = CODE_FOR_extendhidi2;
#endif
#ifdef HAVE_extendqidi2
if (HAVE_extendqidi2)
extendtab[(int) DImode][(int) QImode][0] = CODE_FOR_extendqidi2;
#endif
#ifdef HAVE_extendhisi2
if (HAVE_extendhisi2)
extendtab[(int) SImode][(int) HImode][0] = CODE_FOR_extendhisi2;
#endif
#ifdef HAVE_extendqisi2
if (HAVE_extendqisi2)
extendtab[(int) SImode][(int) QImode][0] = CODE_FOR_extendqisi2;
#endif
#ifdef HAVE_extendqihi2
if (HAVE_extendqihi2)
extendtab[(int) HImode][(int) QImode][0] = CODE_FOR_extendqihi2;
#endif
#ifdef HAVE_zero_extendditi2
if (HAVE_zero_extendsiti2)
extendtab[(int) TImode][(int) DImode][1] = CODE_FOR_zero_extendditi2;
#endif
#ifdef HAVE_zero_extendsiti2
if (HAVE_zero_extendsiti2)
extendtab[(int) TImode][(int) SImode][1] = CODE_FOR_zero_extendsiti2;
#endif
#ifdef HAVE_zero_extendhiti2
if (HAVE_zero_extendhiti2)
extendtab[(int) TImode][(int) HImode][1] = CODE_FOR_zero_extendhiti2;
#endif
#ifdef HAVE_zero_extendqiti2
if (HAVE_zero_extendqiti2)
extendtab[(int) TImode][(int) QImode][1] = CODE_FOR_zero_extendqiti2;
#endif
#ifdef HAVE_zero_extendsidi2
if (HAVE_zero_extendsidi2)
extendtab[(int) DImode][(int) SImode][1] = CODE_FOR_zero_extendsidi2;
#endif
#ifdef HAVE_zero_extendhidi2
if (HAVE_zero_extendhidi2)
extendtab[(int) DImode][(int) HImode][1] = CODE_FOR_zero_extendhidi2;
#endif
#ifdef HAVE_zero_extendqidi2
if (HAVE_zero_extendqidi2)
extendtab[(int) DImode][(int) QImode][1] = CODE_FOR_zero_extendqidi2;
#endif
#ifdef HAVE_zero_extendhisi2
if (HAVE_zero_extendhisi2)
extendtab[(int) SImode][(int) HImode][1] = CODE_FOR_zero_extendhisi2;
#endif
#ifdef HAVE_zero_extendqisi2
if (HAVE_zero_extendqisi2)
extendtab[(int) SImode][(int) QImode][1] = CODE_FOR_zero_extendqisi2;
#endif
#ifdef HAVE_zero_extendqihi2
if (HAVE_zero_extendqihi2)
extendtab[(int) HImode][(int) QImode][1] = CODE_FOR_zero_extendqihi2;
#endif
}
/* can_fix_p and can_float_p say whether the target machine
can directly convert a given fixed point type to
a given floating point type, or vice versa.
The returned value is the CODE_FOR_... value to use,
or CODE_FOR_nothing if these modes cannot be directly converted. */
static enum insn_code fixtab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
static enum insn_code fixtrunctab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
static enum insn_code floattab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
/* *TRUNCP_PTR is set to 1 if it is necessary to output
an explicit FTRUNC insn before the fix insn; otherwise 0. */
static enum insn_code
can_fix_p (fixmode, fltmode, unsignedp, truncp_ptr)
enum machine_mode fltmode, fixmode;
int unsignedp;
int *truncp_ptr;
{
*truncp_ptr = 0;
if (fixtrunctab[(int) fltmode][(int) fixmode][unsignedp] != CODE_FOR_nothing)
return fixtrunctab[(int) fltmode][(int) fixmode][unsignedp];
if (ftrunc_optab->handlers[(int) fltmode].insn_code != CODE_FOR_nothing)
{
*truncp_ptr = 1;
return fixtab[(int) fltmode][(int) fixmode][unsignedp];
}
return CODE_FOR_nothing;
}
static enum insn_code
can_float_p (fltmode, fixmode, unsignedp)
enum machine_mode fixmode, fltmode;
int unsignedp;
{
return floattab[(int) fltmode][(int) fixmode][unsignedp];
}
void
init_fixtab ()
{
enum insn_code *p;
for (p = fixtab[0][0];
p < fixtab[0][0] + sizeof fixtab / sizeof (fixtab[0][0][0]);
p++)
*p = CODE_FOR_nothing;
for (p = fixtrunctab[0][0];
p < fixtrunctab[0][0] + sizeof fixtrunctab / sizeof (fixtrunctab[0][0][0]);
p++)
*p = CODE_FOR_nothing;
#ifdef HAVE_fixsfqi2
if (HAVE_fixsfqi2)
fixtab[(int) SFmode][(int) QImode][0] = CODE_FOR_fixsfqi2;
#endif
#ifdef HAVE_fixsfhi2
if (HAVE_fixsfhi2)
fixtab[(int) SFmode][(int) HImode][0] = CODE_FOR_fixsfhi2;
#endif
#ifdef HAVE_fixsfsi2
if (HAVE_fixsfsi2)
fixtab[(int) SFmode][(int) SImode][0] = CODE_FOR_fixsfsi2;
#endif
#ifdef HAVE_fixsfdi2
if (HAVE_fixsfdi2)
fixtab[(int) SFmode][(int) DImode][0] = CODE_FOR_fixsfdi2;
#endif
#ifdef HAVE_fixdfqi2
if (HAVE_fixdfqi2)
fixtab[(int) DFmode][(int) QImode][0] = CODE_FOR_fixdfqi2;
#endif
#ifdef HAVE_fixdfhi2
if (HAVE_fixdfhi2)
fixtab[(int) DFmode][(int) HImode][0] = CODE_FOR_fixdfhi2;
#endif
#ifdef HAVE_fixdfsi2
if (HAVE_fixdfsi2)
fixtab[(int) DFmode][(int) SImode][0] = CODE_FOR_fixdfsi2;
#endif
#ifdef HAVE_fixdfdi2
if (HAVE_fixdfdi2)
fixtab[(int) DFmode][(int) DImode][0] = CODE_FOR_fixdfdi2;
#endif
#ifdef HAVE_fixdfti2
if (HAVE_fixdfti2)
fixtab[(int) DFmode][(int) TImode][0] = CODE_FOR_fixdfti2;
#endif
#ifdef HAVE_fixtfqi2
if (HAVE_fixtfqi2)
fixtab[(int) TFmode][(int) QImode][0] = CODE_FOR_fixtfqi2;
#endif
#ifdef HAVE_fixtfhi2
if (HAVE_fixtfhi2)
fixtab[(int) TFmode][(int) HImode][0] = CODE_FOR_fixtfhi2;
#endif
#ifdef HAVE_fixtfsi2
if (HAVE_fixtfsi2)
fixtab[(int) TFmode][(int) SImode][0] = CODE_FOR_fixtfsi2;
#endif
#ifdef HAVE_fixtfdi2
if (HAVE_fixtfdi2)
fixtab[(int) TFmode][(int) DImode][0] = CODE_FOR_fixtfdi2;
#endif
#ifdef HAVE_fixtfti2
if (HAVE_fixtfti2)
fixtab[(int) TFmode][(int) TImode][0] = CODE_FOR_fixtfti2;
#endif
#ifdef HAVE_fixunssfqi2
if (HAVE_fixunssfqi2)
fixtab[(int) SFmode][(int) QImode][1] = CODE_FOR_fixunssfqi2;
#endif
#ifdef HAVE_fixunssfhi2
if (HAVE_fixunssfhi2)
fixtab[(int) SFmode][(int) HImode][1] = CODE_FOR_fixunssfhi2;
#endif
#ifdef HAVE_fixunssfsi2
if (HAVE_fixunssfsi2)
fixtab[(int) SFmode][(int) SImode][1] = CODE_FOR_fixunssfsi2;
#endif
#ifdef HAVE_fixunssfdi2
if (HAVE_fixunssfdi2)
fixtab[(int) SFmode][(int) DImode][1] = CODE_FOR_fixunssfdi2;
#endif
#ifdef HAVE_fixunsdfqi2
if (HAVE_fixunsdfqi2)
fixtab[(int) DFmode][(int) QImode][1] = CODE_FOR_fixunsdfqi2;
#endif
#ifdef HAVE_fixunsdfhi2
if (HAVE_fixunsdfhi2)
fixtab[(int) DFmode][(int) HImode][1] = CODE_FOR_fixunsdfhi2;
#endif
#ifdef HAVE_fixunsdfsi2
if (HAVE_fixunsdfsi2)
fixtab[(int) DFmode][(int) SImode][1] = CODE_FOR_fixunsdfsi2;
#endif
#ifdef HAVE_fixunsdfdi2
if (HAVE_fixunsdfdi2)
fixtab[(int) DFmode][(int) DImode][1] = CODE_FOR_fixunsdfdi2;
#endif
#ifdef HAVE_fixunsdfti2
if (HAVE_fixunsdfti2)
fixtab[(int) DFmode][(int) TImode][1] = CODE_FOR_fixunsdfti2;
#endif
#ifdef HAVE_fixunstfqi2
if (HAVE_fixunstfqi2)
fixtab[(int) TFmode][(int) QImode][1] = CODE_FOR_fixunstfqi2;
#endif
#ifdef HAVE_fixunstfhi2
if (HAVE_fixunstfhi2)
fixtab[(int) TFmode][(int) HImode][1] = CODE_FOR_fixunstfhi2;
#endif
#ifdef HAVE_fixunstfsi2
if (HAVE_fixunstfsi2)
fixtab[(int) TFmode][(int) SImode][1] = CODE_FOR_fixunstfsi2;
#endif
#ifdef HAVE_fixunstfdi2
if (HAVE_fixunstfdi2)
fixtab[(int) TFmode][(int) DImode][1] = CODE_FOR_fixunstfdi2;
#endif
#ifdef HAVE_fixunstfti2
if (HAVE_fixunstfti2)
fixtab[(int) TFmode][(int) TImode][1] = CODE_FOR_fixunstfti2;
#endif
#ifdef HAVE_fix_truncsfqi2
if (HAVE_fix_truncsfqi2)
fixtrunctab[(int) SFmode][(int) QImode][0] = CODE_FOR_fix_truncsfqi2;
#endif
#ifdef HAVE_fix_truncsfhi2
if (HAVE_fix_truncsfhi2)
fixtrunctab[(int) SFmode][(int) HImode][0] = CODE_FOR_fix_truncsfhi2;
#endif
#ifdef HAVE_fix_truncsfsi2
if (HAVE_fix_truncsfsi2)
fixtrunctab[(int) SFmode][(int) SImode][0] = CODE_FOR_fix_truncsfsi2;
#endif
#ifdef HAVE_fix_truncsfdi2
if (HAVE_fix_truncsfdi2)
fixtrunctab[(int) SFmode][(int) DImode][0] = CODE_FOR_fix_truncsfdi2;
#endif
#ifdef HAVE_fix_truncdfqi2
if (HAVE_fix_truncdfsi2)
fixtrunctab[(int) DFmode][(int) QImode][0] = CODE_FOR_fix_truncdfqi2;
#endif
#ifdef HAVE_fix_truncdfhi2
if (HAVE_fix_truncdfhi2)
fixtrunctab[(int) DFmode][(int) HImode][0] = CODE_FOR_fix_truncdfhi2;
#endif
#ifdef HAVE_fix_truncdfsi2
if (HAVE_fix_truncdfsi2)
fixtrunctab[(int) DFmode][(int) SImode][0] = CODE_FOR_fix_truncdfsi2;
#endif
#ifdef HAVE_fix_truncdfdi2
if (HAVE_fix_truncdfdi2)
fixtrunctab[(int) DFmode][(int) DImode][0] = CODE_FOR_fix_truncdfdi2;
#endif
#ifdef HAVE_fix_truncdfti2
if (HAVE_fix_truncdfti2)
fixtrunctab[(int) DFmode][(int) TImode][0] = CODE_FOR_fix_truncdfti2;
#endif
#ifdef HAVE_fix_trunctfqi2
if (HAVE_fix_trunctfqi2)
fixtrunctab[(int) TFmode][(int) QImode][0] = CODE_FOR_fix_trunctfqi2;
#endif
#ifdef HAVE_fix_trunctfhi2
if (HAVE_fix_trunctfhi2)
fixtrunctab[(int) TFmode][(int) HImode][0] = CODE_FOR_fix_trunctfhi2;
#endif
#ifdef HAVE_fix_trunctfsi2
if (HAVE_fix_trunctfsi2)
fixtrunctab[(int) TFmode][(int) SImode][0] = CODE_FOR_fix_trunctfsi2;
#endif
#ifdef HAVE_fix_trunctfdi2
if (HAVE_fix_trunctfdi2)
fixtrunctab[(int) TFmode][(int) DImode][0] = CODE_FOR_fix_trunctfdi2;
#endif
#ifdef HAVE_fix_trunctfti2
if (HAVE_fix_trunctfti2)
fixtrunctab[(int) TFmode][(int) TImode][0] = CODE_FOR_fix_trunctfti2;
#endif
#ifdef HAVE_fixuns_truncsfqi2
if (HAVE_fixuns_truncsfqi2)
fixtrunctab[(int) SFmode][(int) QImode][1] = CODE_FOR_fixuns_truncsfqi2;
#endif
#ifdef HAVE_fixuns_truncsfhi2
if (HAVE_fixuns_truncsfhi2)
fixtrunctab[(int) SFmode][(int) HImode][1] = CODE_FOR_fixuns_truncsfhi2;
#endif
#ifdef HAVE_fixuns_truncsfsi2
if (HAVE_fixuns_truncsfsi2)
fixtrunctab[(int) SFmode][(int) SImode][1] = CODE_FOR_fixuns_truncsfsi2;
#endif
#ifdef HAVE_fixuns_truncsfdi2
if (HAVE_fixuns_truncsfdi2)
fixtrunctab[(int) SFmode][(int) DImode][1] = CODE_FOR_fixuns_truncsfdi2;
#endif
#ifdef HAVE_fixuns_truncdfqi2
if (HAVE_fixuns_truncdfqi2)
fixtrunctab[(int) DFmode][(int) QImode][1] = CODE_FOR_fixuns_truncdfqi2;
#endif
#ifdef HAVE_fixuns_truncdfhi2
if (HAVE_fixuns_truncdfhi2)
fixtrunctab[(int) DFmode][(int) HImode][1] = CODE_FOR_fixuns_truncdfhi2;
#endif
#ifdef HAVE_fixuns_truncdfsi2
if (HAVE_fixuns_truncdfsi2)
fixtrunctab[(int) DFmode][(int) SImode][1] = CODE_FOR_fixuns_truncdfsi2;
#endif
#ifdef HAVE_fixuns_truncdfdi2
if (HAVE_fixuns_truncdfdi2)
fixtrunctab[(int) DFmode][(int) DImode][1] = CODE_FOR_fixuns_truncdfdi2;
#endif
#ifdef HAVE_fixuns_truncdfti2
if (HAVE_fixuns_truncdfti2)
fixtrunctab[(int) DFmode][(int) TImode][1] = CODE_FOR_fixuns_truncdfti2;
#endif
#ifdef HAVE_fixuns_trunctfqi2
if (HAVE_fixuns_trunctfqi2)
fixtrunctab[(int) TFmode][(int) QImode][1] = CODE_FOR_fixuns_trunctfqi2;
#endif
#ifdef HAVE_fixuns_trunctfhi2
if (HAVE_fixuns_trunctfhi2)
fixtrunctab[(int) TFmode][(int) HImode][1] = CODE_FOR_fixuns_trunctfhi2;
#endif
#ifdef HAVE_fixuns_trunctfsi2
if (HAVE_fixuns_trunctfsi2)
fixtrunctab[(int) TFmode][(int) SImode][1] = CODE_FOR_fixuns_trunctfsi2;
#endif
#ifdef HAVE_fixuns_trunctfdi2
if (HAVE_fixuns_trunctfdi2)
fixtrunctab[(int) TFmode][(int) DImode][1] = CODE_FOR_fixuns_trunctfdi2;
#endif
#ifdef HAVE_fixuns_trunctfti2
if (HAVE_fixuns_trunctfti2)
fixtrunctab[(int) TFmode][(int) TImode][1] = CODE_FOR_fixuns_trunctfti2;
#endif
#ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC
/* This flag says the same insns that convert to a signed fixnum
also convert validly to an unsigned one. */
{
int i;
int j;
for (i = 0; i < NUM_MACHINE_MODES; i++)
for (j = 0; j < NUM_MACHINE_MODES; j++)
fixtrunctab[i][j][1] = fixtrunctab[i][j][0];
}
#endif
}
void
init_floattab ()
{
enum insn_code *p;
for (p = floattab[0][0];
p < floattab[0][0] + sizeof floattab / sizeof (floattab[0][0][0]);
p++)
*p = CODE_FOR_nothing;
#ifdef HAVE_floatqisf2
if (HAVE_floatqisf2)
floattab[(int) SFmode][(int) QImode][0] = CODE_FOR_floatqisf2;
#endif
#ifdef HAVE_floathisf2
if (HAVE_floathisf2)
floattab[(int) SFmode][(int) HImode][0] = CODE_FOR_floathisf2;
#endif
#ifdef HAVE_floatsisf2
if (HAVE_floatsisf2)
floattab[(int) SFmode][(int) SImode][0] = CODE_FOR_floatsisf2;
#endif
#ifdef HAVE_floatdisf2
if (HAVE_floatdisf2)
floattab[(int) SFmode][(int) DImode][0] = CODE_FOR_floatdisf2;
#endif
#ifdef HAVE_floattisf2
if (HAVE_floattisf2)
floattab[(int) SFmode][(int) TImode][0] = CODE_FOR_floattisf2;
#endif
#ifdef HAVE_floatqidf2
if (HAVE_floatqidf2)
floattab[(int) DFmode][(int) QImode][0] = CODE_FOR_floatqidf2;
#endif
#ifdef HAVE_floathidf2
if (HAVE_floathidf2)
floattab[(int) DFmode][(int) HImode][0] = CODE_FOR_floathidf2;
#endif
#ifdef HAVE_floatsidf2
if (HAVE_floatsidf2)
floattab[(int) DFmode][(int) SImode][0] = CODE_FOR_floatsidf2;
#endif
#ifdef HAVE_floatdidf2
if (HAVE_floatdidf2)
floattab[(int) DFmode][(int) DImode][0] = CODE_FOR_floatdidf2;
#endif
#ifdef HAVE_floattidf2
if (HAVE_floattidf2)
floattab[(int) DFmode][(int) TImode][0] = CODE_FOR_floattidf2;
#endif
#ifdef HAVE_floatqitf2
if (HAVE_floatqitf2)
floattab[(int) TFmode][(int) QImode][0] = CODE_FOR_floatqitf2;
#endif
#ifdef HAVE_floathitf2
if (HAVE_floathitf2)
floattab[(int) TFmode][(int) HImode][0] = CODE_FOR_floathitf2;
#endif
#ifdef HAVE_floatsitf2
if (HAVE_floatsitf2)
floattab[(int) TFmode][(int) SImode][0] = CODE_FOR_floatsitf2;
#endif
#ifdef HAVE_floatditf2
if (HAVE_floatditf2)
floattab[(int) TFmode][(int) DImode][0] = CODE_FOR_floatditf2;
#endif
#ifdef HAVE_floattitf2
if (HAVE_floattitf2)
floattab[(int) TFmode][(int) TImode][0] = CODE_FOR_floattitf2;
#endif
#ifdef HAVE_floatunsqisf2
if (HAVE_floatunsqisf2)
floattab[(int) SFmode][(int) QImode][1] = CODE_FOR_floatunsqisf2;
#endif
#ifdef HAVE_floatunshisf2
if (HAVE_floatunshisf2)
floattab[(int) SFmode][(int) HImode][1] = CODE_FOR_floatunshisf2;
#endif
#ifdef HAVE_floatunssisf2
if (HAVE_floatunssisf2)
floattab[(int) SFmode][(int) SImode][1] = CODE_FOR_floatunssisf2;
#endif
#ifdef HAVE_floatunsdisf2
if (HAVE_floatunsdisf2)
floattab[(int) SFmode][(int) DImode][1] = CODE_FOR_floatunsdisf2;
#endif
#ifdef HAVE_floatunstisf2
if (HAVE_floatunstisf2)
floattab[(int) SFmode][(int) TImode][1] = CODE_FOR_floatunstisf2;
#endif
#ifdef HAVE_floatunsqidf2
if (HAVE_floatunsqidf2)
floattab[(int) DFmode][(int) QImode][1] = CODE_FOR_floatunsqidf2;
#endif
#ifdef HAVE_floatunshidf2
if (HAVE_floatunshidf2)
floattab[(int) DFmode][(int) HImode][1] = CODE_FOR_floatunshidf2;
#endif
#ifdef HAVE_floatunssidf2
if (HAVE_floatunssidf2)
floattab[(int) DFmode][(int) SImode][1] = CODE_FOR_floatunssidf2;
#endif
#ifdef HAVE_floatunsdidf2
if (HAVE_floatunsdidf2)
floattab[(int) DFmode][(int) DImode][1] = CODE_FOR_floatunsdidf2;
#endif
#ifdef HAVE_floatunstidf2
if (HAVE_floatunstidf2)
floattab[(int) DFmode][(int) TImode][1] = CODE_FOR_floatunstidf2;
#endif
#ifdef HAVE_floatunsqitf2
if (HAVE_floatunsqitf2)
floattab[(int) TFmode][(int) QImode][1] = CODE_FOR_floatunsqitf2;
#endif
#ifdef HAVE_floatunshitf2
if (HAVE_floatunshitf2)
floattab[(int) TFmode][(int) HImode][1] = CODE_FOR_floatunshitf2;
#endif
#ifdef HAVE_floatunssitf2
if (HAVE_floatunssitf2)
floattab[(int) TFmode][(int) SImode][1] = CODE_FOR_floatunssitf2;
#endif
#ifdef HAVE_floatunsditf2
if (HAVE_floatunsditf2)
floattab[(int) TFmode][(int) DImode][1] = CODE_FOR_floatunsditf2;
#endif
#ifdef HAVE_floatunstitf2
if (HAVE_floatunstitf2)
floattab[(int) TFmode][(int) TImode][1] = CODE_FOR_floatunstitf2;
#endif
}
/* Generate code to convert FROM to floating point
and store in TO. FROM must be fixed point and not VOIDmode.
UNSIGNEDP nonzero means regard FROM as unsigned.
Normally this is done by correcting the final value
if it is negative. */
void
expand_float (to, from, unsignedp)
rtx to, from;
int unsignedp;
{
enum insn_code icode;
register rtx target = to;
enum machine_mode fmode, imode;
/* Crash now, because we won't be able to decide which mode to use. */
if (GET_MODE (from) == VOIDmode)
abort ();
/* Look for an insn to do the conversion. Do it in the specified
modes if possible; otherwise convert either input, output or both to
wider mode. If the integer mode is wider than the mode of FROM,
we can do the conversion signed even if the input is unsigned. */
for (imode = GET_MODE (from); imode != VOIDmode;
imode = GET_MODE_WIDER_MODE (imode))
for (fmode = GET_MODE (to); fmode != VOIDmode;
fmode = GET_MODE_WIDER_MODE (fmode))
{
int doing_unsigned = unsignedp;
icode = can_float_p (fmode, imode, unsignedp);
if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp)
icode = can_float_p (fmode, imode, 0), doing_unsigned = 0;
if (icode != CODE_FOR_nothing)
{
to = protect_from_queue (to, 1);
if (imode != GET_MODE (from))
from = convert_to_mode (imode, from, unsignedp);
else
from = protect_from_queue (from, 0);
if (fmode != GET_MODE (to))
target = gen_reg_rtx (fmode);
emit_unop_insn (icode, target, from,
doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
if (target != to)
convert_move (to, target, 0);
return;
}
}
#if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
/* Unsigned integer, and no way to convert directly.
Convert as signed, then conditionally adjust the result. */
if (unsignedp)
{
rtx label = gen_label_rtx ();
rtx temp;
REAL_VALUE_TYPE offset;
emit_queue ();
to = protect_from_queue (to, 1);
from = protect_from_queue (from, 0);
if (flag_force_mem)
from = force_not_mem (from);
/* If we are about to do some arithmetic to correct for an
unsigned operand, do it in a pseudo-register. */
if (GET_CODE (to) != REG || REGNO (to) <= LAST_VIRTUAL_REGISTER)
target = gen_reg_rtx (GET_MODE (to));
/* Convert as signed integer to floating. */
expand_float (target, from, 0);
/* If FROM is negative (and therefore TO is negative),
correct its value by 2**bitwidth. */
do_pending_stack_adjust ();
emit_cmp_insn (from, const0_rtx, GE, 0, GET_MODE (from), 0, 0);
emit_jump_insn (gen_bge (label));
/* On SCO 3.2.1, ldexp rejects values outside [0.5, 1).
Rather than setting up a dconst_dot_5, let's hope SCO
fixes the bug. */
offset = REAL_VALUE_LDEXP (dconst1, GET_MODE_BITSIZE (GET_MODE (from)));
temp = expand_binop (GET_MODE (to), add_optab, target,
immed_real_const_1 (offset, GET_MODE (to)),
target, 0, OPTAB_LIB_WIDEN);
if (temp != target)
emit_move_insn (target, temp);
do_pending_stack_adjust ();
emit_label (label);
}
else
#endif
/* No hardware instruction available; call a library
to convert from SImode or DImode into SFmode or DFmode. */
{
rtx libfcn;
rtx insns;
to = protect_from_queue (to, 1);
if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
from = convert_to_mode (SImode, from, unsignedp);
else
from = protect_from_queue (from, 0);
if (flag_force_mem)
from = force_not_mem (from);
if (GET_MODE (to) == SFmode)
{
if (GET_MODE (from) == SImode)
libfcn = floatsisf_libfunc;
else if (GET_MODE (from) == DImode)
libfcn = floatdisf_libfunc;
else
abort ();
}
else if (GET_MODE (to) == DFmode)
{
if (GET_MODE (from) == SImode)
libfcn = floatsidf_libfunc;
else if (GET_MODE (from) == DImode)
libfcn = floatdidf_libfunc;
else
abort ();
}
else
abort ();
start_sequence ();
emit_library_call (libfcn, 1, GET_MODE (to), 1, from, GET_MODE (from));
insns = get_insns ();
end_sequence ();
emit_libcall_block (insns, target, hard_libcall_value (GET_MODE (to)),
gen_rtx (FLOAT, GET_MODE (to), from));
}
/* Copy result to requested destination
if we have been computing in a temp location. */
if (target != to)
{
if (GET_MODE (target) == GET_MODE (to))
emit_move_insn (to, target);
else
convert_move (to, target, 0);
}
}
/* expand_fix: generate code to convert FROM to fixed point
and store in TO. FROM must be floating point. */
static rtx
ftruncify (x)
rtx x;
{
rtx temp = gen_reg_rtx (GET_MODE (x));
return expand_unop (GET_MODE (x), ftrunc_optab, x, temp, 0);
}
void
expand_fix (to, from, unsignedp)
register rtx to, from;
int unsignedp;
{
enum insn_code icode;
register rtx target = to;
enum machine_mode fmode, imode;
int must_trunc = 0;
rtx libfcn = 0;
/* We first try to find a pair of modes, one real and one integer, at
least as wide as FROM and TO, respectively, in which we can open-code
this conversion. If the integer mode is wider than the mode of TO,
we can do the conversion either signed or unsigned. */
for (imode = GET_MODE (to); imode != VOIDmode;
imode = GET_MODE_WIDER_MODE (imode))
for (fmode = GET_MODE (from); fmode != VOIDmode;
fmode = GET_MODE_WIDER_MODE (fmode))
{
int doing_unsigned = unsignedp;
icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
if (icode != CODE_FOR_nothing)
{
to = protect_from_queue (to, 1);
if (fmode != GET_MODE (from))
from = convert_to_mode (fmode, from, 0);
else
from = protect_from_queue (from, 0);
if (must_trunc)
from = ftruncify (from);
if (imode != GET_MODE (to))
target = gen_reg_rtx (imode);
emit_unop_insn (icode, target, from,
doing_unsigned ? UNSIGNED_FIX : FIX);
if (target != to)
convert_move (to, target, unsignedp);
return;
}
}
#if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
/* For an unsigned conversion, there is one more way to do it.
If we have a signed conversion, we generate code that compares
the real value to the largest representable positive number. If if
is smaller, the conversion is done normally. Otherwise, subtract
one plus the highest signed number, convert, and add it back.
We only need to check all real modes, since we know we didn't find
anything with a wider integer mode. */
if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_INT)
for (fmode = GET_MODE (from); fmode != VOIDmode;
fmode = GET_MODE_WIDER_MODE (fmode))
/* Make sure we won't lose significant bits doing this. */
if (GET_MODE_BITSIZE (fmode) > GET_MODE_BITSIZE (GET_MODE (to))
&& CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0,
&must_trunc))
{
int bitsize = GET_MODE_BITSIZE (GET_MODE (to));
REAL_VALUE_TYPE offset = REAL_VALUE_LDEXP (dconst1, bitsize - 1);
rtx limit = immed_real_const_1 (offset, fmode);
rtx lab1 = gen_label_rtx ();
rtx lab2 = gen_label_rtx ();
rtx insn;
emit_queue ();
to = protect_from_queue (to, 1);
from = protect_from_queue (from, 0);
if (flag_force_mem)
from = force_not_mem (from);
if (fmode != GET_MODE (from))
from = convert_to_mode (fmode, from, 0);
/* See if we need to do the subtraction. */
do_pending_stack_adjust ();
emit_cmp_insn (from, limit, GE, 0, GET_MODE (from), 0, 0);
emit_jump_insn (gen_bge (lab1));
/* If not, do the signed "fix" and branch around fixup code. */
expand_fix (to, from, 0);
emit_jump_insn (gen_jump (lab2));
emit_barrier ();
/* Otherwise, subtract 2**(N-1), convert to signed number,
then add 2**(N-1). Do the addition using XOR since this
will often generate better code. */
emit_label (lab1);
target = expand_binop (GET_MODE (from), sub_optab, from, limit,
0, 0, OPTAB_LIB_WIDEN);
expand_fix (to, target, 0);
target = expand_binop (GET_MODE (to), xor_optab, to,
gen_rtx (CONST_INT, VOIDmode,
1 << (bitsize - 1)),
to, 1, OPTAB_LIB_WIDEN);
if (target != to)
emit_move_insn (to, target);
emit_label (lab2);
/* Make a place for a REG_NOTE and add it. */
insn = emit_move_insn (to, to);
REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL,
gen_rtx (UNSIGNED_FIX, GET_MODE (to),
from), REG_NOTES (insn));
return;
}
#endif
/* We can't do it with an insn, so use a library call. But first ensure
that the mode of TO is at least as wide as SImode, since those are the
only library calls we know about. */
if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
{
target = gen_reg_rtx (SImode);
expand_fix (target, from, unsignedp);
}
else if (GET_MODE (from) == SFmode)
{
if (GET_MODE (to) == SImode)
libfcn = unsignedp ? fixunssfsi_libfunc : fixsfsi_libfunc;
else if (GET_MODE (to) == DImode)
libfcn = unsignedp ? fixunssfdi_libfunc : fixsfdi_libfunc;
else
abort ();
}
else if (GET_MODE (from) == DFmode)
{
if (GET_MODE (to) == SImode)
libfcn = unsignedp ? fixunsdfsi_libfunc : fixdfsi_libfunc;
else if (GET_MODE (to) == DImode)
libfcn = unsignedp ? fixunsdfdi_libfunc : fixdfdi_libfunc;
else
abort ();
}
else
abort ();
if (libfcn)
{
rtx insns;
to = protect_from_queue (to, 1);
from = protect_from_queue (from, 0);
if (flag_force_mem)
from = force_not_mem (from);
start_sequence ();
emit_library_call (libfcn, 1, GET_MODE (to), 1, from, GET_MODE (from));
insns = get_insns ();
end_sequence ();
emit_libcall_block (insns, target, hard_libcall_value (GET_MODE (to)),
gen_rtx (unsignedp ? FIX : UNSIGNED_FIX,
GET_MODE (to), from));
}
if (GET_MODE (to) == GET_MODE (target))
emit_move_insn (to, target);
else
convert_move (to, target, 0);
}
static optab
init_optab (code)
enum rtx_code code;
{
int i;
optab op = (optab) xmalloc (sizeof (struct optab));
op->code = code;
for (i = 0; i < NUM_MACHINE_MODES; i++)
{
op->handlers[i].insn_code = CODE_FOR_nothing;
op->handlers[i].libfunc = 0;
}
return op;
}
/* Call this once to initialize the contents of the optabs
appropriately for the current target machine. */
void
init_optabs ()
{
int i;
init_fixtab ();
init_floattab ();
init_extends ();
add_optab = init_optab (PLUS);
sub_optab = init_optab (MINUS);
smul_optab = init_optab (MULT);
smul_widen_optab = init_optab (UNKNOWN);
umul_widen_optab = init_optab (UNKNOWN);
sdiv_optab = init_optab (DIV);
sdivmod_optab = init_optab (UNKNOWN);
udiv_optab = init_optab (UDIV);
udivmod_optab = init_optab (UNKNOWN);
smod_optab = init_optab (MOD);
umod_optab = init_optab (UMOD);
flodiv_optab = init_optab (DIV);
ftrunc_optab = init_optab (UNKNOWN);
and_optab = init_optab (AND);
ior_optab = init_optab (IOR);
xor_optab = init_optab (XOR);
ashl_optab = init_optab (ASHIFT);
ashr_optab = init_optab (ASHIFTRT);
lshl_optab = init_optab (LSHIFT);
lshr_optab = init_optab (LSHIFTRT);
rotl_optab = init_optab (ROTATE);
rotr_optab = init_optab (ROTATERT);
smin_optab = init_optab (SMIN);
smax_optab = init_optab (SMAX);
umin_optab = init_optab (UMIN);
umax_optab = init_optab (UMAX);
mov_optab = init_optab (UNKNOWN);
movstrict_optab = init_optab (UNKNOWN);
cmp_optab = init_optab (UNKNOWN);
ucmp_optab = init_optab (UNKNOWN);
tst_optab = init_optab (UNKNOWN);
neg_optab = init_optab (NEG);
abs_optab = init_optab (ABS);
one_cmpl_optab = init_optab (NOT);
ffs_optab = init_optab (FFS);
sqrt_optab = init_optab (SQRT);
strlen_optab = init_optab (UNKNOWN);
#ifdef HAVE_addqi3
if (HAVE_addqi3)
add_optab->handlers[(int) QImode].insn_code = CODE_FOR_addqi3;
#endif
#ifdef HAVE_addhi3
if (HAVE_addhi3)
add_optab->handlers[(int) HImode].insn_code = CODE_FOR_addhi3;
#endif
#ifdef HAVE_addpsi3
if (HAVE_addpsi3)
add_optab->handlers[(int) PSImode].insn_code = CODE_FOR_addpsi3;
#endif
#ifdef HAVE_addsi3
if (HAVE_addsi3)
add_optab->handlers[(int) SImode].insn_code = CODE_FOR_addsi3;
#endif
#ifdef HAVE_adddi3
if (HAVE_adddi3)
add_optab->handlers[(int) DImode].insn_code = CODE_FOR_adddi3;
#endif
#ifdef HAVE_addti3
if (HAVE_addti3)
add_optab->handlers[(int) TImode].insn_code = CODE_FOR_addti3;
#endif
#ifdef HAVE_addsf3
if (HAVE_addsf3)
add_optab->handlers[(int) SFmode].insn_code = CODE_FOR_addsf3;
#endif
#ifdef HAVE_adddf3
if (HAVE_adddf3)
add_optab->handlers[(int) DFmode].insn_code = CODE_FOR_adddf3;
#endif
#ifdef HAVE_addtf3
if (HAVE_addtf3)
add_optab->handlers[(int) TFmode].insn_code = CODE_FOR_addtf3;
#endif
add_optab->handlers[(int) SFmode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__addsf3");
add_optab->handlers[(int) DFmode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__adddf3");
#ifdef HAVE_subqi3
if (HAVE_subqi3)
sub_optab->handlers[(int) QImode].insn_code = CODE_FOR_subqi3;
#endif
#ifdef HAVE_subhi3
if (HAVE_subhi3)
sub_optab->handlers[(int) HImode].insn_code = CODE_FOR_subhi3;
#endif
#ifdef HAVE_subpsi3
if (HAVE_subpsi3)
sub_optab->handlers[(int) PSImode].insn_code = CODE_FOR_subpsi3;
#endif
#ifdef HAVE_subsi3
if (HAVE_subsi3)
sub_optab->handlers[(int) SImode].insn_code = CODE_FOR_subsi3;
#endif
#ifdef HAVE_subdi3
if (HAVE_subdi3)
sub_optab->handlers[(int) DImode].insn_code = CODE_FOR_subdi3;
#endif
#ifdef HAVE_subti3
if (HAVE_subti3)
sub_optab->handlers[(int) TImode].insn_code = CODE_FOR_subti3;
#endif
#ifdef HAVE_subsf3
if (HAVE_subsf3)
sub_optab->handlers[(int) SFmode].insn_code = CODE_FOR_subsf3;
#endif
#ifdef HAVE_subdf3
if (HAVE_subdf3)
sub_optab->handlers[(int) DFmode].insn_code = CODE_FOR_subdf3;
#endif
#ifdef HAVE_subtf3
if (HAVE_subtf3)
sub_optab->handlers[(int) TFmode].insn_code = CODE_FOR_subtf3;
#endif
sub_optab->handlers[(int) SFmode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__subsf3");
sub_optab->handlers[(int) DFmode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__subdf3");
#ifdef HAVE_mulqi3
if (HAVE_mulqi3)
smul_optab->handlers[(int) QImode].insn_code = CODE_FOR_mulqi3;
#endif
#ifdef HAVE_mulhi3
if (HAVE_mulhi3)
smul_optab->handlers[(int) HImode].insn_code = CODE_FOR_mulhi3;
#endif
#ifdef HAVE_mulpsi3
if (HAVE_mulpsi3)
smul_optab->handlers[(int) PSImode].insn_code = CODE_FOR_mulpsi3;
#endif
#ifdef HAVE_mulsi3
if (HAVE_mulsi3)
smul_optab->handlers[(int) SImode].insn_code = CODE_FOR_mulsi3;
#endif
#ifdef HAVE_muldi3
if (HAVE_muldi3)
smul_optab->handlers[(int) DImode].insn_code = CODE_FOR_muldi3;
#endif
#ifdef HAVE_multi3
if (HAVE_multi3)
smul_optab->handlers[(int) TImode].insn_code = CODE_FOR_multi3;
#endif
#ifdef HAVE_mulsf3
if (HAVE_mulsf3)
smul_optab->handlers[(int) SFmode].insn_code = CODE_FOR_mulsf3;
#endif
#ifdef HAVE_muldf3
if (HAVE_muldf3)
smul_optab->handlers[(int) DFmode].insn_code = CODE_FOR_muldf3;
#endif
#ifdef HAVE_multf3
if (HAVE_multf3)
smul_optab->handlers[(int) TFmode].insn_code = CODE_FOR_multf3;
#endif
#ifdef MULSI3_LIBCALL
smul_optab->handlers[(int) SImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, MULSI3_LIBCALL);
#else
smul_optab->handlers[(int) SImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__mulsi3");
#endif
#ifdef MULDI3_LIBCALL
smul_optab->handlers[(int) DImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, MULDI3_LIBCALL);
#else
smul_optab->handlers[(int) DImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__muldi3");
#endif
smul_optab->handlers[(int) SFmode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__mulsf3");
smul_optab->handlers[(int) DFmode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__muldf3");
#ifdef HAVE_mulqihi3
if (HAVE_mulqihi3)
smul_widen_optab->handlers[(int) HImode].insn_code = CODE_FOR_mulqihi3;
#endif
#ifdef HAVE_mulhisi3
if (HAVE_mulhisi3)
smul_widen_optab->handlers[(int) SImode].insn_code = CODE_FOR_mulhisi3;
#endif
#ifdef HAVE_mulsidi3
if (HAVE_mulsidi3)
smul_widen_optab->handlers[(int) DImode].insn_code = CODE_FOR_mulsidi3;
#endif
#ifdef HAVE_mulditi3
if (HAVE_mulditi3)
smul_widen_optab->handlers[(int) TImode].insn_code = CODE_FOR_mulditi3;
#endif
#ifdef HAVE_umulqihi3
if (HAVE_umulqihi3)
umul_widen_optab->handlers[(int) HImode].insn_code = CODE_FOR_umulqihi3;
#endif
#ifdef HAVE_umulhisi3
if (HAVE_umulhisi3)
umul_widen_optab->handlers[(int) SImode].insn_code = CODE_FOR_umulhisi3;
#endif
#ifdef HAVE_umulsidi3
if (HAVE_umulsidi3)
umul_widen_optab->handlers[(int) DImode].insn_code = CODE_FOR_umulsidi3;
#endif
#ifdef HAVE_umulditi3
if (HAVE_umulditi3)
umul_widen_optab->handlers[(int) TImode].insn_code = CODE_FOR_umulditi3;
#endif
#ifdef HAVE_divqi3
if (HAVE_divqi3)
sdiv_optab->handlers[(int) QImode].insn_code = CODE_FOR_divqi3;
#endif
#ifdef HAVE_divhi3
if (HAVE_divhi3)
sdiv_optab->handlers[(int) HImode].insn_code = CODE_FOR_divhi3;
#endif
#ifdef HAVE_divpsi3
if (HAVE_divpsi3)
sdiv_optab->handlers[(int) PSImode].insn_code = CODE_FOR_divpsi3;
#endif
#ifdef HAVE_divsi3
if (HAVE_divsi3)
sdiv_optab->handlers[(int) SImode].insn_code = CODE_FOR_divsi3;
#endif
#ifdef HAVE_divdi3
if (HAVE_divdi3)
sdiv_optab->handlers[(int) DImode].insn_code = CODE_FOR_divdi3;
#endif
#ifdef HAVE_divti3
if (HAVE_divti3)
sdiv_optab->handlers[(int) TImode].insn_code = CODE_FOR_divti3;
#endif
#ifdef DIVSI3_LIBCALL
sdiv_optab->handlers[(int) SImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, DIVSI3_LIBCALL);
#else
sdiv_optab->handlers[(int) SImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__divsi3");
#endif
#ifdef DIVDI3_LIBCALL
sdiv_optab->handlers[(int) DImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, DIVDI3_LIBCALL);
#else
sdiv_optab->handlers[(int) DImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__divdi3");
#endif
#ifdef HAVE_udivqi3
if (HAVE_udivqi3)
udiv_optab->handlers[(int) QImode].insn_code = CODE_FOR_udivqi3;
#endif
#ifdef HAVE_udivhi3
if (HAVE_udivhi3)
udiv_optab->handlers[(int) HImode].insn_code = CODE_FOR_udivhi3;
#endif
#ifdef HAVE_udivpsi3
if (HAVE_udivpsi3)
udiv_optab->handlers[(int) PSImode].insn_code = CODE_FOR_udivpsi3;
#endif
#ifdef HAVE_udivsi3
if (HAVE_udivsi3)
udiv_optab->handlers[(int) SImode].insn_code = CODE_FOR_udivsi3;
#endif
#ifdef HAVE_udivdi3
if (HAVE_udivdi3)
udiv_optab->handlers[(int) DImode].insn_code = CODE_FOR_udivdi3;
#endif
#ifdef HAVE_udivti3
if (HAVE_udivti3)
udiv_optab->handlers[(int) TImode].insn_code = CODE_FOR_udivti3;
#endif
#ifdef UDIVSI3_LIBCALL
udiv_optab->handlers[(int) SImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, UDIVSI3_LIBCALL);
#else
udiv_optab->handlers[(int) SImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__udivsi3");
#endif
#ifdef UDIVDI3_LIBCALL
udiv_optab->handlers[(int) DImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, UDIVDI3_LIBCALL);
#else
udiv_optab->handlers[(int) DImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__udivdi3");
#endif
#ifdef HAVE_divmodqi4
if (HAVE_divmodqi4)
sdivmod_optab->handlers[(int) QImode].insn_code = CODE_FOR_divmodqi4;
#endif
#ifdef HAVE_divmodhi4
if (HAVE_divmodhi4)
sdivmod_optab->handlers[(int) HImode].insn_code = CODE_FOR_divmodhi4;
#endif
#ifdef HAVE_divmodsi4
if (HAVE_divmodsi4)
sdivmod_optab->handlers[(int) SImode].insn_code = CODE_FOR_divmodsi4;
#endif
#ifdef HAVE_divmoddi4
if (HAVE_divmoddi4)
sdivmod_optab->handlers[(int) DImode].insn_code = CODE_FOR_divmoddi4;
#endif
#ifdef HAVE_divmodti4
if (HAVE_divmodti4)
sdivmod_optab->handlers[(int) TImode].insn_code = CODE_FOR_divmodti4;
#endif
#ifdef HAVE_udivmodqi4
if (HAVE_udivmodqi4)
udivmod_optab->handlers[(int) QImode].insn_code = CODE_FOR_udivmodqi4;
#endif
#ifdef HAVE_udivmodhi4
if (HAVE_udivmodhi4)
udivmod_optab->handlers[(int) HImode].insn_code = CODE_FOR_udivmodhi4;
#endif
#ifdef HAVE_udivmodsi4
if (HAVE_udivmodsi4)
udivmod_optab->handlers[(int) SImode].insn_code = CODE_FOR_udivmodsi4;
#endif
#ifdef HAVE_udivmoddi4
if (HAVE_udivmoddi4)
udivmod_optab->handlers[(int) DImode].insn_code = CODE_FOR_udivmoddi4;
#endif
#ifdef HAVE_udivmodti4
if (HAVE_udivmodti4)
udivmod_optab->handlers[(int) TImode].insn_code = CODE_FOR_udivmodti4;
#endif
#ifdef HAVE_modqi3
if (HAVE_modqi3)
smod_optab->handlers[(int) QImode].insn_code = CODE_FOR_modqi3;
#endif
#ifdef HAVE_modhi3
if (HAVE_modhi3)
smod_optab->handlers[(int) HImode].insn_code = CODE_FOR_modhi3;
#endif
#ifdef HAVE_modpsi3
if (HAVE_modpsi3)
smod_optab->handlers[(int) PSImode].insn_code = CODE_FOR_modpsi3;
#endif
#ifdef HAVE_modsi3
if (HAVE_modsi3)
smod_optab->handlers[(int) SImode].insn_code = CODE_FOR_modsi3;
#endif
#ifdef HAVE_moddi3
if (HAVE_moddi3)
smod_optab->handlers[(int) DImode].insn_code = CODE_FOR_moddi3;
#endif
#ifdef HAVE_modti3
if (HAVE_modti3)
smod_optab->handlers[(int) TImode].insn_code = CODE_FOR_modti3;
#endif
#ifdef MODSI3_LIBCALL
smod_optab->handlers[(int) SImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, MODSI3_LIBCALL);
#else
smod_optab->handlers[(int) SImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__modsi3");
#endif
#ifdef MODDI3_LIBCALL
smod_optab->handlers[(int) DImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, MODDI3_LIBCALL);
#else
smod_optab->handlers[(int) DImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__moddi3");
#endif
#ifdef HAVE_umodqi3
if (HAVE_umodqi3)
umod_optab->handlers[(int) QImode].insn_code = CODE_FOR_umodqi3;
#endif
#ifdef HAVE_umodhi3
if (HAVE_umodhi3)
umod_optab->handlers[(int) HImode].insn_code = CODE_FOR_umodhi3;
#endif
#ifdef HAVE_umodpsi3
if (HAVE_umodpsi3)
umod_optab->handlers[(int) PSImode].insn_code = CODE_FOR_umodpsi3;
#endif
#ifdef HAVE_umodsi3
if (HAVE_umodsi3)
umod_optab->handlers[(int) SImode].insn_code = CODE_FOR_umodsi3;
#endif
#ifdef HAVE_umoddi3
if (HAVE_umoddi3)
umod_optab->handlers[(int) DImode].insn_code = CODE_FOR_umoddi3;
#endif
#ifdef HAVE_umodti3
if (HAVE_umodti3)
umod_optab->handlers[(int) TImode].insn_code = CODE_FOR_umodti3;
#endif
#ifdef UMODSI3_LIBCALL
umod_optab->handlers[(int) SImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, UMODSI3_LIBCALL);
#else
umod_optab->handlers[(int) SImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__umodsi3");
#endif
#ifdef UMODDI3_LIBCALL
umod_optab->handlers[(int) DImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, UMODDI3_LIBCALL);
#else
umod_optab->handlers[(int) DImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__umoddi3");
#endif
#ifdef HAVE_divsf3
if (HAVE_divsf3)
flodiv_optab->handlers[(int) SFmode].insn_code = CODE_FOR_divsf3;
#endif
#ifdef HAVE_divdf3
if (HAVE_divdf3)
flodiv_optab->handlers[(int) DFmode].insn_code = CODE_FOR_divdf3;
#endif
#ifdef HAVE_divtf3
if (HAVE_divtf3)
flodiv_optab->handlers[(int) TFmode].insn_code = CODE_FOR_divtf3;
#endif
flodiv_optab->handlers[(int) SFmode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__divsf3");
flodiv_optab->handlers[(int) DFmode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__divdf3");
#ifdef HAVE_ftruncsf2
if (HAVE_ftruncsf2)
ftrunc_optab->handlers[(int) SFmode].insn_code = CODE_FOR_ftruncsf2;
#endif
#ifdef HAVE_ftruncdf2
if (HAVE_ftruncdf2)
ftrunc_optab->handlers[(int) DFmode].insn_code = CODE_FOR_ftruncdf2;
#endif
#ifdef HAVE_ftrunctf2
if (HAVE_ftrunctf2)
ftrunc_optab->handlers[(int) TFmode].insn_code = CODE_FOR_ftrunctf2;
#endif
#ifdef HAVE_andqi3
if (HAVE_andqi3)
and_optab->handlers[(int) QImode].insn_code = CODE_FOR_andqi3;
#endif
#ifdef HAVE_andhi3
if (HAVE_andhi3)
and_optab->handlers[(int) HImode].insn_code = CODE_FOR_andhi3;
#endif
#ifdef HAVE_andpsi3
if (HAVE_andpsi3)
and_optab->handlers[(int) PSImode].insn_code = CODE_FOR_andpsi3;
#endif
#ifdef HAVE_andsi3
if (HAVE_andsi3)
and_optab->handlers[(int) SImode].insn_code = CODE_FOR_andsi3;
#endif
#ifdef HAVE_anddi3
if (HAVE_anddi3)
and_optab->handlers[(int) DImode].insn_code = CODE_FOR_anddi3;
#endif
#ifdef HAVE_andti3
if (HAVE_andti3)
and_optab->handlers[(int) TImode].insn_code = CODE_FOR_andti3;
#endif
#ifdef HAVE_iorqi3
if (HAVE_iorqi3)
ior_optab->handlers[(int) QImode].insn_code = CODE_FOR_iorqi3;
#endif
#ifdef HAVE_iorhi3
if (HAVE_iorhi3)
ior_optab->handlers[(int) HImode].insn_code = CODE_FOR_iorhi3;
#endif
#ifdef HAVE_iorpsi3
if (HAVE_iorpsi3)
ior_optab->handlers[(int) PSImode].insn_code = CODE_FOR_iorpsi3;
#endif
#ifdef HAVE_iorsi3
if (HAVE_iorsi3)
ior_optab->handlers[(int) SImode].insn_code = CODE_FOR_iorsi3;
#endif
#ifdef HAVE_iordi3
if (HAVE_iordi3)
ior_optab->handlers[(int) DImode].insn_code = CODE_FOR_iordi3;
#endif
#ifdef HAVE_iorti3
if (HAVE_iorti3)
ior_optab->handlers[(int) TImode].insn_code = CODE_FOR_iorti3;
#endif
#ifdef HAVE_xorqi3
if (HAVE_xorqi3)
xor_optab->handlers[(int) QImode].insn_code = CODE_FOR_xorqi3;
#endif
#ifdef HAVE_xorhi3
if (HAVE_xorhi3)
xor_optab->handlers[(int) HImode].insn_code = CODE_FOR_xorhi3;
#endif
#ifdef HAVE_xorpsi3
if (HAVE_xorpsi3)
xor_optab->handlers[(int) PSImode].insn_code = CODE_FOR_xorpsi3;
#endif
#ifdef HAVE_xorsi3
if (HAVE_xorsi3)
xor_optab->handlers[(int) SImode].insn_code = CODE_FOR_xorsi3;
#endif
#ifdef HAVE_xordi3
if (HAVE_xordi3)
xor_optab->handlers[(int) DImode].insn_code = CODE_FOR_xordi3;
#endif
#ifdef HAVE_xorti3
if (HAVE_xorti3)
xor_optab->handlers[(int) TImode].insn_code = CODE_FOR_xorti3;
#endif
#ifdef HAVE_ashlqi3
if (HAVE_ashlqi3)
ashl_optab->handlers[(int) QImode].insn_code = CODE_FOR_ashlqi3;
#endif
#ifdef HAVE_ashlhi3
if (HAVE_ashlhi3)
ashl_optab->handlers[(int) HImode].insn_code = CODE_FOR_ashlhi3;
#endif
#ifdef HAVE_ashlpsi3
if (HAVE_ashlpsi3)
ashl_optab->handlers[(int) PSImode].insn_code = CODE_FOR_ashlpsi3;
#endif
#ifdef HAVE_ashlsi3
if (HAVE_ashlsi3)
ashl_optab->handlers[(int) SImode].insn_code = CODE_FOR_ashlsi3;
#endif
#ifdef HAVE_ashldi3
if (HAVE_ashldi3)
ashl_optab->handlers[(int) DImode].insn_code = CODE_FOR_ashldi3;
#endif
#ifdef HAVE_ashlti3
if (HAVE_ashlti3)
ashl_optab->handlers[(int) TImode].insn_code = CODE_FOR_ashlti3;
#endif
ashl_optab->handlers[(int) SImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__ashlsi3");
ashl_optab->handlers[(int) DImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__ashldi3");
#ifdef HAVE_ashrqi3
if (HAVE_ashrqi3)
ashr_optab->handlers[(int) QImode].insn_code = CODE_FOR_ashrqi3;
#endif
#ifdef HAVE_ashrhi3
if (HAVE_ashrhi3)
ashr_optab->handlers[(int) HImode].insn_code = CODE_FOR_ashrhi3;
#endif
#ifdef HAVE_ashrpsi3
if (HAVE_ashrpsi3)
ashr_optab->handlers[(int) PSImode].insn_code = CODE_FOR_ashrpsi3;
#endif
#ifdef HAVE_ashrsi3
if (HAVE_ashrsi3)
ashr_optab->handlers[(int) SImode].insn_code = CODE_FOR_ashrsi3;
#endif
#ifdef HAVE_ashrdi3
if (HAVE_ashrdi3)
ashr_optab->handlers[(int) DImode].insn_code = CODE_FOR_ashrdi3;
#endif
#ifdef HAVE_ashrti3
if (HAVE_ashrti3)
ashr_optab->handlers[(int) TImode].insn_code = CODE_FOR_ashrti3;
#endif
ashr_optab->handlers[(int) SImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__ashrsi3");
ashr_optab->handlers[(int) DImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__ashrdi3");
#ifdef HAVE_lshlqi3
if (HAVE_lshlqi3)
lshl_optab->handlers[(int) QImode].insn_code = CODE_FOR_lshlqi3;
#endif
#ifdef HAVE_lshlhi3
if (HAVE_lshlhi3)
lshl_optab->handlers[(int) HImode].insn_code = CODE_FOR_lshlhi3;
#endif
#ifdef HAVE_lshlpsi3
if (HAVE_lshlpsi3)
lshl_optab->handlers[(int) PSImode].insn_code = CODE_FOR_lshlpsi3;
#endif
#ifdef HAVE_lshlsi3
if (HAVE_lshlsi3)
lshl_optab->handlers[(int) SImode].insn_code = CODE_FOR_lshlsi3;
#endif
#ifdef HAVE_lshldi3
if (HAVE_lshldi3)
lshl_optab->handlers[(int) DImode].insn_code = CODE_FOR_lshldi3;
#endif
#ifdef HAVE_lshlti3
if (HAVE_lshlti3)
lshl_optab->handlers[(int) TImode].insn_code = CODE_FOR_lshlti3;
#endif
lshl_optab->handlers[(int) SImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__lshlsi3");
lshl_optab->handlers[(int) DImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__lshldi3");
#ifdef HAVE_lshrqi3
if (HAVE_lshrqi3)
lshr_optab->handlers[(int) QImode].insn_code = CODE_FOR_lshrqi3;
#endif
#ifdef HAVE_lshrhi3
if (HAVE_lshrhi3)
lshr_optab->handlers[(int) HImode].insn_code = CODE_FOR_lshrhi3;
#endif
#ifdef HAVE_lshrpsi3
if (HAVE_lshrpsi3)
lshr_optab->handlers[(int) PSImode].insn_code = CODE_FOR_lshrpsi3;
#endif
#ifdef HAVE_lshrsi3
if (HAVE_lshrsi3)
lshr_optab->handlers[(int) SImode].insn_code = CODE_FOR_lshrsi3;
#endif
#ifdef HAVE_lshrdi3
if (HAVE_lshrdi3)
lshr_optab->handlers[(int) DImode].insn_code = CODE_FOR_lshrdi3;
#endif
#ifdef HAVE_lshrti3
if (HAVE_lshrti3)
lshr_optab->handlers[(int) TImode].insn_code = CODE_FOR_lshrti3;
#endif
lshr_optab->handlers[(int) SImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__lshrsi3");
lshr_optab->handlers[(int) DImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__lshrdi3");
#ifdef HAVE_rotlqi3
if (HAVE_rotlqi3)
rotl_optab->handlers[(int) QImode].insn_code = CODE_FOR_rotlqi3;
#endif
#ifdef HAVE_rotlhi3
if (HAVE_rotlhi3)
rotl_optab->handlers[(int) HImode].insn_code = CODE_FOR_rotlhi3;
#endif
#ifdef HAVE_rotlpsi3
if (HAVE_rotlpsi3)
rotl_optab->handlers[(int) PSImode].insn_code = CODE_FOR_rotlpsi3;
#endif
#ifdef HAVE_rotlsi3
if (HAVE_rotlsi3)
rotl_optab->handlers[(int) SImode].insn_code = CODE_FOR_rotlsi3;
#endif
#ifdef HAVE_rotldi3
if (HAVE_rotldi3)
rotl_optab->handlers[(int) DImode].insn_code = CODE_FOR_rotldi3;
#endif
#ifdef HAVE_rotlti3
if (HAVE_rotlti3)
rotl_optab->handlers[(int) TImode].insn_code = CODE_FOR_rotlti3;
#endif
rotl_optab->handlers[(int) SImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__rotlsi3");
rotl_optab->handlers[(int) DImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__rotldi3");
#ifdef HAVE_rotrqi3
if (HAVE_rotrqi3)
rotr_optab->handlers[(int) QImode].insn_code = CODE_FOR_rotrqi3;
#endif
#ifdef HAVE_rotrhi3
if (HAVE_rotrhi3)
rotr_optab->handlers[(int) HImode].insn_code = CODE_FOR_rotrhi3;
#endif
#ifdef HAVE_rotrpsi3
if (HAVE_rotrpsi3)
rotr_optab->handlers[(int) PSImode].insn_code = CODE_FOR_rotrpsi3;
#endif
#ifdef HAVE_rotrsi3
if (HAVE_rotrsi3)
rotr_optab->handlers[(int) SImode].insn_code = CODE_FOR_rotrsi3;
#endif
#ifdef HAVE_rotrdi3
if (HAVE_rotrdi3)
rotr_optab->handlers[(int) DImode].insn_code = CODE_FOR_rotrdi3;
#endif
#ifdef HAVE_rotrti3
if (HAVE_rotrti3)
rotr_optab->handlers[(int) TImode].insn_code = CODE_FOR_rotrti3;
#endif
rotr_optab->handlers[(int) SImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__rotrsi3");
rotr_optab->handlers[(int) DImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__rotrdi3");
#ifdef HAVE_sminqi3
if (HAVE_sminqi3)
smin_optab->handlers[(int) QImode].insn_code = CODE_FOR_sminqi3;
#endif
#ifdef HAVE_sminhi3
if (HAVE_sminhi3)
smin_optab->handlers[(int) HImode].insn_code = CODE_FOR_sminhi3;
#endif
#ifdef HAVE_sminsi3
if (HAVE_sminsi3)
smin_optab->handlers[(int) SImode].insn_code = CODE_FOR_sminsi3;
#endif
#ifdef HAVE_smindi3
if (HAVE_smindi3)
smin_optab->handlers[(int) DImode].insn_code = CODE_FOR_smindi3;
#endif
#ifdef HAVE_sminti3
if (HAVE_sminti3)
smin_optab->handlers[(int) TImode].insn_code = CODE_FOR_sminti3;
#endif
#ifdef HAVE_sminsf3
if (HAVE_sminsf3)
smin_optab->handlers[(int) SFmode].insn_code = CODE_FOR_sminsf3;
#endif
#ifdef HAVE_smindf3
if (HAVE_smindf3)
smin_optab->handlers[(int) DFmode].insn_code = CODE_FOR_smindf3;
#endif
#ifdef HAVE_smintf3
if (HAVE_smintf3)
smin_optab->handlers[(int) TFmode].insn_code = CODE_FOR_smintf3;
#endif
#ifdef HAVE_smaxqi3
if (HAVE_smaxqi3)
smax_optab->handlers[(int) QImode].insn_code = CODE_FOR_smaxqi3;
#endif
#ifdef HAVE_smaxhi3
if (HAVE_smaxhi3)
smax_optab->handlers[(int) HImode].insn_code = CODE_FOR_smaxhi3;
#endif
#ifdef HAVE_smaxsi3
if (HAVE_smaxsi3)
smax_optab->handlers[(int) SImode].insn_code = CODE_FOR_smaxsi3;
#endif
#ifdef HAVE_smaxdi3
if (HAVE_smaxdi3)
smax_optab->handlers[(int) DImode].insn_code = CODE_FOR_smaxdi3;
#endif
#ifdef HAVE_smaxti3
if (HAVE_smaxti3)
smax_optab->handlers[(int) TImode].insn_code = CODE_FOR_smaxti3;
#endif
#ifdef HAVE_smaxsf3
if (HAVE_smaxsf3)
smax_optab->handlers[(int) SFmode].insn_code = CODE_FOR_smaxsf3;
#endif
#ifdef HAVE_smaxdf3
if (HAVE_smaxdf3)
smax_optab->handlers[(int) DFmode].insn_code = CODE_FOR_smaxdf3;
#endif
#ifdef HAVE_smaxtf3
if (HAVE_smaxtf3)
smax_optab->handlers[(int) TFmode].insn_code = CODE_FOR_smaxtf3;
#endif
#ifdef HAVE_uminqi3
if (HAVE_uminqi3)
umin_optab->handlers[(int) QImode].insn_code = CODE_FOR_uminqi3;
#endif
#ifdef HAVE_uminhi3
if (HAVE_uminhi3)
umin_optab->handlers[(int) HImode].insn_code = CODE_FOR_uminhi3;
#endif
#ifdef HAVE_uminsi3
if (HAVE_uminsi3)
umin_optab->handlers[(int) SImode].insn_code = CODE_FOR_uminsi3;
#endif
#ifdef HAVE_umindi3
if (HAVE_umindi3)
umin_optab->handlers[(int) DImode].insn_code = CODE_FOR_umindi3;
#endif
#ifdef HAVE_uminti3
if (HAVE_uminti3)
umin_optab->handlers[(int) TImode].insn_code = CODE_FOR_uminti3;
#endif
#ifdef HAVE_umaxqi3
if (HAVE_umaxqi3)
umax_optab->handlers[(int) QImode].insn_code = CODE_FOR_umaxqi3;
#endif
#ifdef HAVE_umaxhi3
if (HAVE_umaxhi3)
umax_optab->handlers[(int) HImode].insn_code = CODE_FOR_umaxhi3;
#endif
#ifdef HAVE_umaxsi3
if (HAVE_umaxsi3)
umax_optab->handlers[(int) SImode].insn_code = CODE_FOR_umaxsi3;
#endif
#ifdef HAVE_umaxdi3
if (HAVE_umaxdi3)
umax_optab->handlers[(int) DImode].insn_code = CODE_FOR_umaxdi3;
#endif
#ifdef HAVE_umaxti3
if (HAVE_umaxti3)
umax_optab->handlers[(int) TImode].insn_code = CODE_FOR_umaxti3;
#endif
#ifdef HAVE_negqi2
if (HAVE_negqi2)
neg_optab->handlers[(int) QImode].insn_code = CODE_FOR_negqi2;
#endif
#ifdef HAVE_neghi2
if (HAVE_neghi2)
neg_optab->handlers[(int) HImode].insn_code = CODE_FOR_neghi2;
#endif
#ifdef HAVE_negpsi2
if (HAVE_negpsi2)
neg_optab->handlers[(int) PSImode].insn_code = CODE_FOR_negpsi2;
#endif
#ifdef HAVE_negsi2
if (HAVE_negsi2)
neg_optab->handlers[(int) SImode].insn_code = CODE_FOR_negsi2;
#endif
#ifdef HAVE_negdi2
if (HAVE_negdi2)
neg_optab->handlers[(int) DImode].insn_code = CODE_FOR_negdi2;
#endif
#ifdef HAVE_negti2
if (HAVE_negti2)
neg_optab->handlers[(int) TImode].insn_code = CODE_FOR_negti2;
#endif
#ifdef HAVE_negsf2
if (HAVE_negsf2)
neg_optab->handlers[(int) SFmode].insn_code = CODE_FOR_negsf2;
#endif
#ifdef HAVE_negdf2
if (HAVE_negdf2)
neg_optab->handlers[(int) DFmode].insn_code = CODE_FOR_negdf2;
#endif
#ifdef HAVE_negtf2
if (HAVE_negtf2)
neg_optab->handlers[(int) TFmode].insn_code = CODE_FOR_negtf2;
#endif
neg_optab->handlers[(int) SImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__negsi2");
neg_optab->handlers[(int) DImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__negdi2");
neg_optab->handlers[(int) SFmode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__negsf2");
neg_optab->handlers[(int) DFmode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__negdf2");
#ifdef HAVE_absqi2
if (HAVE_absqi2)
abs_optab->handlers[(int) QImode].insn_code = CODE_FOR_absqi2;
#endif
#ifdef HAVE_abshi2
if (HAVE_abshi2)
abs_optab->handlers[(int) HImode].insn_code = CODE_FOR_abshi2;
#endif
#ifdef HAVE_abspsi2
if (HAVE_abspsi2)
abs_optab->handlers[(int) PSImode].insn_code = CODE_FOR_abspsi2;
#endif
#ifdef HAVE_abssi2
if (HAVE_abssi2)
abs_optab->handlers[(int) SImode].insn_code = CODE_FOR_abssi2;
#endif
#ifdef HAVE_absdi2
if (HAVE_absdi2)
abs_optab->handlers[(int) DImode].insn_code = CODE_FOR_absdi2;
#endif
#ifdef HAVE_absti2
if (HAVE_absti2)
abs_optab->handlers[(int) TImode].insn_code = CODE_FOR_absti2;
#endif
#ifdef HAVE_abssf2
if (HAVE_abssf2)
abs_optab->handlers[(int) SFmode].insn_code = CODE_FOR_abssf2;
#endif
#ifdef HAVE_absdf2
if (HAVE_absdf2)
abs_optab->handlers[(int) DFmode].insn_code = CODE_FOR_absdf2;
#endif
#ifdef HAVE_abstf2
if (HAVE_abstf2)
abs_optab->handlers[(int) TFmode].insn_code = CODE_FOR_abstf2;
#endif
/* No library calls here! If there is no abs instruction,
expand_expr will generate a conditional negation. */
#ifdef HAVE_sqrtqi2
if (HAVE_sqrtqi2)
sqrt_optab->handlers[(int) QImode].insn_code = CODE_FOR_sqrtqi2;
#endif
#ifdef HAVE_sqrthi2
if (HAVE_sqrthi2)
sqrt_optab->handlers[(int) HImode].insn_code = CODE_FOR_sqrthi2;
#endif
#ifdef HAVE_sqrtpsi2
if (HAVE_sqrtpsi2)
sqrt_optab->handlers[(int) PSImode].insn_code = CODE_FOR_sqrtpsi2;
#endif
#ifdef HAVE_sqrtsi2
if (HAVE_sqrtsi2)
sqrt_optab->handlers[(int) SImode].insn_code = CODE_FOR_sqrtsi2;
#endif
#ifdef HAVE_sqrtdi2
if (HAVE_sqrtdi2)
sqrt_optab->handlers[(int) DImode].insn_code = CODE_FOR_sqrtdi2;
#endif
#ifdef HAVE_sqrtti2
if (HAVE_sqrtti2)
sqrt_optab->handlers[(int) TImode].insn_code = CODE_FOR_sqrtti2;
#endif
#ifdef HAVE_sqrtsf2
if (HAVE_sqrtsf2)
sqrt_optab->handlers[(int) SFmode].insn_code = CODE_FOR_sqrtsf2;
#endif
#ifdef HAVE_sqrtdf2
if (HAVE_sqrtdf2)
sqrt_optab->handlers[(int) DFmode].insn_code = CODE_FOR_sqrtdf2;
#endif
#ifdef HAVE_sqrttf2
if (HAVE_sqrttf2)
sqrt_optab->handlers[(int) TFmode].insn_code = CODE_FOR_sqrttf2;
#endif
/* No library calls here! If there is no sqrt instruction expand_builtin
should force the library call. */
#ifdef HAVE_strlenqi
if (HAVE_strlenqi)
strlen_optab->handlers[(int) QImode].insn_code = CODE_FOR_strlenqi;
#endif
#ifdef HAVE_strlenhi
if (HAVE_strlenhi)
strlen_optab->handlers[(int) HImode].insn_code = CODE_FOR_strlenhi;
#endif
#ifdef HAVE_strlenpsi
if (HAVE_strlenpsi)
strlen_optab->handlers[(int) PSImode].insn_code = CODE_FOR_strlenpsi;
#endif
#ifdef HAVE_strlensi
if (HAVE_strlensi)
strlen_optab->handlers[(int) SImode].insn_code = CODE_FOR_strlensi;
#endif
#ifdef HAVE_strlendi
if (HAVE_strlendi)
strlen_optab->handlers[(int) DImode].insn_code = CODE_FOR_strlendi;
#endif
#ifdef HAVE_strlenti
if (HAVE_strlenti)
strlen_optab->handlers[(int) TImode].insn_code = CODE_FOR_strlenti;
#endif
/* No library calls here! If there is no strlen instruction expand_builtin
should force the library call. */
#ifdef HAVE_one_cmplqi2
if (HAVE_one_cmplqi2)
one_cmpl_optab->handlers[(int) QImode].insn_code = CODE_FOR_one_cmplqi2;
#endif
#ifdef HAVE_one_cmplhi2
if (HAVE_one_cmplhi2)
one_cmpl_optab->handlers[(int) HImode].insn_code = CODE_FOR_one_cmplhi2;
#endif
#ifdef HAVE_one_cmplpsi2
if (HAVE_one_cmplpsi2)
one_cmpl_optab->handlers[(int) PSImode].insn_code = CODE_FOR_one_cmplpsi2;
#endif
#ifdef HAVE_one_cmplsi2
if (HAVE_one_cmplsi2)
one_cmpl_optab->handlers[(int) SImode].insn_code = CODE_FOR_one_cmplsi2;
#endif
#ifdef HAVE_one_cmpldi2
if (HAVE_one_cmpldi2)
one_cmpl_optab->handlers[(int) DImode].insn_code = CODE_FOR_one_cmpldi2;
#endif
#ifdef HAVE_one_cmplti2
if (HAVE_one_cmplti2)
one_cmpl_optab->handlers[(int) TImode].insn_code = CODE_FOR_one_cmplti2;
#endif
one_cmpl_optab->handlers[(int) SImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__one_cmplsi2");
#ifdef HAVE_ffsqi2
if (HAVE_ffsqi2)
ffs_optab->handlers[(int) QImode].insn_code = CODE_FOR_ffsqi2;
#endif
#ifdef HAVE_ffshi2
if (HAVE_ffshi2)
ffs_optab->handlers[(int) HImode].insn_code = CODE_FOR_ffshi2;
#endif
#ifdef HAVE_ffspsi2
if (HAVE_ffspsi2)
ffs_optab->handlers[(int) PSImode].insn_code = CODE_FOR_ffspsi2;
#endif
#ifdef HAVE_ffssi2
if (HAVE_ffssi2)
ffs_optab->handlers[(int) SImode].insn_code = CODE_FOR_ffssi2;
#endif
#ifdef HAVE_ffsdi2
if (HAVE_ffsdi2)
ffs_optab->handlers[(int) DImode].insn_code = CODE_FOR_ffsdi2;
#endif
#ifdef HAVE_ffsti2
if (HAVE_ffsti2)
ffs_optab->handlers[(int) TImode].insn_code = CODE_FOR_ffsti2;
#endif
ffs_optab->handlers[(int) SImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "ffs");
#ifdef HAVE_movqi
if (HAVE_movqi)
mov_optab->handlers[(int) QImode].insn_code = CODE_FOR_movqi;
#endif
#ifdef HAVE_movhi
if (HAVE_movhi)
mov_optab->handlers[(int) HImode].insn_code = CODE_FOR_movhi;
#endif
#ifdef HAVE_movpsi
if (HAVE_movpsi)
mov_optab->handlers[(int) PSImode].insn_code = CODE_FOR_movpsi;
#endif
#ifdef HAVE_movsi
if (HAVE_movsi)
mov_optab->handlers[(int) SImode].insn_code = CODE_FOR_movsi;
#endif
#ifdef HAVE_movdi
if (HAVE_movdi)
mov_optab->handlers[(int) DImode].insn_code = CODE_FOR_movdi;
#endif
#ifdef HAVE_movti
if (HAVE_movti)
mov_optab->handlers[(int) TImode].insn_code = CODE_FOR_movti;
#endif
#ifdef HAVE_movsf
if (HAVE_movsf)
mov_optab->handlers[(int) SFmode].insn_code = CODE_FOR_movsf;
#endif
#ifdef HAVE_movdf
if (HAVE_movdf)
mov_optab->handlers[(int) DFmode].insn_code = CODE_FOR_movdf;
#endif
#ifdef HAVE_movtf
if (HAVE_movtf)
mov_optab->handlers[(int) TFmode].insn_code = CODE_FOR_movtf;
#endif
#ifdef HAVE_movcc
if (HAVE_movcc)
mov_optab->handlers[(int) CCmode].insn_code = CODE_FOR_movcc;
#endif
#ifdef EXTRA_CC_MODES
init_mov_optab ();
#endif
#ifdef HAVE_movstrictqi
if (HAVE_movstrictqi)
movstrict_optab->handlers[(int) QImode].insn_code = CODE_FOR_movstrictqi;
#endif
#ifdef HAVE_movstricthi
if (HAVE_movstricthi)
movstrict_optab->handlers[(int) HImode].insn_code = CODE_FOR_movstricthi;
#endif
#ifdef HAVE_movstrictpsi
if (HAVE_movstrictpsi)
movstrict_optab->handlers[(int) PSImode].insn_code = CODE_FOR_movstrictpsi;
#endif
#ifdef HAVE_movstrictsi
if (HAVE_movstrictsi)
movstrict_optab->handlers[(int) SImode].insn_code = CODE_FOR_movstrictsi;
#endif
#ifdef HAVE_movstrictdi
if (HAVE_movstrictdi)
movstrict_optab->handlers[(int) DImode].insn_code = CODE_FOR_movstrictdi;
#endif
#ifdef HAVE_movstrictti
if (HAVE_movstrictti)
movstrict_optab->handlers[(int) TImode].insn_code = CODE_FOR_movstrictti;
#endif
#ifdef HAVE_cmpqi
if (HAVE_cmpqi)
cmp_optab->handlers[(int) QImode].insn_code = CODE_FOR_cmpqi;
#endif
#ifdef HAVE_cmphi
if (HAVE_cmphi)
cmp_optab->handlers[(int) HImode].insn_code = CODE_FOR_cmphi;
#endif
#ifdef HAVE_cmppsi
if (HAVE_cmppsi)
cmp_optab->handlers[(int) PSImode].insn_code = CODE_FOR_cmppsi;
#endif
#ifdef HAVE_cmpsi
if (HAVE_cmpsi)
cmp_optab->handlers[(int) SImode].insn_code = CODE_FOR_cmpsi;
#endif
#ifdef HAVE_cmpdi
if (HAVE_cmpdi)
cmp_optab->handlers[(int) DImode].insn_code = CODE_FOR_cmpdi;
#endif
#ifdef HAVE_cmpti
if (HAVE_cmpti)
cmp_optab->handlers[(int) TImode].insn_code = CODE_FOR_cmpti;
#endif
#ifdef HAVE_cmpsf
if (HAVE_cmpsf)
cmp_optab->handlers[(int) SFmode].insn_code = CODE_FOR_cmpsf;
#endif
#ifdef HAVE_cmpdf
if (HAVE_cmpdf)
cmp_optab->handlers[(int) DFmode].insn_code = CODE_FOR_cmpdf;
#endif
#ifdef HAVE_cmptf
if (HAVE_cmptf)
cmp_optab->handlers[(int) TFmode].insn_code = CODE_FOR_cmptf;
#endif
#ifdef HAVE_tstqi
if (HAVE_tstqi)
tst_optab->handlers[(int) QImode].insn_code = CODE_FOR_tstqi;
#endif
#ifdef HAVE_tsthi
if (HAVE_tsthi)
tst_optab->handlers[(int) HImode].insn_code = CODE_FOR_tsthi;
#endif
#ifdef HAVE_tstpsi
if (HAVE_tstpsi)
tst_optab->handlers[(int) PSImode].insn_code = CODE_FOR_tstpsi;
#endif
#ifdef HAVE_tstsi
if (HAVE_tstsi)
tst_optab->handlers[(int) SImode].insn_code = CODE_FOR_tstsi;
#endif
#ifdef HAVE_tstdi
if (HAVE_tstdi)
tst_optab->handlers[(int) DImode].insn_code = CODE_FOR_tstdi;
#endif
#ifdef HAVE_tstti
if (HAVE_tstti)
tst_optab->handlers[(int) TImode].insn_code = CODE_FOR_tstti;
#endif
#ifdef HAVE_tstsf
if (HAVE_tstsf)
tst_optab->handlers[(int) SFmode].insn_code = CODE_FOR_tstsf;
#endif
#ifdef HAVE_tstdf
if (HAVE_tstdf)
tst_optab->handlers[(int) DFmode].insn_code = CODE_FOR_tstdf;
#endif
#ifdef HAVE_tsttf
if (HAVE_tsttf)
tst_optab->handlers[(int) TFmode].insn_code = CODE_FOR_tsttf;
#endif
/* Comparison libcalls for integers MUST come in pairs, signed/unsigned. */
cmp_optab->handlers[(int) DImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__cmpdi2");
ucmp_optab->handlers[(int) DImode].libfunc
= gen_rtx (SYMBOL_REF, Pmode, "__ucmpdi2");
#ifdef HAVE_beq
if (HAVE_beq)
bcc_gen_fctn[(int) EQ] = gen_beq;
#endif
#ifdef HAVE_bne
if (HAVE_bne)
bcc_gen_fctn[(int) NE] = gen_bne;
#endif
#ifdef HAVE_bgt
if (HAVE_bgt)
bcc_gen_fctn[(int) GT] = gen_bgt;
#endif
#ifdef HAVE_bge
if (HAVE_bge)
bcc_gen_fctn[(int) GE] = gen_bge;
#endif
#ifdef HAVE_bgtu
if (HAVE_bgtu)
bcc_gen_fctn[(int) GTU] = gen_bgtu;
#endif
#ifdef HAVE_bgeu
if (HAVE_bgeu)
bcc_gen_fctn[(int) GEU] = gen_bgeu;
#endif
#ifdef HAVE_blt
if (HAVE_blt)
bcc_gen_fctn[(int) LT] = gen_blt;
#endif
#ifdef HAVE_ble
if (HAVE_ble)
bcc_gen_fctn[(int) LE] = gen_ble;
#endif
#ifdef HAVE_bltu
if (HAVE_bltu)
bcc_gen_fctn[(int) LTU] = gen_bltu;
#endif
#ifdef HAVE_bleu
if (HAVE_bleu)
bcc_gen_fctn[(int) LEU] = gen_bleu;
#endif
for (i = 0; i < NUM_RTX_CODE; i++)
setcc_gen_code[i] = CODE_FOR_nothing;
#ifdef HAVE_seq
if (HAVE_seq)
setcc_gen_code[(int) EQ] = CODE_FOR_seq;
#endif
#ifdef HAVE_sne
if (HAVE_sne)
setcc_gen_code[(int) NE] = CODE_FOR_sne;
#endif
#ifdef HAVE_sgt
if (HAVE_sgt)
setcc_gen_code[(int) GT] = CODE_FOR_sgt;
#endif
#ifdef HAVE_sge
if (HAVE_sge)
setcc_gen_code[(int) GE] = CODE_FOR_sge;
#endif
#ifdef HAVE_sgtu
if (HAVE_sgtu)
setcc_gen_code[(int) GTU] = CODE_FOR_sgtu;
#endif
#ifdef HAVE_sgeu
if (HAVE_sgeu)
setcc_gen_code[(int) GEU] = CODE_FOR_sgeu;
#endif
#ifdef HAVE_slt
if (HAVE_slt)
setcc_gen_code[(int) LT] = CODE_FOR_slt;
#endif
#ifdef HAVE_sle
if (HAVE_sle)
setcc_gen_code[(int) LE] = CODE_FOR_sle;
#endif
#ifdef HAVE_sltu
if (HAVE_sltu)
setcc_gen_code[(int) LTU] = CODE_FOR_sltu;
#endif
#ifdef HAVE_sleu
if (HAVE_sleu)
setcc_gen_code[(int) LEU] = CODE_FOR_sleu;
#endif
extendsfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extendsfdf2");
truncdfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__truncdfsf2");
memcpy_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memcpy");
bcopy_libfunc = gen_rtx (SYMBOL_REF, Pmode, "bcopy");
memcmp_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memcmp");
bcmp_libfunc = gen_rtx (SYMBOL_REF, Pmode, "bcmp");
memset_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memset");
bzero_libfunc = gen_rtx (SYMBOL_REF, Pmode, "bzero");
eqsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqsf2");
nesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nesf2");
gtsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gtsf2");
gesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gesf2");
ltsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ltsf2");
lesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lesf2");
eqdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqdf2");
nedf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nedf2");
gtdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gtdf2");
gedf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gedf2");
ltdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ltdf2");
ledf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ledf2");
floatdisf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatdisf");
floatsisf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsisf");
floatdidf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatdidf");
floatsidf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsidf");
fixsfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixsfsi");
fixsfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixsfdi");
fixdfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixdfsi");
fixdfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixdfdi");
fixunssfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunssfsi");
fixunssfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunssfdi");
fixunsdfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsdfsi");
fixunsdfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsdfdi");
}
#ifdef BROKEN_LDEXP
/* SCO 3.2 apparently has a broken ldexp. */
double
ldexp(x,n)
double x;
int n;
{
if (n > 0)
while (n--)
x *= 2;
return x;
}
#endif /* BROKEN_LDEXP */
|