1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
|
/* Expansion pass for OMP directives. Outlines regions of certain OMP
directives to separate functions, converts others into explicit calls to the
runtime library (libgomp) and so forth
Copyright (C) 2005-2017 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "memmodel.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "ssa.h"
#include "optabs.h"
#include "cgraph.h"
#include "pretty-print.h"
#include "diagnostic-core.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "cfganal.h"
#include "internal-fn.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "gimple-walk.h"
#include "tree-cfg.h"
#include "tree-into-ssa.h"
#include "tree-ssa.h"
#include "splay-tree.h"
#include "cfgloop.h"
#include "omp-general.h"
#include "omp-offload.h"
#include "tree-cfgcleanup.h"
#include "symbol-summary.h"
#include "cilk.h"
#include "gomp-constants.h"
#include "gimple-pretty-print.h"
#include "hsa-common.h"
#include "debug.h"
/* OMP region information. Every parallel and workshare
directive is enclosed between two markers, the OMP_* directive
and a corresponding GIMPLE_OMP_RETURN statement. */
struct omp_region
{
/* The enclosing region. */
struct omp_region *outer;
/* First child region. */
struct omp_region *inner;
/* Next peer region. */
struct omp_region *next;
/* Block containing the omp directive as its last stmt. */
basic_block entry;
/* Block containing the GIMPLE_OMP_RETURN as its last stmt. */
basic_block exit;
/* Block containing the GIMPLE_OMP_CONTINUE as its last stmt. */
basic_block cont;
/* If this is a combined parallel+workshare region, this is a list
of additional arguments needed by the combined parallel+workshare
library call. */
vec<tree, va_gc> *ws_args;
/* The code for the omp directive of this region. */
enum gimple_code type;
/* Schedule kind, only used for GIMPLE_OMP_FOR type regions. */
enum omp_clause_schedule_kind sched_kind;
/* Schedule modifiers. */
unsigned char sched_modifiers;
/* True if this is a combined parallel+workshare region. */
bool is_combined_parallel;
/* The ordered stmt if type is GIMPLE_OMP_ORDERED and it has
a depend clause. */
gomp_ordered *ord_stmt;
};
static struct omp_region *root_omp_region;
static bool omp_any_child_fn_dumped;
static void expand_omp_build_assign (gimple_stmt_iterator *, tree, tree,
bool = false);
static gphi *find_phi_with_arg_on_edge (tree, edge);
static void expand_omp (struct omp_region *region);
/* Return true if REGION is a combined parallel+workshare region. */
static inline bool
is_combined_parallel (struct omp_region *region)
{
return region->is_combined_parallel;
}
/* Given two blocks PAR_ENTRY_BB and WS_ENTRY_BB such that WS_ENTRY_BB
is the immediate dominator of PAR_ENTRY_BB, return true if there
are no data dependencies that would prevent expanding the parallel
directive at PAR_ENTRY_BB as a combined parallel+workshare region.
When expanding a combined parallel+workshare region, the call to
the child function may need additional arguments in the case of
GIMPLE_OMP_FOR regions. In some cases, these arguments are
computed out of variables passed in from the parent to the child
via 'struct .omp_data_s'. For instance:
#pragma omp parallel for schedule (guided, i * 4)
for (j ...)
Is lowered into:
# BLOCK 2 (PAR_ENTRY_BB)
.omp_data_o.i = i;
#pragma omp parallel [child fn: bar.omp_fn.0 ( ..., D.1598)
# BLOCK 3 (WS_ENTRY_BB)
.omp_data_i = &.omp_data_o;
D.1667 = .omp_data_i->i;
D.1598 = D.1667 * 4;
#pragma omp for schedule (guided, D.1598)
When we outline the parallel region, the call to the child function
'bar.omp_fn.0' will need the value D.1598 in its argument list, but
that value is computed *after* the call site. So, in principle we
cannot do the transformation.
To see whether the code in WS_ENTRY_BB blocks the combined
parallel+workshare call, we collect all the variables used in the
GIMPLE_OMP_FOR header check whether they appear on the LHS of any
statement in WS_ENTRY_BB. If so, then we cannot emit the combined
call.
FIXME. If we had the SSA form built at this point, we could merely
hoist the code in block 3 into block 2 and be done with it. But at
this point we don't have dataflow information and though we could
hack something up here, it is really not worth the aggravation. */
static bool
workshare_safe_to_combine_p (basic_block ws_entry_bb)
{
struct omp_for_data fd;
gimple *ws_stmt = last_stmt (ws_entry_bb);
if (gimple_code (ws_stmt) == GIMPLE_OMP_SECTIONS)
return true;
gcc_assert (gimple_code (ws_stmt) == GIMPLE_OMP_FOR);
omp_extract_for_data (as_a <gomp_for *> (ws_stmt), &fd, NULL);
if (fd.collapse > 1 && TREE_CODE (fd.loop.n2) != INTEGER_CST)
return false;
if (fd.iter_type != long_integer_type_node)
return false;
/* FIXME. We give up too easily here. If any of these arguments
are not constants, they will likely involve variables that have
been mapped into fields of .omp_data_s for sharing with the child
function. With appropriate data flow, it would be possible to
see through this. */
if (!is_gimple_min_invariant (fd.loop.n1)
|| !is_gimple_min_invariant (fd.loop.n2)
|| !is_gimple_min_invariant (fd.loop.step)
|| (fd.chunk_size && !is_gimple_min_invariant (fd.chunk_size)))
return false;
return true;
}
/* Adjust CHUNK_SIZE from SCHEDULE clause, depending on simd modifier
presence (SIMD_SCHEDULE). */
static tree
omp_adjust_chunk_size (tree chunk_size, bool simd_schedule)
{
if (!simd_schedule)
return chunk_size;
int vf = omp_max_vf ();
if (vf == 1)
return chunk_size;
tree type = TREE_TYPE (chunk_size);
chunk_size = fold_build2 (PLUS_EXPR, type, chunk_size,
build_int_cst (type, vf - 1));
return fold_build2 (BIT_AND_EXPR, type, chunk_size,
build_int_cst (type, -vf));
}
/* Collect additional arguments needed to emit a combined
parallel+workshare call. WS_STMT is the workshare directive being
expanded. */
static vec<tree, va_gc> *
get_ws_args_for (gimple *par_stmt, gimple *ws_stmt)
{
tree t;
location_t loc = gimple_location (ws_stmt);
vec<tree, va_gc> *ws_args;
if (gomp_for *for_stmt = dyn_cast <gomp_for *> (ws_stmt))
{
struct omp_for_data fd;
tree n1, n2;
omp_extract_for_data (for_stmt, &fd, NULL);
n1 = fd.loop.n1;
n2 = fd.loop.n2;
if (gimple_omp_for_combined_into_p (for_stmt))
{
tree innerc
= omp_find_clause (gimple_omp_parallel_clauses (par_stmt),
OMP_CLAUSE__LOOPTEMP_);
gcc_assert (innerc);
n1 = OMP_CLAUSE_DECL (innerc);
innerc = omp_find_clause (OMP_CLAUSE_CHAIN (innerc),
OMP_CLAUSE__LOOPTEMP_);
gcc_assert (innerc);
n2 = OMP_CLAUSE_DECL (innerc);
}
vec_alloc (ws_args, 3 + (fd.chunk_size != 0));
t = fold_convert_loc (loc, long_integer_type_node, n1);
ws_args->quick_push (t);
t = fold_convert_loc (loc, long_integer_type_node, n2);
ws_args->quick_push (t);
t = fold_convert_loc (loc, long_integer_type_node, fd.loop.step);
ws_args->quick_push (t);
if (fd.chunk_size)
{
t = fold_convert_loc (loc, long_integer_type_node, fd.chunk_size);
t = omp_adjust_chunk_size (t, fd.simd_schedule);
ws_args->quick_push (t);
}
return ws_args;
}
else if (gimple_code (ws_stmt) == GIMPLE_OMP_SECTIONS)
{
/* Number of sections is equal to the number of edges from the
GIMPLE_OMP_SECTIONS_SWITCH statement, except for the one to
the exit of the sections region. */
basic_block bb = single_succ (gimple_bb (ws_stmt));
t = build_int_cst (unsigned_type_node, EDGE_COUNT (bb->succs) - 1);
vec_alloc (ws_args, 1);
ws_args->quick_push (t);
return ws_args;
}
gcc_unreachable ();
}
/* Discover whether REGION is a combined parallel+workshare region. */
static void
determine_parallel_type (struct omp_region *region)
{
basic_block par_entry_bb, par_exit_bb;
basic_block ws_entry_bb, ws_exit_bb;
if (region == NULL || region->inner == NULL
|| region->exit == NULL || region->inner->exit == NULL
|| region->inner->cont == NULL)
return;
/* We only support parallel+for and parallel+sections. */
if (region->type != GIMPLE_OMP_PARALLEL
|| (region->inner->type != GIMPLE_OMP_FOR
&& region->inner->type != GIMPLE_OMP_SECTIONS))
return;
/* Check for perfect nesting PAR_ENTRY_BB -> WS_ENTRY_BB and
WS_EXIT_BB -> PAR_EXIT_BB. */
par_entry_bb = region->entry;
par_exit_bb = region->exit;
ws_entry_bb = region->inner->entry;
ws_exit_bb = region->inner->exit;
if (single_succ (par_entry_bb) == ws_entry_bb
&& single_succ (ws_exit_bb) == par_exit_bb
&& workshare_safe_to_combine_p (ws_entry_bb)
&& (gimple_omp_parallel_combined_p (last_stmt (par_entry_bb))
|| (last_and_only_stmt (ws_entry_bb)
&& last_and_only_stmt (par_exit_bb))))
{
gimple *par_stmt = last_stmt (par_entry_bb);
gimple *ws_stmt = last_stmt (ws_entry_bb);
if (region->inner->type == GIMPLE_OMP_FOR)
{
/* If this is a combined parallel loop, we need to determine
whether or not to use the combined library calls. There
are two cases where we do not apply the transformation:
static loops and any kind of ordered loop. In the first
case, we already open code the loop so there is no need
to do anything else. In the latter case, the combined
parallel loop call would still need extra synchronization
to implement ordered semantics, so there would not be any
gain in using the combined call. */
tree clauses = gimple_omp_for_clauses (ws_stmt);
tree c = omp_find_clause (clauses, OMP_CLAUSE_SCHEDULE);
if (c == NULL
|| ((OMP_CLAUSE_SCHEDULE_KIND (c) & OMP_CLAUSE_SCHEDULE_MASK)
== OMP_CLAUSE_SCHEDULE_STATIC)
|| omp_find_clause (clauses, OMP_CLAUSE_ORDERED))
{
region->is_combined_parallel = false;
region->inner->is_combined_parallel = false;
return;
}
}
region->is_combined_parallel = true;
region->inner->is_combined_parallel = true;
region->ws_args = get_ws_args_for (par_stmt, ws_stmt);
}
}
/* Debugging dumps for parallel regions. */
void dump_omp_region (FILE *, struct omp_region *, int);
void debug_omp_region (struct omp_region *);
void debug_all_omp_regions (void);
/* Dump the parallel region tree rooted at REGION. */
void
dump_omp_region (FILE *file, struct omp_region *region, int indent)
{
fprintf (file, "%*sbb %d: %s\n", indent, "", region->entry->index,
gimple_code_name[region->type]);
if (region->inner)
dump_omp_region (file, region->inner, indent + 4);
if (region->cont)
{
fprintf (file, "%*sbb %d: GIMPLE_OMP_CONTINUE\n", indent, "",
region->cont->index);
}
if (region->exit)
fprintf (file, "%*sbb %d: GIMPLE_OMP_RETURN\n", indent, "",
region->exit->index);
else
fprintf (file, "%*s[no exit marker]\n", indent, "");
if (region->next)
dump_omp_region (file, region->next, indent);
}
DEBUG_FUNCTION void
debug_omp_region (struct omp_region *region)
{
dump_omp_region (stderr, region, 0);
}
DEBUG_FUNCTION void
debug_all_omp_regions (void)
{
dump_omp_region (stderr, root_omp_region, 0);
}
/* Create a new parallel region starting at STMT inside region PARENT. */
static struct omp_region *
new_omp_region (basic_block bb, enum gimple_code type,
struct omp_region *parent)
{
struct omp_region *region = XCNEW (struct omp_region);
region->outer = parent;
region->entry = bb;
region->type = type;
if (parent)
{
/* This is a nested region. Add it to the list of inner
regions in PARENT. */
region->next = parent->inner;
parent->inner = region;
}
else
{
/* This is a toplevel region. Add it to the list of toplevel
regions in ROOT_OMP_REGION. */
region->next = root_omp_region;
root_omp_region = region;
}
return region;
}
/* Release the memory associated with the region tree rooted at REGION. */
static void
free_omp_region_1 (struct omp_region *region)
{
struct omp_region *i, *n;
for (i = region->inner; i ; i = n)
{
n = i->next;
free_omp_region_1 (i);
}
free (region);
}
/* Release the memory for the entire omp region tree. */
void
omp_free_regions (void)
{
struct omp_region *r, *n;
for (r = root_omp_region; r ; r = n)
{
n = r->next;
free_omp_region_1 (r);
}
root_omp_region = NULL;
}
/* A convenience function to build an empty GIMPLE_COND with just the
condition. */
static gcond *
gimple_build_cond_empty (tree cond)
{
enum tree_code pred_code;
tree lhs, rhs;
gimple_cond_get_ops_from_tree (cond, &pred_code, &lhs, &rhs);
return gimple_build_cond (pred_code, lhs, rhs, NULL_TREE, NULL_TREE);
}
/* Return true if a parallel REGION is within a declare target function or
within a target region and is not a part of a gridified target. */
static bool
parallel_needs_hsa_kernel_p (struct omp_region *region)
{
bool indirect = false;
for (region = region->outer; region; region = region->outer)
{
if (region->type == GIMPLE_OMP_PARALLEL)
indirect = true;
else if (region->type == GIMPLE_OMP_TARGET)
{
gomp_target *tgt_stmt
= as_a <gomp_target *> (last_stmt (region->entry));
if (omp_find_clause (gimple_omp_target_clauses (tgt_stmt),
OMP_CLAUSE__GRIDDIM_))
return indirect;
else
return true;
}
}
if (lookup_attribute ("omp declare target",
DECL_ATTRIBUTES (current_function_decl)))
return true;
return false;
}
/* Build the function calls to GOMP_parallel_start etc to actually
generate the parallel operation. REGION is the parallel region
being expanded. BB is the block where to insert the code. WS_ARGS
will be set if this is a call to a combined parallel+workshare
construct, it contains the list of additional arguments needed by
the workshare construct. */
static void
expand_parallel_call (struct omp_region *region, basic_block bb,
gomp_parallel *entry_stmt,
vec<tree, va_gc> *ws_args)
{
tree t, t1, t2, val, cond, c, clauses, flags;
gimple_stmt_iterator gsi;
gimple *stmt;
enum built_in_function start_ix;
int start_ix2;
location_t clause_loc;
vec<tree, va_gc> *args;
clauses = gimple_omp_parallel_clauses (entry_stmt);
/* Determine what flavor of GOMP_parallel we will be
emitting. */
start_ix = BUILT_IN_GOMP_PARALLEL;
if (is_combined_parallel (region))
{
switch (region->inner->type)
{
case GIMPLE_OMP_FOR:
gcc_assert (region->inner->sched_kind != OMP_CLAUSE_SCHEDULE_AUTO);
switch (region->inner->sched_kind)
{
case OMP_CLAUSE_SCHEDULE_RUNTIME:
start_ix2 = 3;
break;
case OMP_CLAUSE_SCHEDULE_DYNAMIC:
case OMP_CLAUSE_SCHEDULE_GUIDED:
if (region->inner->sched_modifiers
& OMP_CLAUSE_SCHEDULE_NONMONOTONIC)
{
start_ix2 = 3 + region->inner->sched_kind;
break;
}
/* FALLTHRU */
default:
start_ix2 = region->inner->sched_kind;
break;
}
start_ix2 += (int) BUILT_IN_GOMP_PARALLEL_LOOP_STATIC;
start_ix = (enum built_in_function) start_ix2;
break;
case GIMPLE_OMP_SECTIONS:
start_ix = BUILT_IN_GOMP_PARALLEL_SECTIONS;
break;
default:
gcc_unreachable ();
}
}
/* By default, the value of NUM_THREADS is zero (selected at run time)
and there is no conditional. */
cond = NULL_TREE;
val = build_int_cst (unsigned_type_node, 0);
flags = build_int_cst (unsigned_type_node, 0);
c = omp_find_clause (clauses, OMP_CLAUSE_IF);
if (c)
cond = OMP_CLAUSE_IF_EXPR (c);
c = omp_find_clause (clauses, OMP_CLAUSE_NUM_THREADS);
if (c)
{
val = OMP_CLAUSE_NUM_THREADS_EXPR (c);
clause_loc = OMP_CLAUSE_LOCATION (c);
}
else
clause_loc = gimple_location (entry_stmt);
c = omp_find_clause (clauses, OMP_CLAUSE_PROC_BIND);
if (c)
flags = build_int_cst (unsigned_type_node, OMP_CLAUSE_PROC_BIND_KIND (c));
/* Ensure 'val' is of the correct type. */
val = fold_convert_loc (clause_loc, unsigned_type_node, val);
/* If we found the clause 'if (cond)', build either
(cond != 0) or (cond ? val : 1u). */
if (cond)
{
cond = gimple_boolify (cond);
if (integer_zerop (val))
val = fold_build2_loc (clause_loc,
EQ_EXPR, unsigned_type_node, cond,
build_int_cst (TREE_TYPE (cond), 0));
else
{
basic_block cond_bb, then_bb, else_bb;
edge e, e_then, e_else;
tree tmp_then, tmp_else, tmp_join, tmp_var;
tmp_var = create_tmp_var (TREE_TYPE (val));
if (gimple_in_ssa_p (cfun))
{
tmp_then = make_ssa_name (tmp_var);
tmp_else = make_ssa_name (tmp_var);
tmp_join = make_ssa_name (tmp_var);
}
else
{
tmp_then = tmp_var;
tmp_else = tmp_var;
tmp_join = tmp_var;
}
e = split_block_after_labels (bb);
cond_bb = e->src;
bb = e->dest;
remove_edge (e);
then_bb = create_empty_bb (cond_bb);
else_bb = create_empty_bb (then_bb);
set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
set_immediate_dominator (CDI_DOMINATORS, else_bb, cond_bb);
stmt = gimple_build_cond_empty (cond);
gsi = gsi_start_bb (cond_bb);
gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
gsi = gsi_start_bb (then_bb);
expand_omp_build_assign (&gsi, tmp_then, val, true);
gsi = gsi_start_bb (else_bb);
expand_omp_build_assign (&gsi, tmp_else,
build_int_cst (unsigned_type_node, 1),
true);
make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
make_edge (cond_bb, else_bb, EDGE_FALSE_VALUE);
add_bb_to_loop (then_bb, cond_bb->loop_father);
add_bb_to_loop (else_bb, cond_bb->loop_father);
e_then = make_edge (then_bb, bb, EDGE_FALLTHRU);
e_else = make_edge (else_bb, bb, EDGE_FALLTHRU);
if (gimple_in_ssa_p (cfun))
{
gphi *phi = create_phi_node (tmp_join, bb);
add_phi_arg (phi, tmp_then, e_then, UNKNOWN_LOCATION);
add_phi_arg (phi, tmp_else, e_else, UNKNOWN_LOCATION);
}
val = tmp_join;
}
gsi = gsi_start_bb (bb);
val = force_gimple_operand_gsi (&gsi, val, true, NULL_TREE,
false, GSI_CONTINUE_LINKING);
}
gsi = gsi_last_bb (bb);
t = gimple_omp_parallel_data_arg (entry_stmt);
if (t == NULL)
t1 = null_pointer_node;
else
t1 = build_fold_addr_expr (t);
tree child_fndecl = gimple_omp_parallel_child_fn (entry_stmt);
t2 = build_fold_addr_expr (child_fndecl);
vec_alloc (args, 4 + vec_safe_length (ws_args));
args->quick_push (t2);
args->quick_push (t1);
args->quick_push (val);
if (ws_args)
args->splice (*ws_args);
args->quick_push (flags);
t = build_call_expr_loc_vec (UNKNOWN_LOCATION,
builtin_decl_explicit (start_ix), args);
force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
false, GSI_CONTINUE_LINKING);
if (hsa_gen_requested_p ()
&& parallel_needs_hsa_kernel_p (region))
{
cgraph_node *child_cnode = cgraph_node::get (child_fndecl);
hsa_register_kernel (child_cnode);
}
}
/* Insert a function call whose name is FUNC_NAME with the information from
ENTRY_STMT into the basic_block BB. */
static void
expand_cilk_for_call (basic_block bb, gomp_parallel *entry_stmt,
vec <tree, va_gc> *ws_args)
{
tree t, t1, t2;
gimple_stmt_iterator gsi;
vec <tree, va_gc> *args;
gcc_assert (vec_safe_length (ws_args) == 2);
tree func_name = (*ws_args)[0];
tree grain = (*ws_args)[1];
tree clauses = gimple_omp_parallel_clauses (entry_stmt);
tree count = omp_find_clause (clauses, OMP_CLAUSE__CILK_FOR_COUNT_);
gcc_assert (count != NULL_TREE);
count = OMP_CLAUSE_OPERAND (count, 0);
gsi = gsi_last_bb (bb);
t = gimple_omp_parallel_data_arg (entry_stmt);
if (t == NULL)
t1 = null_pointer_node;
else
t1 = build_fold_addr_expr (t);
t2 = build_fold_addr_expr (gimple_omp_parallel_child_fn (entry_stmt));
vec_alloc (args, 4);
args->quick_push (t2);
args->quick_push (t1);
args->quick_push (count);
args->quick_push (grain);
t = build_call_expr_loc_vec (UNKNOWN_LOCATION, func_name, args);
force_gimple_operand_gsi (&gsi, t, true, NULL_TREE, false,
GSI_CONTINUE_LINKING);
}
/* Build the function call to GOMP_task to actually
generate the task operation. BB is the block where to insert the code. */
static void
expand_task_call (struct omp_region *region, basic_block bb,
gomp_task *entry_stmt)
{
tree t1, t2, t3;
gimple_stmt_iterator gsi;
location_t loc = gimple_location (entry_stmt);
tree clauses = gimple_omp_task_clauses (entry_stmt);
tree ifc = omp_find_clause (clauses, OMP_CLAUSE_IF);
tree untied = omp_find_clause (clauses, OMP_CLAUSE_UNTIED);
tree mergeable = omp_find_clause (clauses, OMP_CLAUSE_MERGEABLE);
tree depend = omp_find_clause (clauses, OMP_CLAUSE_DEPEND);
tree finalc = omp_find_clause (clauses, OMP_CLAUSE_FINAL);
tree priority = omp_find_clause (clauses, OMP_CLAUSE_PRIORITY);
unsigned int iflags
= (untied ? GOMP_TASK_FLAG_UNTIED : 0)
| (mergeable ? GOMP_TASK_FLAG_MERGEABLE : 0)
| (depend ? GOMP_TASK_FLAG_DEPEND : 0);
bool taskloop_p = gimple_omp_task_taskloop_p (entry_stmt);
tree startvar = NULL_TREE, endvar = NULL_TREE, step = NULL_TREE;
tree num_tasks = NULL_TREE;
bool ull = false;
if (taskloop_p)
{
gimple *g = last_stmt (region->outer->entry);
gcc_assert (gimple_code (g) == GIMPLE_OMP_FOR
&& gimple_omp_for_kind (g) == GF_OMP_FOR_KIND_TASKLOOP);
struct omp_for_data fd;
omp_extract_for_data (as_a <gomp_for *> (g), &fd, NULL);
startvar = omp_find_clause (clauses, OMP_CLAUSE__LOOPTEMP_);
endvar = omp_find_clause (OMP_CLAUSE_CHAIN (startvar),
OMP_CLAUSE__LOOPTEMP_);
startvar = OMP_CLAUSE_DECL (startvar);
endvar = OMP_CLAUSE_DECL (endvar);
step = fold_convert_loc (loc, fd.iter_type, fd.loop.step);
if (fd.loop.cond_code == LT_EXPR)
iflags |= GOMP_TASK_FLAG_UP;
tree tclauses = gimple_omp_for_clauses (g);
num_tasks = omp_find_clause (tclauses, OMP_CLAUSE_NUM_TASKS);
if (num_tasks)
num_tasks = OMP_CLAUSE_NUM_TASKS_EXPR (num_tasks);
else
{
num_tasks = omp_find_clause (tclauses, OMP_CLAUSE_GRAINSIZE);
if (num_tasks)
{
iflags |= GOMP_TASK_FLAG_GRAINSIZE;
num_tasks = OMP_CLAUSE_GRAINSIZE_EXPR (num_tasks);
}
else
num_tasks = integer_zero_node;
}
num_tasks = fold_convert_loc (loc, long_integer_type_node, num_tasks);
if (ifc == NULL_TREE)
iflags |= GOMP_TASK_FLAG_IF;
if (omp_find_clause (tclauses, OMP_CLAUSE_NOGROUP))
iflags |= GOMP_TASK_FLAG_NOGROUP;
ull = fd.iter_type == long_long_unsigned_type_node;
}
else if (priority)
iflags |= GOMP_TASK_FLAG_PRIORITY;
tree flags = build_int_cst (unsigned_type_node, iflags);
tree cond = boolean_true_node;
if (ifc)
{
if (taskloop_p)
{
tree t = gimple_boolify (OMP_CLAUSE_IF_EXPR (ifc));
t = fold_build3_loc (loc, COND_EXPR, unsigned_type_node, t,
build_int_cst (unsigned_type_node,
GOMP_TASK_FLAG_IF),
build_int_cst (unsigned_type_node, 0));
flags = fold_build2_loc (loc, PLUS_EXPR, unsigned_type_node,
flags, t);
}
else
cond = gimple_boolify (OMP_CLAUSE_IF_EXPR (ifc));
}
if (finalc)
{
tree t = gimple_boolify (OMP_CLAUSE_FINAL_EXPR (finalc));
t = fold_build3_loc (loc, COND_EXPR, unsigned_type_node, t,
build_int_cst (unsigned_type_node,
GOMP_TASK_FLAG_FINAL),
build_int_cst (unsigned_type_node, 0));
flags = fold_build2_loc (loc, PLUS_EXPR, unsigned_type_node, flags, t);
}
if (depend)
depend = OMP_CLAUSE_DECL (depend);
else
depend = build_int_cst (ptr_type_node, 0);
if (priority)
priority = fold_convert (integer_type_node,
OMP_CLAUSE_PRIORITY_EXPR (priority));
else
priority = integer_zero_node;
gsi = gsi_last_bb (bb);
tree t = gimple_omp_task_data_arg (entry_stmt);
if (t == NULL)
t2 = null_pointer_node;
else
t2 = build_fold_addr_expr_loc (loc, t);
t1 = build_fold_addr_expr_loc (loc, gimple_omp_task_child_fn (entry_stmt));
t = gimple_omp_task_copy_fn (entry_stmt);
if (t == NULL)
t3 = null_pointer_node;
else
t3 = build_fold_addr_expr_loc (loc, t);
if (taskloop_p)
t = build_call_expr (ull
? builtin_decl_explicit (BUILT_IN_GOMP_TASKLOOP_ULL)
: builtin_decl_explicit (BUILT_IN_GOMP_TASKLOOP),
11, t1, t2, t3,
gimple_omp_task_arg_size (entry_stmt),
gimple_omp_task_arg_align (entry_stmt), flags,
num_tasks, priority, startvar, endvar, step);
else
t = build_call_expr (builtin_decl_explicit (BUILT_IN_GOMP_TASK),
9, t1, t2, t3,
gimple_omp_task_arg_size (entry_stmt),
gimple_omp_task_arg_align (entry_stmt), cond, flags,
depend, priority);
force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
false, GSI_CONTINUE_LINKING);
}
/* Chain all the DECLs in LIST by their TREE_CHAIN fields. */
static tree
vec2chain (vec<tree, va_gc> *v)
{
tree chain = NULL_TREE, t;
unsigned ix;
FOR_EACH_VEC_SAFE_ELT_REVERSE (v, ix, t)
{
DECL_CHAIN (t) = chain;
chain = t;
}
return chain;
}
/* Remove barriers in REGION->EXIT's block. Note that this is only
valid for GIMPLE_OMP_PARALLEL regions. Since the end of a parallel region
is an implicit barrier, any workshare inside the GIMPLE_OMP_PARALLEL that
left a barrier at the end of the GIMPLE_OMP_PARALLEL region can now be
removed. */
static void
remove_exit_barrier (struct omp_region *region)
{
gimple_stmt_iterator gsi;
basic_block exit_bb;
edge_iterator ei;
edge e;
gimple *stmt;
int any_addressable_vars = -1;
exit_bb = region->exit;
/* If the parallel region doesn't return, we don't have REGION->EXIT
block at all. */
if (! exit_bb)
return;
/* The last insn in the block will be the parallel's GIMPLE_OMP_RETURN. The
workshare's GIMPLE_OMP_RETURN will be in a preceding block. The kinds of
statements that can appear in between are extremely limited -- no
memory operations at all. Here, we allow nothing at all, so the
only thing we allow to precede this GIMPLE_OMP_RETURN is a label. */
gsi = gsi_last_bb (exit_bb);
gcc_assert (gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_RETURN);
gsi_prev (&gsi);
if (!gsi_end_p (gsi) && gimple_code (gsi_stmt (gsi)) != GIMPLE_LABEL)
return;
FOR_EACH_EDGE (e, ei, exit_bb->preds)
{
gsi = gsi_last_bb (e->src);
if (gsi_end_p (gsi))
continue;
stmt = gsi_stmt (gsi);
if (gimple_code (stmt) == GIMPLE_OMP_RETURN
&& !gimple_omp_return_nowait_p (stmt))
{
/* OpenMP 3.0 tasks unfortunately prevent this optimization
in many cases. If there could be tasks queued, the barrier
might be needed to let the tasks run before some local
variable of the parallel that the task uses as shared
runs out of scope. The task can be spawned either
from within current function (this would be easy to check)
or from some function it calls and gets passed an address
of such a variable. */
if (any_addressable_vars < 0)
{
gomp_parallel *parallel_stmt
= as_a <gomp_parallel *> (last_stmt (region->entry));
tree child_fun = gimple_omp_parallel_child_fn (parallel_stmt);
tree local_decls, block, decl;
unsigned ix;
any_addressable_vars = 0;
FOR_EACH_LOCAL_DECL (DECL_STRUCT_FUNCTION (child_fun), ix, decl)
if (TREE_ADDRESSABLE (decl))
{
any_addressable_vars = 1;
break;
}
for (block = gimple_block (stmt);
!any_addressable_vars
&& block
&& TREE_CODE (block) == BLOCK;
block = BLOCK_SUPERCONTEXT (block))
{
for (local_decls = BLOCK_VARS (block);
local_decls;
local_decls = DECL_CHAIN (local_decls))
if (TREE_ADDRESSABLE (local_decls))
{
any_addressable_vars = 1;
break;
}
if (block == gimple_block (parallel_stmt))
break;
}
}
if (!any_addressable_vars)
gimple_omp_return_set_nowait (stmt);
}
}
}
static void
remove_exit_barriers (struct omp_region *region)
{
if (region->type == GIMPLE_OMP_PARALLEL)
remove_exit_barrier (region);
if (region->inner)
{
region = region->inner;
remove_exit_barriers (region);
while (region->next)
{
region = region->next;
remove_exit_barriers (region);
}
}
}
/* Optimize omp_get_thread_num () and omp_get_num_threads ()
calls. These can't be declared as const functions, but
within one parallel body they are constant, so they can be
transformed there into __builtin_omp_get_{thread_num,num_threads} ()
which are declared const. Similarly for task body, except
that in untied task omp_get_thread_num () can change at any task
scheduling point. */
static void
optimize_omp_library_calls (gimple *entry_stmt)
{
basic_block bb;
gimple_stmt_iterator gsi;
tree thr_num_tree = builtin_decl_explicit (BUILT_IN_OMP_GET_THREAD_NUM);
tree thr_num_id = DECL_ASSEMBLER_NAME (thr_num_tree);
tree num_thr_tree = builtin_decl_explicit (BUILT_IN_OMP_GET_NUM_THREADS);
tree num_thr_id = DECL_ASSEMBLER_NAME (num_thr_tree);
bool untied_task = (gimple_code (entry_stmt) == GIMPLE_OMP_TASK
&& omp_find_clause (gimple_omp_task_clauses (entry_stmt),
OMP_CLAUSE_UNTIED) != NULL);
FOR_EACH_BB_FN (bb, cfun)
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *call = gsi_stmt (gsi);
tree decl;
if (is_gimple_call (call)
&& (decl = gimple_call_fndecl (call))
&& DECL_EXTERNAL (decl)
&& TREE_PUBLIC (decl)
&& DECL_INITIAL (decl) == NULL)
{
tree built_in;
if (DECL_NAME (decl) == thr_num_id)
{
/* In #pragma omp task untied omp_get_thread_num () can change
during the execution of the task region. */
if (untied_task)
continue;
built_in = builtin_decl_explicit (BUILT_IN_OMP_GET_THREAD_NUM);
}
else if (DECL_NAME (decl) == num_thr_id)
built_in = builtin_decl_explicit (BUILT_IN_OMP_GET_NUM_THREADS);
else
continue;
if (DECL_ASSEMBLER_NAME (decl) != DECL_ASSEMBLER_NAME (built_in)
|| gimple_call_num_args (call) != 0)
continue;
if (flag_exceptions && !TREE_NOTHROW (decl))
continue;
if (TREE_CODE (TREE_TYPE (decl)) != FUNCTION_TYPE
|| !types_compatible_p (TREE_TYPE (TREE_TYPE (decl)),
TREE_TYPE (TREE_TYPE (built_in))))
continue;
gimple_call_set_fndecl (call, built_in);
}
}
}
/* Callback for expand_omp_build_assign. Return non-NULL if *tp needs to be
regimplified. */
static tree
expand_omp_regimplify_p (tree *tp, int *walk_subtrees, void *)
{
tree t = *tp;
/* Any variable with DECL_VALUE_EXPR needs to be regimplified. */
if (VAR_P (t) && DECL_HAS_VALUE_EXPR_P (t))
return t;
if (TREE_CODE (t) == ADDR_EXPR)
recompute_tree_invariant_for_addr_expr (t);
*walk_subtrees = !TYPE_P (t) && !DECL_P (t);
return NULL_TREE;
}
/* Prepend or append TO = FROM assignment before or after *GSI_P. */
static void
expand_omp_build_assign (gimple_stmt_iterator *gsi_p, tree to, tree from,
bool after)
{
bool simple_p = DECL_P (to) && TREE_ADDRESSABLE (to);
from = force_gimple_operand_gsi (gsi_p, from, simple_p, NULL_TREE,
!after, after ? GSI_CONTINUE_LINKING
: GSI_SAME_STMT);
gimple *stmt = gimple_build_assign (to, from);
if (after)
gsi_insert_after (gsi_p, stmt, GSI_CONTINUE_LINKING);
else
gsi_insert_before (gsi_p, stmt, GSI_SAME_STMT);
if (walk_tree (&from, expand_omp_regimplify_p, NULL, NULL)
|| walk_tree (&to, expand_omp_regimplify_p, NULL, NULL))
{
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
gimple_regimplify_operands (stmt, &gsi);
}
}
/* Expand the OpenMP parallel or task directive starting at REGION. */
static void
expand_omp_taskreg (struct omp_region *region)
{
basic_block entry_bb, exit_bb, new_bb;
struct function *child_cfun;
tree child_fn, block, t;
gimple_stmt_iterator gsi;
gimple *entry_stmt, *stmt;
edge e;
vec<tree, va_gc> *ws_args;
entry_stmt = last_stmt (region->entry);
child_fn = gimple_omp_taskreg_child_fn (entry_stmt);
child_cfun = DECL_STRUCT_FUNCTION (child_fn);
entry_bb = region->entry;
if (gimple_code (entry_stmt) == GIMPLE_OMP_TASK)
exit_bb = region->cont;
else
exit_bb = region->exit;
bool is_cilk_for
= (flag_cilkplus
&& gimple_code (entry_stmt) == GIMPLE_OMP_PARALLEL
&& omp_find_clause (gimple_omp_parallel_clauses (entry_stmt),
OMP_CLAUSE__CILK_FOR_COUNT_) != NULL_TREE);
if (is_cilk_for)
/* If it is a _Cilk_for statement, it is modelled *like* a parallel for,
and the inner statement contains the name of the built-in function
and grain. */
ws_args = region->inner->ws_args;
else if (is_combined_parallel (region))
ws_args = region->ws_args;
else
ws_args = NULL;
if (child_cfun->cfg)
{
/* Due to inlining, it may happen that we have already outlined
the region, in which case all we need to do is make the
sub-graph unreachable and emit the parallel call. */
edge entry_succ_e, exit_succ_e;
entry_succ_e = single_succ_edge (entry_bb);
gsi = gsi_last_bb (entry_bb);
gcc_assert (gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_PARALLEL
|| gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_TASK);
gsi_remove (&gsi, true);
new_bb = entry_bb;
if (exit_bb)
{
exit_succ_e = single_succ_edge (exit_bb);
make_edge (new_bb, exit_succ_e->dest, EDGE_FALLTHRU);
}
remove_edge_and_dominated_blocks (entry_succ_e);
}
else
{
unsigned srcidx, dstidx, num;
/* If the parallel region needs data sent from the parent
function, then the very first statement (except possible
tree profile counter updates) of the parallel body
is a copy assignment .OMP_DATA_I = &.OMP_DATA_O. Since
&.OMP_DATA_O is passed as an argument to the child function,
we need to replace it with the argument as seen by the child
function.
In most cases, this will end up being the identity assignment
.OMP_DATA_I = .OMP_DATA_I. However, if the parallel body had
a function call that has been inlined, the original PARM_DECL
.OMP_DATA_I may have been converted into a different local
variable. In which case, we need to keep the assignment. */
if (gimple_omp_taskreg_data_arg (entry_stmt))
{
basic_block entry_succ_bb
= single_succ_p (entry_bb) ? single_succ (entry_bb)
: FALLTHRU_EDGE (entry_bb)->dest;
tree arg;
gimple *parcopy_stmt = NULL;
for (gsi = gsi_start_bb (entry_succ_bb); ; gsi_next (&gsi))
{
gimple *stmt;
gcc_assert (!gsi_end_p (gsi));
stmt = gsi_stmt (gsi);
if (gimple_code (stmt) != GIMPLE_ASSIGN)
continue;
if (gimple_num_ops (stmt) == 2)
{
tree arg = gimple_assign_rhs1 (stmt);
/* We're ignore the subcode because we're
effectively doing a STRIP_NOPS. */
if (TREE_CODE (arg) == ADDR_EXPR
&& TREE_OPERAND (arg, 0)
== gimple_omp_taskreg_data_arg (entry_stmt))
{
parcopy_stmt = stmt;
break;
}
}
}
gcc_assert (parcopy_stmt != NULL);
arg = DECL_ARGUMENTS (child_fn);
if (!gimple_in_ssa_p (cfun))
{
if (gimple_assign_lhs (parcopy_stmt) == arg)
gsi_remove (&gsi, true);
else
{
/* ?? Is setting the subcode really necessary ?? */
gimple_omp_set_subcode (parcopy_stmt, TREE_CODE (arg));
gimple_assign_set_rhs1 (parcopy_stmt, arg);
}
}
else
{
tree lhs = gimple_assign_lhs (parcopy_stmt);
gcc_assert (SSA_NAME_VAR (lhs) == arg);
/* We'd like to set the rhs to the default def in the child_fn,
but it's too early to create ssa names in the child_fn.
Instead, we set the rhs to the parm. In
move_sese_region_to_fn, we introduce a default def for the
parm, map the parm to it's default def, and once we encounter
this stmt, replace the parm with the default def. */
gimple_assign_set_rhs1 (parcopy_stmt, arg);
update_stmt (parcopy_stmt);
}
}
/* Declare local variables needed in CHILD_CFUN. */
block = DECL_INITIAL (child_fn);
BLOCK_VARS (block) = vec2chain (child_cfun->local_decls);
/* The gimplifier could record temporaries in parallel/task block
rather than in containing function's local_decls chain,
which would mean cgraph missed finalizing them. Do it now. */
for (t = BLOCK_VARS (block); t; t = DECL_CHAIN (t))
if (VAR_P (t) && TREE_STATIC (t) && !DECL_EXTERNAL (t))
varpool_node::finalize_decl (t);
DECL_SAVED_TREE (child_fn) = NULL;
/* We'll create a CFG for child_fn, so no gimple body is needed. */
gimple_set_body (child_fn, NULL);
TREE_USED (block) = 1;
/* Reset DECL_CONTEXT on function arguments. */
for (t = DECL_ARGUMENTS (child_fn); t; t = DECL_CHAIN (t))
DECL_CONTEXT (t) = child_fn;
/* Split ENTRY_BB at GIMPLE_OMP_PARALLEL or GIMPLE_OMP_TASK,
so that it can be moved to the child function. */
gsi = gsi_last_bb (entry_bb);
stmt = gsi_stmt (gsi);
gcc_assert (stmt && (gimple_code (stmt) == GIMPLE_OMP_PARALLEL
|| gimple_code (stmt) == GIMPLE_OMP_TASK));
e = split_block (entry_bb, stmt);
gsi_remove (&gsi, true);
entry_bb = e->dest;
edge e2 = NULL;
if (gimple_code (entry_stmt) == GIMPLE_OMP_PARALLEL)
single_succ_edge (entry_bb)->flags = EDGE_FALLTHRU;
else
{
e2 = make_edge (e->src, BRANCH_EDGE (entry_bb)->dest, EDGE_ABNORMAL);
gcc_assert (e2->dest == region->exit);
remove_edge (BRANCH_EDGE (entry_bb));
set_immediate_dominator (CDI_DOMINATORS, e2->dest, e->src);
gsi = gsi_last_bb (region->exit);
gcc_assert (!gsi_end_p (gsi)
&& gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_RETURN);
gsi_remove (&gsi, true);
}
/* Convert GIMPLE_OMP_{RETURN,CONTINUE} into a RETURN_EXPR. */
if (exit_bb)
{
gsi = gsi_last_bb (exit_bb);
gcc_assert (!gsi_end_p (gsi)
&& (gimple_code (gsi_stmt (gsi))
== (e2 ? GIMPLE_OMP_CONTINUE : GIMPLE_OMP_RETURN)));
stmt = gimple_build_return (NULL);
gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
gsi_remove (&gsi, true);
}
/* Move the parallel region into CHILD_CFUN. */
if (gimple_in_ssa_p (cfun))
{
init_tree_ssa (child_cfun);
init_ssa_operands (child_cfun);
child_cfun->gimple_df->in_ssa_p = true;
block = NULL_TREE;
}
else
block = gimple_block (entry_stmt);
/* Make sure to generate early debug for the function before
outlining anything. */
if (! gimple_in_ssa_p (cfun))
(*debug_hooks->early_global_decl) (cfun->decl);
new_bb = move_sese_region_to_fn (child_cfun, entry_bb, exit_bb, block);
if (exit_bb)
single_succ_edge (new_bb)->flags = EDGE_FALLTHRU;
if (e2)
{
basic_block dest_bb = e2->dest;
if (!exit_bb)
make_edge (new_bb, dest_bb, EDGE_FALLTHRU);
remove_edge (e2);
set_immediate_dominator (CDI_DOMINATORS, dest_bb, new_bb);
}
/* When the OMP expansion process cannot guarantee an up-to-date
loop tree arrange for the child function to fixup loops. */
if (loops_state_satisfies_p (LOOPS_NEED_FIXUP))
child_cfun->x_current_loops->state |= LOOPS_NEED_FIXUP;
/* Remove non-local VAR_DECLs from child_cfun->local_decls list. */
num = vec_safe_length (child_cfun->local_decls);
for (srcidx = 0, dstidx = 0; srcidx < num; srcidx++)
{
t = (*child_cfun->local_decls)[srcidx];
if (DECL_CONTEXT (t) == cfun->decl)
continue;
if (srcidx != dstidx)
(*child_cfun->local_decls)[dstidx] = t;
dstidx++;
}
if (dstidx != num)
vec_safe_truncate (child_cfun->local_decls, dstidx);
/* Inform the callgraph about the new function. */
child_cfun->curr_properties = cfun->curr_properties;
child_cfun->has_simduid_loops |= cfun->has_simduid_loops;
child_cfun->has_force_vectorize_loops |= cfun->has_force_vectorize_loops;
cgraph_node *node = cgraph_node::get_create (child_fn);
node->parallelized_function = 1;
cgraph_node::add_new_function (child_fn, true);
bool need_asm = DECL_ASSEMBLER_NAME_SET_P (current_function_decl)
&& !DECL_ASSEMBLER_NAME_SET_P (child_fn);
/* Fix the callgraph edges for child_cfun. Those for cfun will be
fixed in a following pass. */
push_cfun (child_cfun);
if (need_asm)
assign_assembler_name_if_needed (child_fn);
if (optimize)
optimize_omp_library_calls (entry_stmt);
cgraph_edge::rebuild_edges ();
/* Some EH regions might become dead, see PR34608. If
pass_cleanup_cfg isn't the first pass to happen with the
new child, these dead EH edges might cause problems.
Clean them up now. */
if (flag_exceptions)
{
basic_block bb;
bool changed = false;
FOR_EACH_BB_FN (bb, cfun)
changed |= gimple_purge_dead_eh_edges (bb);
if (changed)
cleanup_tree_cfg ();
}
if (gimple_in_ssa_p (cfun))
update_ssa (TODO_update_ssa);
if (flag_checking && !loops_state_satisfies_p (LOOPS_NEED_FIXUP))
verify_loop_structure ();
pop_cfun ();
if (dump_file && !gimple_in_ssa_p (cfun))
{
omp_any_child_fn_dumped = true;
dump_function_header (dump_file, child_fn, dump_flags);
dump_function_to_file (child_fn, dump_file, dump_flags);
}
}
/* Emit a library call to launch the children threads. */
if (is_cilk_for)
expand_cilk_for_call (new_bb,
as_a <gomp_parallel *> (entry_stmt), ws_args);
else if (gimple_code (entry_stmt) == GIMPLE_OMP_PARALLEL)
expand_parallel_call (region, new_bb,
as_a <gomp_parallel *> (entry_stmt), ws_args);
else
expand_task_call (region, new_bb, as_a <gomp_task *> (entry_stmt));
if (gimple_in_ssa_p (cfun))
update_ssa (TODO_update_ssa_only_virtuals);
}
/* Information about members of an OpenACC collapsed loop nest. */
struct oacc_collapse
{
tree base; /* Base value. */
tree iters; /* Number of steps. */
tree step; /* Step size. */
tree tile; /* Tile increment (if tiled). */
tree outer; /* Tile iterator var. */
};
/* Helper for expand_oacc_for. Determine collapsed loop information.
Fill in COUNTS array. Emit any initialization code before GSI.
Return the calculated outer loop bound of BOUND_TYPE. */
static tree
expand_oacc_collapse_init (const struct omp_for_data *fd,
gimple_stmt_iterator *gsi,
oacc_collapse *counts, tree bound_type,
location_t loc)
{
tree tiling = fd->tiling;
tree total = build_int_cst (bound_type, 1);
int ix;
gcc_assert (integer_onep (fd->loop.step));
gcc_assert (integer_zerop (fd->loop.n1));
/* When tiling, the first operand of the tile clause applies to the
innermost loop, and we work outwards from there. Seems
backwards, but whatever. */
for (ix = fd->collapse; ix--;)
{
const omp_for_data_loop *loop = &fd->loops[ix];
tree iter_type = TREE_TYPE (loop->v);
tree diff_type = iter_type;
tree plus_type = iter_type;
gcc_assert (loop->cond_code == fd->loop.cond_code);
if (POINTER_TYPE_P (iter_type))
plus_type = sizetype;
if (POINTER_TYPE_P (diff_type) || TYPE_UNSIGNED (diff_type))
diff_type = signed_type_for (diff_type);
if (tiling)
{
tree num = build_int_cst (integer_type_node, fd->collapse);
tree loop_no = build_int_cst (integer_type_node, ix);
tree tile = TREE_VALUE (tiling);
gcall *call
= gimple_build_call_internal (IFN_GOACC_TILE, 5, num, loop_no, tile,
/* gwv-outer=*/integer_zero_node,
/* gwv-inner=*/integer_zero_node);
counts[ix].outer = create_tmp_var (iter_type, ".outer");
counts[ix].tile = create_tmp_var (diff_type, ".tile");
gimple_call_set_lhs (call, counts[ix].tile);
gimple_set_location (call, loc);
gsi_insert_before (gsi, call, GSI_SAME_STMT);
tiling = TREE_CHAIN (tiling);
}
else
{
counts[ix].tile = NULL;
counts[ix].outer = loop->v;
}
tree b = loop->n1;
tree e = loop->n2;
tree s = loop->step;
bool up = loop->cond_code == LT_EXPR;
tree dir = build_int_cst (diff_type, up ? +1 : -1);
bool negating;
tree expr;
b = force_gimple_operand_gsi (gsi, b, true, NULL_TREE,
true, GSI_SAME_STMT);
e = force_gimple_operand_gsi (gsi, e, true, NULL_TREE,
true, GSI_SAME_STMT);
/* Convert the step, avoiding possible unsigned->signed overflow. */
negating = !up && TYPE_UNSIGNED (TREE_TYPE (s));
if (negating)
s = fold_build1 (NEGATE_EXPR, TREE_TYPE (s), s);
s = fold_convert (diff_type, s);
if (negating)
s = fold_build1 (NEGATE_EXPR, diff_type, s);
s = force_gimple_operand_gsi (gsi, s, true, NULL_TREE,
true, GSI_SAME_STMT);
/* Determine the range, avoiding possible unsigned->signed overflow. */
negating = !up && TYPE_UNSIGNED (iter_type);
expr = fold_build2 (MINUS_EXPR, plus_type,
fold_convert (plus_type, negating ? b : e),
fold_convert (plus_type, negating ? e : b));
expr = fold_convert (diff_type, expr);
if (negating)
expr = fold_build1 (NEGATE_EXPR, diff_type, expr);
tree range = force_gimple_operand_gsi
(gsi, expr, true, NULL_TREE, true, GSI_SAME_STMT);
/* Determine number of iterations. */
expr = fold_build2 (MINUS_EXPR, diff_type, range, dir);
expr = fold_build2 (PLUS_EXPR, diff_type, expr, s);
expr = fold_build2 (TRUNC_DIV_EXPR, diff_type, expr, s);
tree iters = force_gimple_operand_gsi (gsi, expr, true, NULL_TREE,
true, GSI_SAME_STMT);
counts[ix].base = b;
counts[ix].iters = iters;
counts[ix].step = s;
total = fold_build2 (MULT_EXPR, bound_type, total,
fold_convert (bound_type, iters));
}
return total;
}
/* Emit initializers for collapsed loop members. INNER is true if
this is for the element loop of a TILE. IVAR is the outer
loop iteration variable, from which collapsed loop iteration values
are calculated. COUNTS array has been initialized by
expand_oacc_collapse_inits. */
static void
expand_oacc_collapse_vars (const struct omp_for_data *fd, bool inner,
gimple_stmt_iterator *gsi,
const oacc_collapse *counts, tree ivar)
{
tree ivar_type = TREE_TYPE (ivar);
/* The most rapidly changing iteration variable is the innermost
one. */
for (int ix = fd->collapse; ix--;)
{
const omp_for_data_loop *loop = &fd->loops[ix];
const oacc_collapse *collapse = &counts[ix];
tree v = inner ? loop->v : collapse->outer;
tree iter_type = TREE_TYPE (v);
tree diff_type = TREE_TYPE (collapse->step);
tree plus_type = iter_type;
enum tree_code plus_code = PLUS_EXPR;
tree expr;
if (POINTER_TYPE_P (iter_type))
{
plus_code = POINTER_PLUS_EXPR;
plus_type = sizetype;
}
expr = ivar;
if (ix)
{
tree mod = fold_convert (ivar_type, collapse->iters);
ivar = fold_build2 (TRUNC_DIV_EXPR, ivar_type, expr, mod);
expr = fold_build2 (TRUNC_MOD_EXPR, ivar_type, expr, mod);
ivar = force_gimple_operand_gsi (gsi, ivar, true, NULL_TREE,
true, GSI_SAME_STMT);
}
expr = fold_build2 (MULT_EXPR, diff_type, fold_convert (diff_type, expr),
collapse->step);
expr = fold_build2 (plus_code, iter_type,
inner ? collapse->outer : collapse->base,
fold_convert (plus_type, expr));
expr = force_gimple_operand_gsi (gsi, expr, false, NULL_TREE,
true, GSI_SAME_STMT);
gassign *ass = gimple_build_assign (v, expr);
gsi_insert_before (gsi, ass, GSI_SAME_STMT);
}
}
/* Helper function for expand_omp_{for_*,simd}. If this is the outermost
of the combined collapse > 1 loop constructs, generate code like:
if (__builtin_expect (N32 cond3 N31, 0)) goto ZERO_ITER_BB;
if (cond3 is <)
adj = STEP3 - 1;
else
adj = STEP3 + 1;
count3 = (adj + N32 - N31) / STEP3;
if (__builtin_expect (N22 cond2 N21, 0)) goto ZERO_ITER_BB;
if (cond2 is <)
adj = STEP2 - 1;
else
adj = STEP2 + 1;
count2 = (adj + N22 - N21) / STEP2;
if (__builtin_expect (N12 cond1 N11, 0)) goto ZERO_ITER_BB;
if (cond1 is <)
adj = STEP1 - 1;
else
adj = STEP1 + 1;
count1 = (adj + N12 - N11) / STEP1;
count = count1 * count2 * count3;
Furthermore, if ZERO_ITER_BB is NULL, create a BB which does:
count = 0;
and set ZERO_ITER_BB to that bb. If this isn't the outermost
of the combined loop constructs, just initialize COUNTS array
from the _looptemp_ clauses. */
/* NOTE: It *could* be better to moosh all of the BBs together,
creating one larger BB with all the computation and the unexpected
jump at the end. I.e.
bool zero3, zero2, zero1, zero;
zero3 = N32 c3 N31;
count3 = (N32 - N31) /[cl] STEP3;
zero2 = N22 c2 N21;
count2 = (N22 - N21) /[cl] STEP2;
zero1 = N12 c1 N11;
count1 = (N12 - N11) /[cl] STEP1;
zero = zero3 || zero2 || zero1;
count = count1 * count2 * count3;
if (__builtin_expect(zero, false)) goto zero_iter_bb;
After all, we expect the zero=false, and thus we expect to have to
evaluate all of the comparison expressions, so short-circuiting
oughtn't be a win. Since the condition isn't protecting a
denominator, we're not concerned about divide-by-zero, so we can
fully evaluate count even if a numerator turned out to be wrong.
It seems like putting this all together would create much better
scheduling opportunities, and less pressure on the chip's branch
predictor. */
static void
expand_omp_for_init_counts (struct omp_for_data *fd, gimple_stmt_iterator *gsi,
basic_block &entry_bb, tree *counts,
basic_block &zero_iter1_bb, int &first_zero_iter1,
basic_block &zero_iter2_bb, int &first_zero_iter2,
basic_block &l2_dom_bb)
{
tree t, type = TREE_TYPE (fd->loop.v);
edge e, ne;
int i;
/* Collapsed loops need work for expansion into SSA form. */
gcc_assert (!gimple_in_ssa_p (cfun));
if (gimple_omp_for_combined_into_p (fd->for_stmt)
&& TREE_CODE (fd->loop.n2) != INTEGER_CST)
{
gcc_assert (fd->ordered == 0);
/* First two _looptemp_ clauses are for istart/iend, counts[0]
isn't supposed to be handled, as the inner loop doesn't
use it. */
tree innerc = omp_find_clause (gimple_omp_for_clauses (fd->for_stmt),
OMP_CLAUSE__LOOPTEMP_);
gcc_assert (innerc);
for (i = 0; i < fd->collapse; i++)
{
innerc = omp_find_clause (OMP_CLAUSE_CHAIN (innerc),
OMP_CLAUSE__LOOPTEMP_);
gcc_assert (innerc);
if (i)
counts[i] = OMP_CLAUSE_DECL (innerc);
else
counts[0] = NULL_TREE;
}
return;
}
for (i = fd->collapse; i < fd->ordered; i++)
{
tree itype = TREE_TYPE (fd->loops[i].v);
counts[i] = NULL_TREE;
t = fold_binary (fd->loops[i].cond_code, boolean_type_node,
fold_convert (itype, fd->loops[i].n1),
fold_convert (itype, fd->loops[i].n2));
if (t && integer_zerop (t))
{
for (i = fd->collapse; i < fd->ordered; i++)
counts[i] = build_int_cst (type, 0);
break;
}
}
for (i = 0; i < (fd->ordered ? fd->ordered : fd->collapse); i++)
{
tree itype = TREE_TYPE (fd->loops[i].v);
if (i >= fd->collapse && counts[i])
continue;
if ((SSA_VAR_P (fd->loop.n2) || i >= fd->collapse)
&& ((t = fold_binary (fd->loops[i].cond_code, boolean_type_node,
fold_convert (itype, fd->loops[i].n1),
fold_convert (itype, fd->loops[i].n2)))
== NULL_TREE || !integer_onep (t)))
{
gcond *cond_stmt;
tree n1, n2;
n1 = fold_convert (itype, unshare_expr (fd->loops[i].n1));
n1 = force_gimple_operand_gsi (gsi, n1, true, NULL_TREE,
true, GSI_SAME_STMT);
n2 = fold_convert (itype, unshare_expr (fd->loops[i].n2));
n2 = force_gimple_operand_gsi (gsi, n2, true, NULL_TREE,
true, GSI_SAME_STMT);
cond_stmt = gimple_build_cond (fd->loops[i].cond_code, n1, n2,
NULL_TREE, NULL_TREE);
gsi_insert_before (gsi, cond_stmt, GSI_SAME_STMT);
if (walk_tree (gimple_cond_lhs_ptr (cond_stmt),
expand_omp_regimplify_p, NULL, NULL)
|| walk_tree (gimple_cond_rhs_ptr (cond_stmt),
expand_omp_regimplify_p, NULL, NULL))
{
*gsi = gsi_for_stmt (cond_stmt);
gimple_regimplify_operands (cond_stmt, gsi);
}
e = split_block (entry_bb, cond_stmt);
basic_block &zero_iter_bb
= i < fd->collapse ? zero_iter1_bb : zero_iter2_bb;
int &first_zero_iter
= i < fd->collapse ? first_zero_iter1 : first_zero_iter2;
if (zero_iter_bb == NULL)
{
gassign *assign_stmt;
first_zero_iter = i;
zero_iter_bb = create_empty_bb (entry_bb);
add_bb_to_loop (zero_iter_bb, entry_bb->loop_father);
*gsi = gsi_after_labels (zero_iter_bb);
if (i < fd->collapse)
assign_stmt = gimple_build_assign (fd->loop.n2,
build_zero_cst (type));
else
{
counts[i] = create_tmp_reg (type, ".count");
assign_stmt
= gimple_build_assign (counts[i], build_zero_cst (type));
}
gsi_insert_before (gsi, assign_stmt, GSI_SAME_STMT);
set_immediate_dominator (CDI_DOMINATORS, zero_iter_bb,
entry_bb);
}
ne = make_edge (entry_bb, zero_iter_bb, EDGE_FALSE_VALUE);
ne->probability = profile_probability::very_unlikely ();
e->flags = EDGE_TRUE_VALUE;
e->probability = ne->probability.invert ();
if (l2_dom_bb == NULL)
l2_dom_bb = entry_bb;
entry_bb = e->dest;
*gsi = gsi_last_bb (entry_bb);
}
if (POINTER_TYPE_P (itype))
itype = signed_type_for (itype);
t = build_int_cst (itype, (fd->loops[i].cond_code == LT_EXPR
? -1 : 1));
t = fold_build2 (PLUS_EXPR, itype,
fold_convert (itype, fd->loops[i].step), t);
t = fold_build2 (PLUS_EXPR, itype, t,
fold_convert (itype, fd->loops[i].n2));
t = fold_build2 (MINUS_EXPR, itype, t,
fold_convert (itype, fd->loops[i].n1));
/* ?? We could probably use CEIL_DIV_EXPR instead of
TRUNC_DIV_EXPR and adjusting by hand. Unless we can't
generate the same code in the end because generically we
don't know that the values involved must be negative for
GT?? */
if (TYPE_UNSIGNED (itype) && fd->loops[i].cond_code == GT_EXPR)
t = fold_build2 (TRUNC_DIV_EXPR, itype,
fold_build1 (NEGATE_EXPR, itype, t),
fold_build1 (NEGATE_EXPR, itype,
fold_convert (itype,
fd->loops[i].step)));
else
t = fold_build2 (TRUNC_DIV_EXPR, itype, t,
fold_convert (itype, fd->loops[i].step));
t = fold_convert (type, t);
if (TREE_CODE (t) == INTEGER_CST)
counts[i] = t;
else
{
if (i < fd->collapse || i != first_zero_iter2)
counts[i] = create_tmp_reg (type, ".count");
expand_omp_build_assign (gsi, counts[i], t);
}
if (SSA_VAR_P (fd->loop.n2) && i < fd->collapse)
{
if (i == 0)
t = counts[0];
else
t = fold_build2 (MULT_EXPR, type, fd->loop.n2, counts[i]);
expand_omp_build_assign (gsi, fd->loop.n2, t);
}
}
}
/* Helper function for expand_omp_{for_*,simd}. Generate code like:
T = V;
V3 = N31 + (T % count3) * STEP3;
T = T / count3;
V2 = N21 + (T % count2) * STEP2;
T = T / count2;
V1 = N11 + T * STEP1;
if this loop doesn't have an inner loop construct combined with it.
If it does have an inner loop construct combined with it and the
iteration count isn't known constant, store values from counts array
into its _looptemp_ temporaries instead. */
static void
expand_omp_for_init_vars (struct omp_for_data *fd, gimple_stmt_iterator *gsi,
tree *counts, gimple *inner_stmt, tree startvar)
{
int i;
if (gimple_omp_for_combined_p (fd->for_stmt))
{
/* If fd->loop.n2 is constant, then no propagation of the counts
is needed, they are constant. */
if (TREE_CODE (fd->loop.n2) == INTEGER_CST)
return;
tree clauses = gimple_code (inner_stmt) != GIMPLE_OMP_FOR
? gimple_omp_taskreg_clauses (inner_stmt)
: gimple_omp_for_clauses (inner_stmt);
/* First two _looptemp_ clauses are for istart/iend, counts[0]
isn't supposed to be handled, as the inner loop doesn't
use it. */
tree innerc = omp_find_clause (clauses, OMP_CLAUSE__LOOPTEMP_);
gcc_assert (innerc);
for (i = 0; i < fd->collapse; i++)
{
innerc = omp_find_clause (OMP_CLAUSE_CHAIN (innerc),
OMP_CLAUSE__LOOPTEMP_);
gcc_assert (innerc);
if (i)
{
tree tem = OMP_CLAUSE_DECL (innerc);
tree t = fold_convert (TREE_TYPE (tem), counts[i]);
t = force_gimple_operand_gsi (gsi, t, false, NULL_TREE,
false, GSI_CONTINUE_LINKING);
gassign *stmt = gimple_build_assign (tem, t);
gsi_insert_after (gsi, stmt, GSI_CONTINUE_LINKING);
}
}
return;
}
tree type = TREE_TYPE (fd->loop.v);
tree tem = create_tmp_reg (type, ".tem");
gassign *stmt = gimple_build_assign (tem, startvar);
gsi_insert_after (gsi, stmt, GSI_CONTINUE_LINKING);
for (i = fd->collapse - 1; i >= 0; i--)
{
tree vtype = TREE_TYPE (fd->loops[i].v), itype, t;
itype = vtype;
if (POINTER_TYPE_P (vtype))
itype = signed_type_for (vtype);
if (i != 0)
t = fold_build2 (TRUNC_MOD_EXPR, type, tem, counts[i]);
else
t = tem;
t = fold_convert (itype, t);
t = fold_build2 (MULT_EXPR, itype, t,
fold_convert (itype, fd->loops[i].step));
if (POINTER_TYPE_P (vtype))
t = fold_build_pointer_plus (fd->loops[i].n1, t);
else
t = fold_build2 (PLUS_EXPR, itype, fd->loops[i].n1, t);
t = force_gimple_operand_gsi (gsi, t,
DECL_P (fd->loops[i].v)
&& TREE_ADDRESSABLE (fd->loops[i].v),
NULL_TREE, false,
GSI_CONTINUE_LINKING);
stmt = gimple_build_assign (fd->loops[i].v, t);
gsi_insert_after (gsi, stmt, GSI_CONTINUE_LINKING);
if (i != 0)
{
t = fold_build2 (TRUNC_DIV_EXPR, type, tem, counts[i]);
t = force_gimple_operand_gsi (gsi, t, false, NULL_TREE,
false, GSI_CONTINUE_LINKING);
stmt = gimple_build_assign (tem, t);
gsi_insert_after (gsi, stmt, GSI_CONTINUE_LINKING);
}
}
}
/* Helper function for expand_omp_for_*. Generate code like:
L10:
V3 += STEP3;
if (V3 cond3 N32) goto BODY_BB; else goto L11;
L11:
V3 = N31;
V2 += STEP2;
if (V2 cond2 N22) goto BODY_BB; else goto L12;
L12:
V2 = N21;
V1 += STEP1;
goto BODY_BB; */
static basic_block
extract_omp_for_update_vars (struct omp_for_data *fd, basic_block cont_bb,
basic_block body_bb)
{
basic_block last_bb, bb, collapse_bb = NULL;
int i;
gimple_stmt_iterator gsi;
edge e;
tree t;
gimple *stmt;
last_bb = cont_bb;
for (i = fd->collapse - 1; i >= 0; i--)
{
tree vtype = TREE_TYPE (fd->loops[i].v);
bb = create_empty_bb (last_bb);
add_bb_to_loop (bb, last_bb->loop_father);
gsi = gsi_start_bb (bb);
if (i < fd->collapse - 1)
{
e = make_edge (last_bb, bb, EDGE_FALSE_VALUE);
e->probability = profile_probability::guessed_always ().apply_scale (1, 8);
t = fd->loops[i + 1].n1;
t = force_gimple_operand_gsi (&gsi, t,
DECL_P (fd->loops[i + 1].v)
&& TREE_ADDRESSABLE (fd->loops[i
+ 1].v),
NULL_TREE, false,
GSI_CONTINUE_LINKING);
stmt = gimple_build_assign (fd->loops[i + 1].v, t);
gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
}
else
collapse_bb = bb;
set_immediate_dominator (CDI_DOMINATORS, bb, last_bb);
if (POINTER_TYPE_P (vtype))
t = fold_build_pointer_plus (fd->loops[i].v, fd->loops[i].step);
else
t = fold_build2 (PLUS_EXPR, vtype, fd->loops[i].v, fd->loops[i].step);
t = force_gimple_operand_gsi (&gsi, t,
DECL_P (fd->loops[i].v)
&& TREE_ADDRESSABLE (fd->loops[i].v),
NULL_TREE, false, GSI_CONTINUE_LINKING);
stmt = gimple_build_assign (fd->loops[i].v, t);
gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
if (i > 0)
{
t = fd->loops[i].n2;
t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
false, GSI_CONTINUE_LINKING);
tree v = fd->loops[i].v;
if (DECL_P (v) && TREE_ADDRESSABLE (v))
v = force_gimple_operand_gsi (&gsi, v, true, NULL_TREE,
false, GSI_CONTINUE_LINKING);
t = fold_build2 (fd->loops[i].cond_code, boolean_type_node, v, t);
stmt = gimple_build_cond_empty (t);
gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
e = make_edge (bb, body_bb, EDGE_TRUE_VALUE);
e->probability = profile_probability::guessed_always ().apply_scale (7, 8);
}
else
make_edge (bb, body_bb, EDGE_FALLTHRU);
last_bb = bb;
}
return collapse_bb;
}
/* Expand #pragma omp ordered depend(source). */
static void
expand_omp_ordered_source (gimple_stmt_iterator *gsi, struct omp_for_data *fd,
tree *counts, location_t loc)
{
enum built_in_function source_ix
= fd->iter_type == long_integer_type_node
? BUILT_IN_GOMP_DOACROSS_POST : BUILT_IN_GOMP_DOACROSS_ULL_POST;
gimple *g
= gimple_build_call (builtin_decl_explicit (source_ix), 1,
build_fold_addr_expr (counts[fd->ordered]));
gimple_set_location (g, loc);
gsi_insert_before (gsi, g, GSI_SAME_STMT);
}
/* Expand a single depend from #pragma omp ordered depend(sink:...). */
static void
expand_omp_ordered_sink (gimple_stmt_iterator *gsi, struct omp_for_data *fd,
tree *counts, tree c, location_t loc)
{
auto_vec<tree, 10> args;
enum built_in_function sink_ix
= fd->iter_type == long_integer_type_node
? BUILT_IN_GOMP_DOACROSS_WAIT : BUILT_IN_GOMP_DOACROSS_ULL_WAIT;
tree t, off, coff = NULL_TREE, deps = OMP_CLAUSE_DECL (c), cond = NULL_TREE;
int i;
gimple_stmt_iterator gsi2 = *gsi;
bool warned_step = false;
for (i = 0; i < fd->ordered; i++)
{
tree step = NULL_TREE;
off = TREE_PURPOSE (deps);
if (TREE_CODE (off) == TRUNC_DIV_EXPR)
{
step = TREE_OPERAND (off, 1);
off = TREE_OPERAND (off, 0);
}
if (!integer_zerop (off))
{
gcc_assert (fd->loops[i].cond_code == LT_EXPR
|| fd->loops[i].cond_code == GT_EXPR);
bool forward = fd->loops[i].cond_code == LT_EXPR;
if (step)
{
/* Non-simple Fortran DO loops. If step is variable,
we don't know at compile even the direction, so can't
warn. */
if (TREE_CODE (step) != INTEGER_CST)
break;
forward = tree_int_cst_sgn (step) != -1;
}
if (forward ^ OMP_CLAUSE_DEPEND_SINK_NEGATIVE (deps))
warning_at (loc, 0, "%<depend(sink)%> clause waiting for "
"lexically later iteration");
break;
}
deps = TREE_CHAIN (deps);
}
/* If all offsets corresponding to the collapsed loops are zero,
this depend clause can be ignored. FIXME: but there is still a
flush needed. We need to emit one __sync_synchronize () for it
though (perhaps conditionally)? Solve this together with the
conservative dependence folding optimization.
if (i >= fd->collapse)
return; */
deps = OMP_CLAUSE_DECL (c);
gsi_prev (&gsi2);
edge e1 = split_block (gsi_bb (gsi2), gsi_stmt (gsi2));
edge e2 = split_block_after_labels (e1->dest);
gsi2 = gsi_after_labels (e1->dest);
*gsi = gsi_last_bb (e1->src);
for (i = 0; i < fd->ordered; i++)
{
tree itype = TREE_TYPE (fd->loops[i].v);
tree step = NULL_TREE;
tree orig_off = NULL_TREE;
if (POINTER_TYPE_P (itype))
itype = sizetype;
if (i)
deps = TREE_CHAIN (deps);
off = TREE_PURPOSE (deps);
if (TREE_CODE (off) == TRUNC_DIV_EXPR)
{
step = TREE_OPERAND (off, 1);
off = TREE_OPERAND (off, 0);
gcc_assert (fd->loops[i].cond_code == LT_EXPR
&& integer_onep (fd->loops[i].step)
&& !POINTER_TYPE_P (TREE_TYPE (fd->loops[i].v)));
}
tree s = fold_convert_loc (loc, itype, step ? step : fd->loops[i].step);
if (step)
{
off = fold_convert_loc (loc, itype, off);
orig_off = off;
off = fold_build2_loc (loc, TRUNC_DIV_EXPR, itype, off, s);
}
if (integer_zerop (off))
t = boolean_true_node;
else
{
tree a;
tree co = fold_convert_loc (loc, itype, off);
if (POINTER_TYPE_P (TREE_TYPE (fd->loops[i].v)))
{
if (OMP_CLAUSE_DEPEND_SINK_NEGATIVE (deps))
co = fold_build1_loc (loc, NEGATE_EXPR, itype, co);
a = fold_build2_loc (loc, POINTER_PLUS_EXPR,
TREE_TYPE (fd->loops[i].v), fd->loops[i].v,
co);
}
else if (OMP_CLAUSE_DEPEND_SINK_NEGATIVE (deps))
a = fold_build2_loc (loc, MINUS_EXPR, TREE_TYPE (fd->loops[i].v),
fd->loops[i].v, co);
else
a = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (fd->loops[i].v),
fd->loops[i].v, co);
if (step)
{
tree t1, t2;
if (OMP_CLAUSE_DEPEND_SINK_NEGATIVE (deps))
t1 = fold_build2_loc (loc, GE_EXPR, boolean_type_node, a,
fd->loops[i].n1);
else
t1 = fold_build2_loc (loc, LT_EXPR, boolean_type_node, a,
fd->loops[i].n2);
if (OMP_CLAUSE_DEPEND_SINK_NEGATIVE (deps))
t2 = fold_build2_loc (loc, LT_EXPR, boolean_type_node, a,
fd->loops[i].n2);
else
t2 = fold_build2_loc (loc, GE_EXPR, boolean_type_node, a,
fd->loops[i].n1);
t = fold_build2_loc (loc, LT_EXPR, boolean_type_node,
step, build_int_cst (TREE_TYPE (step), 0));
if (TREE_CODE (step) != INTEGER_CST)
{
t1 = unshare_expr (t1);
t1 = force_gimple_operand_gsi (gsi, t1, true, NULL_TREE,
false, GSI_CONTINUE_LINKING);
t2 = unshare_expr (t2);
t2 = force_gimple_operand_gsi (gsi, t2, true, NULL_TREE,
false, GSI_CONTINUE_LINKING);
}
t = fold_build3_loc (loc, COND_EXPR, boolean_type_node,
t, t2, t1);
}
else if (fd->loops[i].cond_code == LT_EXPR)
{
if (OMP_CLAUSE_DEPEND_SINK_NEGATIVE (deps))
t = fold_build2_loc (loc, GE_EXPR, boolean_type_node, a,
fd->loops[i].n1);
else
t = fold_build2_loc (loc, LT_EXPR, boolean_type_node, a,
fd->loops[i].n2);
}
else if (OMP_CLAUSE_DEPEND_SINK_NEGATIVE (deps))
t = fold_build2_loc (loc, GT_EXPR, boolean_type_node, a,
fd->loops[i].n2);
else
t = fold_build2_loc (loc, LE_EXPR, boolean_type_node, a,
fd->loops[i].n1);
}
if (cond)
cond = fold_build2_loc (loc, BIT_AND_EXPR, boolean_type_node, cond, t);
else
cond = t;
off = fold_convert_loc (loc, itype, off);
if (step
|| (fd->loops[i].cond_code == LT_EXPR
? !integer_onep (fd->loops[i].step)
: !integer_minus_onep (fd->loops[i].step)))
{
if (step == NULL_TREE
&& TYPE_UNSIGNED (itype)
&& fd->loops[i].cond_code == GT_EXPR)
t = fold_build2_loc (loc, TRUNC_MOD_EXPR, itype, off,
fold_build1_loc (loc, NEGATE_EXPR, itype,
s));
else
t = fold_build2_loc (loc, TRUNC_MOD_EXPR, itype,
orig_off ? orig_off : off, s);
t = fold_build2_loc (loc, EQ_EXPR, boolean_type_node, t,
build_int_cst (itype, 0));
if (integer_zerop (t) && !warned_step)
{
warning_at (loc, 0, "%<depend(sink)%> refers to iteration never "
"in the iteration space");
warned_step = true;
}
cond = fold_build2_loc (loc, BIT_AND_EXPR, boolean_type_node,
cond, t);
}
if (i <= fd->collapse - 1 && fd->collapse > 1)
t = fd->loop.v;
else if (counts[i])
t = counts[i];
else
{
t = fold_build2_loc (loc, MINUS_EXPR, TREE_TYPE (fd->loops[i].v),
fd->loops[i].v, fd->loops[i].n1);
t = fold_convert_loc (loc, fd->iter_type, t);
}
if (step)
/* We have divided off by step already earlier. */;
else if (TYPE_UNSIGNED (itype) && fd->loops[i].cond_code == GT_EXPR)
off = fold_build2_loc (loc, TRUNC_DIV_EXPR, itype, off,
fold_build1_loc (loc, NEGATE_EXPR, itype,
s));
else
off = fold_build2_loc (loc, TRUNC_DIV_EXPR, itype, off, s);
if (OMP_CLAUSE_DEPEND_SINK_NEGATIVE (deps))
off = fold_build1_loc (loc, NEGATE_EXPR, itype, off);
off = fold_convert_loc (loc, fd->iter_type, off);
if (i <= fd->collapse - 1 && fd->collapse > 1)
{
if (i)
off = fold_build2_loc (loc, PLUS_EXPR, fd->iter_type, coff,
off);
if (i < fd->collapse - 1)
{
coff = fold_build2_loc (loc, MULT_EXPR, fd->iter_type, off,
counts[i]);
continue;
}
}
off = unshare_expr (off);
t = fold_build2_loc (loc, PLUS_EXPR, fd->iter_type, t, off);
t = force_gimple_operand_gsi (&gsi2, t, true, NULL_TREE,
true, GSI_SAME_STMT);
args.safe_push (t);
}
gimple *g = gimple_build_call_vec (builtin_decl_explicit (sink_ix), args);
gimple_set_location (g, loc);
gsi_insert_before (&gsi2, g, GSI_SAME_STMT);
cond = unshare_expr (cond);
cond = force_gimple_operand_gsi (gsi, cond, true, NULL_TREE, false,
GSI_CONTINUE_LINKING);
gsi_insert_after (gsi, gimple_build_cond_empty (cond), GSI_NEW_STMT);
edge e3 = make_edge (e1->src, e2->dest, EDGE_FALSE_VALUE);
e3->probability = profile_probability::guessed_always ().apply_scale (1, 8);
e1->probability = e3->probability.invert ();
e1->flags = EDGE_TRUE_VALUE;
set_immediate_dominator (CDI_DOMINATORS, e2->dest, e1->src);
*gsi = gsi_after_labels (e2->dest);
}
/* Expand all #pragma omp ordered depend(source) and
#pragma omp ordered depend(sink:...) constructs in the current
#pragma omp for ordered(n) region. */
static void
expand_omp_ordered_source_sink (struct omp_region *region,
struct omp_for_data *fd, tree *counts,
basic_block cont_bb)
{
struct omp_region *inner;
int i;
for (i = fd->collapse - 1; i < fd->ordered; i++)
if (i == fd->collapse - 1 && fd->collapse > 1)
counts[i] = NULL_TREE;
else if (i >= fd->collapse && !cont_bb)
counts[i] = build_zero_cst (fd->iter_type);
else if (!POINTER_TYPE_P (TREE_TYPE (fd->loops[i].v))
&& integer_onep (fd->loops[i].step))
counts[i] = NULL_TREE;
else
counts[i] = create_tmp_var (fd->iter_type, ".orditer");
tree atype
= build_array_type_nelts (fd->iter_type, fd->ordered - fd->collapse + 1);
counts[fd->ordered] = create_tmp_var (atype, ".orditera");
TREE_ADDRESSABLE (counts[fd->ordered]) = 1;
for (inner = region->inner; inner; inner = inner->next)
if (inner->type == GIMPLE_OMP_ORDERED)
{
gomp_ordered *ord_stmt = inner->ord_stmt;
gimple_stmt_iterator gsi = gsi_for_stmt (ord_stmt);
location_t loc = gimple_location (ord_stmt);
tree c;
for (c = gimple_omp_ordered_clauses (ord_stmt);
c; c = OMP_CLAUSE_CHAIN (c))
if (OMP_CLAUSE_DEPEND_KIND (c) == OMP_CLAUSE_DEPEND_SOURCE)
break;
if (c)
expand_omp_ordered_source (&gsi, fd, counts, loc);
for (c = gimple_omp_ordered_clauses (ord_stmt);
c; c = OMP_CLAUSE_CHAIN (c))
if (OMP_CLAUSE_DEPEND_KIND (c) == OMP_CLAUSE_DEPEND_SINK)
expand_omp_ordered_sink (&gsi, fd, counts, c, loc);
gsi_remove (&gsi, true);
}
}
/* Wrap the body into fd->ordered - fd->collapse loops that aren't
collapsed. */
static basic_block
expand_omp_for_ordered_loops (struct omp_for_data *fd, tree *counts,
basic_block cont_bb, basic_block body_bb,
bool ordered_lastprivate)
{
if (fd->ordered == fd->collapse)
return cont_bb;
if (!cont_bb)
{
gimple_stmt_iterator gsi = gsi_after_labels (body_bb);
for (int i = fd->collapse; i < fd->ordered; i++)
{
tree type = TREE_TYPE (fd->loops[i].v);
tree n1 = fold_convert (type, fd->loops[i].n1);
expand_omp_build_assign (&gsi, fd->loops[i].v, n1);
tree aref = build4 (ARRAY_REF, fd->iter_type, counts[fd->ordered],
size_int (i - fd->collapse + 1),
NULL_TREE, NULL_TREE);
expand_omp_build_assign (&gsi, aref, build_zero_cst (fd->iter_type));
}
return NULL;
}
for (int i = fd->ordered - 1; i >= fd->collapse; i--)
{
tree t, type = TREE_TYPE (fd->loops[i].v);
gimple_stmt_iterator gsi = gsi_after_labels (body_bb);
expand_omp_build_assign (&gsi, fd->loops[i].v,
fold_convert (type, fd->loops[i].n1));
if (counts[i])
expand_omp_build_assign (&gsi, counts[i],
build_zero_cst (fd->iter_type));
tree aref = build4 (ARRAY_REF, fd->iter_type, counts[fd->ordered],
size_int (i - fd->collapse + 1),
NULL_TREE, NULL_TREE);
expand_omp_build_assign (&gsi, aref, build_zero_cst (fd->iter_type));
if (!gsi_end_p (gsi))
gsi_prev (&gsi);
else
gsi = gsi_last_bb (body_bb);
edge e1 = split_block (body_bb, gsi_stmt (gsi));
basic_block new_body = e1->dest;
if (body_bb == cont_bb)
cont_bb = new_body;
edge e2 = NULL;
basic_block new_header;
if (EDGE_COUNT (cont_bb->preds) > 0)
{
gsi = gsi_last_bb (cont_bb);
if (POINTER_TYPE_P (type))
t = fold_build_pointer_plus (fd->loops[i].v,
fold_convert (sizetype,
fd->loops[i].step));
else
t = fold_build2 (PLUS_EXPR, type, fd->loops[i].v,
fold_convert (type, fd->loops[i].step));
expand_omp_build_assign (&gsi, fd->loops[i].v, t);
if (counts[i])
{
t = fold_build2 (PLUS_EXPR, fd->iter_type, counts[i],
build_int_cst (fd->iter_type, 1));
expand_omp_build_assign (&gsi, counts[i], t);
t = counts[i];
}
else
{
t = fold_build2 (MINUS_EXPR, TREE_TYPE (fd->loops[i].v),
fd->loops[i].v, fd->loops[i].n1);
t = fold_convert (fd->iter_type, t);
t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
true, GSI_SAME_STMT);
}
aref = build4 (ARRAY_REF, fd->iter_type, counts[fd->ordered],
size_int (i - fd->collapse + 1),
NULL_TREE, NULL_TREE);
expand_omp_build_assign (&gsi, aref, t);
gsi_prev (&gsi);
e2 = split_block (cont_bb, gsi_stmt (gsi));
new_header = e2->dest;
}
else
new_header = cont_bb;
gsi = gsi_after_labels (new_header);
tree v = force_gimple_operand_gsi (&gsi, fd->loops[i].v, true, NULL_TREE,
true, GSI_SAME_STMT);
tree n2
= force_gimple_operand_gsi (&gsi, fold_convert (type, fd->loops[i].n2),
true, NULL_TREE, true, GSI_SAME_STMT);
t = build2 (fd->loops[i].cond_code, boolean_type_node, v, n2);
gsi_insert_before (&gsi, gimple_build_cond_empty (t), GSI_NEW_STMT);
edge e3 = split_block (new_header, gsi_stmt (gsi));
cont_bb = e3->dest;
remove_edge (e1);
make_edge (body_bb, new_header, EDGE_FALLTHRU);
e3->flags = EDGE_FALSE_VALUE;
e3->probability = profile_probability::guessed_always ().apply_scale (1, 8);
e1 = make_edge (new_header, new_body, EDGE_TRUE_VALUE);
e1->probability = e3->probability.invert ();
set_immediate_dominator (CDI_DOMINATORS, new_header, body_bb);
set_immediate_dominator (CDI_DOMINATORS, new_body, new_header);
if (e2)
{
struct loop *loop = alloc_loop ();
loop->header = new_header;
loop->latch = e2->src;
add_loop (loop, body_bb->loop_father);
}
}
/* If there are any lastprivate clauses and it is possible some loops
might have zero iterations, ensure all the decls are initialized,
otherwise we could crash evaluating C++ class iterators with lastprivate
clauses. */
bool need_inits = false;
for (int i = fd->collapse; ordered_lastprivate && i < fd->ordered; i++)
if (need_inits)
{
tree type = TREE_TYPE (fd->loops[i].v);
gimple_stmt_iterator gsi = gsi_after_labels (body_bb);
expand_omp_build_assign (&gsi, fd->loops[i].v,
fold_convert (type, fd->loops[i].n1));
}
else
{
tree type = TREE_TYPE (fd->loops[i].v);
tree this_cond = fold_build2 (fd->loops[i].cond_code,
boolean_type_node,
fold_convert (type, fd->loops[i].n1),
fold_convert (type, fd->loops[i].n2));
if (!integer_onep (this_cond))
need_inits = true;
}
return cont_bb;
}
/* A subroutine of expand_omp_for. Generate code for a parallel
loop with any schedule. Given parameters:
for (V = N1; V cond N2; V += STEP) BODY;
where COND is "<" or ">", we generate pseudocode
more = GOMP_loop_foo_start (N1, N2, STEP, CHUNK, &istart0, &iend0);
if (more) goto L0; else goto L3;
L0:
V = istart0;
iend = iend0;
L1:
BODY;
V += STEP;
if (V cond iend) goto L1; else goto L2;
L2:
if (GOMP_loop_foo_next (&istart0, &iend0)) goto L0; else goto L3;
L3:
If this is a combined omp parallel loop, instead of the call to
GOMP_loop_foo_start, we call GOMP_loop_foo_next.
If this is gimple_omp_for_combined_p loop, then instead of assigning
V and iend in L0 we assign the first two _looptemp_ clause decls of the
inner GIMPLE_OMP_FOR and V += STEP; and
if (V cond iend) goto L1; else goto L2; are removed.
For collapsed loops, given parameters:
collapse(3)
for (V1 = N11; V1 cond1 N12; V1 += STEP1)
for (V2 = N21; V2 cond2 N22; V2 += STEP2)
for (V3 = N31; V3 cond3 N32; V3 += STEP3)
BODY;
we generate pseudocode
if (__builtin_expect (N32 cond3 N31, 0)) goto Z0;
if (cond3 is <)
adj = STEP3 - 1;
else
adj = STEP3 + 1;
count3 = (adj + N32 - N31) / STEP3;
if (__builtin_expect (N22 cond2 N21, 0)) goto Z0;
if (cond2 is <)
adj = STEP2 - 1;
else
adj = STEP2 + 1;
count2 = (adj + N22 - N21) / STEP2;
if (__builtin_expect (N12 cond1 N11, 0)) goto Z0;
if (cond1 is <)
adj = STEP1 - 1;
else
adj = STEP1 + 1;
count1 = (adj + N12 - N11) / STEP1;
count = count1 * count2 * count3;
goto Z1;
Z0:
count = 0;
Z1:
more = GOMP_loop_foo_start (0, count, 1, CHUNK, &istart0, &iend0);
if (more) goto L0; else goto L3;
L0:
V = istart0;
T = V;
V3 = N31 + (T % count3) * STEP3;
T = T / count3;
V2 = N21 + (T % count2) * STEP2;
T = T / count2;
V1 = N11 + T * STEP1;
iend = iend0;
L1:
BODY;
V += 1;
if (V < iend) goto L10; else goto L2;
L10:
V3 += STEP3;
if (V3 cond3 N32) goto L1; else goto L11;
L11:
V3 = N31;
V2 += STEP2;
if (V2 cond2 N22) goto L1; else goto L12;
L12:
V2 = N21;
V1 += STEP1;
goto L1;
L2:
if (GOMP_loop_foo_next (&istart0, &iend0)) goto L0; else goto L3;
L3:
*/
static void
expand_omp_for_generic (struct omp_region *region,
struct omp_for_data *fd,
enum built_in_function start_fn,
enum built_in_function next_fn,
gimple *inner_stmt)
{
tree type, istart0, iend0, iend;
tree t, vmain, vback, bias = NULL_TREE;
basic_block entry_bb, cont_bb, exit_bb, l0_bb, l1_bb, collapse_bb;
basic_block l2_bb = NULL, l3_bb = NULL;
gimple_stmt_iterator gsi;
gassign *assign_stmt;
bool in_combined_parallel = is_combined_parallel (region);
bool broken_loop = region->cont == NULL;
edge e, ne;
tree *counts = NULL;
int i;
bool ordered_lastprivate = false;
gcc_assert (!broken_loop || !in_combined_parallel);
gcc_assert (fd->iter_type == long_integer_type_node
|| !in_combined_parallel);
entry_bb = region->entry;
cont_bb = region->cont;
collapse_bb = NULL;
gcc_assert (EDGE_COUNT (entry_bb->succs) == 2);
gcc_assert (broken_loop
|| BRANCH_EDGE (entry_bb)->dest == FALLTHRU_EDGE (cont_bb)->dest);
l0_bb = split_edge (FALLTHRU_EDGE (entry_bb));
l1_bb = single_succ (l0_bb);
if (!broken_loop)
{
l2_bb = create_empty_bb (cont_bb);
gcc_assert (BRANCH_EDGE (cont_bb)->dest == l1_bb
|| (single_succ_edge (BRANCH_EDGE (cont_bb)->dest)->dest
== l1_bb));
gcc_assert (EDGE_COUNT (cont_bb->succs) == 2);
}
else
l2_bb = NULL;
l3_bb = BRANCH_EDGE (entry_bb)->dest;
exit_bb = region->exit;
gsi = gsi_last_bb (entry_bb);
gcc_assert (gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_FOR);
if (fd->ordered
&& omp_find_clause (gimple_omp_for_clauses (gsi_stmt (gsi)),
OMP_CLAUSE_LASTPRIVATE))
ordered_lastprivate = false;
if (fd->collapse > 1 || fd->ordered)
{
int first_zero_iter1 = -1, first_zero_iter2 = -1;
basic_block zero_iter1_bb = NULL, zero_iter2_bb = NULL, l2_dom_bb = NULL;
counts = XALLOCAVEC (tree, fd->ordered ? fd->ordered + 1 : fd->collapse);
expand_omp_for_init_counts (fd, &gsi, entry_bb, counts,
zero_iter1_bb, first_zero_iter1,
zero_iter2_bb, first_zero_iter2, l2_dom_bb);
if (zero_iter1_bb)
{
/* Some counts[i] vars might be uninitialized if
some loop has zero iterations. But the body shouldn't
be executed in that case, so just avoid uninit warnings. */
for (i = first_zero_iter1;
i < (fd->ordered ? fd->ordered : fd->collapse); i++)
if (SSA_VAR_P (counts[i]))
TREE_NO_WARNING (counts[i]) = 1;
gsi_prev (&gsi);
e = split_block (entry_bb, gsi_stmt (gsi));
entry_bb = e->dest;
make_edge (zero_iter1_bb, entry_bb, EDGE_FALLTHRU);
gsi = gsi_last_bb (entry_bb);
set_immediate_dominator (CDI_DOMINATORS, entry_bb,
get_immediate_dominator (CDI_DOMINATORS,
zero_iter1_bb));
}
if (zero_iter2_bb)
{
/* Some counts[i] vars might be uninitialized if
some loop has zero iterations. But the body shouldn't
be executed in that case, so just avoid uninit warnings. */
for (i = first_zero_iter2; i < fd->ordered; i++)
if (SSA_VAR_P (counts[i]))
TREE_NO_WARNING (counts[i]) = 1;
if (zero_iter1_bb)
make_edge (zero_iter2_bb, entry_bb, EDGE_FALLTHRU);
else
{
gsi_prev (&gsi);
e = split_block (entry_bb, gsi_stmt (gsi));
entry_bb = e->dest;
make_edge (zero_iter2_bb, entry_bb, EDGE_FALLTHRU);
gsi = gsi_last_bb (entry_bb);
set_immediate_dominator (CDI_DOMINATORS, entry_bb,
get_immediate_dominator
(CDI_DOMINATORS, zero_iter2_bb));
}
}
if (fd->collapse == 1)
{
counts[0] = fd->loop.n2;
fd->loop = fd->loops[0];
}
}
type = TREE_TYPE (fd->loop.v);
istart0 = create_tmp_var (fd->iter_type, ".istart0");
iend0 = create_tmp_var (fd->iter_type, ".iend0");
TREE_ADDRESSABLE (istart0) = 1;
TREE_ADDRESSABLE (iend0) = 1;
/* See if we need to bias by LLONG_MIN. */
if (fd->iter_type == long_long_unsigned_type_node
&& TREE_CODE (type) == INTEGER_TYPE
&& !TYPE_UNSIGNED (type)
&& fd->ordered == 0)
{
tree n1, n2;
if (fd->loop.cond_code == LT_EXPR)
{
n1 = fd->loop.n1;
n2 = fold_build2 (PLUS_EXPR, type, fd->loop.n2, fd->loop.step);
}
else
{
n1 = fold_build2 (MINUS_EXPR, type, fd->loop.n2, fd->loop.step);
n2 = fd->loop.n1;
}
if (TREE_CODE (n1) != INTEGER_CST
|| TREE_CODE (n2) != INTEGER_CST
|| ((tree_int_cst_sgn (n1) < 0) ^ (tree_int_cst_sgn (n2) < 0)))
bias = fold_convert (fd->iter_type, TYPE_MIN_VALUE (type));
}
gimple_stmt_iterator gsif = gsi;
gsi_prev (&gsif);
tree arr = NULL_TREE;
if (in_combined_parallel)
{
gcc_assert (fd->ordered == 0);
/* In a combined parallel loop, emit a call to
GOMP_loop_foo_next. */
t = build_call_expr (builtin_decl_explicit (next_fn), 2,
build_fold_addr_expr (istart0),
build_fold_addr_expr (iend0));
}
else
{
tree t0, t1, t2, t3, t4;
/* If this is not a combined parallel loop, emit a call to
GOMP_loop_foo_start in ENTRY_BB. */
t4 = build_fold_addr_expr (iend0);
t3 = build_fold_addr_expr (istart0);
if (fd->ordered)
{
t0 = build_int_cst (unsigned_type_node,
fd->ordered - fd->collapse + 1);
arr = create_tmp_var (build_array_type_nelts (fd->iter_type,
fd->ordered
- fd->collapse + 1),
".omp_counts");
DECL_NAMELESS (arr) = 1;
TREE_ADDRESSABLE (arr) = 1;
TREE_STATIC (arr) = 1;
vec<constructor_elt, va_gc> *v;
vec_alloc (v, fd->ordered - fd->collapse + 1);
int idx;
for (idx = 0; idx < fd->ordered - fd->collapse + 1; idx++)
{
tree c;
if (idx == 0 && fd->collapse > 1)
c = fd->loop.n2;
else
c = counts[idx + fd->collapse - 1];
tree purpose = size_int (idx);
CONSTRUCTOR_APPEND_ELT (v, purpose, c);
if (TREE_CODE (c) != INTEGER_CST)
TREE_STATIC (arr) = 0;
}
DECL_INITIAL (arr) = build_constructor (TREE_TYPE (arr), v);
if (!TREE_STATIC (arr))
force_gimple_operand_gsi (&gsi, build1 (DECL_EXPR,
void_type_node, arr),
true, NULL_TREE, true, GSI_SAME_STMT);
t1 = build_fold_addr_expr (arr);
t2 = NULL_TREE;
}
else
{
t2 = fold_convert (fd->iter_type, fd->loop.step);
t1 = fd->loop.n2;
t0 = fd->loop.n1;
if (gimple_omp_for_combined_into_p (fd->for_stmt))
{
tree innerc
= omp_find_clause (gimple_omp_for_clauses (fd->for_stmt),
OMP_CLAUSE__LOOPTEMP_);
gcc_assert (innerc);
t0 = OMP_CLAUSE_DECL (innerc);
innerc = omp_find_clause (OMP_CLAUSE_CHAIN (innerc),
OMP_CLAUSE__LOOPTEMP_);
gcc_assert (innerc);
t1 = OMP_CLAUSE_DECL (innerc);
}
if (POINTER_TYPE_P (TREE_TYPE (t0))
&& TYPE_PRECISION (TREE_TYPE (t0))
!= TYPE_PRECISION (fd->iter_type))
{
/* Avoid casting pointers to integer of a different size. */
tree itype = signed_type_for (type);
t1 = fold_convert (fd->iter_type, fold_convert (itype, t1));
t0 = fold_convert (fd->iter_type, fold_convert (itype, t0));
}
else
{
t1 = fold_convert (fd->iter_type, t1);
t0 = fold_convert (fd->iter_type, t0);
}
if (bias)
{
t1 = fold_build2 (PLUS_EXPR, fd->iter_type, t1, bias);
t0 = fold_build2 (PLUS_EXPR, fd->iter_type, t0, bias);
}
}
if (fd->iter_type == long_integer_type_node || fd->ordered)
{
if (fd->chunk_size)
{
t = fold_convert (fd->iter_type, fd->chunk_size);
t = omp_adjust_chunk_size (t, fd->simd_schedule);
if (fd->ordered)
t = build_call_expr (builtin_decl_explicit (start_fn),
5, t0, t1, t, t3, t4);
else
t = build_call_expr (builtin_decl_explicit (start_fn),
6, t0, t1, t2, t, t3, t4);
}
else if (fd->ordered)
t = build_call_expr (builtin_decl_explicit (start_fn),
4, t0, t1, t3, t4);
else
t = build_call_expr (builtin_decl_explicit (start_fn),
5, t0, t1, t2, t3, t4);
}
else
{
tree t5;
tree c_bool_type;
tree bfn_decl;
/* The GOMP_loop_ull_*start functions have additional boolean
argument, true for < loops and false for > loops.
In Fortran, the C bool type can be different from
boolean_type_node. */
bfn_decl = builtin_decl_explicit (start_fn);
c_bool_type = TREE_TYPE (TREE_TYPE (bfn_decl));
t5 = build_int_cst (c_bool_type,
fd->loop.cond_code == LT_EXPR ? 1 : 0);
if (fd->chunk_size)
{
tree bfn_decl = builtin_decl_explicit (start_fn);
t = fold_convert (fd->iter_type, fd->chunk_size);
t = omp_adjust_chunk_size (t, fd->simd_schedule);
t = build_call_expr (bfn_decl, 7, t5, t0, t1, t2, t, t3, t4);
}
else
t = build_call_expr (builtin_decl_explicit (start_fn),
6, t5, t0, t1, t2, t3, t4);
}
}
if (TREE_TYPE (t) != boolean_type_node)
t = fold_build2 (NE_EXPR, boolean_type_node,
t, build_int_cst (TREE_TYPE (t), 0));
t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
true, GSI_SAME_STMT);
if (arr && !TREE_STATIC (arr))
{
tree clobber = build_constructor (TREE_TYPE (arr), NULL);
TREE_THIS_VOLATILE (clobber) = 1;
gsi_insert_before (&gsi, gimple_build_assign (arr, clobber),
GSI_SAME_STMT);
}
gsi_insert_after (&gsi, gimple_build_cond_empty (t), GSI_SAME_STMT);
/* Remove the GIMPLE_OMP_FOR statement. */
gsi_remove (&gsi, true);
if (gsi_end_p (gsif))
gsif = gsi_after_labels (gsi_bb (gsif));
gsi_next (&gsif);
/* Iteration setup for sequential loop goes in L0_BB. */
tree startvar = fd->loop.v;
tree endvar = NULL_TREE;
if (gimple_omp_for_combined_p (fd->for_stmt))
{
gcc_assert (gimple_code (inner_stmt) == GIMPLE_OMP_FOR
&& gimple_omp_for_kind (inner_stmt)
== GF_OMP_FOR_KIND_SIMD);
tree innerc = omp_find_clause (gimple_omp_for_clauses (inner_stmt),
OMP_CLAUSE__LOOPTEMP_);
gcc_assert (innerc);
startvar = OMP_CLAUSE_DECL (innerc);
innerc = omp_find_clause (OMP_CLAUSE_CHAIN (innerc),
OMP_CLAUSE__LOOPTEMP_);
gcc_assert (innerc);
endvar = OMP_CLAUSE_DECL (innerc);
}
gsi = gsi_start_bb (l0_bb);
t = istart0;
if (fd->ordered && fd->collapse == 1)
t = fold_build2 (MULT_EXPR, fd->iter_type, t,
fold_convert (fd->iter_type, fd->loop.step));
else if (bias)
t = fold_build2 (MINUS_EXPR, fd->iter_type, t, bias);
if (fd->ordered && fd->collapse == 1)
{
if (POINTER_TYPE_P (TREE_TYPE (startvar)))
t = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (startvar),
fd->loop.n1, fold_convert (sizetype, t));
else
{
t = fold_convert (TREE_TYPE (startvar), t);
t = fold_build2 (PLUS_EXPR, TREE_TYPE (startvar),
fd->loop.n1, t);
}
}
else
{
if (POINTER_TYPE_P (TREE_TYPE (startvar)))
t = fold_convert (signed_type_for (TREE_TYPE (startvar)), t);
t = fold_convert (TREE_TYPE (startvar), t);
}
t = force_gimple_operand_gsi (&gsi, t,
DECL_P (startvar)
&& TREE_ADDRESSABLE (startvar),
NULL_TREE, false, GSI_CONTINUE_LINKING);
assign_stmt = gimple_build_assign (startvar, t);
gsi_insert_after (&gsi, assign_stmt, GSI_CONTINUE_LINKING);
t = iend0;
if (fd->ordered && fd->collapse == 1)
t = fold_build2 (MULT_EXPR, fd->iter_type, t,
fold_convert (fd->iter_type, fd->loop.step));
else if (bias)
t = fold_build2 (MINUS_EXPR, fd->iter_type, t, bias);
if (fd->ordered && fd->collapse == 1)
{
if (POINTER_TYPE_P (TREE_TYPE (startvar)))
t = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (startvar),
fd->loop.n1, fold_convert (sizetype, t));
else
{
t = fold_convert (TREE_TYPE (startvar), t);
t = fold_build2 (PLUS_EXPR, TREE_TYPE (startvar),
fd->loop.n1, t);
}
}
else
{
if (POINTER_TYPE_P (TREE_TYPE (startvar)))
t = fold_convert (signed_type_for (TREE_TYPE (startvar)), t);
t = fold_convert (TREE_TYPE (startvar), t);
}
iend = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
false, GSI_CONTINUE_LINKING);
if (endvar)
{
assign_stmt = gimple_build_assign (endvar, iend);
gsi_insert_after (&gsi, assign_stmt, GSI_CONTINUE_LINKING);
if (useless_type_conversion_p (TREE_TYPE (fd->loop.v), TREE_TYPE (iend)))
assign_stmt = gimple_build_assign (fd->loop.v, iend);
else
assign_stmt = gimple_build_assign (fd->loop.v, NOP_EXPR, iend);
gsi_insert_after (&gsi, assign_stmt, GSI_CONTINUE_LINKING);
}
/* Handle linear clause adjustments. */
tree itercnt = NULL_TREE;
if (gimple_omp_for_kind (fd->for_stmt) == GF_OMP_FOR_KIND_FOR)
for (tree c = gimple_omp_for_clauses (fd->for_stmt);
c; c = OMP_CLAUSE_CHAIN (c))
if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_LINEAR
&& !OMP_CLAUSE_LINEAR_NO_COPYIN (c))
{
tree d = OMP_CLAUSE_DECL (c);
bool is_ref = omp_is_reference (d);
tree t = d, a, dest;
if (is_ref)
t = build_simple_mem_ref_loc (OMP_CLAUSE_LOCATION (c), t);
tree type = TREE_TYPE (t);
if (POINTER_TYPE_P (type))
type = sizetype;
dest = unshare_expr (t);
tree v = create_tmp_var (TREE_TYPE (t), NULL);
expand_omp_build_assign (&gsif, v, t);
if (itercnt == NULL_TREE)
{
itercnt = startvar;
tree n1 = fd->loop.n1;
if (POINTER_TYPE_P (TREE_TYPE (itercnt)))
{
itercnt
= fold_convert (signed_type_for (TREE_TYPE (itercnt)),
itercnt);
n1 = fold_convert (TREE_TYPE (itercnt), n1);
}
itercnt = fold_build2 (MINUS_EXPR, TREE_TYPE (itercnt),
itercnt, n1);
itercnt = fold_build2 (EXACT_DIV_EXPR, TREE_TYPE (itercnt),
itercnt, fd->loop.step);
itercnt = force_gimple_operand_gsi (&gsi, itercnt, true,
NULL_TREE, false,
GSI_CONTINUE_LINKING);
}
a = fold_build2 (MULT_EXPR, type,
fold_convert (type, itercnt),
fold_convert (type, OMP_CLAUSE_LINEAR_STEP (c)));
t = fold_build2 (type == TREE_TYPE (t) ? PLUS_EXPR
: POINTER_PLUS_EXPR, TREE_TYPE (t), v, a);
t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
false, GSI_CONTINUE_LINKING);
assign_stmt = gimple_build_assign (dest, t);
gsi_insert_after (&gsi, assign_stmt, GSI_CONTINUE_LINKING);
}
if (fd->collapse > 1)
expand_omp_for_init_vars (fd, &gsi, counts, inner_stmt, startvar);
if (fd->ordered)
{
/* Until now, counts array contained number of iterations or
variable containing it for ith loop. From now on, we need
those counts only for collapsed loops, and only for the 2nd
till the last collapsed one. Move those one element earlier,
we'll use counts[fd->collapse - 1] for the first source/sink
iteration counter and so on and counts[fd->ordered]
as the array holding the current counter values for
depend(source). */
if (fd->collapse > 1)
memmove (counts, counts + 1, (fd->collapse - 1) * sizeof (counts[0]));
if (broken_loop)
{
int i;
for (i = fd->collapse; i < fd->ordered; i++)
{
tree type = TREE_TYPE (fd->loops[i].v);
tree this_cond
= fold_build2 (fd->loops[i].cond_code, boolean_type_node,
fold_convert (type, fd->loops[i].n1),
fold_convert (type, fd->loops[i].n2));
if (!integer_onep (this_cond))
break;
}
if (i < fd->ordered)
{
cont_bb
= create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
add_bb_to_loop (cont_bb, l1_bb->loop_father);
gimple_stmt_iterator gsi = gsi_after_labels (cont_bb);
gimple *g = gimple_build_omp_continue (fd->loop.v, fd->loop.v);
gsi_insert_before (&gsi, g, GSI_SAME_STMT);
make_edge (cont_bb, l3_bb, EDGE_FALLTHRU);
make_edge (cont_bb, l1_bb, 0);
l2_bb = create_empty_bb (cont_bb);
broken_loop = false;
}
}
expand_omp_ordered_source_sink (region, fd, counts, cont_bb);
cont_bb = expand_omp_for_ordered_loops (fd, counts, cont_bb, l1_bb,
ordered_lastprivate);
if (counts[fd->collapse - 1])
{
gcc_assert (fd->collapse == 1);
gsi = gsi_last_bb (l0_bb);
expand_omp_build_assign (&gsi, counts[fd->collapse - 1],
istart0, true);
gsi = gsi_last_bb (cont_bb);
t = fold_build2 (PLUS_EXPR, fd->iter_type, counts[fd->collapse - 1],
build_int_cst (fd->iter_type, 1));
expand_omp_build_assign (&gsi, counts[fd->collapse - 1], t);
tree aref = build4 (ARRAY_REF, fd->iter_type, counts[fd->ordered],
size_zero_node, NULL_TREE, NULL_TREE);
expand_omp_build_assign (&gsi, aref, counts[fd->collapse - 1]);
t = counts[fd->collapse - 1];
}
else if (fd->collapse > 1)
t = fd->loop.v;
else
{
t = fold_build2 (MINUS_EXPR, TREE_TYPE (fd->loops[0].v),
fd->loops[0].v, fd->loops[0].n1);
t = fold_convert (fd->iter_type, t);
}
gsi = gsi_last_bb (l0_bb);
tree aref = build4 (ARRAY_REF, fd->iter_type, counts[fd->ordered],
size_zero_node, NULL_TREE, NULL_TREE);
t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
false, GSI_CONTINUE_LINKING);
expand_omp_build_assign (&gsi, aref, t, true);
}
if (!broken_loop)
{
/* Code to control the increment and predicate for the sequential
loop goes in the CONT_BB. */
gsi = gsi_last_bb (cont_bb);
gomp_continue *cont_stmt = as_a <gomp_continue *> (gsi_stmt (gsi));
gcc_assert (gimple_code (cont_stmt) == GIMPLE_OMP_CONTINUE);
vmain = gimple_omp_continue_control_use (cont_stmt);
vback = gimple_omp_continue_control_def (cont_stmt);
if (!gimple_omp_for_combined_p (fd->for_stmt))
{
if (POINTER_TYPE_P (type))
t = fold_build_pointer_plus (vmain, fd->loop.step);
else
t = fold_build2 (PLUS_EXPR, type, vmain, fd->loop.step);
t = force_gimple_operand_gsi (&gsi, t,
DECL_P (vback)
&& TREE_ADDRESSABLE (vback),
NULL_TREE, true, GSI_SAME_STMT);
assign_stmt = gimple_build_assign (vback, t);
gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
if (fd->ordered && counts[fd->collapse - 1] == NULL_TREE)
{
if (fd->collapse > 1)
t = fd->loop.v;
else
{
t = fold_build2 (MINUS_EXPR, TREE_TYPE (fd->loops[0].v),
fd->loops[0].v, fd->loops[0].n1);
t = fold_convert (fd->iter_type, t);
}
tree aref = build4 (ARRAY_REF, fd->iter_type,
counts[fd->ordered], size_zero_node,
NULL_TREE, NULL_TREE);
t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
true, GSI_SAME_STMT);
expand_omp_build_assign (&gsi, aref, t);
}
t = build2 (fd->loop.cond_code, boolean_type_node,
DECL_P (vback) && TREE_ADDRESSABLE (vback) ? t : vback,
iend);
gcond *cond_stmt = gimple_build_cond_empty (t);
gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
}
/* Remove GIMPLE_OMP_CONTINUE. */
gsi_remove (&gsi, true);
if (fd->collapse > 1 && !gimple_omp_for_combined_p (fd->for_stmt))
collapse_bb = extract_omp_for_update_vars (fd, cont_bb, l1_bb);
/* Emit code to get the next parallel iteration in L2_BB. */
gsi = gsi_start_bb (l2_bb);
t = build_call_expr (builtin_decl_explicit (next_fn), 2,
build_fold_addr_expr (istart0),
build_fold_addr_expr (iend0));
t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
false, GSI_CONTINUE_LINKING);
if (TREE_TYPE (t) != boolean_type_node)
t = fold_build2 (NE_EXPR, boolean_type_node,
t, build_int_cst (TREE_TYPE (t), 0));
gcond *cond_stmt = gimple_build_cond_empty (t);
gsi_insert_after (&gsi, cond_stmt, GSI_CONTINUE_LINKING);
}
/* Add the loop cleanup function. */
gsi = gsi_last_bb (exit_bb);
if (gimple_omp_return_nowait_p (gsi_stmt (gsi)))
t = builtin_decl_explicit (BUILT_IN_GOMP_LOOP_END_NOWAIT);
else if (gimple_omp_return_lhs (gsi_stmt (gsi)))
t = builtin_decl_explicit (BUILT_IN_GOMP_LOOP_END_CANCEL);
else
t = builtin_decl_explicit (BUILT_IN_GOMP_LOOP_END);
gcall *call_stmt = gimple_build_call (t, 0);
if (gimple_omp_return_lhs (gsi_stmt (gsi)))
gimple_call_set_lhs (call_stmt, gimple_omp_return_lhs (gsi_stmt (gsi)));
gsi_insert_after (&gsi, call_stmt, GSI_SAME_STMT);
if (fd->ordered)
{
tree arr = counts[fd->ordered];
tree clobber = build_constructor (TREE_TYPE (arr), NULL);
TREE_THIS_VOLATILE (clobber) = 1;
gsi_insert_after (&gsi, gimple_build_assign (arr, clobber),
GSI_SAME_STMT);
}
gsi_remove (&gsi, true);
/* Connect the new blocks. */
find_edge (entry_bb, l0_bb)->flags = EDGE_TRUE_VALUE;
find_edge (entry_bb, l3_bb)->flags = EDGE_FALSE_VALUE;
if (!broken_loop)
{
gimple_seq phis;
e = find_edge (cont_bb, l3_bb);
ne = make_edge (l2_bb, l3_bb, EDGE_FALSE_VALUE);
phis = phi_nodes (l3_bb);
for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *phi = gsi_stmt (gsi);
SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, ne),
PHI_ARG_DEF_FROM_EDGE (phi, e));
}
remove_edge (e);
make_edge (cont_bb, l2_bb, EDGE_FALSE_VALUE);
e = find_edge (cont_bb, l1_bb);
if (e == NULL)
{
e = BRANCH_EDGE (cont_bb);
gcc_assert (single_succ (e->dest) == l1_bb);
}
if (gimple_omp_for_combined_p (fd->for_stmt))
{
remove_edge (e);
e = NULL;
}
else if (fd->collapse > 1)
{
remove_edge (e);
e = make_edge (cont_bb, collapse_bb, EDGE_TRUE_VALUE);
}
else
e->flags = EDGE_TRUE_VALUE;
if (e)
{
e->probability = profile_probability::guessed_always ().apply_scale (7, 8);
find_edge (cont_bb, l2_bb)->probability = e->probability.invert ();
}
else
{
e = find_edge (cont_bb, l2_bb);
e->flags = EDGE_FALLTHRU;
}
make_edge (l2_bb, l0_bb, EDGE_TRUE_VALUE);
if (gimple_in_ssa_p (cfun))
{
/* Add phis to the outer loop that connect to the phis in the inner,
original loop, and move the loop entry value of the inner phi to
the loop entry value of the outer phi. */
gphi_iterator psi;
for (psi = gsi_start_phis (l3_bb); !gsi_end_p (psi); gsi_next (&psi))
{
source_location locus;
gphi *nphi;
gphi *exit_phi = psi.phi ();
edge l2_to_l3 = find_edge (l2_bb, l3_bb);
tree exit_res = PHI_ARG_DEF_FROM_EDGE (exit_phi, l2_to_l3);
basic_block latch = BRANCH_EDGE (cont_bb)->dest;
edge latch_to_l1 = find_edge (latch, l1_bb);
gphi *inner_phi
= find_phi_with_arg_on_edge (exit_res, latch_to_l1);
tree t = gimple_phi_result (exit_phi);
tree new_res = copy_ssa_name (t, NULL);
nphi = create_phi_node (new_res, l0_bb);
edge l0_to_l1 = find_edge (l0_bb, l1_bb);
t = PHI_ARG_DEF_FROM_EDGE (inner_phi, l0_to_l1);
locus = gimple_phi_arg_location_from_edge (inner_phi, l0_to_l1);
edge entry_to_l0 = find_edge (entry_bb, l0_bb);
add_phi_arg (nphi, t, entry_to_l0, locus);
edge l2_to_l0 = find_edge (l2_bb, l0_bb);
add_phi_arg (nphi, exit_res, l2_to_l0, UNKNOWN_LOCATION);
add_phi_arg (inner_phi, new_res, l0_to_l1, UNKNOWN_LOCATION);
};
}
set_immediate_dominator (CDI_DOMINATORS, l2_bb,
recompute_dominator (CDI_DOMINATORS, l2_bb));
set_immediate_dominator (CDI_DOMINATORS, l3_bb,
recompute_dominator (CDI_DOMINATORS, l3_bb));
set_immediate_dominator (CDI_DOMINATORS, l0_bb,
recompute_dominator (CDI_DOMINATORS, l0_bb));
set_immediate_dominator (CDI_DOMINATORS, l1_bb,
recompute_dominator (CDI_DOMINATORS, l1_bb));
/* We enter expand_omp_for_generic with a loop. This original loop may
have its own loop struct, or it may be part of an outer loop struct
(which may be the fake loop). */
struct loop *outer_loop = entry_bb->loop_father;
bool orig_loop_has_loop_struct = l1_bb->loop_father != outer_loop;
add_bb_to_loop (l2_bb, outer_loop);
/* We've added a new loop around the original loop. Allocate the
corresponding loop struct. */
struct loop *new_loop = alloc_loop ();
new_loop->header = l0_bb;
new_loop->latch = l2_bb;
add_loop (new_loop, outer_loop);
/* Allocate a loop structure for the original loop unless we already
had one. */
if (!orig_loop_has_loop_struct
&& !gimple_omp_for_combined_p (fd->for_stmt))
{
struct loop *orig_loop = alloc_loop ();
orig_loop->header = l1_bb;
/* The loop may have multiple latches. */
add_loop (orig_loop, new_loop);
}
}
}
/* A subroutine of expand_omp_for. Generate code for a parallel
loop with static schedule and no specified chunk size. Given
parameters:
for (V = N1; V cond N2; V += STEP) BODY;
where COND is "<" or ">", we generate pseudocode
if ((__typeof (V)) -1 > 0 && N2 cond N1) goto L2;
if (cond is <)
adj = STEP - 1;
else
adj = STEP + 1;
if ((__typeof (V)) -1 > 0 && cond is >)
n = -(adj + N2 - N1) / -STEP;
else
n = (adj + N2 - N1) / STEP;
q = n / nthreads;
tt = n % nthreads;
if (threadid < tt) goto L3; else goto L4;
L3:
tt = 0;
q = q + 1;
L4:
s0 = q * threadid + tt;
e0 = s0 + q;
V = s0 * STEP + N1;
if (s0 >= e0) goto L2; else goto L0;
L0:
e = e0 * STEP + N1;
L1:
BODY;
V += STEP;
if (V cond e) goto L1;
L2:
*/
static void
expand_omp_for_static_nochunk (struct omp_region *region,
struct omp_for_data *fd,
gimple *inner_stmt)
{
tree n, q, s0, e0, e, t, tt, nthreads, threadid;
tree type, itype, vmain, vback;
basic_block entry_bb, second_bb, third_bb, exit_bb, seq_start_bb;
basic_block body_bb, cont_bb, collapse_bb = NULL;
basic_block fin_bb;
gimple_stmt_iterator gsi;
edge ep;
bool broken_loop = region->cont == NULL;
tree *counts = NULL;
tree n1, n2, step;
itype = type = TREE_TYPE (fd->loop.v);
if (POINTER_TYPE_P (type))
itype = signed_type_for (type);
entry_bb = region->entry;
cont_bb = region->cont;
gcc_assert (EDGE_COUNT (entry_bb->succs) == 2);
fin_bb = BRANCH_EDGE (entry_bb)->dest;
gcc_assert (broken_loop
|| (fin_bb == FALLTHRU_EDGE (cont_bb)->dest));
seq_start_bb = split_edge (FALLTHRU_EDGE (entry_bb));
body_bb = single_succ (seq_start_bb);
if (!broken_loop)
{
gcc_assert (BRANCH_EDGE (cont_bb)->dest == body_bb
|| single_succ (BRANCH_EDGE (cont_bb)->dest) == body_bb);
gcc_assert (EDGE_COUNT (cont_bb->succs) == 2);
}
exit_bb = region->exit;
/* Iteration space partitioning goes in ENTRY_BB. */
gsi = gsi_last_bb (entry_bb);
gcc_assert (gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_FOR);
if (fd->collapse > 1)
{
int first_zero_iter = -1, dummy = -1;
basic_block l2_dom_bb = NULL, dummy_bb = NULL;
counts = XALLOCAVEC (tree, fd->collapse);
expand_omp_for_init_counts (fd, &gsi, entry_bb, counts,
fin_bb, first_zero_iter,
dummy_bb, dummy, l2_dom_bb);
t = NULL_TREE;
}
else if (gimple_omp_for_combined_into_p (fd->for_stmt))
t = integer_one_node;
else
t = fold_binary (fd->loop.cond_code, boolean_type_node,
fold_convert (type, fd->loop.n1),
fold_convert (type, fd->loop.n2));
if (fd->collapse == 1
&& TYPE_UNSIGNED (type)
&& (t == NULL_TREE || !integer_onep (t)))
{
n1 = fold_convert (type, unshare_expr (fd->loop.n1));
n1 = force_gimple_operand_gsi (&gsi, n1, true, NULL_TREE,
true, GSI_SAME_STMT);
n2 = fold_convert (type, unshare_expr (fd->loop.n2));
n2 = force_gimple_operand_gsi (&gsi, n2, true, NULL_TREE,
true, GSI_SAME_STMT);
gcond *cond_stmt = gimple_build_cond (fd->loop.cond_code, n1, n2,
NULL_TREE, NULL_TREE);
gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
if (walk_tree (gimple_cond_lhs_ptr (cond_stmt),
expand_omp_regimplify_p, NULL, NULL)
|| walk_tree (gimple_cond_rhs_ptr (cond_stmt),
expand_omp_regimplify_p, NULL, NULL))
{
gsi = gsi_for_stmt (cond_stmt);
gimple_regimplify_operands (cond_stmt, &gsi);
}
ep = split_block (entry_bb, cond_stmt);
ep->flags = EDGE_TRUE_VALUE;
entry_bb = ep->dest;
ep->probability = profile_probability::very_likely ();
ep = make_edge (ep->src, fin_bb, EDGE_FALSE_VALUE);
ep->probability = profile_probability::very_unlikely ();
if (gimple_in_ssa_p (cfun))
{
int dest_idx = find_edge (entry_bb, fin_bb)->dest_idx;
for (gphi_iterator gpi = gsi_start_phis (fin_bb);
!gsi_end_p (gpi); gsi_next (&gpi))
{
gphi *phi = gpi.phi ();
add_phi_arg (phi, gimple_phi_arg_def (phi, dest_idx),
ep, UNKNOWN_LOCATION);
}
}
gsi = gsi_last_bb (entry_bb);
}
switch (gimple_omp_for_kind (fd->for_stmt))
{
case GF_OMP_FOR_KIND_FOR:
nthreads = builtin_decl_explicit (BUILT_IN_OMP_GET_NUM_THREADS);
threadid = builtin_decl_explicit (BUILT_IN_OMP_GET_THREAD_NUM);
break;
case GF_OMP_FOR_KIND_DISTRIBUTE:
nthreads = builtin_decl_explicit (BUILT_IN_OMP_GET_NUM_TEAMS);
threadid = builtin_decl_explicit (BUILT_IN_OMP_GET_TEAM_NUM);
break;
default:
gcc_unreachable ();
}
nthreads = build_call_expr (nthreads, 0);
nthreads = fold_convert (itype, nthreads);
nthreads = force_gimple_operand_gsi (&gsi, nthreads, true, NULL_TREE,
true, GSI_SAME_STMT);
threadid = build_call_expr (threadid, 0);
threadid = fold_convert (itype, threadid);
threadid = force_gimple_operand_gsi (&gsi, threadid, true, NULL_TREE,
true, GSI_SAME_STMT);
n1 = fd->loop.n1;
n2 = fd->loop.n2;
step = fd->loop.step;
if (gimple_omp_for_combined_into_p (fd->for_stmt))
{
tree innerc = omp_find_clause (gimple_omp_for_clauses (fd->for_stmt),
OMP_CLAUSE__LOOPTEMP_);
gcc_assert (innerc);
n1 = OMP_CLAUSE_DECL (innerc);
innerc = omp_find_clause (OMP_CLAUSE_CHAIN (innerc),
OMP_CLAUSE__LOOPTEMP_);
gcc_assert (innerc);
n2 = OMP_CLAUSE_DECL (innerc);
}
n1 = force_gimple_operand_gsi (&gsi, fold_convert (type, n1),
true, NULL_TREE, true, GSI_SAME_STMT);
n2 = force_gimple_operand_gsi (&gsi, fold_convert (itype, n2),
true, NULL_TREE, true, GSI_SAME_STMT);
step = force_gimple_operand_gsi (&gsi, fold_convert (itype, step),
true, NULL_TREE, true, GSI_SAME_STMT);
t = build_int_cst (itype, (fd->loop.cond_code == LT_EXPR ? -1 : 1));
t = fold_build2 (PLUS_EXPR, itype, step, t);
t = fold_build2 (PLUS_EXPR, itype, t, n2);
t = fold_build2 (MINUS_EXPR, itype, t, fold_convert (itype, n1));
if (TYPE_UNSIGNED (itype) && fd->loop.cond_code == GT_EXPR)
t = fold_build2 (TRUNC_DIV_EXPR, itype,
fold_build1 (NEGATE_EXPR, itype, t),
fold_build1 (NEGATE_EXPR, itype, step));
else
t = fold_build2 (TRUNC_DIV_EXPR, itype, t, step);
t = fold_convert (itype, t);
n = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE, true, GSI_SAME_STMT);
q = create_tmp_reg (itype, "q");
t = fold_build2 (TRUNC_DIV_EXPR, itype, n, nthreads);
t = force_gimple_operand_gsi (&gsi, t, false, NULL_TREE, true, GSI_SAME_STMT);
gsi_insert_before (&gsi, gimple_build_assign (q, t), GSI_SAME_STMT);
tt = create_tmp_reg (itype, "tt");
t = fold_build2 (TRUNC_MOD_EXPR, itype, n, nthreads);
t = force_gimple_operand_gsi (&gsi, t, false, NULL_TREE, true, GSI_SAME_STMT);
gsi_insert_before (&gsi, gimple_build_assign (tt, t), GSI_SAME_STMT);
t = build2 (LT_EXPR, boolean_type_node, threadid, tt);
gcond *cond_stmt = gimple_build_cond_empty (t);
gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
second_bb = split_block (entry_bb, cond_stmt)->dest;
gsi = gsi_last_bb (second_bb);
gcc_assert (gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_FOR);
gsi_insert_before (&gsi, gimple_build_assign (tt, build_int_cst (itype, 0)),
GSI_SAME_STMT);
gassign *assign_stmt
= gimple_build_assign (q, PLUS_EXPR, q, build_int_cst (itype, 1));
gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
third_bb = split_block (second_bb, assign_stmt)->dest;
gsi = gsi_last_bb (third_bb);
gcc_assert (gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_FOR);
t = build2 (MULT_EXPR, itype, q, threadid);
t = build2 (PLUS_EXPR, itype, t, tt);
s0 = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE, true, GSI_SAME_STMT);
t = fold_build2 (PLUS_EXPR, itype, s0, q);
e0 = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE, true, GSI_SAME_STMT);
t = build2 (GE_EXPR, boolean_type_node, s0, e0);
gsi_insert_before (&gsi, gimple_build_cond_empty (t), GSI_SAME_STMT);
/* Remove the GIMPLE_OMP_FOR statement. */
gsi_remove (&gsi, true);
/* Setup code for sequential iteration goes in SEQ_START_BB. */
gsi = gsi_start_bb (seq_start_bb);
tree startvar = fd->loop.v;
tree endvar = NULL_TREE;
if (gimple_omp_for_combined_p (fd->for_stmt))
{
tree clauses = gimple_code (inner_stmt) == GIMPLE_OMP_PARALLEL
? gimple_omp_parallel_clauses (inner_stmt)
: gimple_omp_for_clauses (inner_stmt);
tree innerc = omp_find_clause (clauses, OMP_CLAUSE__LOOPTEMP_);
gcc_assert (innerc);
startvar = OMP_CLAUSE_DECL (innerc);
innerc = omp_find_clause (OMP_CLAUSE_CHAIN (innerc),
OMP_CLAUSE__LOOPTEMP_);
gcc_assert (innerc);
endvar = OMP_CLAUSE_DECL (innerc);
if (fd->collapse > 1 && TREE_CODE (fd->loop.n2) != INTEGER_CST
&& gimple_omp_for_kind (fd->for_stmt) == GF_OMP_FOR_KIND_DISTRIBUTE)
{
int i;
for (i = 1; i < fd->collapse; i++)
{
innerc = omp_find_clause (OMP_CLAUSE_CHAIN (innerc),
OMP_CLAUSE__LOOPTEMP_);
gcc_assert (innerc);
}
innerc = omp_find_clause (OMP_CLAUSE_CHAIN (innerc),
OMP_CLAUSE__LOOPTEMP_);
if (innerc)
{
/* If needed (distribute parallel for with lastprivate),
propagate down the total number of iterations. */
tree t = fold_convert (TREE_TYPE (OMP_CLAUSE_DECL (innerc)),
fd->loop.n2);
t = force_gimple_operand_gsi (&gsi, t, false, NULL_TREE, false,
GSI_CONTINUE_LINKING);
assign_stmt = gimple_build_assign (OMP_CLAUSE_DECL (innerc), t);
gsi_insert_after (&gsi, assign_stmt, GSI_CONTINUE_LINKING);
}
}
}
t = fold_convert (itype, s0);
t = fold_build2 (MULT_EXPR, itype, t, step);
if (POINTER_TYPE_P (type))
t = fold_build_pointer_plus (n1, t);
else
t = fold_build2 (PLUS_EXPR, type, t, n1);
t = fold_convert (TREE_TYPE (startvar), t);
t = force_gimple_operand_gsi (&gsi, t,
DECL_P (startvar)
&& TREE_ADDRESSABLE (startvar),
NULL_TREE, false, GSI_CONTINUE_LINKING);
assign_stmt = gimple_build_assign (startvar, t);
gsi_insert_after (&gsi, assign_stmt, GSI_CONTINUE_LINKING);
t = fold_convert (itype, e0);
t = fold_build2 (MULT_EXPR, itype, t, step);
if (POINTER_TYPE_P (type))
t = fold_build_pointer_plus (n1, t);
else
t = fold_build2 (PLUS_EXPR, type, t, n1);
t = fold_convert (TREE_TYPE (startvar), t);
e = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
false, GSI_CONTINUE_LINKING);
if (endvar)
{
assign_stmt = gimple_build_assign (endvar, e);
gsi_insert_after (&gsi, assign_stmt, GSI_CONTINUE_LINKING);
if (useless_type_conversion_p (TREE_TYPE (fd->loop.v), TREE_TYPE (e)))
assign_stmt = gimple_build_assign (fd->loop.v, e);
else
assign_stmt = gimple_build_assign (fd->loop.v, NOP_EXPR, e);
gsi_insert_after (&gsi, assign_stmt, GSI_CONTINUE_LINKING);
}
/* Handle linear clause adjustments. */
tree itercnt = NULL_TREE;
if (gimple_omp_for_kind (fd->for_stmt) == GF_OMP_FOR_KIND_FOR)
for (tree c = gimple_omp_for_clauses (fd->for_stmt);
c; c = OMP_CLAUSE_CHAIN (c))
if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_LINEAR
&& !OMP_CLAUSE_LINEAR_NO_COPYIN (c))
{
tree d = OMP_CLAUSE_DECL (c);
bool is_ref = omp_is_reference (d);
tree t = d, a, dest;
if (is_ref)
t = build_simple_mem_ref_loc (OMP_CLAUSE_LOCATION (c), t);
if (itercnt == NULL_TREE)
{
if (gimple_omp_for_combined_into_p (fd->for_stmt))
{
itercnt = fold_build2 (MINUS_EXPR, itype,
fold_convert (itype, n1),
fold_convert (itype, fd->loop.n1));
itercnt = fold_build2 (EXACT_DIV_EXPR, itype, itercnt, step);
itercnt = fold_build2 (PLUS_EXPR, itype, itercnt, s0);
itercnt = force_gimple_operand_gsi (&gsi, itercnt, true,
NULL_TREE, false,
GSI_CONTINUE_LINKING);
}
else
itercnt = s0;
}
tree type = TREE_TYPE (t);
if (POINTER_TYPE_P (type))
type = sizetype;
a = fold_build2 (MULT_EXPR, type,
fold_convert (type, itercnt),
fold_convert (type, OMP_CLAUSE_LINEAR_STEP (c)));
dest = unshare_expr (t);
t = fold_build2 (type == TREE_TYPE (t) ? PLUS_EXPR
: POINTER_PLUS_EXPR, TREE_TYPE (t), t, a);
t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
false, GSI_CONTINUE_LINKING);
assign_stmt = gimple_build_assign (dest, t);
gsi_insert_after (&gsi, assign_stmt, GSI_CONTINUE_LINKING);
}
if (fd->collapse > 1)
expand_omp_for_init_vars (fd, &gsi, counts, inner_stmt, startvar);
if (!broken_loop)
{
/* The code controlling the sequential loop replaces the
GIMPLE_OMP_CONTINUE. */
gsi = gsi_last_bb (cont_bb);
gomp_continue *cont_stmt = as_a <gomp_continue *> (gsi_stmt (gsi));
gcc_assert (gimple_code (cont_stmt) == GIMPLE_OMP_CONTINUE);
vmain = gimple_omp_continue_control_use (cont_stmt);
vback = gimple_omp_continue_control_def (cont_stmt);
if (!gimple_omp_for_combined_p (fd->for_stmt))
{
if (POINTER_TYPE_P (type))
t = fold_build_pointer_plus (vmain, step);
else
t = fold_build2 (PLUS_EXPR, type, vmain, step);
t = force_gimple_operand_gsi (&gsi, t,
DECL_P (vback)
&& TREE_ADDRESSABLE (vback),
NULL_TREE, true, GSI_SAME_STMT);
assign_stmt = gimple_build_assign (vback, t);
gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
t = build2 (fd->loop.cond_code, boolean_type_node,
DECL_P (vback) && TREE_ADDRESSABLE (vback)
? t : vback, e);
gsi_insert_before (&gsi, gimple_build_cond_empty (t), GSI_SAME_STMT);
}
/* Remove the GIMPLE_OMP_CONTINUE statement. */
gsi_remove (&gsi, true);
if (fd->collapse > 1 && !gimple_omp_for_combined_p (fd->for_stmt))
collapse_bb = extract_omp_for_update_vars (fd, cont_bb, body_bb);
}
/* Replace the GIMPLE_OMP_RETURN with a barrier, or nothing. */
gsi = gsi_last_bb (exit_bb);
if (!gimple_omp_return_nowait_p (gsi_stmt (gsi)))
{
t = gimple_omp_return_lhs (gsi_stmt (gsi));
gsi_insert_after (&gsi, omp_build_barrier (t), GSI_SAME_STMT);
}
gsi_remove (&gsi, true);
/* Connect all the blocks. */
ep = make_edge (entry_bb, third_bb, EDGE_FALSE_VALUE);
ep->probability = profile_probability::guessed_always ().apply_scale (3, 4);
ep = find_edge (entry_bb, second_bb);
ep->flags = EDGE_TRUE_VALUE;
ep->probability = profile_probability::guessed_always ().apply_scale (1, 4);
find_edge (third_bb, seq_start_bb)->flags = EDGE_FALSE_VALUE;
find_edge (third_bb, fin_bb)->flags = EDGE_TRUE_VALUE;
if (!broken_loop)
{
ep = find_edge (cont_bb, body_bb);
if (ep == NULL)
{
ep = BRANCH_EDGE (cont_bb);
gcc_assert (single_succ (ep->dest) == body_bb);
}
if (gimple_omp_for_combined_p (fd->for_stmt))
{
remove_edge (ep);
ep = NULL;
}
else if (fd->collapse > 1)
{
remove_edge (ep);
ep = make_edge (cont_bb, collapse_bb, EDGE_TRUE_VALUE);
}
else
ep->flags = EDGE_TRUE_VALUE;
find_edge (cont_bb, fin_bb)->flags
= ep ? EDGE_FALSE_VALUE : EDGE_FALLTHRU;
}
set_immediate_dominator (CDI_DOMINATORS, second_bb, entry_bb);
set_immediate_dominator (CDI_DOMINATORS, third_bb, entry_bb);
set_immediate_dominator (CDI_DOMINATORS, seq_start_bb, third_bb);
set_immediate_dominator (CDI_DOMINATORS, body_bb,
recompute_dominator (CDI_DOMINATORS, body_bb));
set_immediate_dominator (CDI_DOMINATORS, fin_bb,
recompute_dominator (CDI_DOMINATORS, fin_bb));
struct loop *loop = body_bb->loop_father;
if (loop != entry_bb->loop_father)
{
gcc_assert (broken_loop || loop->header == body_bb);
gcc_assert (broken_loop
|| loop->latch == region->cont
|| single_pred (loop->latch) == region->cont);
return;
}
if (!broken_loop && !gimple_omp_for_combined_p (fd->for_stmt))
{
loop = alloc_loop ();
loop->header = body_bb;
if (collapse_bb == NULL)
loop->latch = cont_bb;
add_loop (loop, body_bb->loop_father);
}
}
/* Return phi in E->DEST with ARG on edge E. */
static gphi *
find_phi_with_arg_on_edge (tree arg, edge e)
{
basic_block bb = e->dest;
for (gphi_iterator gpi = gsi_start_phis (bb);
!gsi_end_p (gpi);
gsi_next (&gpi))
{
gphi *phi = gpi.phi ();
if (PHI_ARG_DEF_FROM_EDGE (phi, e) == arg)
return phi;
}
return NULL;
}
/* A subroutine of expand_omp_for. Generate code for a parallel
loop with static schedule and a specified chunk size. Given
parameters:
for (V = N1; V cond N2; V += STEP) BODY;
where COND is "<" or ">", we generate pseudocode
if ((__typeof (V)) -1 > 0 && N2 cond N1) goto L2;
if (cond is <)
adj = STEP - 1;
else
adj = STEP + 1;
if ((__typeof (V)) -1 > 0 && cond is >)
n = -(adj + N2 - N1) / -STEP;
else
n = (adj + N2 - N1) / STEP;
trip = 0;
V = threadid * CHUNK * STEP + N1; -- this extra definition of V is
here so that V is defined
if the loop is not entered
L0:
s0 = (trip * nthreads + threadid) * CHUNK;
e0 = min (s0 + CHUNK, n);
if (s0 < n) goto L1; else goto L4;
L1:
V = s0 * STEP + N1;
e = e0 * STEP + N1;
L2:
BODY;
V += STEP;
if (V cond e) goto L2; else goto L3;
L3:
trip += 1;
goto L0;
L4:
*/
static void
expand_omp_for_static_chunk (struct omp_region *region,
struct omp_for_data *fd, gimple *inner_stmt)
{
tree n, s0, e0, e, t;
tree trip_var, trip_init, trip_main, trip_back, nthreads, threadid;
tree type, itype, vmain, vback, vextra;
basic_block entry_bb, exit_bb, body_bb, seq_start_bb, iter_part_bb;
basic_block trip_update_bb = NULL, cont_bb, collapse_bb = NULL, fin_bb;
gimple_stmt_iterator gsi;
edge se;
bool broken_loop = region->cont == NULL;
tree *counts = NULL;
tree n1, n2, step;
itype = type = TREE_TYPE (fd->loop.v);
if (POINTER_TYPE_P (type))
itype = signed_type_for (type);
entry_bb = region->entry;
se = split_block (entry_bb, last_stmt (entry_bb));
entry_bb = se->src;
iter_part_bb = se->dest;
cont_bb = region->cont;
gcc_assert (EDGE_COUNT (iter_part_bb->succs) == 2);
fin_bb = BRANCH_EDGE (iter_part_bb)->dest;
gcc_assert (broken_loop
|| fin_bb == FALLTHRU_EDGE (cont_bb)->dest);
seq_start_bb = split_edge (FALLTHRU_EDGE (iter_part_bb));
body_bb = single_succ (seq_start_bb);
if (!broken_loop)
{
gcc_assert (BRANCH_EDGE (cont_bb)->dest == body_bb
|| single_succ (BRANCH_EDGE (cont_bb)->dest) == body_bb);
gcc_assert (EDGE_COUNT (cont_bb->succs) == 2);
trip_update_bb = split_edge (FALLTHRU_EDGE (cont_bb));
}
exit_bb = region->exit;
/* Trip and adjustment setup goes in ENTRY_BB. */
gsi = gsi_last_bb (entry_bb);
gcc_assert (gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_FOR);
if (fd->collapse > 1)
{
int first_zero_iter = -1, dummy = -1;
basic_block l2_dom_bb = NULL, dummy_bb = NULL;
counts = XALLOCAVEC (tree, fd->collapse);
expand_omp_for_init_counts (fd, &gsi, entry_bb, counts,
fin_bb, first_zero_iter,
dummy_bb, dummy, l2_dom_bb);
t = NULL_TREE;
}
else if (gimple_omp_for_combined_into_p (fd->for_stmt))
t = integer_one_node;
else
t = fold_binary (fd->loop.cond_code, boolean_type_node,
fold_convert (type, fd->loop.n1),
fold_convert (type, fd->loop.n2));
if (fd->collapse == 1
&& TYPE_UNSIGNED (type)
&& (t == NULL_TREE || !integer_onep (t)))
{
n1 = fold_convert (type, unshare_expr (fd->loop.n1));
n1 = force_gimple_operand_gsi (&gsi, n1, true, NULL_TREE,
true, GSI_SAME_STMT);
n2 = fold_convert (type, unshare_expr (fd->loop.n2));
n2 = force_gimple_operand_gsi (&gsi, n2, true, NULL_TREE,
true, GSI_SAME_STMT);
gcond *cond_stmt = gimple_build_cond (fd->loop.cond_code, n1, n2,
NULL_TREE, NULL_TREE);
gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
if (walk_tree (gimple_cond_lhs_ptr (cond_stmt),
expand_omp_regimplify_p, NULL, NULL)
|| walk_tree (gimple_cond_rhs_ptr (cond_stmt),
expand_omp_regimplify_p, NULL, NULL))
{
gsi = gsi_for_stmt (cond_stmt);
gimple_regimplify_operands (cond_stmt, &gsi);
}
se = split_block (entry_bb, cond_stmt);
se->flags = EDGE_TRUE_VALUE;
entry_bb = se->dest;
se->probability = profile_probability::very_likely ();
se = make_edge (se->src, fin_bb, EDGE_FALSE_VALUE);
se->probability = profile_probability::very_unlikely ();
if (gimple_in_ssa_p (cfun))
{
int dest_idx = find_edge (iter_part_bb, fin_bb)->dest_idx;
for (gphi_iterator gpi = gsi_start_phis (fin_bb);
!gsi_end_p (gpi); gsi_next (&gpi))
{
gphi *phi = gpi.phi ();
add_phi_arg (phi, gimple_phi_arg_def (phi, dest_idx),
se, UNKNOWN_LOCATION);
}
}
gsi = gsi_last_bb (entry_bb);
}
switch (gimple_omp_for_kind (fd->for_stmt))
{
case GF_OMP_FOR_KIND_FOR:
nthreads = builtin_decl_explicit (BUILT_IN_OMP_GET_NUM_THREADS);
threadid = builtin_decl_explicit (BUILT_IN_OMP_GET_THREAD_NUM);
break;
case GF_OMP_FOR_KIND_DISTRIBUTE:
nthreads = builtin_decl_explicit (BUILT_IN_OMP_GET_NUM_TEAMS);
threadid = builtin_decl_explicit (BUILT_IN_OMP_GET_TEAM_NUM);
break;
default:
gcc_unreachable ();
}
nthreads = build_call_expr (nthreads, 0);
nthreads = fold_convert (itype, nthreads);
nthreads = force_gimple_operand_gsi (&gsi, nthreads, true, NULL_TREE,
true, GSI_SAME_STMT);
threadid = build_call_expr (threadid, 0);
threadid = fold_convert (itype, threadid);
threadid = force_gimple_operand_gsi (&gsi, threadid, true, NULL_TREE,
true, GSI_SAME_STMT);
n1 = fd->loop.n1;
n2 = fd->loop.n2;
step = fd->loop.step;
if (gimple_omp_for_combined_into_p (fd->for_stmt))
{
tree innerc = omp_find_clause (gimple_omp_for_clauses (fd->for_stmt),
OMP_CLAUSE__LOOPTEMP_);
gcc_assert (innerc);
n1 = OMP_CLAUSE_DECL (innerc);
innerc = omp_find_clause (OMP_CLAUSE_CHAIN (innerc),
OMP_CLAUSE__LOOPTEMP_);
gcc_assert (innerc);
n2 = OMP_CLAUSE_DECL (innerc);
}
n1 = force_gimple_operand_gsi (&gsi, fold_convert (type, n1),
true, NULL_TREE, true, GSI_SAME_STMT);
n2 = force_gimple_operand_gsi (&gsi, fold_convert (itype, n2),
true, NULL_TREE, true, GSI_SAME_STMT);
step = force_gimple_operand_gsi (&gsi, fold_convert (itype, step),
true, NULL_TREE, true, GSI_SAME_STMT);
tree chunk_size = fold_convert (itype, fd->chunk_size);
chunk_size = omp_adjust_chunk_size (chunk_size, fd->simd_schedule);
chunk_size
= force_gimple_operand_gsi (&gsi, chunk_size, true, NULL_TREE, true,
GSI_SAME_STMT);
t = build_int_cst (itype, (fd->loop.cond_code == LT_EXPR ? -1 : 1));
t = fold_build2 (PLUS_EXPR, itype, step, t);
t = fold_build2 (PLUS_EXPR, itype, t, n2);
t = fold_build2 (MINUS_EXPR, itype, t, fold_convert (itype, n1));
if (TYPE_UNSIGNED (itype) && fd->loop.cond_code == GT_EXPR)
t = fold_build2 (TRUNC_DIV_EXPR, itype,
fold_build1 (NEGATE_EXPR, itype, t),
fold_build1 (NEGATE_EXPR, itype, step));
else
t = fold_build2 (TRUNC_DIV_EXPR, itype, t, step);
t = fold_convert (itype, t);
n = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
true, GSI_SAME_STMT);
trip_var = create_tmp_reg (itype, ".trip");
if (gimple_in_ssa_p (cfun))
{
trip_init = make_ssa_name (trip_var);
trip_main = make_ssa_name (trip_var);
trip_back = make_ssa_name (trip_var);
}
else
{
trip_init = trip_var;
trip_main = trip_var;
trip_back = trip_var;
}
gassign *assign_stmt
= gimple_build_assign (trip_init, build_int_cst (itype, 0));
gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
t = fold_build2 (MULT_EXPR, itype, threadid, chunk_size);
t = fold_build2 (MULT_EXPR, itype, t, step);
if (POINTER_TYPE_P (type))
t = fold_build_pointer_plus (n1, t);
else
t = fold_build2 (PLUS_EXPR, type, t, n1);
vextra = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
true, GSI_SAME_STMT);
/* Remove the GIMPLE_OMP_FOR. */
gsi_remove (&gsi, true);
gimple_stmt_iterator gsif = gsi;
/* Iteration space partitioning goes in ITER_PART_BB. */
gsi = gsi_last_bb (iter_part_bb);
t = fold_build2 (MULT_EXPR, itype, trip_main, nthreads);
t = fold_build2 (PLUS_EXPR, itype, t, threadid);
t = fold_build2 (MULT_EXPR, itype, t, chunk_size);
s0 = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
false, GSI_CONTINUE_LINKING);
t = fold_build2 (PLUS_EXPR, itype, s0, chunk_size);
t = fold_build2 (MIN_EXPR, itype, t, n);
e0 = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
false, GSI_CONTINUE_LINKING);
t = build2 (LT_EXPR, boolean_type_node, s0, n);
gsi_insert_after (&gsi, gimple_build_cond_empty (t), GSI_CONTINUE_LINKING);
/* Setup code for sequential iteration goes in SEQ_START_BB. */
gsi = gsi_start_bb (seq_start_bb);
tree startvar = fd->loop.v;
tree endvar = NULL_TREE;
if (gimple_omp_for_combined_p (fd->for_stmt))
{
tree clauses = gimple_code (inner_stmt) == GIMPLE_OMP_PARALLEL
? gimple_omp_parallel_clauses (inner_stmt)
: gimple_omp_for_clauses (inner_stmt);
tree innerc = omp_find_clause (clauses, OMP_CLAUSE__LOOPTEMP_);
gcc_assert (innerc);
startvar = OMP_CLAUSE_DECL (innerc);
innerc = omp_find_clause (OMP_CLAUSE_CHAIN (innerc),
OMP_CLAUSE__LOOPTEMP_);
gcc_assert (innerc);
endvar = OMP_CLAUSE_DECL (innerc);
if (fd->collapse > 1 && TREE_CODE (fd->loop.n2) != INTEGER_CST
&& gimple_omp_for_kind (fd->for_stmt) == GF_OMP_FOR_KIND_DISTRIBUTE)
{
int i;
for (i = 1; i < fd->collapse; i++)
{
innerc = omp_find_clause (OMP_CLAUSE_CHAIN (innerc),
OMP_CLAUSE__LOOPTEMP_);
gcc_assert (innerc);
}
innerc = omp_find_clause (OMP_CLAUSE_CHAIN (innerc),
OMP_CLAUSE__LOOPTEMP_);
if (innerc)
{
/* If needed (distribute parallel for with lastprivate),
propagate down the total number of iterations. */
tree t = fold_convert (TREE_TYPE (OMP_CLAUSE_DECL (innerc)),
fd->loop.n2);
t = force_gimple_operand_gsi (&gsi, t, false, NULL_TREE, false,
GSI_CONTINUE_LINKING);
assign_stmt = gimple_build_assign (OMP_CLAUSE_DECL (innerc), t);
gsi_insert_after (&gsi, assign_stmt, GSI_CONTINUE_LINKING);
}
}
}
t = fold_convert (itype, s0);
t = fold_build2 (MULT_EXPR, itype, t, step);
if (POINTER_TYPE_P (type))
t = fold_build_pointer_plus (n1, t);
else
t = fold_build2 (PLUS_EXPR, type, t, n1);
t = fold_convert (TREE_TYPE (startvar), t);
t = force_gimple_operand_gsi (&gsi, t,
DECL_P (startvar)
&& TREE_ADDRESSABLE (startvar),
NULL_TREE, false, GSI_CONTINUE_LINKING);
assign_stmt = gimple_build_assign (startvar, t);
gsi_insert_after (&gsi, assign_stmt, GSI_CONTINUE_LINKING);
t = fold_convert (itype, e0);
t = fold_build2 (MULT_EXPR, itype, t, step);
if (POINTER_TYPE_P (type))
t = fold_build_pointer_plus (n1, t);
else
t = fold_build2 (PLUS_EXPR, type, t, n1);
t = fold_convert (TREE_TYPE (startvar), t);
e = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
false, GSI_CONTINUE_LINKING);
if (endvar)
{
assign_stmt = gimple_build_assign (endvar, e);
gsi_insert_after (&gsi, assign_stmt, GSI_CONTINUE_LINKING);
if (useless_type_conversion_p (TREE_TYPE (fd->loop.v), TREE_TYPE (e)))
assign_stmt = gimple_build_assign (fd->loop.v, e);
else
assign_stmt = gimple_build_assign (fd->loop.v, NOP_EXPR, e);
gsi_insert_after (&gsi, assign_stmt, GSI_CONTINUE_LINKING);
}
/* Handle linear clause adjustments. */
tree itercnt = NULL_TREE, itercntbias = NULL_TREE;
if (gimple_omp_for_kind (fd->for_stmt) == GF_OMP_FOR_KIND_FOR)
for (tree c = gimple_omp_for_clauses (fd->for_stmt);
c; c = OMP_CLAUSE_CHAIN (c))
if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_LINEAR
&& !OMP_CLAUSE_LINEAR_NO_COPYIN (c))
{
tree d = OMP_CLAUSE_DECL (c);
bool is_ref = omp_is_reference (d);
tree t = d, a, dest;
if (is_ref)
t = build_simple_mem_ref_loc (OMP_CLAUSE_LOCATION (c), t);
tree type = TREE_TYPE (t);
if (POINTER_TYPE_P (type))
type = sizetype;
dest = unshare_expr (t);
tree v = create_tmp_var (TREE_TYPE (t), NULL);
expand_omp_build_assign (&gsif, v, t);
if (itercnt == NULL_TREE)
{
if (gimple_omp_for_combined_into_p (fd->for_stmt))
{
itercntbias
= fold_build2 (MINUS_EXPR, itype, fold_convert (itype, n1),
fold_convert (itype, fd->loop.n1));
itercntbias = fold_build2 (EXACT_DIV_EXPR, itype,
itercntbias, step);
itercntbias
= force_gimple_operand_gsi (&gsif, itercntbias, true,
NULL_TREE, true,
GSI_SAME_STMT);
itercnt = fold_build2 (PLUS_EXPR, itype, itercntbias, s0);
itercnt = force_gimple_operand_gsi (&gsi, itercnt, true,
NULL_TREE, false,
GSI_CONTINUE_LINKING);
}
else
itercnt = s0;
}
a = fold_build2 (MULT_EXPR, type,
fold_convert (type, itercnt),
fold_convert (type, OMP_CLAUSE_LINEAR_STEP (c)));
t = fold_build2 (type == TREE_TYPE (t) ? PLUS_EXPR
: POINTER_PLUS_EXPR, TREE_TYPE (t), v, a);
t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
false, GSI_CONTINUE_LINKING);
assign_stmt = gimple_build_assign (dest, t);
gsi_insert_after (&gsi, assign_stmt, GSI_CONTINUE_LINKING);
}
if (fd->collapse > 1)
expand_omp_for_init_vars (fd, &gsi, counts, inner_stmt, startvar);
if (!broken_loop)
{
/* The code controlling the sequential loop goes in CONT_BB,
replacing the GIMPLE_OMP_CONTINUE. */
gsi = gsi_last_bb (cont_bb);
gomp_continue *cont_stmt = as_a <gomp_continue *> (gsi_stmt (gsi));
vmain = gimple_omp_continue_control_use (cont_stmt);
vback = gimple_omp_continue_control_def (cont_stmt);
if (!gimple_omp_for_combined_p (fd->for_stmt))
{
if (POINTER_TYPE_P (type))
t = fold_build_pointer_plus (vmain, step);
else
t = fold_build2 (PLUS_EXPR, type, vmain, step);
if (DECL_P (vback) && TREE_ADDRESSABLE (vback))
t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
true, GSI_SAME_STMT);
assign_stmt = gimple_build_assign (vback, t);
gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
if (tree_int_cst_equal (fd->chunk_size, integer_one_node))
t = build2 (EQ_EXPR, boolean_type_node,
build_int_cst (itype, 0),
build_int_cst (itype, 1));
else
t = build2 (fd->loop.cond_code, boolean_type_node,
DECL_P (vback) && TREE_ADDRESSABLE (vback)
? t : vback, e);
gsi_insert_before (&gsi, gimple_build_cond_empty (t), GSI_SAME_STMT);
}
/* Remove GIMPLE_OMP_CONTINUE. */
gsi_remove (&gsi, true);
if (fd->collapse > 1 && !gimple_omp_for_combined_p (fd->for_stmt))
collapse_bb = extract_omp_for_update_vars (fd, cont_bb, body_bb);
/* Trip update code goes into TRIP_UPDATE_BB. */
gsi = gsi_start_bb (trip_update_bb);
t = build_int_cst (itype, 1);
t = build2 (PLUS_EXPR, itype, trip_main, t);
assign_stmt = gimple_build_assign (trip_back, t);
gsi_insert_after (&gsi, assign_stmt, GSI_CONTINUE_LINKING);
}
/* Replace the GIMPLE_OMP_RETURN with a barrier, or nothing. */
gsi = gsi_last_bb (exit_bb);
if (!gimple_omp_return_nowait_p (gsi_stmt (gsi)))
{
t = gimple_omp_return_lhs (gsi_stmt (gsi));
gsi_insert_after (&gsi, omp_build_barrier (t), GSI_SAME_STMT);
}
gsi_remove (&gsi, true);
/* Connect the new blocks. */
find_edge (iter_part_bb, seq_start_bb)->flags = EDGE_TRUE_VALUE;
find_edge (iter_part_bb, fin_bb)->flags = EDGE_FALSE_VALUE;
if (!broken_loop)
{
se = find_edge (cont_bb, body_bb);
if (se == NULL)
{
se = BRANCH_EDGE (cont_bb);
gcc_assert (single_succ (se->dest) == body_bb);
}
if (gimple_omp_for_combined_p (fd->for_stmt))
{
remove_edge (se);
se = NULL;
}
else if (fd->collapse > 1)
{
remove_edge (se);
se = make_edge (cont_bb, collapse_bb, EDGE_TRUE_VALUE);
}
else
se->flags = EDGE_TRUE_VALUE;
find_edge (cont_bb, trip_update_bb)->flags
= se ? EDGE_FALSE_VALUE : EDGE_FALLTHRU;
redirect_edge_and_branch (single_succ_edge (trip_update_bb),
iter_part_bb);
}
if (gimple_in_ssa_p (cfun))
{
gphi_iterator psi;
gphi *phi;
edge re, ene;
edge_var_map *vm;
size_t i;
gcc_assert (fd->collapse == 1 && !broken_loop);
/* When we redirect the edge from trip_update_bb to iter_part_bb, we
remove arguments of the phi nodes in fin_bb. We need to create
appropriate phi nodes in iter_part_bb instead. */
se = find_edge (iter_part_bb, fin_bb);
re = single_succ_edge (trip_update_bb);
vec<edge_var_map> *head = redirect_edge_var_map_vector (re);
ene = single_succ_edge (entry_bb);
psi = gsi_start_phis (fin_bb);
for (i = 0; !gsi_end_p (psi) && head->iterate (i, &vm);
gsi_next (&psi), ++i)
{
gphi *nphi;
source_location locus;
phi = psi.phi ();
if (operand_equal_p (gimple_phi_arg_def (phi, 0),
redirect_edge_var_map_def (vm), 0))
continue;
t = gimple_phi_result (phi);
gcc_assert (t == redirect_edge_var_map_result (vm));
if (!single_pred_p (fin_bb))
t = copy_ssa_name (t, phi);
nphi = create_phi_node (t, iter_part_bb);
t = PHI_ARG_DEF_FROM_EDGE (phi, se);
locus = gimple_phi_arg_location_from_edge (phi, se);
/* A special case -- fd->loop.v is not yet computed in
iter_part_bb, we need to use vextra instead. */
if (t == fd->loop.v)
t = vextra;
add_phi_arg (nphi, t, ene, locus);
locus = redirect_edge_var_map_location (vm);
tree back_arg = redirect_edge_var_map_def (vm);
add_phi_arg (nphi, back_arg, re, locus);
edge ce = find_edge (cont_bb, body_bb);
if (ce == NULL)
{
ce = BRANCH_EDGE (cont_bb);
gcc_assert (single_succ (ce->dest) == body_bb);
ce = single_succ_edge (ce->dest);
}
gphi *inner_loop_phi = find_phi_with_arg_on_edge (back_arg, ce);
gcc_assert (inner_loop_phi != NULL);
add_phi_arg (inner_loop_phi, gimple_phi_result (nphi),
find_edge (seq_start_bb, body_bb), locus);
if (!single_pred_p (fin_bb))
add_phi_arg (phi, gimple_phi_result (nphi), se, locus);
}
gcc_assert (gsi_end_p (psi) && (head == NULL || i == head->length ()));
redirect_edge_var_map_clear (re);
if (single_pred_p (fin_bb))
while (1)
{
psi = gsi_start_phis (fin_bb);
if (gsi_end_p (psi))
break;
remove_phi_node (&psi, false);
}
/* Make phi node for trip. */
phi = create_phi_node (trip_main, iter_part_bb);
add_phi_arg (phi, trip_back, single_succ_edge (trip_update_bb),
UNKNOWN_LOCATION);
add_phi_arg (phi, trip_init, single_succ_edge (entry_bb),
UNKNOWN_LOCATION);
}
if (!broken_loop)
set_immediate_dominator (CDI_DOMINATORS, trip_update_bb, cont_bb);
set_immediate_dominator (CDI_DOMINATORS, iter_part_bb,
recompute_dominator (CDI_DOMINATORS, iter_part_bb));
set_immediate_dominator (CDI_DOMINATORS, fin_bb,
recompute_dominator (CDI_DOMINATORS, fin_bb));
set_immediate_dominator (CDI_DOMINATORS, seq_start_bb,
recompute_dominator (CDI_DOMINATORS, seq_start_bb));
set_immediate_dominator (CDI_DOMINATORS, body_bb,
recompute_dominator (CDI_DOMINATORS, body_bb));
if (!broken_loop)
{
struct loop *loop = body_bb->loop_father;
struct loop *trip_loop = alloc_loop ();
trip_loop->header = iter_part_bb;
trip_loop->latch = trip_update_bb;
add_loop (trip_loop, iter_part_bb->loop_father);
if (loop != entry_bb->loop_father)
{
gcc_assert (loop->header == body_bb);
gcc_assert (loop->latch == region->cont
|| single_pred (loop->latch) == region->cont);
trip_loop->inner = loop;
return;
}
if (!gimple_omp_for_combined_p (fd->for_stmt))
{
loop = alloc_loop ();
loop->header = body_bb;
if (collapse_bb == NULL)
loop->latch = cont_bb;
add_loop (loop, trip_loop);
}
}
}
/* A subroutine of expand_omp_for. Generate code for _Cilk_for loop.
Given parameters:
for (V = N1; V cond N2; V += STEP) BODY;
where COND is "<" or ">" or "!=", we generate pseudocode
for (ind_var = low; ind_var < high; ind_var++)
{
V = n1 + (ind_var * STEP)
<BODY>
}
In the above pseudocode, low and high are function parameters of the
child function. In the function below, we are inserting a temp.
variable that will be making a call to two OMP functions that will not be
found in the body of _Cilk_for (since OMP_FOR cannot be mixed
with _Cilk_for). These functions are replaced with low and high
by the function that handles taskreg. */
static void
expand_cilk_for (struct omp_region *region, struct omp_for_data *fd)
{
bool broken_loop = region->cont == NULL;
basic_block entry_bb = region->entry;
basic_block cont_bb = region->cont;
gcc_assert (EDGE_COUNT (entry_bb->succs) == 2);
gcc_assert (broken_loop
|| BRANCH_EDGE (entry_bb)->dest == FALLTHRU_EDGE (cont_bb)->dest);
basic_block l0_bb = FALLTHRU_EDGE (entry_bb)->dest;
basic_block l1_bb, l2_bb;
if (!broken_loop)
{
gcc_assert (BRANCH_EDGE (cont_bb)->dest == l0_bb);
gcc_assert (EDGE_COUNT (cont_bb->succs) == 2);
l1_bb = split_block (cont_bb, last_stmt (cont_bb))->dest;
l2_bb = BRANCH_EDGE (entry_bb)->dest;
}
else
{
BRANCH_EDGE (entry_bb)->flags &= ~EDGE_ABNORMAL;
l1_bb = split_edge (BRANCH_EDGE (entry_bb));
l2_bb = single_succ (l1_bb);
}
basic_block exit_bb = region->exit;
basic_block l2_dom_bb = NULL;
gimple_stmt_iterator gsi = gsi_last_bb (entry_bb);
/* Below statements until the "tree high_val = ..." are pseudo statements
used to pass information to be used by expand_omp_taskreg.
low_val and high_val will be replaced by the __low and __high
parameter from the child function.
The call_exprs part is a place-holder, it is mainly used
to distinctly identify to the top-level part that this is
where we should put low and high (reasoning given in header
comment). */
gomp_parallel *par_stmt
= as_a <gomp_parallel *> (last_stmt (region->outer->entry));
tree child_fndecl = gimple_omp_parallel_child_fn (par_stmt);
tree t, low_val = NULL_TREE, high_val = NULL_TREE;
for (t = DECL_ARGUMENTS (child_fndecl); t; t = TREE_CHAIN (t))
{
if (id_equal (DECL_NAME (t), "__high"))
high_val = t;
else if (id_equal (DECL_NAME (t), "__low"))
low_val = t;
}
gcc_assert (low_val && high_val);
tree type = TREE_TYPE (low_val);
tree ind_var = create_tmp_reg (type, "__cilk_ind_var");
gcc_assert (gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_FOR);
/* Not needed in SSA form right now. */
gcc_assert (!gimple_in_ssa_p (cfun));
if (l2_dom_bb == NULL)
l2_dom_bb = l1_bb;
tree n1 = low_val;
tree n2 = high_val;
gimple *stmt = gimple_build_assign (ind_var, n1);
/* Replace the GIMPLE_OMP_FOR statement. */
gsi_replace (&gsi, stmt, true);
if (!broken_loop)
{
/* Code to control the increment goes in the CONT_BB. */
gsi = gsi_last_bb (cont_bb);
stmt = gsi_stmt (gsi);
gcc_assert (gimple_code (stmt) == GIMPLE_OMP_CONTINUE);
stmt = gimple_build_assign (ind_var, PLUS_EXPR, ind_var,
build_one_cst (type));
/* Replace GIMPLE_OMP_CONTINUE. */
gsi_replace (&gsi, stmt, true);
}
/* Emit the condition in L1_BB. */
gsi = gsi_after_labels (l1_bb);
t = fold_build2 (MULT_EXPR, TREE_TYPE (fd->loop.step),
fold_convert (TREE_TYPE (fd->loop.step), ind_var),
fd->loop.step);
if (POINTER_TYPE_P (TREE_TYPE (fd->loop.n1)))
t = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (fd->loop.n1),
fd->loop.n1, fold_convert (sizetype, t));
else
t = fold_build2 (PLUS_EXPR, TREE_TYPE (fd->loop.n1),
fd->loop.n1, fold_convert (TREE_TYPE (fd->loop.n1), t));
t = fold_convert (TREE_TYPE (fd->loop.v), t);
expand_omp_build_assign (&gsi, fd->loop.v, t);
/* The condition is always '<' since the runtime will fill in the low
and high values. */
stmt = gimple_build_cond (LT_EXPR, ind_var, n2, NULL_TREE, NULL_TREE);
gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
/* Remove GIMPLE_OMP_RETURN. */
gsi = gsi_last_bb (exit_bb);
gsi_remove (&gsi, true);
/* Connect the new blocks. */
remove_edge (FALLTHRU_EDGE (entry_bb));
edge e, ne;
if (!broken_loop)
{
remove_edge (BRANCH_EDGE (entry_bb));
make_edge (entry_bb, l1_bb, EDGE_FALLTHRU);
e = BRANCH_EDGE (l1_bb);
ne = FALLTHRU_EDGE (l1_bb);
e->flags = EDGE_TRUE_VALUE;
}
else
{
single_succ_edge (entry_bb)->flags = EDGE_FALLTHRU;
ne = single_succ_edge (l1_bb);
e = make_edge (l1_bb, l0_bb, EDGE_TRUE_VALUE);
}
ne->flags = EDGE_FALSE_VALUE;
e->probability = profile_probability::guessed_always ().apply_scale (7, 8);
ne->probability = e->probability.invert ();
set_immediate_dominator (CDI_DOMINATORS, l1_bb, entry_bb);
set_immediate_dominator (CDI_DOMINATORS, l2_bb, l2_dom_bb);
set_immediate_dominator (CDI_DOMINATORS, l0_bb, l1_bb);
if (!broken_loop)
{
struct loop *loop = alloc_loop ();
loop->header = l1_bb;
loop->latch = cont_bb;
add_loop (loop, l1_bb->loop_father);
loop->safelen = INT_MAX;
}
/* Pick the correct library function based on the precision of the
induction variable type. */
tree lib_fun = NULL_TREE;
if (TYPE_PRECISION (type) == 32)
lib_fun = cilk_for_32_fndecl;
else if (TYPE_PRECISION (type) == 64)
lib_fun = cilk_for_64_fndecl;
else
gcc_unreachable ();
gcc_assert (fd->sched_kind == OMP_CLAUSE_SCHEDULE_CILKFOR);
/* WS_ARGS contains the library function flavor to call:
__libcilkrts_cilk_for_64 or __libcilkrts_cilk_for_32), and the
user-defined grain value. If the user does not define one, then zero
is passed in by the parser. */
vec_alloc (region->ws_args, 2);
region->ws_args->quick_push (lib_fun);
region->ws_args->quick_push (fd->chunk_size);
}
/* A subroutine of expand_omp_for. Generate code for a simd non-worksharing
loop. Given parameters:
for (V = N1; V cond N2; V += STEP) BODY;
where COND is "<" or ">", we generate pseudocode
V = N1;
goto L1;
L0:
BODY;
V += STEP;
L1:
if (V cond N2) goto L0; else goto L2;
L2:
For collapsed loops, given parameters:
collapse(3)
for (V1 = N11; V1 cond1 N12; V1 += STEP1)
for (V2 = N21; V2 cond2 N22; V2 += STEP2)
for (V3 = N31; V3 cond3 N32; V3 += STEP3)
BODY;
we generate pseudocode
if (cond3 is <)
adj = STEP3 - 1;
else
adj = STEP3 + 1;
count3 = (adj + N32 - N31) / STEP3;
if (cond2 is <)
adj = STEP2 - 1;
else
adj = STEP2 + 1;
count2 = (adj + N22 - N21) / STEP2;
if (cond1 is <)
adj = STEP1 - 1;
else
adj = STEP1 + 1;
count1 = (adj + N12 - N11) / STEP1;
count = count1 * count2 * count3;
V = 0;
V1 = N11;
V2 = N21;
V3 = N31;
goto L1;
L0:
BODY;
V += 1;
V3 += STEP3;
V2 += (V3 cond3 N32) ? 0 : STEP2;
V3 = (V3 cond3 N32) ? V3 : N31;
V1 += (V2 cond2 N22) ? 0 : STEP1;
V2 = (V2 cond2 N22) ? V2 : N21;
L1:
if (V < count) goto L0; else goto L2;
L2:
*/
static void
expand_omp_simd (struct omp_region *region, struct omp_for_data *fd)
{
tree type, t;
basic_block entry_bb, cont_bb, exit_bb, l0_bb, l1_bb, l2_bb, l2_dom_bb;
gimple_stmt_iterator gsi;
gimple *stmt;
gcond *cond_stmt;
bool broken_loop = region->cont == NULL;
edge e, ne;
tree *counts = NULL;
int i;
int safelen_int = INT_MAX;
tree safelen = omp_find_clause (gimple_omp_for_clauses (fd->for_stmt),
OMP_CLAUSE_SAFELEN);
tree simduid = omp_find_clause (gimple_omp_for_clauses (fd->for_stmt),
OMP_CLAUSE__SIMDUID_);
tree n1, n2;
if (safelen)
{
safelen = OMP_CLAUSE_SAFELEN_EXPR (safelen);
if (TREE_CODE (safelen) != INTEGER_CST)
safelen_int = 0;
else if (tree_fits_uhwi_p (safelen) && tree_to_uhwi (safelen) < INT_MAX)
safelen_int = tree_to_uhwi (safelen);
if (safelen_int == 1)
safelen_int = 0;
}
type = TREE_TYPE (fd->loop.v);
entry_bb = region->entry;
cont_bb = region->cont;
gcc_assert (EDGE_COUNT (entry_bb->succs) == 2);
gcc_assert (broken_loop
|| BRANCH_EDGE (entry_bb)->dest == FALLTHRU_EDGE (cont_bb)->dest);
l0_bb = FALLTHRU_EDGE (entry_bb)->dest;
if (!broken_loop)
{
gcc_assert (BRANCH_EDGE (cont_bb)->dest == l0_bb);
gcc_assert (EDGE_COUNT (cont_bb->succs) == 2);
l1_bb = split_block (cont_bb, last_stmt (cont_bb))->dest;
l2_bb = BRANCH_EDGE (entry_bb)->dest;
}
else
{
BRANCH_EDGE (entry_bb)->flags &= ~EDGE_ABNORMAL;
l1_bb = split_edge (BRANCH_EDGE (entry_bb));
l2_bb = single_succ (l1_bb);
}
exit_bb = region->exit;
l2_dom_bb = NULL;
gsi = gsi_last_bb (entry_bb);
gcc_assert (gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_FOR);
/* Not needed in SSA form right now. */
gcc_assert (!gimple_in_ssa_p (cfun));
if (fd->collapse > 1)
{
int first_zero_iter = -1, dummy = -1;
basic_block zero_iter_bb = l2_bb, dummy_bb = NULL;
counts = XALLOCAVEC (tree, fd->collapse);
expand_omp_for_init_counts (fd, &gsi, entry_bb, counts,
zero_iter_bb, first_zero_iter,
dummy_bb, dummy, l2_dom_bb);
}
if (l2_dom_bb == NULL)
l2_dom_bb = l1_bb;
n1 = fd->loop.n1;
n2 = fd->loop.n2;
if (gimple_omp_for_combined_into_p (fd->for_stmt))
{
tree innerc = omp_find_clause (gimple_omp_for_clauses (fd->for_stmt),
OMP_CLAUSE__LOOPTEMP_);
gcc_assert (innerc);
n1 = OMP_CLAUSE_DECL (innerc);
innerc = omp_find_clause (OMP_CLAUSE_CHAIN (innerc),
OMP_CLAUSE__LOOPTEMP_);
gcc_assert (innerc);
n2 = OMP_CLAUSE_DECL (innerc);
}
tree step = fd->loop.step;
bool is_simt = omp_find_clause (gimple_omp_for_clauses (fd->for_stmt),
OMP_CLAUSE__SIMT_);
if (is_simt)
{
cfun->curr_properties &= ~PROP_gimple_lomp_dev;
is_simt = safelen_int > 1;
}
tree simt_lane = NULL_TREE, simt_maxlane = NULL_TREE;
if (is_simt)
{
simt_lane = create_tmp_var (unsigned_type_node);
gimple *g = gimple_build_call_internal (IFN_GOMP_SIMT_LANE, 0);
gimple_call_set_lhs (g, simt_lane);
gsi_insert_before (&gsi, g, GSI_SAME_STMT);
tree offset = fold_build2 (MULT_EXPR, TREE_TYPE (step), step,
fold_convert (TREE_TYPE (step), simt_lane));
n1 = fold_convert (type, n1);
if (POINTER_TYPE_P (type))
n1 = fold_build_pointer_plus (n1, offset);
else
n1 = fold_build2 (PLUS_EXPR, type, n1, fold_convert (type, offset));
/* Collapsed loops not handled for SIMT yet: limit to one lane only. */
if (fd->collapse > 1)
simt_maxlane = build_one_cst (unsigned_type_node);
else if (safelen_int < omp_max_simt_vf ())
simt_maxlane = build_int_cst (unsigned_type_node, safelen_int);
tree vf
= build_call_expr_internal_loc (UNKNOWN_LOCATION, IFN_GOMP_SIMT_VF,
unsigned_type_node, 0);
if (simt_maxlane)
vf = fold_build2 (MIN_EXPR, unsigned_type_node, vf, simt_maxlane);
vf = fold_convert (TREE_TYPE (step), vf);
step = fold_build2 (MULT_EXPR, TREE_TYPE (step), step, vf);
}
expand_omp_build_assign (&gsi, fd->loop.v, fold_convert (type, n1));
if (fd->collapse > 1)
{
if (gimple_omp_for_combined_into_p (fd->for_stmt))
{
gsi_prev (&gsi);
expand_omp_for_init_vars (fd, &gsi, counts, NULL, n1);
gsi_next (&gsi);
}
else
for (i = 0; i < fd->collapse; i++)
{
tree itype = TREE_TYPE (fd->loops[i].v);
if (POINTER_TYPE_P (itype))
itype = signed_type_for (itype);
t = fold_convert (TREE_TYPE (fd->loops[i].v), fd->loops[i].n1);
expand_omp_build_assign (&gsi, fd->loops[i].v, t);
}
}
/* Remove the GIMPLE_OMP_FOR statement. */
gsi_remove (&gsi, true);
if (!broken_loop)
{
/* Code to control the increment goes in the CONT_BB. */
gsi = gsi_last_bb (cont_bb);
stmt = gsi_stmt (gsi);
gcc_assert (gimple_code (stmt) == GIMPLE_OMP_CONTINUE);
if (POINTER_TYPE_P (type))
t = fold_build_pointer_plus (fd->loop.v, step);
else
t = fold_build2 (PLUS_EXPR, type, fd->loop.v, step);
expand_omp_build_assign (&gsi, fd->loop.v, t);
if (fd->collapse > 1)
{
i = fd->collapse - 1;
if (POINTER_TYPE_P (TREE_TYPE (fd->loops[i].v)))
{
t = fold_convert (sizetype, fd->loops[i].step);
t = fold_build_pointer_plus (fd->loops[i].v, t);
}
else
{
t = fold_convert (TREE_TYPE (fd->loops[i].v),
fd->loops[i].step);
t = fold_build2 (PLUS_EXPR, TREE_TYPE (fd->loops[i].v),
fd->loops[i].v, t);
}
expand_omp_build_assign (&gsi, fd->loops[i].v, t);
for (i = fd->collapse - 1; i > 0; i--)
{
tree itype = TREE_TYPE (fd->loops[i].v);
tree itype2 = TREE_TYPE (fd->loops[i - 1].v);
if (POINTER_TYPE_P (itype2))
itype2 = signed_type_for (itype2);
t = build3 (COND_EXPR, itype2,
build2 (fd->loops[i].cond_code, boolean_type_node,
fd->loops[i].v,
fold_convert (itype, fd->loops[i].n2)),
build_int_cst (itype2, 0),
fold_convert (itype2, fd->loops[i - 1].step));
if (POINTER_TYPE_P (TREE_TYPE (fd->loops[i - 1].v)))
t = fold_build_pointer_plus (fd->loops[i - 1].v, t);
else
t = fold_build2 (PLUS_EXPR, itype2, fd->loops[i - 1].v, t);
expand_omp_build_assign (&gsi, fd->loops[i - 1].v, t);
t = build3 (COND_EXPR, itype,
build2 (fd->loops[i].cond_code, boolean_type_node,
fd->loops[i].v,
fold_convert (itype, fd->loops[i].n2)),
fd->loops[i].v,
fold_convert (itype, fd->loops[i].n1));
expand_omp_build_assign (&gsi, fd->loops[i].v, t);
}
}
/* Remove GIMPLE_OMP_CONTINUE. */
gsi_remove (&gsi, true);
}
/* Emit the condition in L1_BB. */
gsi = gsi_start_bb (l1_bb);
t = fold_convert (type, n2);
t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
false, GSI_CONTINUE_LINKING);
tree v = fd->loop.v;
if (DECL_P (v) && TREE_ADDRESSABLE (v))
v = force_gimple_operand_gsi (&gsi, v, true, NULL_TREE,
false, GSI_CONTINUE_LINKING);
t = build2 (fd->loop.cond_code, boolean_type_node, v, t);
cond_stmt = gimple_build_cond_empty (t);
gsi_insert_after (&gsi, cond_stmt, GSI_CONTINUE_LINKING);
if (walk_tree (gimple_cond_lhs_ptr (cond_stmt), expand_omp_regimplify_p,
NULL, NULL)
|| walk_tree (gimple_cond_rhs_ptr (cond_stmt), expand_omp_regimplify_p,
NULL, NULL))
{
gsi = gsi_for_stmt (cond_stmt);
gimple_regimplify_operands (cond_stmt, &gsi);
}
/* Add 'V -= STEP * (SIMT_VF - 1)' after the loop. */
if (is_simt)
{
gsi = gsi_start_bb (l2_bb);
step = fold_build2 (MINUS_EXPR, TREE_TYPE (step), fd->loop.step, step);
if (POINTER_TYPE_P (type))
t = fold_build_pointer_plus (fd->loop.v, step);
else
t = fold_build2 (PLUS_EXPR, type, fd->loop.v, step);
expand_omp_build_assign (&gsi, fd->loop.v, t);
}
/* Remove GIMPLE_OMP_RETURN. */
gsi = gsi_last_bb (exit_bb);
gsi_remove (&gsi, true);
/* Connect the new blocks. */
remove_edge (FALLTHRU_EDGE (entry_bb));
if (!broken_loop)
{
remove_edge (BRANCH_EDGE (entry_bb));
make_edge (entry_bb, l1_bb, EDGE_FALLTHRU);
e = BRANCH_EDGE (l1_bb);
ne = FALLTHRU_EDGE (l1_bb);
e->flags = EDGE_TRUE_VALUE;
}
else
{
single_succ_edge (entry_bb)->flags = EDGE_FALLTHRU;
ne = single_succ_edge (l1_bb);
e = make_edge (l1_bb, l0_bb, EDGE_TRUE_VALUE);
}
ne->flags = EDGE_FALSE_VALUE;
e->probability = profile_probability::guessed_always ().apply_scale (7, 8);
ne->probability = e->probability.invert ();
set_immediate_dominator (CDI_DOMINATORS, l1_bb, entry_bb);
set_immediate_dominator (CDI_DOMINATORS, l0_bb, l1_bb);
if (simt_maxlane)
{
cond_stmt = gimple_build_cond (LT_EXPR, simt_lane, simt_maxlane,
NULL_TREE, NULL_TREE);
gsi = gsi_last_bb (entry_bb);
gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
make_edge (entry_bb, l2_bb, EDGE_FALSE_VALUE);
FALLTHRU_EDGE (entry_bb)->flags = EDGE_TRUE_VALUE;
FALLTHRU_EDGE (entry_bb)->probability
= profile_probability::guessed_always ().apply_scale (7, 8);
BRANCH_EDGE (entry_bb)->probability
= FALLTHRU_EDGE (entry_bb)->probability.invert ();
l2_dom_bb = entry_bb;
}
set_immediate_dominator (CDI_DOMINATORS, l2_bb, l2_dom_bb);
if (!broken_loop)
{
struct loop *loop = alloc_loop ();
loop->header = l1_bb;
loop->latch = cont_bb;
add_loop (loop, l1_bb->loop_father);
loop->safelen = safelen_int;
if (simduid)
{
loop->simduid = OMP_CLAUSE__SIMDUID__DECL (simduid);
cfun->has_simduid_loops = true;
}
/* If not -fno-tree-loop-vectorize, hint that we want to vectorize
the loop. */
if ((flag_tree_loop_vectorize
|| !global_options_set.x_flag_tree_loop_vectorize)
&& flag_tree_loop_optimize
&& loop->safelen > 1)
{
loop->force_vectorize = true;
cfun->has_force_vectorize_loops = true;
}
}
else if (simduid)
cfun->has_simduid_loops = true;
}
/* Taskloop construct is represented after gimplification with
two GIMPLE_OMP_FOR constructs with GIMPLE_OMP_TASK sandwiched
in between them. This routine expands the outer GIMPLE_OMP_FOR,
which should just compute all the needed loop temporaries
for GIMPLE_OMP_TASK. */
static void
expand_omp_taskloop_for_outer (struct omp_region *region,
struct omp_for_data *fd,
gimple *inner_stmt)
{
tree type, bias = NULL_TREE;
basic_block entry_bb, cont_bb, exit_bb;
gimple_stmt_iterator gsi;
gassign *assign_stmt;
tree *counts = NULL;
int i;
gcc_assert (inner_stmt);
gcc_assert (region->cont);
gcc_assert (gimple_code (inner_stmt) == GIMPLE_OMP_TASK
&& gimple_omp_task_taskloop_p (inner_stmt));
type = TREE_TYPE (fd->loop.v);
/* See if we need to bias by LLONG_MIN. */
if (fd->iter_type == long_long_unsigned_type_node
&& TREE_CODE (type) == INTEGER_TYPE
&& !TYPE_UNSIGNED (type))
{
tree n1, n2;
if (fd->loop.cond_code == LT_EXPR)
{
n1 = fd->loop.n1;
n2 = fold_build2 (PLUS_EXPR, type, fd->loop.n2, fd->loop.step);
}
else
{
n1 = fold_build2 (MINUS_EXPR, type, fd->loop.n2, fd->loop.step);
n2 = fd->loop.n1;
}
if (TREE_CODE (n1) != INTEGER_CST
|| TREE_CODE (n2) != INTEGER_CST
|| ((tree_int_cst_sgn (n1) < 0) ^ (tree_int_cst_sgn (n2) < 0)))
bias = fold_convert (fd->iter_type, TYPE_MIN_VALUE (type));
}
entry_bb = region->entry;
cont_bb = region->cont;
gcc_assert (EDGE_COUNT (entry_bb->succs) == 2);
gcc_assert (BRANCH_EDGE (entry_bb)->dest == FALLTHRU_EDGE (cont_bb)->dest);
exit_bb = region->exit;
gsi = gsi_last_bb (entry_bb);
gimple *for_stmt = gsi_stmt (gsi);
gcc_assert (gimple_code (for_stmt) == GIMPLE_OMP_FOR);
if (fd->collapse > 1)
{
int first_zero_iter = -1, dummy = -1;
basic_block zero_iter_bb = NULL, dummy_bb = NULL, l2_dom_bb = NULL;
counts = XALLOCAVEC (tree, fd->collapse);
expand_omp_for_init_counts (fd, &gsi, entry_bb, counts,
zero_iter_bb, first_zero_iter,
dummy_bb, dummy, l2_dom_bb);
if (zero_iter_bb)
{
/* Some counts[i] vars might be uninitialized if
some loop has zero iterations. But the body shouldn't
be executed in that case, so just avoid uninit warnings. */
for (i = first_zero_iter; i < fd->collapse; i++)
if (SSA_VAR_P (counts[i]))
TREE_NO_WARNING (counts[i]) = 1;
gsi_prev (&gsi);
edge e = split_block (entry_bb, gsi_stmt (gsi));
entry_bb = e->dest;
make_edge (zero_iter_bb, entry_bb, EDGE_FALLTHRU);
gsi = gsi_last_bb (entry_bb);
set_immediate_dominator (CDI_DOMINATORS, entry_bb,
get_immediate_dominator (CDI_DOMINATORS,
zero_iter_bb));
}
}
tree t0, t1;
t1 = fd->loop.n2;
t0 = fd->loop.n1;
if (POINTER_TYPE_P (TREE_TYPE (t0))
&& TYPE_PRECISION (TREE_TYPE (t0))
!= TYPE_PRECISION (fd->iter_type))
{
/* Avoid casting pointers to integer of a different size. */
tree itype = signed_type_for (type);
t1 = fold_convert (fd->iter_type, fold_convert (itype, t1));
t0 = fold_convert (fd->iter_type, fold_convert (itype, t0));
}
else
{
t1 = fold_convert (fd->iter_type, t1);
t0 = fold_convert (fd->iter_type, t0);
}
if (bias)
{
t1 = fold_build2 (PLUS_EXPR, fd->iter_type, t1, bias);
t0 = fold_build2 (PLUS_EXPR, fd->iter_type, t0, bias);
}
tree innerc = omp_find_clause (gimple_omp_task_clauses (inner_stmt),
OMP_CLAUSE__LOOPTEMP_);
gcc_assert (innerc);
tree startvar = OMP_CLAUSE_DECL (innerc);
innerc = omp_find_clause (OMP_CLAUSE_CHAIN (innerc), OMP_CLAUSE__LOOPTEMP_);
gcc_assert (innerc);
tree endvar = OMP_CLAUSE_DECL (innerc);
if (fd->collapse > 1 && TREE_CODE (fd->loop.n2) != INTEGER_CST)
{
gcc_assert (innerc);
for (i = 1; i < fd->collapse; i++)
{
innerc = omp_find_clause (OMP_CLAUSE_CHAIN (innerc),
OMP_CLAUSE__LOOPTEMP_);
gcc_assert (innerc);
}
innerc = omp_find_clause (OMP_CLAUSE_CHAIN (innerc),
OMP_CLAUSE__LOOPTEMP_);
if (innerc)
{
/* If needed (inner taskloop has lastprivate clause), propagate
down the total number of iterations. */
tree t = force_gimple_operand_gsi (&gsi, fd->loop.n2, false,
NULL_TREE, false,
GSI_CONTINUE_LINKING);
assign_stmt = gimple_build_assign (OMP_CLAUSE_DECL (innerc), t);
gsi_insert_after (&gsi, assign_stmt, GSI_CONTINUE_LINKING);
}
}
t0 = force_gimple_operand_gsi (&gsi, t0, false, NULL_TREE, false,
GSI_CONTINUE_LINKING);
assign_stmt = gimple_build_assign (startvar, t0);
gsi_insert_after (&gsi, assign_stmt, GSI_CONTINUE_LINKING);
t1 = force_gimple_operand_gsi (&gsi, t1, false, NULL_TREE, false,
GSI_CONTINUE_LINKING);
assign_stmt = gimple_build_assign (endvar, t1);
gsi_insert_after (&gsi, assign_stmt, GSI_CONTINUE_LINKING);
if (fd->collapse > 1)
expand_omp_for_init_vars (fd, &gsi, counts, inner_stmt, startvar);
/* Remove the GIMPLE_OMP_FOR statement. */
gsi = gsi_for_stmt (for_stmt);
gsi_remove (&gsi, true);
gsi = gsi_last_bb (cont_bb);
gsi_remove (&gsi, true);
gsi = gsi_last_bb (exit_bb);
gsi_remove (&gsi, true);
FALLTHRU_EDGE (entry_bb)->probability = profile_probability::always ();
remove_edge (BRANCH_EDGE (entry_bb));
FALLTHRU_EDGE (cont_bb)->probability = profile_probability::always ();
remove_edge (BRANCH_EDGE (cont_bb));
set_immediate_dominator (CDI_DOMINATORS, exit_bb, cont_bb);
set_immediate_dominator (CDI_DOMINATORS, region->entry,
recompute_dominator (CDI_DOMINATORS, region->entry));
}
/* Taskloop construct is represented after gimplification with
two GIMPLE_OMP_FOR constructs with GIMPLE_OMP_TASK sandwiched
in between them. This routine expands the inner GIMPLE_OMP_FOR.
GOMP_taskloop{,_ull} function arranges for each task to be given just
a single range of iterations. */
static void
expand_omp_taskloop_for_inner (struct omp_region *region,
struct omp_for_data *fd,
gimple *inner_stmt)
{
tree e, t, type, itype, vmain, vback, bias = NULL_TREE;
basic_block entry_bb, exit_bb, body_bb, cont_bb, collapse_bb = NULL;
basic_block fin_bb;
gimple_stmt_iterator gsi;
edge ep;
bool broken_loop = region->cont == NULL;
tree *counts = NULL;
tree n1, n2, step;
itype = type = TREE_TYPE (fd->loop.v);
if (POINTER_TYPE_P (type))
itype = signed_type_for (type);
/* See if we need to bias by LLONG_MIN. */
if (fd->iter_type == long_long_unsigned_type_node
&& TREE_CODE (type) == INTEGER_TYPE
&& !TYPE_UNSIGNED (type))
{
tree n1, n2;
if (fd->loop.cond_code == LT_EXPR)
{
n1 = fd->loop.n1;
n2 = fold_build2 (PLUS_EXPR, type, fd->loop.n2, fd->loop.step);
}
else
{
n1 = fold_build2 (MINUS_EXPR, type, fd->loop.n2, fd->loop.step);
n2 = fd->loop.n1;
}
if (TREE_CODE (n1) != INTEGER_CST
|| TREE_CODE (n2) != INTEGER_CST
|| ((tree_int_cst_sgn (n1) < 0) ^ (tree_int_cst_sgn (n2) < 0)))
bias = fold_convert (fd->iter_type, TYPE_MIN_VALUE (type));
}
entry_bb = region->entry;
cont_bb = region->cont;
gcc_assert (EDGE_COUNT (entry_bb->succs) == 2);
fin_bb = BRANCH_EDGE (entry_bb)->dest;
gcc_assert (broken_loop
|| (fin_bb == FALLTHRU_EDGE (cont_bb)->dest));
body_bb = FALLTHRU_EDGE (entry_bb)->dest;
if (!broken_loop)
{
gcc_assert (BRANCH_EDGE (cont_bb)->dest == body_bb);
gcc_assert (EDGE_COUNT (cont_bb->succs) == 2);
}
exit_bb = region->exit;
/* Iteration space partitioning goes in ENTRY_BB. */
gsi = gsi_last_bb (entry_bb);
gcc_assert (gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_FOR);
if (fd->collapse > 1)
{
int first_zero_iter = -1, dummy = -1;
basic_block l2_dom_bb = NULL, dummy_bb = NULL;
counts = XALLOCAVEC (tree, fd->collapse);
expand_omp_for_init_counts (fd, &gsi, entry_bb, counts,
fin_bb, first_zero_iter,
dummy_bb, dummy, l2_dom_bb);
t = NULL_TREE;
}
else
t = integer_one_node;
step = fd->loop.step;
tree innerc = omp_find_clause (gimple_omp_for_clauses (fd->for_stmt),
OMP_CLAUSE__LOOPTEMP_);
gcc_assert (innerc);
n1 = OMP_CLAUSE_DECL (innerc);
innerc = omp_find_clause (OMP_CLAUSE_CHAIN (innerc), OMP_CLAUSE__LOOPTEMP_);
gcc_assert (innerc);
n2 = OMP_CLAUSE_DECL (innerc);
if (bias)
{
n1 = fold_build2 (PLUS_EXPR, fd->iter_type, n1, bias);
n2 = fold_build2 (PLUS_EXPR, fd->iter_type, n2, bias);
}
n1 = force_gimple_operand_gsi (&gsi, fold_convert (type, n1),
true, NULL_TREE, true, GSI_SAME_STMT);
n2 = force_gimple_operand_gsi (&gsi, fold_convert (itype, n2),
true, NULL_TREE, true, GSI_SAME_STMT);
step = force_gimple_operand_gsi (&gsi, fold_convert (itype, step),
true, NULL_TREE, true, GSI_SAME_STMT);
tree startvar = fd->loop.v;
tree endvar = NULL_TREE;
if (gimple_omp_for_combined_p (fd->for_stmt))
{
tree clauses = gimple_omp_for_clauses (inner_stmt);
tree innerc = omp_find_clause (clauses, OMP_CLAUSE__LOOPTEMP_);
gcc_assert (innerc);
startvar = OMP_CLAUSE_DECL (innerc);
innerc = omp_find_clause (OMP_CLAUSE_CHAIN (innerc),
OMP_CLAUSE__LOOPTEMP_);
gcc_assert (innerc);
endvar = OMP_CLAUSE_DECL (innerc);
}
t = fold_convert (TREE_TYPE (startvar), n1);
t = force_gimple_operand_gsi (&gsi, t,
DECL_P (startvar)
&& TREE_ADDRESSABLE (startvar),
NULL_TREE, false, GSI_CONTINUE_LINKING);
gimple *assign_stmt = gimple_build_assign (startvar, t);
gsi_insert_after (&gsi, assign_stmt, GSI_CONTINUE_LINKING);
t = fold_convert (TREE_TYPE (startvar), n2);
e = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
false, GSI_CONTINUE_LINKING);
if (endvar)
{
assign_stmt = gimple_build_assign (endvar, e);
gsi_insert_after (&gsi, assign_stmt, GSI_CONTINUE_LINKING);
if (useless_type_conversion_p (TREE_TYPE (fd->loop.v), TREE_TYPE (e)))
assign_stmt = gimple_build_assign (fd->loop.v, e);
else
assign_stmt = gimple_build_assign (fd->loop.v, NOP_EXPR, e);
gsi_insert_after (&gsi, assign_stmt, GSI_CONTINUE_LINKING);
}
if (fd->collapse > 1)
expand_omp_for_init_vars (fd, &gsi, counts, inner_stmt, startvar);
if (!broken_loop)
{
/* The code controlling the sequential loop replaces the
GIMPLE_OMP_CONTINUE. */
gsi = gsi_last_bb (cont_bb);
gomp_continue *cont_stmt = as_a <gomp_continue *> (gsi_stmt (gsi));
gcc_assert (gimple_code (cont_stmt) == GIMPLE_OMP_CONTINUE);
vmain = gimple_omp_continue_control_use (cont_stmt);
vback = gimple_omp_continue_control_def (cont_stmt);
if (!gimple_omp_for_combined_p (fd->for_stmt))
{
if (POINTER_TYPE_P (type))
t = fold_build_pointer_plus (vmain, step);
else
t = fold_build2 (PLUS_EXPR, type, vmain, step);
t = force_gimple_operand_gsi (&gsi, t,
DECL_P (vback)
&& TREE_ADDRESSABLE (vback),
NULL_TREE, true, GSI_SAME_STMT);
assign_stmt = gimple_build_assign (vback, t);
gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
t = build2 (fd->loop.cond_code, boolean_type_node,
DECL_P (vback) && TREE_ADDRESSABLE (vback)
? t : vback, e);
gsi_insert_before (&gsi, gimple_build_cond_empty (t), GSI_SAME_STMT);
}
/* Remove the GIMPLE_OMP_CONTINUE statement. */
gsi_remove (&gsi, true);
if (fd->collapse > 1 && !gimple_omp_for_combined_p (fd->for_stmt))
collapse_bb = extract_omp_for_update_vars (fd, cont_bb, body_bb);
}
/* Remove the GIMPLE_OMP_FOR statement. */
gsi = gsi_for_stmt (fd->for_stmt);
gsi_remove (&gsi, true);
/* Remove the GIMPLE_OMP_RETURN statement. */
gsi = gsi_last_bb (exit_bb);
gsi_remove (&gsi, true);
FALLTHRU_EDGE (entry_bb)->probability = profile_probability::always ();
if (!broken_loop)
remove_edge (BRANCH_EDGE (entry_bb));
else
{
remove_edge_and_dominated_blocks (BRANCH_EDGE (entry_bb));
region->outer->cont = NULL;
}
/* Connect all the blocks. */
if (!broken_loop)
{
ep = find_edge (cont_bb, body_bb);
if (gimple_omp_for_combined_p (fd->for_stmt))
{
remove_edge (ep);
ep = NULL;
}
else if (fd->collapse > 1)
{
remove_edge (ep);
ep = make_edge (cont_bb, collapse_bb, EDGE_TRUE_VALUE);
}
else
ep->flags = EDGE_TRUE_VALUE;
find_edge (cont_bb, fin_bb)->flags
= ep ? EDGE_FALSE_VALUE : EDGE_FALLTHRU;
}
set_immediate_dominator (CDI_DOMINATORS, body_bb,
recompute_dominator (CDI_DOMINATORS, body_bb));
if (!broken_loop)
set_immediate_dominator (CDI_DOMINATORS, fin_bb,
recompute_dominator (CDI_DOMINATORS, fin_bb));
if (!broken_loop && !gimple_omp_for_combined_p (fd->for_stmt))
{
struct loop *loop = alloc_loop ();
loop->header = body_bb;
if (collapse_bb == NULL)
loop->latch = cont_bb;
add_loop (loop, body_bb->loop_father);
}
}
/* A subroutine of expand_omp_for. Generate code for an OpenACC
partitioned loop. The lowering here is abstracted, in that the
loop parameters are passed through internal functions, which are
further lowered by oacc_device_lower, once we get to the target
compiler. The loop is of the form:
for (V = B; V LTGT E; V += S) {BODY}
where LTGT is < or >. We may have a specified chunking size, CHUNKING
(constant 0 for no chunking) and we will have a GWV partitioning
mask, specifying dimensions over which the loop is to be
partitioned (see note below). We generate code that looks like
(this ignores tiling):
<entry_bb> [incoming FALL->body, BRANCH->exit]
typedef signedintify (typeof (V)) T; // underlying signed integral type
T range = E - B;
T chunk_no = 0;
T DIR = LTGT == '<' ? +1 : -1;
T chunk_max = GOACC_LOOP_CHUNK (dir, range, S, CHUNK_SIZE, GWV);
T step = GOACC_LOOP_STEP (dir, range, S, CHUNK_SIZE, GWV);
<head_bb> [created by splitting end of entry_bb]
T offset = GOACC_LOOP_OFFSET (dir, range, S, CHUNK_SIZE, GWV, chunk_no);
T bound = GOACC_LOOP_BOUND (dir, range, S, CHUNK_SIZE, GWV, offset);
if (!(offset LTGT bound)) goto bottom_bb;
<body_bb> [incoming]
V = B + offset;
{BODY}
<cont_bb> [incoming, may == body_bb FALL->exit_bb, BRANCH->body_bb]
offset += step;
if (offset LTGT bound) goto body_bb; [*]
<bottom_bb> [created by splitting start of exit_bb] insert BRANCH->head_bb
chunk_no++;
if (chunk < chunk_max) goto head_bb;
<exit_bb> [incoming]
V = B + ((range -/+ 1) / S +/- 1) * S [*]
[*] Needed if V live at end of loop. */
static void
expand_oacc_for (struct omp_region *region, struct omp_for_data *fd)
{
tree v = fd->loop.v;
enum tree_code cond_code = fd->loop.cond_code;
enum tree_code plus_code = PLUS_EXPR;
tree chunk_size = integer_minus_one_node;
tree gwv = integer_zero_node;
tree iter_type = TREE_TYPE (v);
tree diff_type = iter_type;
tree plus_type = iter_type;
struct oacc_collapse *counts = NULL;
gcc_checking_assert (gimple_omp_for_kind (fd->for_stmt)
== GF_OMP_FOR_KIND_OACC_LOOP);
gcc_assert (!gimple_omp_for_combined_into_p (fd->for_stmt));
gcc_assert (cond_code == LT_EXPR || cond_code == GT_EXPR);
if (POINTER_TYPE_P (iter_type))
{
plus_code = POINTER_PLUS_EXPR;
plus_type = sizetype;
}
if (POINTER_TYPE_P (diff_type) || TYPE_UNSIGNED (diff_type))
diff_type = signed_type_for (diff_type);
basic_block entry_bb = region->entry; /* BB ending in OMP_FOR */
basic_block exit_bb = region->exit; /* BB ending in OMP_RETURN */
basic_block cont_bb = region->cont; /* BB ending in OMP_CONTINUE */
basic_block bottom_bb = NULL;
/* entry_bb has two sucessors; the branch edge is to the exit
block, fallthrough edge to body. */
gcc_assert (EDGE_COUNT (entry_bb->succs) == 2
&& BRANCH_EDGE (entry_bb)->dest == exit_bb);
/* If cont_bb non-NULL, it has 2 successors. The branch successor is
body_bb, or to a block whose only successor is the body_bb. Its
fallthrough successor is the final block (same as the branch
successor of the entry_bb). */
if (cont_bb)
{
basic_block body_bb = FALLTHRU_EDGE (entry_bb)->dest;
basic_block bed = BRANCH_EDGE (cont_bb)->dest;
gcc_assert (FALLTHRU_EDGE (cont_bb)->dest == exit_bb);
gcc_assert (bed == body_bb || single_succ_edge (bed)->dest == body_bb);
}
else
gcc_assert (!gimple_in_ssa_p (cfun));
/* The exit block only has entry_bb and cont_bb as predecessors. */
gcc_assert (EDGE_COUNT (exit_bb->preds) == 1 + (cont_bb != NULL));
tree chunk_no;
tree chunk_max = NULL_TREE;
tree bound, offset;
tree step = create_tmp_var (diff_type, ".step");
bool up = cond_code == LT_EXPR;
tree dir = build_int_cst (diff_type, up ? +1 : -1);
bool chunking = !gimple_in_ssa_p (cfun);
bool negating;
/* Tiling vars. */
tree tile_size = NULL_TREE;
tree element_s = NULL_TREE;
tree e_bound = NULL_TREE, e_offset = NULL_TREE, e_step = NULL_TREE;
basic_block elem_body_bb = NULL;
basic_block elem_cont_bb = NULL;
/* SSA instances. */
tree offset_incr = NULL_TREE;
tree offset_init = NULL_TREE;
gimple_stmt_iterator gsi;
gassign *ass;
gcall *call;
gimple *stmt;
tree expr;
location_t loc;
edge split, be, fte;
/* Split the end of entry_bb to create head_bb. */
split = split_block (entry_bb, last_stmt (entry_bb));
basic_block head_bb = split->dest;
entry_bb = split->src;
/* Chunk setup goes at end of entry_bb, replacing the omp_for. */
gsi = gsi_last_bb (entry_bb);
gomp_for *for_stmt = as_a <gomp_for *> (gsi_stmt (gsi));
loc = gimple_location (for_stmt);
if (gimple_in_ssa_p (cfun))
{
offset_init = gimple_omp_for_index (for_stmt, 0);
gcc_assert (integer_zerop (fd->loop.n1));
/* The SSA parallelizer does gang parallelism. */
gwv = build_int_cst (integer_type_node, GOMP_DIM_MASK (GOMP_DIM_GANG));
}
if (fd->collapse > 1 || fd->tiling)
{
gcc_assert (!gimple_in_ssa_p (cfun) && up);
counts = XALLOCAVEC (struct oacc_collapse, fd->collapse);
tree total = expand_oacc_collapse_init (fd, &gsi, counts,
TREE_TYPE (fd->loop.n2), loc);
if (SSA_VAR_P (fd->loop.n2))
{
total = force_gimple_operand_gsi (&gsi, total, false, NULL_TREE,
true, GSI_SAME_STMT);
ass = gimple_build_assign (fd->loop.n2, total);
gsi_insert_before (&gsi, ass, GSI_SAME_STMT);
}
}
tree b = fd->loop.n1;
tree e = fd->loop.n2;
tree s = fd->loop.step;
b = force_gimple_operand_gsi (&gsi, b, true, NULL_TREE, true, GSI_SAME_STMT);
e = force_gimple_operand_gsi (&gsi, e, true, NULL_TREE, true, GSI_SAME_STMT);
/* Convert the step, avoiding possible unsigned->signed overflow. */
negating = !up && TYPE_UNSIGNED (TREE_TYPE (s));
if (negating)
s = fold_build1 (NEGATE_EXPR, TREE_TYPE (s), s);
s = fold_convert (diff_type, s);
if (negating)
s = fold_build1 (NEGATE_EXPR, diff_type, s);
s = force_gimple_operand_gsi (&gsi, s, true, NULL_TREE, true, GSI_SAME_STMT);
if (!chunking)
chunk_size = integer_zero_node;
expr = fold_convert (diff_type, chunk_size);
chunk_size = force_gimple_operand_gsi (&gsi, expr, true,
NULL_TREE, true, GSI_SAME_STMT);
if (fd->tiling)
{
/* Determine the tile size and element step,
modify the outer loop step size. */
tile_size = create_tmp_var (diff_type, ".tile_size");
expr = build_int_cst (diff_type, 1);
for (int ix = 0; ix < fd->collapse; ix++)
expr = fold_build2 (MULT_EXPR, diff_type, counts[ix].tile, expr);
expr = force_gimple_operand_gsi (&gsi, expr, true,
NULL_TREE, true, GSI_SAME_STMT);
ass = gimple_build_assign (tile_size, expr);
gsi_insert_before (&gsi, ass, GSI_SAME_STMT);
element_s = create_tmp_var (diff_type, ".element_s");
ass = gimple_build_assign (element_s, s);
gsi_insert_before (&gsi, ass, GSI_SAME_STMT);
expr = fold_build2 (MULT_EXPR, diff_type, s, tile_size);
s = force_gimple_operand_gsi (&gsi, expr, true,
NULL_TREE, true, GSI_SAME_STMT);
}
/* Determine the range, avoiding possible unsigned->signed overflow. */
negating = !up && TYPE_UNSIGNED (iter_type);
expr = fold_build2 (MINUS_EXPR, plus_type,
fold_convert (plus_type, negating ? b : e),
fold_convert (plus_type, negating ? e : b));
expr = fold_convert (diff_type, expr);
if (negating)
expr = fold_build1 (NEGATE_EXPR, diff_type, expr);
tree range = force_gimple_operand_gsi (&gsi, expr, true,
NULL_TREE, true, GSI_SAME_STMT);
chunk_no = build_int_cst (diff_type, 0);
if (chunking)
{
gcc_assert (!gimple_in_ssa_p (cfun));
expr = chunk_no;
chunk_max = create_tmp_var (diff_type, ".chunk_max");
chunk_no = create_tmp_var (diff_type, ".chunk_no");
ass = gimple_build_assign (chunk_no, expr);
gsi_insert_before (&gsi, ass, GSI_SAME_STMT);
call = gimple_build_call_internal (IFN_GOACC_LOOP, 6,
build_int_cst (integer_type_node,
IFN_GOACC_LOOP_CHUNKS),
dir, range, s, chunk_size, gwv);
gimple_call_set_lhs (call, chunk_max);
gimple_set_location (call, loc);
gsi_insert_before (&gsi, call, GSI_SAME_STMT);
}
else
chunk_size = chunk_no;
call = gimple_build_call_internal (IFN_GOACC_LOOP, 6,
build_int_cst (integer_type_node,
IFN_GOACC_LOOP_STEP),
dir, range, s, chunk_size, gwv);
gimple_call_set_lhs (call, step);
gimple_set_location (call, loc);
gsi_insert_before (&gsi, call, GSI_SAME_STMT);
/* Remove the GIMPLE_OMP_FOR. */
gsi_remove (&gsi, true);
/* Fixup edges from head_bb. */
be = BRANCH_EDGE (head_bb);
fte = FALLTHRU_EDGE (head_bb);
be->flags |= EDGE_FALSE_VALUE;
fte->flags ^= EDGE_FALLTHRU | EDGE_TRUE_VALUE;
basic_block body_bb = fte->dest;
if (gimple_in_ssa_p (cfun))
{
gsi = gsi_last_bb (cont_bb);
gomp_continue *cont_stmt = as_a <gomp_continue *> (gsi_stmt (gsi));
offset = gimple_omp_continue_control_use (cont_stmt);
offset_incr = gimple_omp_continue_control_def (cont_stmt);
}
else
{
offset = create_tmp_var (diff_type, ".offset");
offset_init = offset_incr = offset;
}
bound = create_tmp_var (TREE_TYPE (offset), ".bound");
/* Loop offset & bound go into head_bb. */
gsi = gsi_start_bb (head_bb);
call = gimple_build_call_internal (IFN_GOACC_LOOP, 7,
build_int_cst (integer_type_node,
IFN_GOACC_LOOP_OFFSET),
dir, range, s,
chunk_size, gwv, chunk_no);
gimple_call_set_lhs (call, offset_init);
gimple_set_location (call, loc);
gsi_insert_after (&gsi, call, GSI_CONTINUE_LINKING);
call = gimple_build_call_internal (IFN_GOACC_LOOP, 7,
build_int_cst (integer_type_node,
IFN_GOACC_LOOP_BOUND),
dir, range, s,
chunk_size, gwv, offset_init);
gimple_call_set_lhs (call, bound);
gimple_set_location (call, loc);
gsi_insert_after (&gsi, call, GSI_CONTINUE_LINKING);
expr = build2 (cond_code, boolean_type_node, offset_init, bound);
gsi_insert_after (&gsi, gimple_build_cond_empty (expr),
GSI_CONTINUE_LINKING);
/* V assignment goes into body_bb. */
if (!gimple_in_ssa_p (cfun))
{
gsi = gsi_start_bb (body_bb);
expr = build2 (plus_code, iter_type, b,
fold_convert (plus_type, offset));
expr = force_gimple_operand_gsi (&gsi, expr, false, NULL_TREE,
true, GSI_SAME_STMT);
ass = gimple_build_assign (v, expr);
gsi_insert_before (&gsi, ass, GSI_SAME_STMT);
if (fd->collapse > 1 || fd->tiling)
expand_oacc_collapse_vars (fd, false, &gsi, counts, v);
if (fd->tiling)
{
/* Determine the range of the element loop -- usually simply
the tile_size, but could be smaller if the final
iteration of the outer loop is a partial tile. */
tree e_range = create_tmp_var (diff_type, ".e_range");
expr = build2 (MIN_EXPR, diff_type,
build2 (MINUS_EXPR, diff_type, bound, offset),
build2 (MULT_EXPR, diff_type, tile_size,
element_s));
expr = force_gimple_operand_gsi (&gsi, expr, false, NULL_TREE,
true, GSI_SAME_STMT);
ass = gimple_build_assign (e_range, expr);
gsi_insert_before (&gsi, ass, GSI_SAME_STMT);
/* Determine bound, offset & step of inner loop. */
e_bound = create_tmp_var (diff_type, ".e_bound");
e_offset = create_tmp_var (diff_type, ".e_offset");
e_step = create_tmp_var (diff_type, ".e_step");
/* Mark these as element loops. */
tree t, e_gwv = integer_minus_one_node;
tree chunk = build_int_cst (diff_type, 0); /* Never chunked. */
t = build_int_cst (integer_type_node, IFN_GOACC_LOOP_OFFSET);
call = gimple_build_call_internal (IFN_GOACC_LOOP, 7, t, dir, e_range,
element_s, chunk, e_gwv, chunk);
gimple_call_set_lhs (call, e_offset);
gimple_set_location (call, loc);
gsi_insert_before (&gsi, call, GSI_SAME_STMT);
t = build_int_cst (integer_type_node, IFN_GOACC_LOOP_BOUND);
call = gimple_build_call_internal (IFN_GOACC_LOOP, 7, t, dir, e_range,
element_s, chunk, e_gwv, e_offset);
gimple_call_set_lhs (call, e_bound);
gimple_set_location (call, loc);
gsi_insert_before (&gsi, call, GSI_SAME_STMT);
t = build_int_cst (integer_type_node, IFN_GOACC_LOOP_STEP);
call = gimple_build_call_internal (IFN_GOACC_LOOP, 6, t, dir, e_range,
element_s, chunk, e_gwv);
gimple_call_set_lhs (call, e_step);
gimple_set_location (call, loc);
gsi_insert_before (&gsi, call, GSI_SAME_STMT);
/* Add test and split block. */
expr = build2 (cond_code, boolean_type_node, e_offset, e_bound);
stmt = gimple_build_cond_empty (expr);
gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
split = split_block (body_bb, stmt);
elem_body_bb = split->dest;
if (cont_bb == body_bb)
cont_bb = elem_body_bb;
body_bb = split->src;
split->flags ^= EDGE_FALLTHRU | EDGE_TRUE_VALUE;
/* Initialize the user's loop vars. */
gsi = gsi_start_bb (elem_body_bb);
expand_oacc_collapse_vars (fd, true, &gsi, counts, e_offset);
}
}
/* Loop increment goes into cont_bb. If this is not a loop, we
will have spawned threads as if it was, and each one will
execute one iteration. The specification is not explicit about
whether such constructs are ill-formed or not, and they can
occur, especially when noreturn routines are involved. */
if (cont_bb)
{
gsi = gsi_last_bb (cont_bb);
gomp_continue *cont_stmt = as_a <gomp_continue *> (gsi_stmt (gsi));
loc = gimple_location (cont_stmt);
if (fd->tiling)
{
/* Insert element loop increment and test. */
expr = build2 (PLUS_EXPR, diff_type, e_offset, e_step);
expr = force_gimple_operand_gsi (&gsi, expr, false, NULL_TREE,
true, GSI_SAME_STMT);
ass = gimple_build_assign (e_offset, expr);
gsi_insert_before (&gsi, ass, GSI_SAME_STMT);
expr = build2 (cond_code, boolean_type_node, e_offset, e_bound);
stmt = gimple_build_cond_empty (expr);
gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
split = split_block (cont_bb, stmt);
elem_cont_bb = split->src;
cont_bb = split->dest;
split->flags ^= EDGE_FALLTHRU | EDGE_FALSE_VALUE;
make_edge (elem_cont_bb, elem_body_bb, EDGE_TRUE_VALUE);
make_edge (body_bb, cont_bb, EDGE_FALSE_VALUE);
gsi = gsi_for_stmt (cont_stmt);
}
/* Increment offset. */
if (gimple_in_ssa_p (cfun))
expr = build2 (plus_code, iter_type, offset,
fold_convert (plus_type, step));
else
expr = build2 (PLUS_EXPR, diff_type, offset, step);
expr = force_gimple_operand_gsi (&gsi, expr, false, NULL_TREE,
true, GSI_SAME_STMT);
ass = gimple_build_assign (offset_incr, expr);
gsi_insert_before (&gsi, ass, GSI_SAME_STMT);
expr = build2 (cond_code, boolean_type_node, offset_incr, bound);
gsi_insert_before (&gsi, gimple_build_cond_empty (expr), GSI_SAME_STMT);
/* Remove the GIMPLE_OMP_CONTINUE. */
gsi_remove (&gsi, true);
/* Fixup edges from cont_bb. */
be = BRANCH_EDGE (cont_bb);
fte = FALLTHRU_EDGE (cont_bb);
be->flags |= EDGE_TRUE_VALUE;
fte->flags ^= EDGE_FALLTHRU | EDGE_FALSE_VALUE;
if (chunking)
{
/* Split the beginning of exit_bb to make bottom_bb. We
need to insert a nop at the start, because splitting is
after a stmt, not before. */
gsi = gsi_start_bb (exit_bb);
stmt = gimple_build_nop ();
gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
split = split_block (exit_bb, stmt);
bottom_bb = split->src;
exit_bb = split->dest;
gsi = gsi_last_bb (bottom_bb);
/* Chunk increment and test goes into bottom_bb. */
expr = build2 (PLUS_EXPR, diff_type, chunk_no,
build_int_cst (diff_type, 1));
ass = gimple_build_assign (chunk_no, expr);
gsi_insert_after (&gsi, ass, GSI_CONTINUE_LINKING);
/* Chunk test at end of bottom_bb. */
expr = build2 (LT_EXPR, boolean_type_node, chunk_no, chunk_max);
gsi_insert_after (&gsi, gimple_build_cond_empty (expr),
GSI_CONTINUE_LINKING);
/* Fixup edges from bottom_bb. */
split->flags ^= EDGE_FALLTHRU | EDGE_FALSE_VALUE;
make_edge (bottom_bb, head_bb, EDGE_TRUE_VALUE);
}
}
gsi = gsi_last_bb (exit_bb);
gcc_assert (gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_RETURN);
loc = gimple_location (gsi_stmt (gsi));
if (!gimple_in_ssa_p (cfun))
{
/* Insert the final value of V, in case it is live. This is the
value for the only thread that survives past the join. */
expr = fold_build2 (MINUS_EXPR, diff_type, range, dir);
expr = fold_build2 (PLUS_EXPR, diff_type, expr, s);
expr = fold_build2 (TRUNC_DIV_EXPR, diff_type, expr, s);
expr = fold_build2 (MULT_EXPR, diff_type, expr, s);
expr = build2 (plus_code, iter_type, b, fold_convert (plus_type, expr));
expr = force_gimple_operand_gsi (&gsi, expr, false, NULL_TREE,
true, GSI_SAME_STMT);
ass = gimple_build_assign (v, expr);
gsi_insert_before (&gsi, ass, GSI_SAME_STMT);
}
/* Remove the OMP_RETURN. */
gsi_remove (&gsi, true);
if (cont_bb)
{
/* We now have one, two or three nested loops. Update the loop
structures. */
struct loop *parent = entry_bb->loop_father;
struct loop *body = body_bb->loop_father;
if (chunking)
{
struct loop *chunk_loop = alloc_loop ();
chunk_loop->header = head_bb;
chunk_loop->latch = bottom_bb;
add_loop (chunk_loop, parent);
parent = chunk_loop;
}
else if (parent != body)
{
gcc_assert (body->header == body_bb);
gcc_assert (body->latch == cont_bb
|| single_pred (body->latch) == cont_bb);
parent = NULL;
}
if (parent)
{
struct loop *body_loop = alloc_loop ();
body_loop->header = body_bb;
body_loop->latch = cont_bb;
add_loop (body_loop, parent);
if (fd->tiling)
{
/* Insert tiling's element loop. */
struct loop *inner_loop = alloc_loop ();
inner_loop->header = elem_body_bb;
inner_loop->latch = elem_cont_bb;
add_loop (inner_loop, body_loop);
}
}
}
}
/* Expand the OMP loop defined by REGION. */
static void
expand_omp_for (struct omp_region *region, gimple *inner_stmt)
{
struct omp_for_data fd;
struct omp_for_data_loop *loops;
loops
= (struct omp_for_data_loop *)
alloca (gimple_omp_for_collapse (last_stmt (region->entry))
* sizeof (struct omp_for_data_loop));
omp_extract_for_data (as_a <gomp_for *> (last_stmt (region->entry)),
&fd, loops);
region->sched_kind = fd.sched_kind;
region->sched_modifiers = fd.sched_modifiers;
gcc_assert (EDGE_COUNT (region->entry->succs) == 2);
BRANCH_EDGE (region->entry)->flags &= ~EDGE_ABNORMAL;
FALLTHRU_EDGE (region->entry)->flags &= ~EDGE_ABNORMAL;
if (region->cont)
{
gcc_assert (EDGE_COUNT (region->cont->succs) == 2);
BRANCH_EDGE (region->cont)->flags &= ~EDGE_ABNORMAL;
FALLTHRU_EDGE (region->cont)->flags &= ~EDGE_ABNORMAL;
}
else
/* If there isn't a continue then this is a degerate case where
the introduction of abnormal edges during lowering will prevent
original loops from being detected. Fix that up. */
loops_state_set (LOOPS_NEED_FIXUP);
if (gimple_omp_for_kind (fd.for_stmt) & GF_OMP_FOR_SIMD)
expand_omp_simd (region, &fd);
else if (gimple_omp_for_kind (fd.for_stmt) == GF_OMP_FOR_KIND_CILKFOR)
expand_cilk_for (region, &fd);
else if (gimple_omp_for_kind (fd.for_stmt) == GF_OMP_FOR_KIND_OACC_LOOP)
{
gcc_assert (!inner_stmt);
expand_oacc_for (region, &fd);
}
else if (gimple_omp_for_kind (fd.for_stmt) == GF_OMP_FOR_KIND_TASKLOOP)
{
if (gimple_omp_for_combined_into_p (fd.for_stmt))
expand_omp_taskloop_for_inner (region, &fd, inner_stmt);
else
expand_omp_taskloop_for_outer (region, &fd, inner_stmt);
}
else if (fd.sched_kind == OMP_CLAUSE_SCHEDULE_STATIC
&& !fd.have_ordered)
{
if (fd.chunk_size == NULL)
expand_omp_for_static_nochunk (region, &fd, inner_stmt);
else
expand_omp_for_static_chunk (region, &fd, inner_stmt);
}
else
{
int fn_index, start_ix, next_ix;
gcc_assert (gimple_omp_for_kind (fd.for_stmt)
== GF_OMP_FOR_KIND_FOR);
if (fd.chunk_size == NULL
&& fd.sched_kind == OMP_CLAUSE_SCHEDULE_STATIC)
fd.chunk_size = integer_zero_node;
gcc_assert (fd.sched_kind != OMP_CLAUSE_SCHEDULE_AUTO);
switch (fd.sched_kind)
{
case OMP_CLAUSE_SCHEDULE_RUNTIME:
fn_index = 3;
break;
case OMP_CLAUSE_SCHEDULE_DYNAMIC:
case OMP_CLAUSE_SCHEDULE_GUIDED:
if ((fd.sched_modifiers & OMP_CLAUSE_SCHEDULE_NONMONOTONIC)
&& !fd.ordered
&& !fd.have_ordered)
{
fn_index = 3 + fd.sched_kind;
break;
}
/* FALLTHRU */
default:
fn_index = fd.sched_kind;
break;
}
if (!fd.ordered)
fn_index += fd.have_ordered * 6;
if (fd.ordered)
start_ix = ((int)BUILT_IN_GOMP_LOOP_DOACROSS_STATIC_START) + fn_index;
else
start_ix = ((int)BUILT_IN_GOMP_LOOP_STATIC_START) + fn_index;
next_ix = ((int)BUILT_IN_GOMP_LOOP_STATIC_NEXT) + fn_index;
if (fd.iter_type == long_long_unsigned_type_node)
{
start_ix += ((int)BUILT_IN_GOMP_LOOP_ULL_STATIC_START
- (int)BUILT_IN_GOMP_LOOP_STATIC_START);
next_ix += ((int)BUILT_IN_GOMP_LOOP_ULL_STATIC_NEXT
- (int)BUILT_IN_GOMP_LOOP_STATIC_NEXT);
}
expand_omp_for_generic (region, &fd, (enum built_in_function) start_ix,
(enum built_in_function) next_ix, inner_stmt);
}
if (gimple_in_ssa_p (cfun))
update_ssa (TODO_update_ssa_only_virtuals);
}
/* Expand code for an OpenMP sections directive. In pseudo code, we generate
v = GOMP_sections_start (n);
L0:
switch (v)
{
case 0:
goto L2;
case 1:
section 1;
goto L1;
case 2:
...
case n:
...
default:
abort ();
}
L1:
v = GOMP_sections_next ();
goto L0;
L2:
reduction;
If this is a combined parallel sections, replace the call to
GOMP_sections_start with call to GOMP_sections_next. */
static void
expand_omp_sections (struct omp_region *region)
{
tree t, u, vin = NULL, vmain, vnext, l2;
unsigned len;
basic_block entry_bb, l0_bb, l1_bb, l2_bb, default_bb;
gimple_stmt_iterator si, switch_si;
gomp_sections *sections_stmt;
gimple *stmt;
gomp_continue *cont;
edge_iterator ei;
edge e;
struct omp_region *inner;
unsigned i, casei;
bool exit_reachable = region->cont != NULL;
gcc_assert (region->exit != NULL);
entry_bb = region->entry;
l0_bb = single_succ (entry_bb);
l1_bb = region->cont;
l2_bb = region->exit;
if (single_pred_p (l2_bb) && single_pred (l2_bb) == l0_bb)
l2 = gimple_block_label (l2_bb);
else
{
/* This can happen if there are reductions. */
len = EDGE_COUNT (l0_bb->succs);
gcc_assert (len > 0);
e = EDGE_SUCC (l0_bb, len - 1);
si = gsi_last_bb (e->dest);
l2 = NULL_TREE;
if (gsi_end_p (si)
|| gimple_code (gsi_stmt (si)) != GIMPLE_OMP_SECTION)
l2 = gimple_block_label (e->dest);
else
FOR_EACH_EDGE (e, ei, l0_bb->succs)
{
si = gsi_last_bb (e->dest);
if (gsi_end_p (si)
|| gimple_code (gsi_stmt (si)) != GIMPLE_OMP_SECTION)
{
l2 = gimple_block_label (e->dest);
break;
}
}
}
if (exit_reachable)
default_bb = create_empty_bb (l1_bb->prev_bb);
else
default_bb = create_empty_bb (l0_bb);
/* We will build a switch() with enough cases for all the
GIMPLE_OMP_SECTION regions, a '0' case to handle the end of more work
and a default case to abort if something goes wrong. */
len = EDGE_COUNT (l0_bb->succs);
/* Use vec::quick_push on label_vec throughout, since we know the size
in advance. */
auto_vec<tree> label_vec (len);
/* The call to GOMP_sections_start goes in ENTRY_BB, replacing the
GIMPLE_OMP_SECTIONS statement. */
si = gsi_last_bb (entry_bb);
sections_stmt = as_a <gomp_sections *> (gsi_stmt (si));
gcc_assert (gimple_code (sections_stmt) == GIMPLE_OMP_SECTIONS);
vin = gimple_omp_sections_control (sections_stmt);
if (!is_combined_parallel (region))
{
/* If we are not inside a combined parallel+sections region,
call GOMP_sections_start. */
t = build_int_cst (unsigned_type_node, len - 1);
u = builtin_decl_explicit (BUILT_IN_GOMP_SECTIONS_START);
stmt = gimple_build_call (u, 1, t);
}
else
{
/* Otherwise, call GOMP_sections_next. */
u = builtin_decl_explicit (BUILT_IN_GOMP_SECTIONS_NEXT);
stmt = gimple_build_call (u, 0);
}
gimple_call_set_lhs (stmt, vin);
gsi_insert_after (&si, stmt, GSI_SAME_STMT);
gsi_remove (&si, true);
/* The switch() statement replacing GIMPLE_OMP_SECTIONS_SWITCH goes in
L0_BB. */
switch_si = gsi_last_bb (l0_bb);
gcc_assert (gimple_code (gsi_stmt (switch_si)) == GIMPLE_OMP_SECTIONS_SWITCH);
if (exit_reachable)
{
cont = as_a <gomp_continue *> (last_stmt (l1_bb));
gcc_assert (gimple_code (cont) == GIMPLE_OMP_CONTINUE);
vmain = gimple_omp_continue_control_use (cont);
vnext = gimple_omp_continue_control_def (cont);
}
else
{
vmain = vin;
vnext = NULL_TREE;
}
t = build_case_label (build_int_cst (unsigned_type_node, 0), NULL, l2);
label_vec.quick_push (t);
i = 1;
/* Convert each GIMPLE_OMP_SECTION into a CASE_LABEL_EXPR. */
for (inner = region->inner, casei = 1;
inner;
inner = inner->next, i++, casei++)
{
basic_block s_entry_bb, s_exit_bb;
/* Skip optional reduction region. */
if (inner->type == GIMPLE_OMP_ATOMIC_LOAD)
{
--i;
--casei;
continue;
}
s_entry_bb = inner->entry;
s_exit_bb = inner->exit;
t = gimple_block_label (s_entry_bb);
u = build_int_cst (unsigned_type_node, casei);
u = build_case_label (u, NULL, t);
label_vec.quick_push (u);
si = gsi_last_bb (s_entry_bb);
gcc_assert (gimple_code (gsi_stmt (si)) == GIMPLE_OMP_SECTION);
gcc_assert (i < len || gimple_omp_section_last_p (gsi_stmt (si)));
gsi_remove (&si, true);
single_succ_edge (s_entry_bb)->flags = EDGE_FALLTHRU;
if (s_exit_bb == NULL)
continue;
si = gsi_last_bb (s_exit_bb);
gcc_assert (gimple_code (gsi_stmt (si)) == GIMPLE_OMP_RETURN);
gsi_remove (&si, true);
single_succ_edge (s_exit_bb)->flags = EDGE_FALLTHRU;
}
/* Error handling code goes in DEFAULT_BB. */
t = gimple_block_label (default_bb);
u = build_case_label (NULL, NULL, t);
make_edge (l0_bb, default_bb, 0);
add_bb_to_loop (default_bb, current_loops->tree_root);
stmt = gimple_build_switch (vmain, u, label_vec);
gsi_insert_after (&switch_si, stmt, GSI_SAME_STMT);
gsi_remove (&switch_si, true);
si = gsi_start_bb (default_bb);
stmt = gimple_build_call (builtin_decl_explicit (BUILT_IN_TRAP), 0);
gsi_insert_after (&si, stmt, GSI_CONTINUE_LINKING);
if (exit_reachable)
{
tree bfn_decl;
/* Code to get the next section goes in L1_BB. */
si = gsi_last_bb (l1_bb);
gcc_assert (gimple_code (gsi_stmt (si)) == GIMPLE_OMP_CONTINUE);
bfn_decl = builtin_decl_explicit (BUILT_IN_GOMP_SECTIONS_NEXT);
stmt = gimple_build_call (bfn_decl, 0);
gimple_call_set_lhs (stmt, vnext);
gsi_insert_after (&si, stmt, GSI_SAME_STMT);
gsi_remove (&si, true);
single_succ_edge (l1_bb)->flags = EDGE_FALLTHRU;
}
/* Cleanup function replaces GIMPLE_OMP_RETURN in EXIT_BB. */
si = gsi_last_bb (l2_bb);
if (gimple_omp_return_nowait_p (gsi_stmt (si)))
t = builtin_decl_explicit (BUILT_IN_GOMP_SECTIONS_END_NOWAIT);
else if (gimple_omp_return_lhs (gsi_stmt (si)))
t = builtin_decl_explicit (BUILT_IN_GOMP_SECTIONS_END_CANCEL);
else
t = builtin_decl_explicit (BUILT_IN_GOMP_SECTIONS_END);
stmt = gimple_build_call (t, 0);
if (gimple_omp_return_lhs (gsi_stmt (si)))
gimple_call_set_lhs (stmt, gimple_omp_return_lhs (gsi_stmt (si)));
gsi_insert_after (&si, stmt, GSI_SAME_STMT);
gsi_remove (&si, true);
set_immediate_dominator (CDI_DOMINATORS, default_bb, l0_bb);
}
/* Expand code for an OpenMP single directive. We've already expanded
much of the code, here we simply place the GOMP_barrier call. */
static void
expand_omp_single (struct omp_region *region)
{
basic_block entry_bb, exit_bb;
gimple_stmt_iterator si;
entry_bb = region->entry;
exit_bb = region->exit;
si = gsi_last_bb (entry_bb);
gcc_assert (gimple_code (gsi_stmt (si)) == GIMPLE_OMP_SINGLE);
gsi_remove (&si, true);
single_succ_edge (entry_bb)->flags = EDGE_FALLTHRU;
si = gsi_last_bb (exit_bb);
if (!gimple_omp_return_nowait_p (gsi_stmt (si)))
{
tree t = gimple_omp_return_lhs (gsi_stmt (si));
gsi_insert_after (&si, omp_build_barrier (t), GSI_SAME_STMT);
}
gsi_remove (&si, true);
single_succ_edge (exit_bb)->flags = EDGE_FALLTHRU;
}
/* Generic expansion for OpenMP synchronization directives: master,
ordered and critical. All we need to do here is remove the entry
and exit markers for REGION. */
static void
expand_omp_synch (struct omp_region *region)
{
basic_block entry_bb, exit_bb;
gimple_stmt_iterator si;
entry_bb = region->entry;
exit_bb = region->exit;
si = gsi_last_bb (entry_bb);
gcc_assert (gimple_code (gsi_stmt (si)) == GIMPLE_OMP_SINGLE
|| gimple_code (gsi_stmt (si)) == GIMPLE_OMP_MASTER
|| gimple_code (gsi_stmt (si)) == GIMPLE_OMP_TASKGROUP
|| gimple_code (gsi_stmt (si)) == GIMPLE_OMP_ORDERED
|| gimple_code (gsi_stmt (si)) == GIMPLE_OMP_CRITICAL
|| gimple_code (gsi_stmt (si)) == GIMPLE_OMP_TEAMS);
gsi_remove (&si, true);
single_succ_edge (entry_bb)->flags = EDGE_FALLTHRU;
if (exit_bb)
{
si = gsi_last_bb (exit_bb);
gcc_assert (gimple_code (gsi_stmt (si)) == GIMPLE_OMP_RETURN);
gsi_remove (&si, true);
single_succ_edge (exit_bb)->flags = EDGE_FALLTHRU;
}
}
/* A subroutine of expand_omp_atomic. Attempt to implement the atomic
operation as a normal volatile load. */
static bool
expand_omp_atomic_load (basic_block load_bb, tree addr,
tree loaded_val, int index)
{
enum built_in_function tmpbase;
gimple_stmt_iterator gsi;
basic_block store_bb;
location_t loc;
gimple *stmt;
tree decl, call, type, itype;
gsi = gsi_last_bb (load_bb);
stmt = gsi_stmt (gsi);
gcc_assert (gimple_code (stmt) == GIMPLE_OMP_ATOMIC_LOAD);
loc = gimple_location (stmt);
/* ??? If the target does not implement atomic_load_optab[mode], and mode
is smaller than word size, then expand_atomic_load assumes that the load
is atomic. We could avoid the builtin entirely in this case. */
tmpbase = (enum built_in_function) (BUILT_IN_ATOMIC_LOAD_N + index + 1);
decl = builtin_decl_explicit (tmpbase);
if (decl == NULL_TREE)
return false;
type = TREE_TYPE (loaded_val);
itype = TREE_TYPE (TREE_TYPE (decl));
call = build_call_expr_loc (loc, decl, 2, addr,
build_int_cst (NULL,
gimple_omp_atomic_seq_cst_p (stmt)
? MEMMODEL_SEQ_CST
: MEMMODEL_RELAXED));
if (!useless_type_conversion_p (type, itype))
call = fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, call);
call = build2_loc (loc, MODIFY_EXPR, void_type_node, loaded_val, call);
force_gimple_operand_gsi (&gsi, call, true, NULL_TREE, true, GSI_SAME_STMT);
gsi_remove (&gsi, true);
store_bb = single_succ (load_bb);
gsi = gsi_last_bb (store_bb);
gcc_assert (gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_ATOMIC_STORE);
gsi_remove (&gsi, true);
if (gimple_in_ssa_p (cfun))
update_ssa (TODO_update_ssa_no_phi);
return true;
}
/* A subroutine of expand_omp_atomic. Attempt to implement the atomic
operation as a normal volatile store. */
static bool
expand_omp_atomic_store (basic_block load_bb, tree addr,
tree loaded_val, tree stored_val, int index)
{
enum built_in_function tmpbase;
gimple_stmt_iterator gsi;
basic_block store_bb = single_succ (load_bb);
location_t loc;
gimple *stmt;
tree decl, call, type, itype;
machine_mode imode;
bool exchange;
gsi = gsi_last_bb (load_bb);
stmt = gsi_stmt (gsi);
gcc_assert (gimple_code (stmt) == GIMPLE_OMP_ATOMIC_LOAD);
/* If the load value is needed, then this isn't a store but an exchange. */
exchange = gimple_omp_atomic_need_value_p (stmt);
gsi = gsi_last_bb (store_bb);
stmt = gsi_stmt (gsi);
gcc_assert (gimple_code (stmt) == GIMPLE_OMP_ATOMIC_STORE);
loc = gimple_location (stmt);
/* ??? If the target does not implement atomic_store_optab[mode], and mode
is smaller than word size, then expand_atomic_store assumes that the store
is atomic. We could avoid the builtin entirely in this case. */
tmpbase = (exchange ? BUILT_IN_ATOMIC_EXCHANGE_N : BUILT_IN_ATOMIC_STORE_N);
tmpbase = (enum built_in_function) ((int) tmpbase + index + 1);
decl = builtin_decl_explicit (tmpbase);
if (decl == NULL_TREE)
return false;
type = TREE_TYPE (stored_val);
/* Dig out the type of the function's second argument. */
itype = TREE_TYPE (decl);
itype = TYPE_ARG_TYPES (itype);
itype = TREE_CHAIN (itype);
itype = TREE_VALUE (itype);
imode = TYPE_MODE (itype);
if (exchange && !can_atomic_exchange_p (imode, true))
return false;
if (!useless_type_conversion_p (itype, type))
stored_val = fold_build1_loc (loc, VIEW_CONVERT_EXPR, itype, stored_val);
call = build_call_expr_loc (loc, decl, 3, addr, stored_val,
build_int_cst (NULL,
gimple_omp_atomic_seq_cst_p (stmt)
? MEMMODEL_SEQ_CST
: MEMMODEL_RELAXED));
if (exchange)
{
if (!useless_type_conversion_p (type, itype))
call = build1_loc (loc, VIEW_CONVERT_EXPR, type, call);
call = build2_loc (loc, MODIFY_EXPR, void_type_node, loaded_val, call);
}
force_gimple_operand_gsi (&gsi, call, true, NULL_TREE, true, GSI_SAME_STMT);
gsi_remove (&gsi, true);
/* Remove the GIMPLE_OMP_ATOMIC_LOAD that we verified above. */
gsi = gsi_last_bb (load_bb);
gsi_remove (&gsi, true);
if (gimple_in_ssa_p (cfun))
update_ssa (TODO_update_ssa_no_phi);
return true;
}
/* A subroutine of expand_omp_atomic. Attempt to implement the atomic
operation as a __atomic_fetch_op builtin. INDEX is log2 of the
size of the data type, and thus usable to find the index of the builtin
decl. Returns false if the expression is not of the proper form. */
static bool
expand_omp_atomic_fetch_op (basic_block load_bb,
tree addr, tree loaded_val,
tree stored_val, int index)
{
enum built_in_function oldbase, newbase, tmpbase;
tree decl, itype, call;
tree lhs, rhs;
basic_block store_bb = single_succ (load_bb);
gimple_stmt_iterator gsi;
gimple *stmt;
location_t loc;
enum tree_code code;
bool need_old, need_new;
machine_mode imode;
bool seq_cst;
/* We expect to find the following sequences:
load_bb:
GIMPLE_OMP_ATOMIC_LOAD (tmp, mem)
store_bb:
val = tmp OP something; (or: something OP tmp)
GIMPLE_OMP_STORE (val)
???FIXME: Allow a more flexible sequence.
Perhaps use data flow to pick the statements.
*/
gsi = gsi_after_labels (store_bb);
stmt = gsi_stmt (gsi);
loc = gimple_location (stmt);
if (!is_gimple_assign (stmt))
return false;
gsi_next (&gsi);
if (gimple_code (gsi_stmt (gsi)) != GIMPLE_OMP_ATOMIC_STORE)
return false;
need_new = gimple_omp_atomic_need_value_p (gsi_stmt (gsi));
need_old = gimple_omp_atomic_need_value_p (last_stmt (load_bb));
seq_cst = gimple_omp_atomic_seq_cst_p (last_stmt (load_bb));
gcc_checking_assert (!need_old || !need_new);
if (!operand_equal_p (gimple_assign_lhs (stmt), stored_val, 0))
return false;
/* Check for one of the supported fetch-op operations. */
code = gimple_assign_rhs_code (stmt);
switch (code)
{
case PLUS_EXPR:
case POINTER_PLUS_EXPR:
oldbase = BUILT_IN_ATOMIC_FETCH_ADD_N;
newbase = BUILT_IN_ATOMIC_ADD_FETCH_N;
break;
case MINUS_EXPR:
oldbase = BUILT_IN_ATOMIC_FETCH_SUB_N;
newbase = BUILT_IN_ATOMIC_SUB_FETCH_N;
break;
case BIT_AND_EXPR:
oldbase = BUILT_IN_ATOMIC_FETCH_AND_N;
newbase = BUILT_IN_ATOMIC_AND_FETCH_N;
break;
case BIT_IOR_EXPR:
oldbase = BUILT_IN_ATOMIC_FETCH_OR_N;
newbase = BUILT_IN_ATOMIC_OR_FETCH_N;
break;
case BIT_XOR_EXPR:
oldbase = BUILT_IN_ATOMIC_FETCH_XOR_N;
newbase = BUILT_IN_ATOMIC_XOR_FETCH_N;
break;
default:
return false;
}
/* Make sure the expression is of the proper form. */
if (operand_equal_p (gimple_assign_rhs1 (stmt), loaded_val, 0))
rhs = gimple_assign_rhs2 (stmt);
else if (commutative_tree_code (gimple_assign_rhs_code (stmt))
&& operand_equal_p (gimple_assign_rhs2 (stmt), loaded_val, 0))
rhs = gimple_assign_rhs1 (stmt);
else
return false;
tmpbase = ((enum built_in_function)
((need_new ? newbase : oldbase) + index + 1));
decl = builtin_decl_explicit (tmpbase);
if (decl == NULL_TREE)
return false;
itype = TREE_TYPE (TREE_TYPE (decl));
imode = TYPE_MODE (itype);
/* We could test all of the various optabs involved, but the fact of the
matter is that (with the exception of i486 vs i586 and xadd) all targets
that support any atomic operaton optab also implements compare-and-swap.
Let optabs.c take care of expanding any compare-and-swap loop. */
if (!can_compare_and_swap_p (imode, true) || !can_atomic_load_p (imode))
return false;
gsi = gsi_last_bb (load_bb);
gcc_assert (gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_ATOMIC_LOAD);
/* OpenMP does not imply any barrier-like semantics on its atomic ops.
It only requires that the operation happen atomically. Thus we can
use the RELAXED memory model. */
call = build_call_expr_loc (loc, decl, 3, addr,
fold_convert_loc (loc, itype, rhs),
build_int_cst (NULL,
seq_cst ? MEMMODEL_SEQ_CST
: MEMMODEL_RELAXED));
if (need_old || need_new)
{
lhs = need_old ? loaded_val : stored_val;
call = fold_convert_loc (loc, TREE_TYPE (lhs), call);
call = build2_loc (loc, MODIFY_EXPR, void_type_node, lhs, call);
}
else
call = fold_convert_loc (loc, void_type_node, call);
force_gimple_operand_gsi (&gsi, call, true, NULL_TREE, true, GSI_SAME_STMT);
gsi_remove (&gsi, true);
gsi = gsi_last_bb (store_bb);
gcc_assert (gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_ATOMIC_STORE);
gsi_remove (&gsi, true);
gsi = gsi_last_bb (store_bb);
stmt = gsi_stmt (gsi);
gsi_remove (&gsi, true);
if (gimple_in_ssa_p (cfun))
{
release_defs (stmt);
update_ssa (TODO_update_ssa_no_phi);
}
return true;
}
/* A subroutine of expand_omp_atomic. Implement the atomic operation as:
oldval = *addr;
repeat:
newval = rhs; // with oldval replacing *addr in rhs
oldval = __sync_val_compare_and_swap (addr, oldval, newval);
if (oldval != newval)
goto repeat;
INDEX is log2 of the size of the data type, and thus usable to find the
index of the builtin decl. */
static bool
expand_omp_atomic_pipeline (basic_block load_bb, basic_block store_bb,
tree addr, tree loaded_val, tree stored_val,
int index)
{
tree loadedi, storedi, initial, new_storedi, old_vali;
tree type, itype, cmpxchg, iaddr;
gimple_stmt_iterator si;
basic_block loop_header = single_succ (load_bb);
gimple *phi, *stmt;
edge e;
enum built_in_function fncode;
/* ??? We need a non-pointer interface to __atomic_compare_exchange in
order to use the RELAXED memory model effectively. */
fncode = (enum built_in_function)((int)BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_N
+ index + 1);
cmpxchg = builtin_decl_explicit (fncode);
if (cmpxchg == NULL_TREE)
return false;
type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (addr)));
itype = TREE_TYPE (TREE_TYPE (cmpxchg));
if (!can_compare_and_swap_p (TYPE_MODE (itype), true)
|| !can_atomic_load_p (TYPE_MODE (itype)))
return false;
/* Load the initial value, replacing the GIMPLE_OMP_ATOMIC_LOAD. */
si = gsi_last_bb (load_bb);
gcc_assert (gimple_code (gsi_stmt (si)) == GIMPLE_OMP_ATOMIC_LOAD);
/* For floating-point values, we'll need to view-convert them to integers
so that we can perform the atomic compare and swap. Simplify the
following code by always setting up the "i"ntegral variables. */
if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
{
tree iaddr_val;
iaddr = create_tmp_reg (build_pointer_type_for_mode (itype, ptr_mode,
true));
iaddr_val
= force_gimple_operand_gsi (&si,
fold_convert (TREE_TYPE (iaddr), addr),
false, NULL_TREE, true, GSI_SAME_STMT);
stmt = gimple_build_assign (iaddr, iaddr_val);
gsi_insert_before (&si, stmt, GSI_SAME_STMT);
loadedi = create_tmp_var (itype);
if (gimple_in_ssa_p (cfun))
loadedi = make_ssa_name (loadedi);
}
else
{
iaddr = addr;
loadedi = loaded_val;
}
fncode = (enum built_in_function) (BUILT_IN_ATOMIC_LOAD_N + index + 1);
tree loaddecl = builtin_decl_explicit (fncode);
if (loaddecl)
initial
= fold_convert (TREE_TYPE (TREE_TYPE (iaddr)),
build_call_expr (loaddecl, 2, iaddr,
build_int_cst (NULL_TREE,
MEMMODEL_RELAXED)));
else
initial = build2 (MEM_REF, TREE_TYPE (TREE_TYPE (iaddr)), iaddr,
build_int_cst (TREE_TYPE (iaddr), 0));
initial
= force_gimple_operand_gsi (&si, initial, true, NULL_TREE, true,
GSI_SAME_STMT);
/* Move the value to the LOADEDI temporary. */
if (gimple_in_ssa_p (cfun))
{
gcc_assert (gimple_seq_empty_p (phi_nodes (loop_header)));
phi = create_phi_node (loadedi, loop_header);
SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, single_succ_edge (load_bb)),
initial);
}
else
gsi_insert_before (&si,
gimple_build_assign (loadedi, initial),
GSI_SAME_STMT);
if (loadedi != loaded_val)
{
gimple_stmt_iterator gsi2;
tree x;
x = build1 (VIEW_CONVERT_EXPR, type, loadedi);
gsi2 = gsi_start_bb (loop_header);
if (gimple_in_ssa_p (cfun))
{
gassign *stmt;
x = force_gimple_operand_gsi (&gsi2, x, true, NULL_TREE,
true, GSI_SAME_STMT);
stmt = gimple_build_assign (loaded_val, x);
gsi_insert_before (&gsi2, stmt, GSI_SAME_STMT);
}
else
{
x = build2 (MODIFY_EXPR, TREE_TYPE (loaded_val), loaded_val, x);
force_gimple_operand_gsi (&gsi2, x, true, NULL_TREE,
true, GSI_SAME_STMT);
}
}
gsi_remove (&si, true);
si = gsi_last_bb (store_bb);
gcc_assert (gimple_code (gsi_stmt (si)) == GIMPLE_OMP_ATOMIC_STORE);
if (iaddr == addr)
storedi = stored_val;
else
storedi
= force_gimple_operand_gsi (&si,
build1 (VIEW_CONVERT_EXPR, itype,
stored_val), true, NULL_TREE, true,
GSI_SAME_STMT);
/* Build the compare&swap statement. */
new_storedi = build_call_expr (cmpxchg, 3, iaddr, loadedi, storedi);
new_storedi = force_gimple_operand_gsi (&si,
fold_convert (TREE_TYPE (loadedi),
new_storedi),
true, NULL_TREE,
true, GSI_SAME_STMT);
if (gimple_in_ssa_p (cfun))
old_vali = loadedi;
else
{
old_vali = create_tmp_var (TREE_TYPE (loadedi));
stmt = gimple_build_assign (old_vali, loadedi);
gsi_insert_before (&si, stmt, GSI_SAME_STMT);
stmt = gimple_build_assign (loadedi, new_storedi);
gsi_insert_before (&si, stmt, GSI_SAME_STMT);
}
/* Note that we always perform the comparison as an integer, even for
floating point. This allows the atomic operation to properly
succeed even with NaNs and -0.0. */
tree ne = build2 (NE_EXPR, boolean_type_node, new_storedi, old_vali);
stmt = gimple_build_cond_empty (ne);
gsi_insert_before (&si, stmt, GSI_SAME_STMT);
/* Update cfg. */
e = single_succ_edge (store_bb);
e->flags &= ~EDGE_FALLTHRU;
e->flags |= EDGE_FALSE_VALUE;
/* Expect no looping. */
e->probability = profile_probability::guessed_always ();
e = make_edge (store_bb, loop_header, EDGE_TRUE_VALUE);
e->probability = profile_probability::guessed_never ();
/* Copy the new value to loadedi (we already did that before the condition
if we are not in SSA). */
if (gimple_in_ssa_p (cfun))
{
phi = gimple_seq_first_stmt (phi_nodes (loop_header));
SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, e), new_storedi);
}
/* Remove GIMPLE_OMP_ATOMIC_STORE. */
gsi_remove (&si, true);
struct loop *loop = alloc_loop ();
loop->header = loop_header;
loop->latch = store_bb;
add_loop (loop, loop_header->loop_father);
if (gimple_in_ssa_p (cfun))
update_ssa (TODO_update_ssa_no_phi);
return true;
}
/* A subroutine of expand_omp_atomic. Implement the atomic operation as:
GOMP_atomic_start ();
*addr = rhs;
GOMP_atomic_end ();
The result is not globally atomic, but works so long as all parallel
references are within #pragma omp atomic directives. According to
responses received from omp@openmp.org, appears to be within spec.
Which makes sense, since that's how several other compilers handle
this situation as well.
LOADED_VAL and ADDR are the operands of GIMPLE_OMP_ATOMIC_LOAD we're
expanding. STORED_VAL is the operand of the matching
GIMPLE_OMP_ATOMIC_STORE.
We replace
GIMPLE_OMP_ATOMIC_LOAD (loaded_val, addr) with
loaded_val = *addr;
and replace
GIMPLE_OMP_ATOMIC_STORE (stored_val) with
*addr = stored_val;
*/
static bool
expand_omp_atomic_mutex (basic_block load_bb, basic_block store_bb,
tree addr, tree loaded_val, tree stored_val)
{
gimple_stmt_iterator si;
gassign *stmt;
tree t;
si = gsi_last_bb (load_bb);
gcc_assert (gimple_code (gsi_stmt (si)) == GIMPLE_OMP_ATOMIC_LOAD);
t = builtin_decl_explicit (BUILT_IN_GOMP_ATOMIC_START);
t = build_call_expr (t, 0);
force_gimple_operand_gsi (&si, t, true, NULL_TREE, true, GSI_SAME_STMT);
stmt = gimple_build_assign (loaded_val, build_simple_mem_ref (addr));
gsi_insert_before (&si, stmt, GSI_SAME_STMT);
gsi_remove (&si, true);
si = gsi_last_bb (store_bb);
gcc_assert (gimple_code (gsi_stmt (si)) == GIMPLE_OMP_ATOMIC_STORE);
stmt = gimple_build_assign (build_simple_mem_ref (unshare_expr (addr)),
stored_val);
gsi_insert_before (&si, stmt, GSI_SAME_STMT);
t = builtin_decl_explicit (BUILT_IN_GOMP_ATOMIC_END);
t = build_call_expr (t, 0);
force_gimple_operand_gsi (&si, t, true, NULL_TREE, true, GSI_SAME_STMT);
gsi_remove (&si, true);
if (gimple_in_ssa_p (cfun))
update_ssa (TODO_update_ssa_no_phi);
return true;
}
/* Expand an GIMPLE_OMP_ATOMIC statement. We try to expand
using expand_omp_atomic_fetch_op. If it failed, we try to
call expand_omp_atomic_pipeline, and if it fails too, the
ultimate fallback is wrapping the operation in a mutex
(expand_omp_atomic_mutex). REGION is the atomic region built
by build_omp_regions_1(). */
static void
expand_omp_atomic (struct omp_region *region)
{
basic_block load_bb = region->entry, store_bb = region->exit;
gomp_atomic_load *load = as_a <gomp_atomic_load *> (last_stmt (load_bb));
gomp_atomic_store *store = as_a <gomp_atomic_store *> (last_stmt (store_bb));
tree loaded_val = gimple_omp_atomic_load_lhs (load);
tree addr = gimple_omp_atomic_load_rhs (load);
tree stored_val = gimple_omp_atomic_store_val (store);
tree type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (addr)));
HOST_WIDE_INT index;
/* Make sure the type is one of the supported sizes. */
index = tree_to_uhwi (TYPE_SIZE_UNIT (type));
index = exact_log2 (index);
if (index >= 0 && index <= 4)
{
unsigned int align = TYPE_ALIGN_UNIT (type);
/* __sync builtins require strict data alignment. */
if (exact_log2 (align) >= index)
{
/* Atomic load. */
if (loaded_val == stored_val
&& (GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT
|| GET_MODE_CLASS (TYPE_MODE (type)) == MODE_FLOAT)
&& GET_MODE_BITSIZE (TYPE_MODE (type)) <= BITS_PER_WORD
&& expand_omp_atomic_load (load_bb, addr, loaded_val, index))
return;
/* Atomic store. */
if ((GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT
|| GET_MODE_CLASS (TYPE_MODE (type)) == MODE_FLOAT)
&& GET_MODE_BITSIZE (TYPE_MODE (type)) <= BITS_PER_WORD
&& store_bb == single_succ (load_bb)
&& first_stmt (store_bb) == store
&& expand_omp_atomic_store (load_bb, addr, loaded_val,
stored_val, index))
return;
/* When possible, use specialized atomic update functions. */
if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
&& store_bb == single_succ (load_bb)
&& expand_omp_atomic_fetch_op (load_bb, addr,
loaded_val, stored_val, index))
return;
/* If we don't have specialized __sync builtins, try and implement
as a compare and swap loop. */
if (expand_omp_atomic_pipeline (load_bb, store_bb, addr,
loaded_val, stored_val, index))
return;
}
}
/* The ultimate fallback is wrapping the operation in a mutex. */
expand_omp_atomic_mutex (load_bb, store_bb, addr, loaded_val, stored_val);
}
/* Mark the loops inside the kernels region starting at REGION_ENTRY and ending
at REGION_EXIT. */
static void
mark_loops_in_oacc_kernels_region (basic_block region_entry,
basic_block region_exit)
{
struct loop *outer = region_entry->loop_father;
gcc_assert (region_exit == NULL || outer == region_exit->loop_father);
/* Don't parallelize the kernels region if it contains more than one outer
loop. */
unsigned int nr_outer_loops = 0;
struct loop *single_outer = NULL;
for (struct loop *loop = outer->inner; loop != NULL; loop = loop->next)
{
gcc_assert (loop_outer (loop) == outer);
if (!dominated_by_p (CDI_DOMINATORS, loop->header, region_entry))
continue;
if (region_exit != NULL
&& dominated_by_p (CDI_DOMINATORS, loop->header, region_exit))
continue;
nr_outer_loops++;
single_outer = loop;
}
if (nr_outer_loops != 1)
return;
for (struct loop *loop = single_outer->inner;
loop != NULL;
loop = loop->inner)
if (loop->next)
return;
/* Mark the loops in the region. */
for (struct loop *loop = single_outer; loop != NULL; loop = loop->inner)
loop->in_oacc_kernels_region = true;
}
/* Types used to pass grid and wortkgroup sizes to kernel invocation. */
struct GTY(()) grid_launch_attributes_trees
{
tree kernel_dim_array_type;
tree kernel_lattrs_dimnum_decl;
tree kernel_lattrs_grid_decl;
tree kernel_lattrs_group_decl;
tree kernel_launch_attributes_type;
};
static GTY(()) struct grid_launch_attributes_trees *grid_attr_trees;
/* Create types used to pass kernel launch attributes to target. */
static void
grid_create_kernel_launch_attr_types (void)
{
if (grid_attr_trees)
return;
grid_attr_trees = ggc_alloc <grid_launch_attributes_trees> ();
tree dim_arr_index_type
= build_index_type (build_int_cst (integer_type_node, 2));
grid_attr_trees->kernel_dim_array_type
= build_array_type (uint32_type_node, dim_arr_index_type);
grid_attr_trees->kernel_launch_attributes_type = make_node (RECORD_TYPE);
grid_attr_trees->kernel_lattrs_dimnum_decl
= build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("ndim"),
uint32_type_node);
DECL_CHAIN (grid_attr_trees->kernel_lattrs_dimnum_decl) = NULL_TREE;
grid_attr_trees->kernel_lattrs_grid_decl
= build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("grid_size"),
grid_attr_trees->kernel_dim_array_type);
DECL_CHAIN (grid_attr_trees->kernel_lattrs_grid_decl)
= grid_attr_trees->kernel_lattrs_dimnum_decl;
grid_attr_trees->kernel_lattrs_group_decl
= build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("group_size"),
grid_attr_trees->kernel_dim_array_type);
DECL_CHAIN (grid_attr_trees->kernel_lattrs_group_decl)
= grid_attr_trees->kernel_lattrs_grid_decl;
finish_builtin_struct (grid_attr_trees->kernel_launch_attributes_type,
"__gomp_kernel_launch_attributes",
grid_attr_trees->kernel_lattrs_group_decl, NULL_TREE);
}
/* Insert before the current statement in GSI a store of VALUE to INDEX of
array (of type kernel_dim_array_type) FLD_DECL of RANGE_VAR. VALUE must be
of type uint32_type_node. */
static void
grid_insert_store_range_dim (gimple_stmt_iterator *gsi, tree range_var,
tree fld_decl, int index, tree value)
{
tree ref = build4 (ARRAY_REF, uint32_type_node,
build3 (COMPONENT_REF,
grid_attr_trees->kernel_dim_array_type,
range_var, fld_decl, NULL_TREE),
build_int_cst (integer_type_node, index),
NULL_TREE, NULL_TREE);
gsi_insert_before (gsi, gimple_build_assign (ref, value), GSI_SAME_STMT);
}
/* Return a tree representation of a pointer to a structure with grid and
work-group size information. Statements filling that information will be
inserted before GSI, TGT_STMT is the target statement which has the
necessary information in it. */
static tree
grid_get_kernel_launch_attributes (gimple_stmt_iterator *gsi,
gomp_target *tgt_stmt)
{
grid_create_kernel_launch_attr_types ();
tree lattrs = create_tmp_var (grid_attr_trees->kernel_launch_attributes_type,
"__kernel_launch_attrs");
unsigned max_dim = 0;
for (tree clause = gimple_omp_target_clauses (tgt_stmt);
clause;
clause = OMP_CLAUSE_CHAIN (clause))
{
if (OMP_CLAUSE_CODE (clause) != OMP_CLAUSE__GRIDDIM_)
continue;
unsigned dim = OMP_CLAUSE__GRIDDIM__DIMENSION (clause);
max_dim = MAX (dim, max_dim);
grid_insert_store_range_dim (gsi, lattrs,
grid_attr_trees->kernel_lattrs_grid_decl,
dim, OMP_CLAUSE__GRIDDIM__SIZE (clause));
grid_insert_store_range_dim (gsi, lattrs,
grid_attr_trees->kernel_lattrs_group_decl,
dim, OMP_CLAUSE__GRIDDIM__GROUP (clause));
}
tree dimref = build3 (COMPONENT_REF, uint32_type_node, lattrs,
grid_attr_trees->kernel_lattrs_dimnum_decl, NULL_TREE);
gcc_checking_assert (max_dim <= 2);
tree dimensions = build_int_cstu (uint32_type_node, max_dim + 1);
gsi_insert_before (gsi, gimple_build_assign (dimref, dimensions),
GSI_SAME_STMT);
TREE_ADDRESSABLE (lattrs) = 1;
return build_fold_addr_expr (lattrs);
}
/* Build target argument identifier from the DEVICE identifier, value
identifier ID and whether the element also has a SUBSEQUENT_PARAM. */
static tree
get_target_argument_identifier_1 (int device, bool subseqent_param, int id)
{
tree t = build_int_cst (integer_type_node, device);
if (subseqent_param)
t = fold_build2 (BIT_IOR_EXPR, integer_type_node, t,
build_int_cst (integer_type_node,
GOMP_TARGET_ARG_SUBSEQUENT_PARAM));
t = fold_build2 (BIT_IOR_EXPR, integer_type_node, t,
build_int_cst (integer_type_node, id));
return t;
}
/* Like above but return it in type that can be directly stored as an element
of the argument array. */
static tree
get_target_argument_identifier (int device, bool subseqent_param, int id)
{
tree t = get_target_argument_identifier_1 (device, subseqent_param, id);
return fold_convert (ptr_type_node, t);
}
/* Return a target argument consisting of DEVICE identifier, value identifier
ID, and the actual VALUE. */
static tree
get_target_argument_value (gimple_stmt_iterator *gsi, int device, int id,
tree value)
{
tree t = fold_build2 (LSHIFT_EXPR, integer_type_node,
fold_convert (integer_type_node, value),
build_int_cst (unsigned_type_node,
GOMP_TARGET_ARG_VALUE_SHIFT));
t = fold_build2 (BIT_IOR_EXPR, integer_type_node, t,
get_target_argument_identifier_1 (device, false, id));
t = fold_convert (ptr_type_node, t);
return force_gimple_operand_gsi (gsi, t, true, NULL, true, GSI_SAME_STMT);
}
/* If VALUE is an integer constant greater than -2^15 and smaller than 2^15,
push one argument to ARGS with both the DEVICE, ID and VALUE embedded in it,
otherwise push an identifier (with DEVICE and ID) and the VALUE in two
arguments. */
static void
push_target_argument_according_to_value (gimple_stmt_iterator *gsi, int device,
int id, tree value, vec <tree> *args)
{
if (tree_fits_shwi_p (value)
&& tree_to_shwi (value) > -(1 << 15)
&& tree_to_shwi (value) < (1 << 15))
args->quick_push (get_target_argument_value (gsi, device, id, value));
else
{
args->quick_push (get_target_argument_identifier (device, true, id));
value = fold_convert (ptr_type_node, value);
value = force_gimple_operand_gsi (gsi, value, true, NULL, true,
GSI_SAME_STMT);
args->quick_push (value);
}
}
/* Create an array of arguments that is then passed to GOMP_target. */
static tree
get_target_arguments (gimple_stmt_iterator *gsi, gomp_target *tgt_stmt)
{
auto_vec <tree, 6> args;
tree clauses = gimple_omp_target_clauses (tgt_stmt);
tree t, c = omp_find_clause (clauses, OMP_CLAUSE_NUM_TEAMS);
if (c)
t = OMP_CLAUSE_NUM_TEAMS_EXPR (c);
else
t = integer_minus_one_node;
push_target_argument_according_to_value (gsi, GOMP_TARGET_ARG_DEVICE_ALL,
GOMP_TARGET_ARG_NUM_TEAMS, t, &args);
c = omp_find_clause (clauses, OMP_CLAUSE_THREAD_LIMIT);
if (c)
t = OMP_CLAUSE_THREAD_LIMIT_EXPR (c);
else
t = integer_minus_one_node;
push_target_argument_according_to_value (gsi, GOMP_TARGET_ARG_DEVICE_ALL,
GOMP_TARGET_ARG_THREAD_LIMIT, t,
&args);
/* Add HSA-specific grid sizes, if available. */
if (omp_find_clause (gimple_omp_target_clauses (tgt_stmt),
OMP_CLAUSE__GRIDDIM_))
{
int id = GOMP_TARGET_ARG_HSA_KERNEL_ATTRIBUTES;
t = get_target_argument_identifier (GOMP_DEVICE_HSA, true, id);
args.quick_push (t);
args.quick_push (grid_get_kernel_launch_attributes (gsi, tgt_stmt));
}
/* Produce more, perhaps device specific, arguments here. */
tree argarray = create_tmp_var (build_array_type_nelts (ptr_type_node,
args.length () + 1),
".omp_target_args");
for (unsigned i = 0; i < args.length (); i++)
{
tree ref = build4 (ARRAY_REF, ptr_type_node, argarray,
build_int_cst (integer_type_node, i),
NULL_TREE, NULL_TREE);
gsi_insert_before (gsi, gimple_build_assign (ref, args[i]),
GSI_SAME_STMT);
}
tree ref = build4 (ARRAY_REF, ptr_type_node, argarray,
build_int_cst (integer_type_node, args.length ()),
NULL_TREE, NULL_TREE);
gsi_insert_before (gsi, gimple_build_assign (ref, null_pointer_node),
GSI_SAME_STMT);
TREE_ADDRESSABLE (argarray) = 1;
return build_fold_addr_expr (argarray);
}
/* Expand the GIMPLE_OMP_TARGET starting at REGION. */
static void
expand_omp_target (struct omp_region *region)
{
basic_block entry_bb, exit_bb, new_bb;
struct function *child_cfun;
tree child_fn, block, t;
gimple_stmt_iterator gsi;
gomp_target *entry_stmt;
gimple *stmt;
edge e;
bool offloaded, data_region;
entry_stmt = as_a <gomp_target *> (last_stmt (region->entry));
new_bb = region->entry;
offloaded = is_gimple_omp_offloaded (entry_stmt);
switch (gimple_omp_target_kind (entry_stmt))
{
case GF_OMP_TARGET_KIND_REGION:
case GF_OMP_TARGET_KIND_UPDATE:
case GF_OMP_TARGET_KIND_ENTER_DATA:
case GF_OMP_TARGET_KIND_EXIT_DATA:
case GF_OMP_TARGET_KIND_OACC_PARALLEL:
case GF_OMP_TARGET_KIND_OACC_KERNELS:
case GF_OMP_TARGET_KIND_OACC_UPDATE:
case GF_OMP_TARGET_KIND_OACC_ENTER_EXIT_DATA:
case GF_OMP_TARGET_KIND_OACC_DECLARE:
data_region = false;
break;
case GF_OMP_TARGET_KIND_DATA:
case GF_OMP_TARGET_KIND_OACC_DATA:
case GF_OMP_TARGET_KIND_OACC_HOST_DATA:
data_region = true;
break;
default:
gcc_unreachable ();
}
child_fn = NULL_TREE;
child_cfun = NULL;
if (offloaded)
{
child_fn = gimple_omp_target_child_fn (entry_stmt);
child_cfun = DECL_STRUCT_FUNCTION (child_fn);
}
/* Supported by expand_omp_taskreg, but not here. */
if (child_cfun != NULL)
gcc_checking_assert (!child_cfun->cfg);
gcc_checking_assert (!gimple_in_ssa_p (cfun));
entry_bb = region->entry;
exit_bb = region->exit;
if (gimple_omp_target_kind (entry_stmt) == GF_OMP_TARGET_KIND_OACC_KERNELS)
{
mark_loops_in_oacc_kernels_region (region->entry, region->exit);
/* Further down, both OpenACC kernels and OpenACC parallel constructs
will be mappted to BUILT_IN_GOACC_PARALLEL, and to distinguish the
two, there is an "oacc kernels" attribute set for OpenACC kernels. */
DECL_ATTRIBUTES (child_fn)
= tree_cons (get_identifier ("oacc kernels"),
NULL_TREE, DECL_ATTRIBUTES (child_fn));
}
if (offloaded)
{
unsigned srcidx, dstidx, num;
/* If the offloading region needs data sent from the parent
function, then the very first statement (except possible
tree profile counter updates) of the offloading body
is a copy assignment .OMP_DATA_I = &.OMP_DATA_O. Since
&.OMP_DATA_O is passed as an argument to the child function,
we need to replace it with the argument as seen by the child
function.
In most cases, this will end up being the identity assignment
.OMP_DATA_I = .OMP_DATA_I. However, if the offloading body had
a function call that has been inlined, the original PARM_DECL
.OMP_DATA_I may have been converted into a different local
variable. In which case, we need to keep the assignment. */
tree data_arg = gimple_omp_target_data_arg (entry_stmt);
if (data_arg)
{
basic_block entry_succ_bb = single_succ (entry_bb);
gimple_stmt_iterator gsi;
tree arg;
gimple *tgtcopy_stmt = NULL;
tree sender = TREE_VEC_ELT (data_arg, 0);
for (gsi = gsi_start_bb (entry_succ_bb); ; gsi_next (&gsi))
{
gcc_assert (!gsi_end_p (gsi));
stmt = gsi_stmt (gsi);
if (gimple_code (stmt) != GIMPLE_ASSIGN)
continue;
if (gimple_num_ops (stmt) == 2)
{
tree arg = gimple_assign_rhs1 (stmt);
/* We're ignoring the subcode because we're
effectively doing a STRIP_NOPS. */
if (TREE_CODE (arg) == ADDR_EXPR
&& TREE_OPERAND (arg, 0) == sender)
{
tgtcopy_stmt = stmt;
break;
}
}
}
gcc_assert (tgtcopy_stmt != NULL);
arg = DECL_ARGUMENTS (child_fn);
gcc_assert (gimple_assign_lhs (tgtcopy_stmt) == arg);
gsi_remove (&gsi, true);
}
/* Declare local variables needed in CHILD_CFUN. */
block = DECL_INITIAL (child_fn);
BLOCK_VARS (block) = vec2chain (child_cfun->local_decls);
/* The gimplifier could record temporaries in the offloading block
rather than in containing function's local_decls chain,
which would mean cgraph missed finalizing them. Do it now. */
for (t = BLOCK_VARS (block); t; t = DECL_CHAIN (t))
if (VAR_P (t) && TREE_STATIC (t) && !DECL_EXTERNAL (t))
varpool_node::finalize_decl (t);
DECL_SAVED_TREE (child_fn) = NULL;
/* We'll create a CFG for child_fn, so no gimple body is needed. */
gimple_set_body (child_fn, NULL);
TREE_USED (block) = 1;
/* Reset DECL_CONTEXT on function arguments. */
for (t = DECL_ARGUMENTS (child_fn); t; t = DECL_CHAIN (t))
DECL_CONTEXT (t) = child_fn;
/* Split ENTRY_BB at GIMPLE_*,
so that it can be moved to the child function. */
gsi = gsi_last_bb (entry_bb);
stmt = gsi_stmt (gsi);
gcc_assert (stmt
&& gimple_code (stmt) == gimple_code (entry_stmt));
e = split_block (entry_bb, stmt);
gsi_remove (&gsi, true);
entry_bb = e->dest;
single_succ_edge (entry_bb)->flags = EDGE_FALLTHRU;
/* Convert GIMPLE_OMP_RETURN into a RETURN_EXPR. */
if (exit_bb)
{
gsi = gsi_last_bb (exit_bb);
gcc_assert (!gsi_end_p (gsi)
&& gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_RETURN);
stmt = gimple_build_return (NULL);
gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
gsi_remove (&gsi, true);
}
/* Make sure to generate early debug for the function before
outlining anything. */
if (! gimple_in_ssa_p (cfun))
(*debug_hooks->early_global_decl) (cfun->decl);
/* Move the offloading region into CHILD_CFUN. */
block = gimple_block (entry_stmt);
new_bb = move_sese_region_to_fn (child_cfun, entry_bb, exit_bb, block);
if (exit_bb)
single_succ_edge (new_bb)->flags = EDGE_FALLTHRU;
/* When the OMP expansion process cannot guarantee an up-to-date
loop tree arrange for the child function to fixup loops. */
if (loops_state_satisfies_p (LOOPS_NEED_FIXUP))
child_cfun->x_current_loops->state |= LOOPS_NEED_FIXUP;
/* Remove non-local VAR_DECLs from child_cfun->local_decls list. */
num = vec_safe_length (child_cfun->local_decls);
for (srcidx = 0, dstidx = 0; srcidx < num; srcidx++)
{
t = (*child_cfun->local_decls)[srcidx];
if (DECL_CONTEXT (t) == cfun->decl)
continue;
if (srcidx != dstidx)
(*child_cfun->local_decls)[dstidx] = t;
dstidx++;
}
if (dstidx != num)
vec_safe_truncate (child_cfun->local_decls, dstidx);
/* Inform the callgraph about the new function. */
child_cfun->curr_properties = cfun->curr_properties;
child_cfun->has_simduid_loops |= cfun->has_simduid_loops;
child_cfun->has_force_vectorize_loops |= cfun->has_force_vectorize_loops;
cgraph_node *node = cgraph_node::get_create (child_fn);
node->parallelized_function = 1;
cgraph_node::add_new_function (child_fn, true);
/* Add the new function to the offload table. */
if (ENABLE_OFFLOADING)
vec_safe_push (offload_funcs, child_fn);
bool need_asm = DECL_ASSEMBLER_NAME_SET_P (current_function_decl)
&& !DECL_ASSEMBLER_NAME_SET_P (child_fn);
/* Fix the callgraph edges for child_cfun. Those for cfun will be
fixed in a following pass. */
push_cfun (child_cfun);
if (need_asm)
assign_assembler_name_if_needed (child_fn);
cgraph_edge::rebuild_edges ();
/* Some EH regions might become dead, see PR34608. If
pass_cleanup_cfg isn't the first pass to happen with the
new child, these dead EH edges might cause problems.
Clean them up now. */
if (flag_exceptions)
{
basic_block bb;
bool changed = false;
FOR_EACH_BB_FN (bb, cfun)
changed |= gimple_purge_dead_eh_edges (bb);
if (changed)
cleanup_tree_cfg ();
}
if (flag_checking && !loops_state_satisfies_p (LOOPS_NEED_FIXUP))
verify_loop_structure ();
pop_cfun ();
if (dump_file && !gimple_in_ssa_p (cfun))
{
omp_any_child_fn_dumped = true;
dump_function_header (dump_file, child_fn, dump_flags);
dump_function_to_file (child_fn, dump_file, dump_flags);
}
}
/* Emit a library call to launch the offloading region, or do data
transfers. */
tree t1, t2, t3, t4, device, cond, depend, c, clauses;
enum built_in_function start_ix;
location_t clause_loc;
unsigned int flags_i = 0;
switch (gimple_omp_target_kind (entry_stmt))
{
case GF_OMP_TARGET_KIND_REGION:
start_ix = BUILT_IN_GOMP_TARGET;
break;
case GF_OMP_TARGET_KIND_DATA:
start_ix = BUILT_IN_GOMP_TARGET_DATA;
break;
case GF_OMP_TARGET_KIND_UPDATE:
start_ix = BUILT_IN_GOMP_TARGET_UPDATE;
break;
case GF_OMP_TARGET_KIND_ENTER_DATA:
start_ix = BUILT_IN_GOMP_TARGET_ENTER_EXIT_DATA;
break;
case GF_OMP_TARGET_KIND_EXIT_DATA:
start_ix = BUILT_IN_GOMP_TARGET_ENTER_EXIT_DATA;
flags_i |= GOMP_TARGET_FLAG_EXIT_DATA;
break;
case GF_OMP_TARGET_KIND_OACC_KERNELS:
case GF_OMP_TARGET_KIND_OACC_PARALLEL:
start_ix = BUILT_IN_GOACC_PARALLEL;
break;
case GF_OMP_TARGET_KIND_OACC_DATA:
case GF_OMP_TARGET_KIND_OACC_HOST_DATA:
start_ix = BUILT_IN_GOACC_DATA_START;
break;
case GF_OMP_TARGET_KIND_OACC_UPDATE:
start_ix = BUILT_IN_GOACC_UPDATE;
break;
case GF_OMP_TARGET_KIND_OACC_ENTER_EXIT_DATA:
start_ix = BUILT_IN_GOACC_ENTER_EXIT_DATA;
break;
case GF_OMP_TARGET_KIND_OACC_DECLARE:
start_ix = BUILT_IN_GOACC_DECLARE;
break;
default:
gcc_unreachable ();
}
clauses = gimple_omp_target_clauses (entry_stmt);
/* By default, the value of DEVICE is GOMP_DEVICE_ICV (let runtime
library choose) and there is no conditional. */
cond = NULL_TREE;
device = build_int_cst (integer_type_node, GOMP_DEVICE_ICV);
c = omp_find_clause (clauses, OMP_CLAUSE_IF);
if (c)
cond = OMP_CLAUSE_IF_EXPR (c);
c = omp_find_clause (clauses, OMP_CLAUSE_DEVICE);
if (c)
{
/* Even if we pass it to all library function calls, it is currently only
defined/used for the OpenMP target ones. */
gcc_checking_assert (start_ix == BUILT_IN_GOMP_TARGET
|| start_ix == BUILT_IN_GOMP_TARGET_DATA
|| start_ix == BUILT_IN_GOMP_TARGET_UPDATE
|| start_ix == BUILT_IN_GOMP_TARGET_ENTER_EXIT_DATA);
device = OMP_CLAUSE_DEVICE_ID (c);
clause_loc = OMP_CLAUSE_LOCATION (c);
}
else
clause_loc = gimple_location (entry_stmt);
c = omp_find_clause (clauses, OMP_CLAUSE_NOWAIT);
if (c)
flags_i |= GOMP_TARGET_FLAG_NOWAIT;
/* Ensure 'device' is of the correct type. */
device = fold_convert_loc (clause_loc, integer_type_node, device);
/* If we found the clause 'if (cond)', build
(cond ? device : GOMP_DEVICE_HOST_FALLBACK). */
if (cond)
{
cond = gimple_boolify (cond);
basic_block cond_bb, then_bb, else_bb;
edge e;
tree tmp_var;
tmp_var = create_tmp_var (TREE_TYPE (device));
if (offloaded)
e = split_block_after_labels (new_bb);
else
{
gsi = gsi_last_bb (new_bb);
gsi_prev (&gsi);
e = split_block (new_bb, gsi_stmt (gsi));
}
cond_bb = e->src;
new_bb = e->dest;
remove_edge (e);
then_bb = create_empty_bb (cond_bb);
else_bb = create_empty_bb (then_bb);
set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
set_immediate_dominator (CDI_DOMINATORS, else_bb, cond_bb);
stmt = gimple_build_cond_empty (cond);
gsi = gsi_last_bb (cond_bb);
gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
gsi = gsi_start_bb (then_bb);
stmt = gimple_build_assign (tmp_var, device);
gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
gsi = gsi_start_bb (else_bb);
stmt = gimple_build_assign (tmp_var,
build_int_cst (integer_type_node,
GOMP_DEVICE_HOST_FALLBACK));
gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
make_edge (cond_bb, else_bb, EDGE_FALSE_VALUE);
add_bb_to_loop (then_bb, cond_bb->loop_father);
add_bb_to_loop (else_bb, cond_bb->loop_father);
make_edge (then_bb, new_bb, EDGE_FALLTHRU);
make_edge (else_bb, new_bb, EDGE_FALLTHRU);
device = tmp_var;
gsi = gsi_last_bb (new_bb);
}
else
{
gsi = gsi_last_bb (new_bb);
device = force_gimple_operand_gsi (&gsi, device, true, NULL_TREE,
true, GSI_SAME_STMT);
}
t = gimple_omp_target_data_arg (entry_stmt);
if (t == NULL)
{
t1 = size_zero_node;
t2 = build_zero_cst (ptr_type_node);
t3 = t2;
t4 = t2;
}
else
{
t1 = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (TREE_VEC_ELT (t, 1))));
t1 = size_binop (PLUS_EXPR, t1, size_int (1));
t2 = build_fold_addr_expr (TREE_VEC_ELT (t, 0));
t3 = build_fold_addr_expr (TREE_VEC_ELT (t, 1));
t4 = build_fold_addr_expr (TREE_VEC_ELT (t, 2));
}
gimple *g;
bool tagging = false;
/* The maximum number used by any start_ix, without varargs. */
auto_vec<tree, 11> args;
args.quick_push (device);
if (offloaded)
args.quick_push (build_fold_addr_expr (child_fn));
args.quick_push (t1);
args.quick_push (t2);
args.quick_push (t3);
args.quick_push (t4);
switch (start_ix)
{
case BUILT_IN_GOACC_DATA_START:
case BUILT_IN_GOACC_DECLARE:
case BUILT_IN_GOMP_TARGET_DATA:
break;
case BUILT_IN_GOMP_TARGET:
case BUILT_IN_GOMP_TARGET_UPDATE:
case BUILT_IN_GOMP_TARGET_ENTER_EXIT_DATA:
args.quick_push (build_int_cst (unsigned_type_node, flags_i));
c = omp_find_clause (clauses, OMP_CLAUSE_DEPEND);
if (c)
depend = OMP_CLAUSE_DECL (c);
else
depend = build_int_cst (ptr_type_node, 0);
args.quick_push (depend);
if (start_ix == BUILT_IN_GOMP_TARGET)
args.quick_push (get_target_arguments (&gsi, entry_stmt));
break;
case BUILT_IN_GOACC_PARALLEL:
oacc_set_fn_attrib (child_fn, clauses, &args);
tagging = true;
/* FALLTHRU */
case BUILT_IN_GOACC_ENTER_EXIT_DATA:
case BUILT_IN_GOACC_UPDATE:
{
tree t_async = NULL_TREE;
/* If present, use the value specified by the respective
clause, making sure that is of the correct type. */
c = omp_find_clause (clauses, OMP_CLAUSE_ASYNC);
if (c)
t_async = fold_convert_loc (OMP_CLAUSE_LOCATION (c),
integer_type_node,
OMP_CLAUSE_ASYNC_EXPR (c));
else if (!tagging)
/* Default values for t_async. */
t_async = fold_convert_loc (gimple_location (entry_stmt),
integer_type_node,
build_int_cst (integer_type_node,
GOMP_ASYNC_SYNC));
if (tagging && t_async)
{
unsigned HOST_WIDE_INT i_async = GOMP_LAUNCH_OP_MAX;
if (TREE_CODE (t_async) == INTEGER_CST)
{
/* See if we can pack the async arg in to the tag's
operand. */
i_async = TREE_INT_CST_LOW (t_async);
if (i_async < GOMP_LAUNCH_OP_MAX)
t_async = NULL_TREE;
else
i_async = GOMP_LAUNCH_OP_MAX;
}
args.safe_push (oacc_launch_pack (GOMP_LAUNCH_ASYNC, NULL_TREE,
i_async));
}
if (t_async)
args.safe_push (t_async);
/* Save the argument index, and ... */
unsigned t_wait_idx = args.length ();
unsigned num_waits = 0;
c = omp_find_clause (clauses, OMP_CLAUSE_WAIT);
if (!tagging || c)
/* ... push a placeholder. */
args.safe_push (integer_zero_node);
for (; c; c = OMP_CLAUSE_CHAIN (c))
if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_WAIT)
{
args.safe_push (fold_convert_loc (OMP_CLAUSE_LOCATION (c),
integer_type_node,
OMP_CLAUSE_WAIT_EXPR (c)));
num_waits++;
}
if (!tagging || num_waits)
{
tree len;
/* Now that we know the number, update the placeholder. */
if (tagging)
len = oacc_launch_pack (GOMP_LAUNCH_WAIT, NULL_TREE, num_waits);
else
len = build_int_cst (integer_type_node, num_waits);
len = fold_convert_loc (gimple_location (entry_stmt),
unsigned_type_node, len);
args[t_wait_idx] = len;
}
}
break;
default:
gcc_unreachable ();
}
if (tagging)
/* Push terminal marker - zero. */
args.safe_push (oacc_launch_pack (0, NULL_TREE, 0));
g = gimple_build_call_vec (builtin_decl_explicit (start_ix), args);
gimple_set_location (g, gimple_location (entry_stmt));
gsi_insert_before (&gsi, g, GSI_SAME_STMT);
if (!offloaded)
{
g = gsi_stmt (gsi);
gcc_assert (g && gimple_code (g) == GIMPLE_OMP_TARGET);
gsi_remove (&gsi, true);
}
if (data_region && region->exit)
{
gsi = gsi_last_bb (region->exit);
g = gsi_stmt (gsi);
gcc_assert (g && gimple_code (g) == GIMPLE_OMP_RETURN);
gsi_remove (&gsi, true);
}
}
/* Expand KFOR loop as a HSA grifidied kernel, i.e. as a body only with
iteration variable derived from the thread number. INTRA_GROUP means this
is an expansion of a loop iterating over work-items within a separate
iteration over groups. */
static void
grid_expand_omp_for_loop (struct omp_region *kfor, bool intra_group)
{
gimple_stmt_iterator gsi;
gomp_for *for_stmt = as_a <gomp_for *> (last_stmt (kfor->entry));
gcc_checking_assert (gimple_omp_for_kind (for_stmt)
== GF_OMP_FOR_KIND_GRID_LOOP);
size_t collapse = gimple_omp_for_collapse (for_stmt);
struct omp_for_data_loop *loops
= XALLOCAVEC (struct omp_for_data_loop,
gimple_omp_for_collapse (for_stmt));
struct omp_for_data fd;
remove_edge (BRANCH_EDGE (kfor->entry));
basic_block body_bb = FALLTHRU_EDGE (kfor->entry)->dest;
gcc_assert (kfor->cont);
omp_extract_for_data (for_stmt, &fd, loops);
gsi = gsi_start_bb (body_bb);
for (size_t dim = 0; dim < collapse; dim++)
{
tree type, itype;
itype = type = TREE_TYPE (fd.loops[dim].v);
if (POINTER_TYPE_P (type))
itype = signed_type_for (type);
tree n1 = fd.loops[dim].n1;
tree step = fd.loops[dim].step;
n1 = force_gimple_operand_gsi (&gsi, fold_convert (type, n1),
true, NULL_TREE, true, GSI_SAME_STMT);
step = force_gimple_operand_gsi (&gsi, fold_convert (itype, step),
true, NULL_TREE, true, GSI_SAME_STMT);
tree threadid;
if (gimple_omp_for_grid_group_iter (for_stmt))
{
gcc_checking_assert (!intra_group);
threadid = build_call_expr (builtin_decl_explicit
(BUILT_IN_HSA_WORKGROUPID), 1,
build_int_cstu (unsigned_type_node, dim));
}
else if (intra_group)
threadid = build_call_expr (builtin_decl_explicit
(BUILT_IN_HSA_WORKITEMID), 1,
build_int_cstu (unsigned_type_node, dim));
else
threadid = build_call_expr (builtin_decl_explicit
(BUILT_IN_HSA_WORKITEMABSID), 1,
build_int_cstu (unsigned_type_node, dim));
threadid = fold_convert (itype, threadid);
threadid = force_gimple_operand_gsi (&gsi, threadid, true, NULL_TREE,
true, GSI_SAME_STMT);
tree startvar = fd.loops[dim].v;
tree t = fold_build2 (MULT_EXPR, itype, threadid, step);
if (POINTER_TYPE_P (type))
t = fold_build_pointer_plus (n1, t);
else
t = fold_build2 (PLUS_EXPR, type, t, n1);
t = fold_convert (type, t);
t = force_gimple_operand_gsi (&gsi, t,
DECL_P (startvar)
&& TREE_ADDRESSABLE (startvar),
NULL_TREE, true, GSI_SAME_STMT);
gassign *assign_stmt = gimple_build_assign (startvar, t);
gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
}
/* Remove the omp for statement. */
gsi = gsi_last_bb (kfor->entry);
gsi_remove (&gsi, true);
/* Remove the GIMPLE_OMP_CONTINUE statement. */
gsi = gsi_last_bb (kfor->cont);
gcc_assert (!gsi_end_p (gsi)
&& gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_CONTINUE);
gsi_remove (&gsi, true);
/* Replace the GIMPLE_OMP_RETURN with a barrier, if necessary. */
gsi = gsi_last_bb (kfor->exit);
gcc_assert (!gsi_end_p (gsi)
&& gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_RETURN);
if (intra_group)
gsi_insert_before (&gsi, omp_build_barrier (NULL_TREE), GSI_SAME_STMT);
gsi_remove (&gsi, true);
/* Fixup the much simpler CFG. */
remove_edge (find_edge (kfor->cont, body_bb));
if (kfor->cont != body_bb)
set_immediate_dominator (CDI_DOMINATORS, kfor->cont, body_bb);
set_immediate_dominator (CDI_DOMINATORS, kfor->exit, kfor->cont);
}
/* Structure passed to grid_remap_kernel_arg_accesses so that it can remap
argument_decls. */
struct grid_arg_decl_map
{
tree old_arg;
tree new_arg;
};
/* Invoked through walk_gimple_op, will remap all PARM_DECLs to the ones
pertaining to kernel function. */
static tree
grid_remap_kernel_arg_accesses (tree *tp, int *walk_subtrees, void *data)
{
struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
struct grid_arg_decl_map *adm = (struct grid_arg_decl_map *) wi->info;
tree t = *tp;
if (t == adm->old_arg)
*tp = adm->new_arg;
*walk_subtrees = !TYPE_P (t) && !DECL_P (t);
return NULL_TREE;
}
/* If TARGET region contains a kernel body for loop, remove its region from the
TARGET and expand it in HSA gridified kernel fashion. */
static void
grid_expand_target_grid_body (struct omp_region *target)
{
if (!hsa_gen_requested_p ())
return;
gomp_target *tgt_stmt = as_a <gomp_target *> (last_stmt (target->entry));
struct omp_region **pp;
for (pp = &target->inner; *pp; pp = &(*pp)->next)
if ((*pp)->type == GIMPLE_OMP_GRID_BODY)
break;
struct omp_region *gpukernel = *pp;
tree orig_child_fndecl = gimple_omp_target_child_fn (tgt_stmt);
if (!gpukernel)
{
/* HSA cannot handle OACC stuff. */
if (gimple_omp_target_kind (tgt_stmt) != GF_OMP_TARGET_KIND_REGION)
return;
gcc_checking_assert (orig_child_fndecl);
gcc_assert (!omp_find_clause (gimple_omp_target_clauses (tgt_stmt),
OMP_CLAUSE__GRIDDIM_));
cgraph_node *n = cgraph_node::get (orig_child_fndecl);
hsa_register_kernel (n);
return;
}
gcc_assert (omp_find_clause (gimple_omp_target_clauses (tgt_stmt),
OMP_CLAUSE__GRIDDIM_));
tree inside_block
= gimple_block (first_stmt (single_succ (gpukernel->entry)));
*pp = gpukernel->next;
for (pp = &gpukernel->inner; *pp; pp = &(*pp)->next)
if ((*pp)->type == GIMPLE_OMP_FOR)
break;
struct omp_region *kfor = *pp;
gcc_assert (kfor);
gomp_for *for_stmt = as_a <gomp_for *> (last_stmt (kfor->entry));
gcc_assert (gimple_omp_for_kind (for_stmt) == GF_OMP_FOR_KIND_GRID_LOOP);
*pp = kfor->next;
if (kfor->inner)
{
if (gimple_omp_for_grid_group_iter (for_stmt))
{
struct omp_region **next_pp;
for (pp = &kfor->inner; *pp; pp = next_pp)
{
next_pp = &(*pp)->next;
if ((*pp)->type != GIMPLE_OMP_FOR)
continue;
gomp_for *inner = as_a <gomp_for *> (last_stmt ((*pp)->entry));
gcc_assert (gimple_omp_for_kind (inner)
== GF_OMP_FOR_KIND_GRID_LOOP);
grid_expand_omp_for_loop (*pp, true);
*pp = (*pp)->next;
next_pp = pp;
}
}
expand_omp (kfor->inner);
}
if (gpukernel->inner)
expand_omp (gpukernel->inner);
tree kern_fndecl = copy_node (orig_child_fndecl);
DECL_NAME (kern_fndecl) = clone_function_name (kern_fndecl, "kernel");
SET_DECL_ASSEMBLER_NAME (kern_fndecl, DECL_NAME (kern_fndecl));
tree tgtblock = gimple_block (tgt_stmt);
tree fniniblock = make_node (BLOCK);
BLOCK_ABSTRACT_ORIGIN (fniniblock) = tgtblock;
BLOCK_SOURCE_LOCATION (fniniblock) = BLOCK_SOURCE_LOCATION (tgtblock);
BLOCK_SOURCE_END_LOCATION (fniniblock) = BLOCK_SOURCE_END_LOCATION (tgtblock);
BLOCK_SUPERCONTEXT (fniniblock) = kern_fndecl;
DECL_INITIAL (kern_fndecl) = fniniblock;
push_struct_function (kern_fndecl);
cfun->function_end_locus = gimple_location (tgt_stmt);
init_tree_ssa (cfun);
pop_cfun ();
/* Make sure to generate early debug for the function before
outlining anything. */
if (! gimple_in_ssa_p (cfun))
(*debug_hooks->early_global_decl) (cfun->decl);
tree old_parm_decl = DECL_ARGUMENTS (kern_fndecl);
gcc_assert (!DECL_CHAIN (old_parm_decl));
tree new_parm_decl = copy_node (DECL_ARGUMENTS (kern_fndecl));
DECL_CONTEXT (new_parm_decl) = kern_fndecl;
DECL_ARGUMENTS (kern_fndecl) = new_parm_decl;
gcc_assert (VOID_TYPE_P (TREE_TYPE (DECL_RESULT (kern_fndecl))));
DECL_RESULT (kern_fndecl) = copy_node (DECL_RESULT (kern_fndecl));
DECL_CONTEXT (DECL_RESULT (kern_fndecl)) = kern_fndecl;
struct function *kern_cfun = DECL_STRUCT_FUNCTION (kern_fndecl);
kern_cfun->curr_properties = cfun->curr_properties;
grid_expand_omp_for_loop (kfor, false);
/* Remove the omp for statement. */
gimple_stmt_iterator gsi = gsi_last_bb (gpukernel->entry);
gsi_remove (&gsi, true);
/* Replace the GIMPLE_OMP_RETURN at the end of the kernel region with a real
return. */
gsi = gsi_last_bb (gpukernel->exit);
gcc_assert (!gsi_end_p (gsi)
&& gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_RETURN);
gimple *ret_stmt = gimple_build_return (NULL);
gsi_insert_after (&gsi, ret_stmt, GSI_SAME_STMT);
gsi_remove (&gsi, true);
/* Statements in the first BB in the target construct have been produced by
target lowering and must be copied inside the GPUKERNEL, with the two
exceptions of the first OMP statement and the OMP_DATA assignment
statement. */
gsi = gsi_start_bb (single_succ (gpukernel->entry));
tree data_arg = gimple_omp_target_data_arg (tgt_stmt);
tree sender = data_arg ? TREE_VEC_ELT (data_arg, 0) : NULL;
for (gimple_stmt_iterator tsi = gsi_start_bb (single_succ (target->entry));
!gsi_end_p (tsi); gsi_next (&tsi))
{
gimple *stmt = gsi_stmt (tsi);
if (is_gimple_omp (stmt))
break;
if (sender
&& is_gimple_assign (stmt)
&& TREE_CODE (gimple_assign_rhs1 (stmt)) == ADDR_EXPR
&& TREE_OPERAND (gimple_assign_rhs1 (stmt), 0) == sender)
continue;
gimple *copy = gimple_copy (stmt);
gsi_insert_before (&gsi, copy, GSI_SAME_STMT);
gimple_set_block (copy, fniniblock);
}
move_sese_region_to_fn (kern_cfun, single_succ (gpukernel->entry),
gpukernel->exit, inside_block);
cgraph_node *kcn = cgraph_node::get_create (kern_fndecl);
kcn->mark_force_output ();
cgraph_node *orig_child = cgraph_node::get (orig_child_fndecl);
hsa_register_kernel (kcn, orig_child);
cgraph_node::add_new_function (kern_fndecl, true);
push_cfun (kern_cfun);
cgraph_edge::rebuild_edges ();
/* Re-map any mention of the PARM_DECL of the original function to the
PARM_DECL of the new one.
TODO: It would be great if lowering produced references into the GPU
kernel decl straight away and we did not have to do this. */
struct grid_arg_decl_map adm;
adm.old_arg = old_parm_decl;
adm.new_arg = new_parm_decl;
basic_block bb;
FOR_EACH_BB_FN (bb, kern_cfun)
{
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
struct walk_stmt_info wi;
memset (&wi, 0, sizeof (wi));
wi.info = &adm;
walk_gimple_op (stmt, grid_remap_kernel_arg_accesses, &wi);
}
}
pop_cfun ();
return;
}
/* Expand the parallel region tree rooted at REGION. Expansion
proceeds in depth-first order. Innermost regions are expanded
first. This way, parallel regions that require a new function to
be created (e.g., GIMPLE_OMP_PARALLEL) can be expanded without having any
internal dependencies in their body. */
static void
expand_omp (struct omp_region *region)
{
omp_any_child_fn_dumped = false;
while (region)
{
location_t saved_location;
gimple *inner_stmt = NULL;
/* First, determine whether this is a combined parallel+workshare
region. */
if (region->type == GIMPLE_OMP_PARALLEL)
determine_parallel_type (region);
else if (region->type == GIMPLE_OMP_TARGET)
grid_expand_target_grid_body (region);
if (region->type == GIMPLE_OMP_FOR
&& gimple_omp_for_combined_p (last_stmt (region->entry)))
inner_stmt = last_stmt (region->inner->entry);
if (region->inner)
expand_omp (region->inner);
saved_location = input_location;
if (gimple_has_location (last_stmt (region->entry)))
input_location = gimple_location (last_stmt (region->entry));
switch (region->type)
{
case GIMPLE_OMP_PARALLEL:
case GIMPLE_OMP_TASK:
expand_omp_taskreg (region);
break;
case GIMPLE_OMP_FOR:
expand_omp_for (region, inner_stmt);
break;
case GIMPLE_OMP_SECTIONS:
expand_omp_sections (region);
break;
case GIMPLE_OMP_SECTION:
/* Individual omp sections are handled together with their
parent GIMPLE_OMP_SECTIONS region. */
break;
case GIMPLE_OMP_SINGLE:
expand_omp_single (region);
break;
case GIMPLE_OMP_ORDERED:
{
gomp_ordered *ord_stmt
= as_a <gomp_ordered *> (last_stmt (region->entry));
if (omp_find_clause (gimple_omp_ordered_clauses (ord_stmt),
OMP_CLAUSE_DEPEND))
{
/* We'll expand these when expanding corresponding
worksharing region with ordered(n) clause. */
gcc_assert (region->outer
&& region->outer->type == GIMPLE_OMP_FOR);
region->ord_stmt = ord_stmt;
break;
}
}
/* FALLTHRU */
case GIMPLE_OMP_MASTER:
case GIMPLE_OMP_TASKGROUP:
case GIMPLE_OMP_CRITICAL:
case GIMPLE_OMP_TEAMS:
expand_omp_synch (region);
break;
case GIMPLE_OMP_ATOMIC_LOAD:
expand_omp_atomic (region);
break;
case GIMPLE_OMP_TARGET:
expand_omp_target (region);
break;
default:
gcc_unreachable ();
}
input_location = saved_location;
region = region->next;
}
if (omp_any_child_fn_dumped)
{
if (dump_file)
dump_function_header (dump_file, current_function_decl, dump_flags);
omp_any_child_fn_dumped = false;
}
}
/* Helper for build_omp_regions. Scan the dominator tree starting at
block BB. PARENT is the region that contains BB. If SINGLE_TREE is
true, the function ends once a single tree is built (otherwise, whole
forest of OMP constructs may be built). */
static void
build_omp_regions_1 (basic_block bb, struct omp_region *parent,
bool single_tree)
{
gimple_stmt_iterator gsi;
gimple *stmt;
basic_block son;
gsi = gsi_last_bb (bb);
if (!gsi_end_p (gsi) && is_gimple_omp (gsi_stmt (gsi)))
{
struct omp_region *region;
enum gimple_code code;
stmt = gsi_stmt (gsi);
code = gimple_code (stmt);
if (code == GIMPLE_OMP_RETURN)
{
/* STMT is the return point out of region PARENT. Mark it
as the exit point and make PARENT the immediately
enclosing region. */
gcc_assert (parent);
region = parent;
region->exit = bb;
parent = parent->outer;
}
else if (code == GIMPLE_OMP_ATOMIC_STORE)
{
/* GIMPLE_OMP_ATOMIC_STORE is analogous to
GIMPLE_OMP_RETURN, but matches with
GIMPLE_OMP_ATOMIC_LOAD. */
gcc_assert (parent);
gcc_assert (parent->type == GIMPLE_OMP_ATOMIC_LOAD);
region = parent;
region->exit = bb;
parent = parent->outer;
}
else if (code == GIMPLE_OMP_CONTINUE)
{
gcc_assert (parent);
parent->cont = bb;
}
else if (code == GIMPLE_OMP_SECTIONS_SWITCH)
{
/* GIMPLE_OMP_SECTIONS_SWITCH is part of
GIMPLE_OMP_SECTIONS, and we do nothing for it. */
}
else
{
region = new_omp_region (bb, code, parent);
/* Otherwise... */
if (code == GIMPLE_OMP_TARGET)
{
switch (gimple_omp_target_kind (stmt))
{
case GF_OMP_TARGET_KIND_REGION:
case GF_OMP_TARGET_KIND_DATA:
case GF_OMP_TARGET_KIND_OACC_PARALLEL:
case GF_OMP_TARGET_KIND_OACC_KERNELS:
case GF_OMP_TARGET_KIND_OACC_DATA:
case GF_OMP_TARGET_KIND_OACC_HOST_DATA:
break;
case GF_OMP_TARGET_KIND_UPDATE:
case GF_OMP_TARGET_KIND_ENTER_DATA:
case GF_OMP_TARGET_KIND_EXIT_DATA:
case GF_OMP_TARGET_KIND_OACC_UPDATE:
case GF_OMP_TARGET_KIND_OACC_ENTER_EXIT_DATA:
case GF_OMP_TARGET_KIND_OACC_DECLARE:
/* ..., other than for those stand-alone directives... */
region = NULL;
break;
default:
gcc_unreachable ();
}
}
else if (code == GIMPLE_OMP_ORDERED
&& omp_find_clause (gimple_omp_ordered_clauses
(as_a <gomp_ordered *> (stmt)),
OMP_CLAUSE_DEPEND))
/* #pragma omp ordered depend is also just a stand-alone
directive. */
region = NULL;
/* ..., this directive becomes the parent for a new region. */
if (region)
parent = region;
}
}
if (single_tree && !parent)
return;
for (son = first_dom_son (CDI_DOMINATORS, bb);
son;
son = next_dom_son (CDI_DOMINATORS, son))
build_omp_regions_1 (son, parent, single_tree);
}
/* Builds the tree of OMP regions rooted at ROOT, storing it to
root_omp_region. */
static void
build_omp_regions_root (basic_block root)
{
gcc_assert (root_omp_region == NULL);
build_omp_regions_1 (root, NULL, true);
gcc_assert (root_omp_region != NULL);
}
/* Expands omp construct (and its subconstructs) starting in HEAD. */
void
omp_expand_local (basic_block head)
{
build_omp_regions_root (head);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\nOMP region tree\n\n");
dump_omp_region (dump_file, root_omp_region, 0);
fprintf (dump_file, "\n");
}
remove_exit_barriers (root_omp_region);
expand_omp (root_omp_region);
omp_free_regions ();
}
/* Scan the CFG and build a tree of OMP regions. Return the root of
the OMP region tree. */
static void
build_omp_regions (void)
{
gcc_assert (root_omp_region == NULL);
calculate_dominance_info (CDI_DOMINATORS);
build_omp_regions_1 (ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, false);
}
/* Main entry point for expanding OMP-GIMPLE into runtime calls. */
static unsigned int
execute_expand_omp (void)
{
build_omp_regions ();
if (!root_omp_region)
return 0;
if (dump_file)
{
fprintf (dump_file, "\nOMP region tree\n\n");
dump_omp_region (dump_file, root_omp_region, 0);
fprintf (dump_file, "\n");
}
remove_exit_barriers (root_omp_region);
expand_omp (root_omp_region);
if (flag_checking && !loops_state_satisfies_p (LOOPS_NEED_FIXUP))
verify_loop_structure ();
cleanup_tree_cfg ();
omp_free_regions ();
return 0;
}
/* OMP expansion -- the default pass, run before creation of SSA form. */
namespace {
const pass_data pass_data_expand_omp =
{
GIMPLE_PASS, /* type */
"ompexp", /* name */
OPTGROUP_OMP, /* optinfo_flags */
TV_NONE, /* tv_id */
PROP_gimple_any, /* properties_required */
PROP_gimple_eomp, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_expand_omp : public gimple_opt_pass
{
public:
pass_expand_omp (gcc::context *ctxt)
: gimple_opt_pass (pass_data_expand_omp, ctxt)
{}
/* opt_pass methods: */
virtual unsigned int execute (function *)
{
bool gate = ((flag_cilkplus != 0 || flag_openacc != 0 || flag_openmp != 0
|| flag_openmp_simd != 0)
&& !seen_error ());
/* This pass always runs, to provide PROP_gimple_eomp.
But often, there is nothing to do. */
if (!gate)
return 0;
return execute_expand_omp ();
}
}; // class pass_expand_omp
} // anon namespace
gimple_opt_pass *
make_pass_expand_omp (gcc::context *ctxt)
{
return new pass_expand_omp (ctxt);
}
namespace {
const pass_data pass_data_expand_omp_ssa =
{
GIMPLE_PASS, /* type */
"ompexpssa", /* name */
OPTGROUP_OMP, /* optinfo_flags */
TV_NONE, /* tv_id */
PROP_cfg | PROP_ssa, /* properties_required */
PROP_gimple_eomp, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_cleanup_cfg | TODO_rebuild_alias, /* todo_flags_finish */
};
class pass_expand_omp_ssa : public gimple_opt_pass
{
public:
pass_expand_omp_ssa (gcc::context *ctxt)
: gimple_opt_pass (pass_data_expand_omp_ssa, ctxt)
{}
/* opt_pass methods: */
virtual bool gate (function *fun)
{
return !(fun->curr_properties & PROP_gimple_eomp);
}
virtual unsigned int execute (function *) { return execute_expand_omp (); }
opt_pass * clone () { return new pass_expand_omp_ssa (m_ctxt); }
}; // class pass_expand_omp_ssa
} // anon namespace
gimple_opt_pass *
make_pass_expand_omp_ssa (gcc::context *ctxt)
{
return new pass_expand_omp_ssa (ctxt);
}
/* Called from tree-cfg.c::make_edges to create cfg edges for all relevant
GIMPLE_* codes. */
bool
omp_make_gimple_edges (basic_block bb, struct omp_region **region,
int *region_idx)
{
gimple *last = last_stmt (bb);
enum gimple_code code = gimple_code (last);
struct omp_region *cur_region = *region;
bool fallthru = false;
switch (code)
{
case GIMPLE_OMP_PARALLEL:
case GIMPLE_OMP_TASK:
case GIMPLE_OMP_FOR:
case GIMPLE_OMP_SINGLE:
case GIMPLE_OMP_TEAMS:
case GIMPLE_OMP_MASTER:
case GIMPLE_OMP_TASKGROUP:
case GIMPLE_OMP_CRITICAL:
case GIMPLE_OMP_SECTION:
case GIMPLE_OMP_GRID_BODY:
cur_region = new_omp_region (bb, code, cur_region);
fallthru = true;
break;
case GIMPLE_OMP_ORDERED:
cur_region = new_omp_region (bb, code, cur_region);
fallthru = true;
if (omp_find_clause (gimple_omp_ordered_clauses
(as_a <gomp_ordered *> (last)),
OMP_CLAUSE_DEPEND))
cur_region = cur_region->outer;
break;
case GIMPLE_OMP_TARGET:
cur_region = new_omp_region (bb, code, cur_region);
fallthru = true;
switch (gimple_omp_target_kind (last))
{
case GF_OMP_TARGET_KIND_REGION:
case GF_OMP_TARGET_KIND_DATA:
case GF_OMP_TARGET_KIND_OACC_PARALLEL:
case GF_OMP_TARGET_KIND_OACC_KERNELS:
case GF_OMP_TARGET_KIND_OACC_DATA:
case GF_OMP_TARGET_KIND_OACC_HOST_DATA:
break;
case GF_OMP_TARGET_KIND_UPDATE:
case GF_OMP_TARGET_KIND_ENTER_DATA:
case GF_OMP_TARGET_KIND_EXIT_DATA:
case GF_OMP_TARGET_KIND_OACC_UPDATE:
case GF_OMP_TARGET_KIND_OACC_ENTER_EXIT_DATA:
case GF_OMP_TARGET_KIND_OACC_DECLARE:
cur_region = cur_region->outer;
break;
default:
gcc_unreachable ();
}
break;
case GIMPLE_OMP_SECTIONS:
cur_region = new_omp_region (bb, code, cur_region);
fallthru = true;
break;
case GIMPLE_OMP_SECTIONS_SWITCH:
fallthru = false;
break;
case GIMPLE_OMP_ATOMIC_LOAD:
case GIMPLE_OMP_ATOMIC_STORE:
fallthru = true;
break;
case GIMPLE_OMP_RETURN:
/* In the case of a GIMPLE_OMP_SECTION, the edge will go
somewhere other than the next block. This will be
created later. */
cur_region->exit = bb;
if (cur_region->type == GIMPLE_OMP_TASK)
/* Add an edge corresponding to not scheduling the task
immediately. */
make_edge (cur_region->entry, bb, EDGE_ABNORMAL);
fallthru = cur_region->type != GIMPLE_OMP_SECTION;
cur_region = cur_region->outer;
break;
case GIMPLE_OMP_CONTINUE:
cur_region->cont = bb;
switch (cur_region->type)
{
case GIMPLE_OMP_FOR:
/* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
succs edges as abnormal to prevent splitting
them. */
single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
/* Make the loopback edge. */
make_edge (bb, single_succ (cur_region->entry),
EDGE_ABNORMAL);
/* Create an edge from GIMPLE_OMP_FOR to exit, which
corresponds to the case that the body of the loop
is not executed at all. */
make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
fallthru = false;
break;
case GIMPLE_OMP_SECTIONS:
/* Wire up the edges into and out of the nested sections. */
{
basic_block switch_bb = single_succ (cur_region->entry);
struct omp_region *i;
for (i = cur_region->inner; i ; i = i->next)
{
gcc_assert (i->type == GIMPLE_OMP_SECTION);
make_edge (switch_bb, i->entry, 0);
make_edge (i->exit, bb, EDGE_FALLTHRU);
}
/* Make the loopback edge to the block with
GIMPLE_OMP_SECTIONS_SWITCH. */
make_edge (bb, switch_bb, 0);
/* Make the edge from the switch to exit. */
make_edge (switch_bb, bb->next_bb, 0);
fallthru = false;
}
break;
case GIMPLE_OMP_TASK:
fallthru = true;
break;
default:
gcc_unreachable ();
}
break;
default:
gcc_unreachable ();
}
if (*region != cur_region)
{
*region = cur_region;
if (cur_region)
*region_idx = cur_region->entry->index;
else
*region_idx = 0;
}
return fallthru;
}
#include "gt-omp-expand.h"
|