1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
|
/* Routines to implement minimum-cost maximal flow algorithm used to smooth
basic block and edge frequency counts.
Copyright (C) 2008-2017 Free Software Foundation, Inc.
Contributed by Paul Yuan (yingbo.com@gmail.com) and
Vinodha Ramasamy (vinodha@google.com).
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* References:
[1] "Feedback-directed Optimizations in GCC with Estimated Edge Profiles
from Hardware Event Sampling", Vinodha Ramasamy, Paul Yuan, Dehao Chen,
and Robert Hundt; GCC Summit 2008.
[2] "Complementing Missing and Inaccurate Profiling Using a Minimum Cost
Circulation Algorithm", Roy Levin, Ilan Newman and Gadi Haber;
HiPEAC '08.
Algorithm to smooth basic block and edge counts:
1. create_fixup_graph: Create fixup graph by translating function CFG into
a graph that satisfies MCF algorithm requirements.
2. find_max_flow: Find maximal flow.
3. compute_residual_flow: Form residual network.
4. Repeat:
cancel_negative_cycle: While G contains a negative cost cycle C, reverse
the flow on the found cycle by the minimum residual capacity in that
cycle.
5. Form the minimal cost flow
f(u,v) = rf(v, u).
6. adjust_cfg_counts: Update initial edge weights with corrected weights.
delta(u.v) = f(u,v) -f(v,u).
w*(u,v) = w(u,v) + delta(u,v). */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "profile.h"
#include "dumpfile.h"
/* CAP_INFINITY: Constant to represent infinite capacity. */
#define CAP_INFINITY INTTYPE_MAXIMUM (int64_t)
/* COST FUNCTION. */
#define K_POS(b) ((b))
#define K_NEG(b) (50 * (b))
#define COST(k, w) ((k) / mcf_ln ((w) + 2))
/* Limit the number of iterations for cancel_negative_cycles() to ensure
reasonable compile time. */
#define MAX_ITER(n, e) 10 + (1000000 / ((n) * (e)))
enum edge_type
{
INVALID_EDGE,
VERTEX_SPLIT_EDGE, /* Edge to represent vertex with w(e) = w(v). */
REDIRECT_EDGE, /* Edge after vertex transformation. */
REVERSE_EDGE,
SOURCE_CONNECT_EDGE, /* Single edge connecting to single source. */
SINK_CONNECT_EDGE, /* Single edge connecting to single sink. */
BALANCE_EDGE, /* Edge connecting with source/sink: cp(e) = 0. */
REDIRECT_NORMALIZED_EDGE, /* Normalized edge for a redirect edge. */
REVERSE_NORMALIZED_EDGE /* Normalized edge for a reverse edge. */
};
/* Structure to represent an edge in the fixup graph. */
struct fixup_edge_type
{
int src;
int dest;
/* Flag denoting type of edge and attributes for the flow field. */
edge_type type;
bool is_rflow_valid;
/* Index to the normalization vertex added for this edge. */
int norm_vertex_index;
/* Flow for this edge. */
gcov_type flow;
/* Residual flow for this edge - used during negative cycle canceling. */
gcov_type rflow;
gcov_type weight;
gcov_type cost;
gcov_type max_capacity;
};
typedef fixup_edge_type *fixup_edge_p;
/* Structure to represent a vertex in the fixup graph. */
struct fixup_vertex_type
{
vec<fixup_edge_p> succ_edges;
};
typedef fixup_vertex_type *fixup_vertex_p;
/* Fixup graph used in the MCF algorithm. */
struct fixup_graph_type
{
/* Current number of vertices for the graph. */
int num_vertices;
/* Current number of edges for the graph. */
int num_edges;
/* Index of new entry vertex. */
int new_entry_index;
/* Index of new exit vertex. */
int new_exit_index;
/* Fixup vertex list. Adjacency list for fixup graph. */
fixup_vertex_p vertex_list;
/* Fixup edge list. */
fixup_edge_p edge_list;
};
struct queue_type
{
int *queue;
int head;
int tail;
int size;
};
/* Structure used in the maximal flow routines to find augmenting path. */
struct augmenting_path_type
{
/* Queue used to hold vertex indices. */
queue_type queue_list;
/* Vector to hold chain of pred vertex indices in augmenting path. */
int *bb_pred;
/* Vector that indicates if basic block i has been visited. */
int *is_visited;
};
/* Function definitions. */
/* Dump routines to aid debugging. */
/* Print basic block with index N for FIXUP_GRAPH in n' and n'' format. */
static void
print_basic_block (FILE *file, fixup_graph_type *fixup_graph, int n)
{
if (n == ENTRY_BLOCK)
fputs ("ENTRY", file);
else if (n == ENTRY_BLOCK + 1)
fputs ("ENTRY''", file);
else if (n == 2 * EXIT_BLOCK)
fputs ("EXIT", file);
else if (n == 2 * EXIT_BLOCK + 1)
fputs ("EXIT''", file);
else if (n == fixup_graph->new_exit_index)
fputs ("NEW_EXIT", file);
else if (n == fixup_graph->new_entry_index)
fputs ("NEW_ENTRY", file);
else
{
fprintf (file, "%d", n / 2);
if (n % 2)
fputs ("''", file);
else
fputs ("'", file);
}
}
/* Print edge S->D for given fixup_graph with n' and n'' format.
PARAMETERS:
S is the index of the source vertex of the edge (input) and
D is the index of the destination vertex of the edge (input) for the given
fixup_graph (input). */
static void
print_edge (FILE *file, fixup_graph_type *fixup_graph, int s, int d)
{
print_basic_block (file, fixup_graph, s);
fputs ("->", file);
print_basic_block (file, fixup_graph, d);
}
/* Dump out the attributes of a given edge FEDGE in the fixup_graph to a
file. */
static void
dump_fixup_edge (FILE *file, fixup_graph_type *fixup_graph, fixup_edge_p fedge)
{
if (!fedge)
{
fputs ("NULL fixup graph edge.\n", file);
return;
}
print_edge (file, fixup_graph, fedge->src, fedge->dest);
fputs (": ", file);
if (fedge->type)
{
fprintf (file, "flow/capacity=%" PRId64 "/",
fedge->flow);
if (fedge->max_capacity == CAP_INFINITY)
fputs ("+oo,", file);
else
fprintf (file, "%" PRId64 ",", fedge->max_capacity);
}
if (fedge->is_rflow_valid)
{
if (fedge->rflow == CAP_INFINITY)
fputs (" rflow=+oo.", file);
else
fprintf (file, " rflow=%" PRId64 ",", fedge->rflow);
}
fprintf (file, " cost=%" PRId64 ".", fedge->cost);
fprintf (file, "\t(%d->%d)", fedge->src, fedge->dest);
if (fedge->type)
{
switch (fedge->type)
{
case VERTEX_SPLIT_EDGE:
fputs (" @VERTEX_SPLIT_EDGE", file);
break;
case REDIRECT_EDGE:
fputs (" @REDIRECT_EDGE", file);
break;
case SOURCE_CONNECT_EDGE:
fputs (" @SOURCE_CONNECT_EDGE", file);
break;
case SINK_CONNECT_EDGE:
fputs (" @SINK_CONNECT_EDGE", file);
break;
case REVERSE_EDGE:
fputs (" @REVERSE_EDGE", file);
break;
case BALANCE_EDGE:
fputs (" @BALANCE_EDGE", file);
break;
case REDIRECT_NORMALIZED_EDGE:
case REVERSE_NORMALIZED_EDGE:
fputs (" @NORMALIZED_EDGE", file);
break;
default:
fputs (" @INVALID_EDGE", file);
break;
}
}
fputs ("\n", file);
}
/* Print out the edges and vertices of the given FIXUP_GRAPH, into the dump
file. The input string MSG is printed out as a heading. */
static void
dump_fixup_graph (FILE *file, fixup_graph_type *fixup_graph, const char *msg)
{
int i, j;
int fnum_vertices, fnum_edges;
fixup_vertex_p fvertex_list, pfvertex;
fixup_edge_p pfedge;
gcc_assert (fixup_graph);
fvertex_list = fixup_graph->vertex_list;
fnum_vertices = fixup_graph->num_vertices;
fnum_edges = fixup_graph->num_edges;
fprintf (file, "\nDump fixup graph for %s(): %s.\n",
current_function_name (), msg);
fprintf (file,
"There are %d vertices and %d edges. new_exit_index is %d.\n\n",
fnum_vertices, fnum_edges, fixup_graph->new_exit_index);
for (i = 0; i < fnum_vertices; i++)
{
pfvertex = fvertex_list + i;
fprintf (file, "vertex_list[%d]: %d succ fixup edges.\n",
i, pfvertex->succ_edges.length ());
for (j = 0; pfvertex->succ_edges.iterate (j, &pfedge);
j++)
{
/* Distinguish forward edges and backward edges in the residual flow
network. */
if (pfedge->type)
fputs ("(f) ", file);
else if (pfedge->is_rflow_valid)
fputs ("(b) ", file);
dump_fixup_edge (file, fixup_graph, pfedge);
}
}
fputs ("\n", file);
}
/* Utility routines. */
/* ln() implementation: approximate calculation. Returns ln of X. */
static double
mcf_ln (double x)
{
#define E 2.71828
int l = 1;
double m = E;
gcc_assert (x >= 0);
while (m < x)
{
m *= E;
l++;
}
return l;
}
/* sqrt() implementation: based on open source QUAKE3 code (magic sqrt
implementation) by John Carmack. Returns sqrt of X. */
static double
mcf_sqrt (double x)
{
#define MAGIC_CONST1 0x1fbcf800
#define MAGIC_CONST2 0x5f3759df
union {
int intPart;
float floatPart;
} convertor, convertor2;
gcc_assert (x >= 0);
convertor.floatPart = x;
convertor2.floatPart = x;
convertor.intPart = MAGIC_CONST1 + (convertor.intPart >> 1);
convertor2.intPart = MAGIC_CONST2 - (convertor2.intPart >> 1);
return 0.5f * (convertor.floatPart + (x * convertor2.floatPart));
}
/* Common code shared between add_fixup_edge and add_rfixup_edge. Adds an edge
(SRC->DEST) to the edge_list maintained in FIXUP_GRAPH with cost of the edge
added set to COST. */
static fixup_edge_p
add_edge (fixup_graph_type *fixup_graph, int src, int dest, gcov_type cost)
{
fixup_vertex_p curr_vertex = fixup_graph->vertex_list + src;
fixup_edge_p curr_edge = fixup_graph->edge_list + fixup_graph->num_edges;
curr_edge->src = src;
curr_edge->dest = dest;
curr_edge->cost = cost;
fixup_graph->num_edges++;
if (dump_file)
dump_fixup_edge (dump_file, fixup_graph, curr_edge);
curr_vertex->succ_edges.safe_push (curr_edge);
return curr_edge;
}
/* Add a fixup edge (src->dest) with attributes TYPE, WEIGHT, COST and
MAX_CAPACITY to the edge_list in the fixup graph. */
static void
add_fixup_edge (fixup_graph_type *fixup_graph, int src, int dest,
edge_type type, gcov_type weight, gcov_type cost,
gcov_type max_capacity)
{
fixup_edge_p curr_edge = add_edge (fixup_graph, src, dest, cost);
curr_edge->type = type;
curr_edge->weight = weight;
curr_edge->max_capacity = max_capacity;
}
/* Add a residual edge (SRC->DEST) with attributes RFLOW and COST
to the fixup graph. */
static void
add_rfixup_edge (fixup_graph_type *fixup_graph, int src, int dest,
gcov_type rflow, gcov_type cost)
{
fixup_edge_p curr_edge = add_edge (fixup_graph, src, dest, cost);
curr_edge->rflow = rflow;
curr_edge->is_rflow_valid = true;
/* This edge is not a valid edge - merely used to hold residual flow. */
curr_edge->type = INVALID_EDGE;
}
/* Return the pointer to fixup edge SRC->DEST or NULL if edge does not
exist in the FIXUP_GRAPH. */
static fixup_edge_p
find_fixup_edge (fixup_graph_type *fixup_graph, int src, int dest)
{
int j;
fixup_edge_p pfedge;
fixup_vertex_p pfvertex;
gcc_assert (src < fixup_graph->num_vertices);
pfvertex = fixup_graph->vertex_list + src;
for (j = 0; pfvertex->succ_edges.iterate (j, &pfedge);
j++)
if (pfedge->dest == dest)
return pfedge;
return NULL;
}
/* Cleanup routine to free structures in FIXUP_GRAPH. */
static void
delete_fixup_graph (fixup_graph_type *fixup_graph)
{
int i;
int fnum_vertices = fixup_graph->num_vertices;
fixup_vertex_p pfvertex = fixup_graph->vertex_list;
for (i = 0; i < fnum_vertices; i++, pfvertex++)
pfvertex->succ_edges.release ();
free (fixup_graph->vertex_list);
free (fixup_graph->edge_list);
}
/* Creates a fixup graph FIXUP_GRAPH from the function CFG. */
static void
create_fixup_graph (fixup_graph_type *fixup_graph)
{
double sqrt_avg_vertex_weight = 0;
double total_vertex_weight = 0;
double k_pos = 0;
double k_neg = 0;
/* Vector to hold D(v) = sum_out_edges(v) - sum_in_edges(v). */
gcov_type *diff_out_in = NULL;
gcov_type supply_value = 1, demand_value = 0;
gcov_type fcost = 0;
int new_entry_index = 0, new_exit_index = 0;
int i = 0, j = 0;
int new_index = 0;
basic_block bb;
edge e;
edge_iterator ei;
fixup_edge_p pfedge, r_pfedge;
fixup_edge_p fedge_list;
int fnum_edges;
/* Each basic_block will be split into 2 during vertex transformation. */
int fnum_vertices_after_transform = 2 * n_basic_blocks_for_fn (cfun);
int fnum_edges_after_transform =
n_edges_for_fn (cfun) + n_basic_blocks_for_fn (cfun);
/* Count the new SOURCE and EXIT vertices to be added. */
int fmax_num_vertices =
(fnum_vertices_after_transform + n_edges_for_fn (cfun)
+ n_basic_blocks_for_fn (cfun) + 2);
/* In create_fixup_graph: Each basic block and edge can be split into 3
edges. Number of balance edges = n_basic_blocks. So after
create_fixup_graph:
max_edges = 4 * n_basic_blocks + 3 * n_edges
Accounting for residual flow edges
max_edges = 2 * (4 * n_basic_blocks + 3 * n_edges)
= 8 * n_basic_blocks + 6 * n_edges
< 8 * n_basic_blocks + 8 * n_edges. */
int fmax_num_edges = 8 * (n_basic_blocks_for_fn (cfun) +
n_edges_for_fn (cfun));
/* Initial num of vertices in the fixup graph. */
fixup_graph->num_vertices = n_basic_blocks_for_fn (cfun);
/* Fixup graph vertex list. */
fixup_graph->vertex_list =
(fixup_vertex_p) xcalloc (fmax_num_vertices, sizeof (fixup_vertex_type));
/* Fixup graph edge list. */
fixup_graph->edge_list =
(fixup_edge_p) xcalloc (fmax_num_edges, sizeof (fixup_edge_type));
diff_out_in =
(gcov_type *) xcalloc (1 + fnum_vertices_after_transform,
sizeof (gcov_type));
/* Compute constants b, k_pos, k_neg used in the cost function calculation.
b = sqrt(avg_vertex_weight(cfg)); k_pos = b; k_neg = 50b. */
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
total_vertex_weight += bb_gcov_count (bb);
sqrt_avg_vertex_weight = mcf_sqrt (total_vertex_weight /
n_basic_blocks_for_fn (cfun));
k_pos = K_POS (sqrt_avg_vertex_weight);
k_neg = K_NEG (sqrt_avg_vertex_weight);
/* 1. Vertex Transformation: Split each vertex v into two vertices v' and v'',
connected by an edge e from v' to v''. w(e) = w(v). */
if (dump_file)
fprintf (dump_file, "\nVertex transformation:\n");
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
{
/* v'->v'': index1->(index1+1). */
i = 2 * bb->index;
fcost = (gcov_type) COST (k_pos, bb_gcov_count (bb));
add_fixup_edge (fixup_graph, i, i + 1, VERTEX_SPLIT_EDGE, bb_gcov_count (bb),
fcost, CAP_INFINITY);
fixup_graph->num_vertices++;
FOR_EACH_EDGE (e, ei, bb->succs)
{
/* Edges with ignore attribute set should be treated like they don't
exist. */
if (EDGE_INFO (e) && EDGE_INFO (e)->ignore)
continue;
j = 2 * e->dest->index;
fcost = (gcov_type) COST (k_pos, edge_gcov_count (e));
add_fixup_edge (fixup_graph, i + 1, j, REDIRECT_EDGE, edge_gcov_count (e),
fcost, CAP_INFINITY);
}
}
/* After vertex transformation. */
gcc_assert (fixup_graph->num_vertices == fnum_vertices_after_transform);
/* Redirect edges are not added for edges with ignore attribute. */
gcc_assert (fixup_graph->num_edges <= fnum_edges_after_transform);
fnum_edges_after_transform = fixup_graph->num_edges;
/* 2. Initialize D(v). */
for (i = 0; i < fnum_edges_after_transform; i++)
{
pfedge = fixup_graph->edge_list + i;
diff_out_in[pfedge->src] += pfedge->weight;
diff_out_in[pfedge->dest] -= pfedge->weight;
}
/* Entry block - vertex indices 0, 1; EXIT block - vertex indices 2, 3. */
for (i = 0; i <= 3; i++)
diff_out_in[i] = 0;
/* 3. Add reverse edges: needed to decrease counts during smoothing. */
if (dump_file)
fprintf (dump_file, "\nReverse edges:\n");
for (i = 0; i < fnum_edges_after_transform; i++)
{
pfedge = fixup_graph->edge_list + i;
if ((pfedge->src == 0) || (pfedge->src == 2))
continue;
r_pfedge = find_fixup_edge (fixup_graph, pfedge->dest, pfedge->src);
if (!r_pfedge && pfedge->weight)
{
/* Skip adding reverse edges for edges with w(e) = 0, as its maximum
capacity is 0. */
fcost = (gcov_type) COST (k_neg, pfedge->weight);
add_fixup_edge (fixup_graph, pfedge->dest, pfedge->src,
REVERSE_EDGE, 0, fcost, pfedge->weight);
}
}
/* 4. Create single source and sink. Connect new source vertex s' to function
entry block. Connect sink vertex t' to function exit. */
if (dump_file)
fprintf (dump_file, "\ns'->S, T->t':\n");
new_entry_index = fixup_graph->new_entry_index = fixup_graph->num_vertices;
fixup_graph->num_vertices++;
/* Set supply_value to 1 to avoid zero count function ENTRY. */
add_fixup_edge (fixup_graph, new_entry_index, ENTRY_BLOCK, SOURCE_CONNECT_EDGE,
1 /* supply_value */, 0, 1 /* supply_value */);
/* Create new exit with EXIT_BLOCK as single pred. */
new_exit_index = fixup_graph->new_exit_index = fixup_graph->num_vertices;
fixup_graph->num_vertices++;
add_fixup_edge (fixup_graph, 2 * EXIT_BLOCK + 1, new_exit_index,
SINK_CONNECT_EDGE,
0 /* demand_value */, 0, 0 /* demand_value */);
/* Connect vertices with unbalanced D(v) to source/sink. */
if (dump_file)
fprintf (dump_file, "\nD(v) balance:\n");
/* Skip vertices for ENTRY (0, 1) and EXIT (2,3) blocks, so start with i = 4.
diff_out_in[v''] will be 0, so skip v'' vertices, hence i += 2. */
for (i = 4; i < new_entry_index; i += 2)
{
if (diff_out_in[i] > 0)
{
add_fixup_edge (fixup_graph, i, new_exit_index, BALANCE_EDGE, 0, 0,
diff_out_in[i]);
demand_value += diff_out_in[i];
}
else if (diff_out_in[i] < 0)
{
add_fixup_edge (fixup_graph, new_entry_index, i, BALANCE_EDGE, 0, 0,
-diff_out_in[i]);
supply_value -= diff_out_in[i];
}
}
/* Set supply = demand. */
if (dump_file)
{
fprintf (dump_file, "\nAdjust supply and demand:\n");
fprintf (dump_file, "supply_value=%" PRId64 "\n",
supply_value);
fprintf (dump_file, "demand_value=%" PRId64 "\n",
demand_value);
}
if (demand_value > supply_value)
{
pfedge = find_fixup_edge (fixup_graph, new_entry_index, ENTRY_BLOCK);
pfedge->max_capacity += (demand_value - supply_value);
}
else
{
pfedge = find_fixup_edge (fixup_graph, 2 * EXIT_BLOCK + 1, new_exit_index);
pfedge->max_capacity += (supply_value - demand_value);
}
/* 6. Normalize edges: remove anti-parallel edges. Anti-parallel edges are
created by the vertex transformation step from self-edges in the original
CFG and by the reverse edges added earlier. */
if (dump_file)
fprintf (dump_file, "\nNormalize edges:\n");
fnum_edges = fixup_graph->num_edges;
fedge_list = fixup_graph->edge_list;
for (i = 0; i < fnum_edges; i++)
{
pfedge = fedge_list + i;
r_pfedge = find_fixup_edge (fixup_graph, pfedge->dest, pfedge->src);
if (((pfedge->type == VERTEX_SPLIT_EDGE)
|| (pfedge->type == REDIRECT_EDGE)) && r_pfedge)
{
new_index = fixup_graph->num_vertices;
fixup_graph->num_vertices++;
if (dump_file)
{
fprintf (dump_file, "\nAnti-parallel edge:\n");
dump_fixup_edge (dump_file, fixup_graph, pfedge);
dump_fixup_edge (dump_file, fixup_graph, r_pfedge);
fprintf (dump_file, "New vertex is %d.\n", new_index);
fprintf (dump_file, "------------------\n");
}
pfedge->cost /= 2;
pfedge->norm_vertex_index = new_index;
if (dump_file)
{
fprintf (dump_file, "After normalization:\n");
dump_fixup_edge (dump_file, fixup_graph, pfedge);
}
/* Add a new fixup edge: new_index->src. */
add_fixup_edge (fixup_graph, new_index, pfedge->src,
REVERSE_NORMALIZED_EDGE, 0, r_pfedge->cost,
r_pfedge->max_capacity);
gcc_assert (fixup_graph->num_vertices <= fmax_num_vertices);
/* Edge: r_pfedge->src -> r_pfedge->dest
==> r_pfedge->src -> new_index. */
r_pfedge->dest = new_index;
r_pfedge->type = REVERSE_NORMALIZED_EDGE;
r_pfedge->cost = pfedge->cost;
r_pfedge->max_capacity = pfedge->max_capacity;
if (dump_file)
dump_fixup_edge (dump_file, fixup_graph, r_pfedge);
}
}
if (dump_file)
dump_fixup_graph (dump_file, fixup_graph, "After create_fixup_graph()");
/* Cleanup. */
free (diff_out_in);
}
/* Allocates space for the structures in AUGMENTING_PATH. The space needed is
proportional to the number of nodes in the graph, which is given by
GRAPH_SIZE. */
static void
init_augmenting_path (augmenting_path_type *augmenting_path, int graph_size)
{
augmenting_path->queue_list.queue = (int *)
xcalloc (graph_size + 2, sizeof (int));
augmenting_path->queue_list.size = graph_size + 2;
augmenting_path->bb_pred = (int *) xcalloc (graph_size, sizeof (int));
augmenting_path->is_visited = (int *) xcalloc (graph_size, sizeof (int));
}
/* Free the structures in AUGMENTING_PATH. */
static void
free_augmenting_path (augmenting_path_type *augmenting_path)
{
free (augmenting_path->queue_list.queue);
free (augmenting_path->bb_pred);
free (augmenting_path->is_visited);
}
/* Queue routines. Assumes queue will never overflow. */
static void
init_queue (queue_type *queue_list)
{
gcc_assert (queue_list);
queue_list->head = 0;
queue_list->tail = 0;
}
/* Return true if QUEUE_LIST is empty. */
static bool
is_empty (queue_type *queue_list)
{
return (queue_list->head == queue_list->tail);
}
/* Insert element X into QUEUE_LIST. */
static void
enqueue (queue_type *queue_list, int x)
{
gcc_assert (queue_list->tail < queue_list->size);
queue_list->queue[queue_list->tail] = x;
(queue_list->tail)++;
}
/* Return the first element in QUEUE_LIST. */
static int
dequeue (queue_type *queue_list)
{
int x;
gcc_assert (queue_list->head >= 0);
x = queue_list->queue[queue_list->head];
(queue_list->head)++;
return x;
}
/* Finds a negative cycle in the residual network using
the Bellman-Ford algorithm. The flow on the found cycle is reversed by the
minimum residual capacity of that cycle. ENTRY and EXIT vertices are not
considered.
Parameters:
FIXUP_GRAPH - Residual graph (input/output)
The following are allocated/freed by the caller:
PI - Vector to hold predecessors in path (pi = pred index)
D - D[I] holds minimum cost of path from i to sink
CYCLE - Vector to hold the minimum cost cycle
Return:
true if a negative cycle was found, false otherwise. */
static bool
cancel_negative_cycle (fixup_graph_type *fixup_graph,
int *pi, gcov_type *d, int *cycle)
{
int i, j, k;
int fnum_vertices, fnum_edges;
fixup_edge_p fedge_list, pfedge, r_pfedge;
bool found_cycle = false;
int cycle_start = 0, cycle_end = 0;
gcov_type sum_cost = 0, cycle_flow = 0;
int new_entry_index;
bool propagated = false;
gcc_assert (fixup_graph);
fnum_vertices = fixup_graph->num_vertices;
fnum_edges = fixup_graph->num_edges;
fedge_list = fixup_graph->edge_list;
new_entry_index = fixup_graph->new_entry_index;
/* Initialize. */
/* Skip ENTRY. */
for (i = 1; i < fnum_vertices; i++)
{
d[i] = CAP_INFINITY;
pi[i] = -1;
cycle[i] = -1;
}
d[ENTRY_BLOCK] = 0;
/* Relax. */
for (k = 1; k < fnum_vertices; k++)
{
propagated = false;
for (i = 0; i < fnum_edges; i++)
{
pfedge = fedge_list + i;
if (pfedge->src == new_entry_index)
continue;
if (pfedge->is_rflow_valid && pfedge->rflow
&& d[pfedge->src] != CAP_INFINITY
&& (d[pfedge->dest] > d[pfedge->src] + pfedge->cost))
{
d[pfedge->dest] = d[pfedge->src] + pfedge->cost;
pi[pfedge->dest] = pfedge->src;
propagated = true;
}
}
if (!propagated)
break;
}
if (!propagated)
/* No negative cycles exist. */
return 0;
/* Detect. */
for (i = 0; i < fnum_edges; i++)
{
pfedge = fedge_list + i;
if (pfedge->src == new_entry_index)
continue;
if (pfedge->is_rflow_valid && pfedge->rflow
&& d[pfedge->src] != CAP_INFINITY
&& (d[pfedge->dest] > d[pfedge->src] + pfedge->cost))
{
found_cycle = true;
break;
}
}
if (!found_cycle)
return 0;
/* Augment the cycle with the cycle's minimum residual capacity. */
found_cycle = false;
cycle[0] = pfedge->dest;
j = pfedge->dest;
for (i = 1; i < fnum_vertices; i++)
{
j = pi[j];
cycle[i] = j;
for (k = 0; k < i; k++)
{
if (cycle[k] == j)
{
/* cycle[k] -> ... -> cycle[i]. */
cycle_start = k;
cycle_end = i;
found_cycle = true;
break;
}
}
if (found_cycle)
break;
}
gcc_assert (cycle[cycle_start] == cycle[cycle_end]);
if (dump_file)
fprintf (dump_file, "\nNegative cycle length is %d:\n",
cycle_end - cycle_start);
sum_cost = 0;
cycle_flow = CAP_INFINITY;
for (k = cycle_start; k < cycle_end; k++)
{
pfedge = find_fixup_edge (fixup_graph, cycle[k + 1], cycle[k]);
cycle_flow = MIN (cycle_flow, pfedge->rflow);
sum_cost += pfedge->cost;
if (dump_file)
fprintf (dump_file, "%d ", cycle[k]);
}
if (dump_file)
{
fprintf (dump_file, "%d", cycle[k]);
fprintf (dump_file,
": (%" PRId64 ", %" PRId64
")\n", sum_cost, cycle_flow);
fprintf (dump_file,
"Augment cycle with %" PRId64 "\n",
cycle_flow);
}
for (k = cycle_start; k < cycle_end; k++)
{
pfedge = find_fixup_edge (fixup_graph, cycle[k + 1], cycle[k]);
r_pfedge = find_fixup_edge (fixup_graph, cycle[k], cycle[k + 1]);
pfedge->rflow -= cycle_flow;
if (pfedge->type)
pfedge->flow += cycle_flow;
r_pfedge->rflow += cycle_flow;
if (r_pfedge->type)
r_pfedge->flow -= cycle_flow;
}
return true;
}
/* Computes the residual flow for FIXUP_GRAPH by setting the rflow field of
the edges. ENTRY and EXIT vertices should not be considered. */
static void
compute_residual_flow (fixup_graph_type *fixup_graph)
{
int i;
int fnum_edges;
fixup_edge_p fedge_list, pfedge;
gcc_assert (fixup_graph);
if (dump_file)
fputs ("\ncompute_residual_flow():\n", dump_file);
fnum_edges = fixup_graph->num_edges;
fedge_list = fixup_graph->edge_list;
for (i = 0; i < fnum_edges; i++)
{
pfedge = fedge_list + i;
pfedge->rflow = pfedge->max_capacity - pfedge->flow;
pfedge->is_rflow_valid = true;
add_rfixup_edge (fixup_graph, pfedge->dest, pfedge->src, pfedge->flow,
-pfedge->cost);
}
}
/* Uses Edmonds-Karp algorithm - BFS to find augmenting path from SOURCE to
SINK. The fields in the edge vector in the FIXUP_GRAPH are not modified by
this routine. The vector bb_pred in the AUGMENTING_PATH structure is updated
to reflect the path found.
Returns: 0 if no augmenting path is found, 1 otherwise. */
static int
find_augmenting_path (fixup_graph_type *fixup_graph,
augmenting_path_type *augmenting_path, int source,
int sink)
{
int u = 0;
int i;
fixup_vertex_p fvertex_list, pfvertex;
fixup_edge_p pfedge;
int *bb_pred, *is_visited;
queue_type *queue_list;
gcc_assert (augmenting_path);
bb_pred = augmenting_path->bb_pred;
gcc_assert (bb_pred);
is_visited = augmenting_path->is_visited;
gcc_assert (is_visited);
queue_list = &(augmenting_path->queue_list);
gcc_assert (fixup_graph);
fvertex_list = fixup_graph->vertex_list;
for (u = 0; u < fixup_graph->num_vertices; u++)
is_visited[u] = 0;
init_queue (queue_list);
enqueue (queue_list, source);
bb_pred[source] = -1;
while (!is_empty (queue_list))
{
u = dequeue (queue_list);
is_visited[u] = 1;
pfvertex = fvertex_list + u;
for (i = 0; pfvertex->succ_edges.iterate (i, &pfedge);
i++)
{
int dest = pfedge->dest;
if ((pfedge->rflow > 0) && (is_visited[dest] == 0))
{
enqueue (queue_list, dest);
bb_pred[dest] = u;
is_visited[dest] = 1;
if (dest == sink)
return 1;
}
}
}
return 0;
}
/* Routine to find the maximal flow:
Algorithm:
1. Initialize flow to 0
2. Find an augmenting path form source to sink.
3. Send flow equal to the path's residual capacity along the edges of this path.
4. Repeat steps 2 and 3 until no new augmenting path is found.
Parameters:
SOURCE: index of source vertex (input)
SINK: index of sink vertex (input)
FIXUP_GRAPH: adjacency matrix representing the graph. The flow of the edges will be
set to have a valid maximal flow by this routine. (input)
Return: Maximum flow possible. */
static gcov_type
find_max_flow (fixup_graph_type *fixup_graph, int source, int sink)
{
int fnum_edges;
augmenting_path_type augmenting_path;
int *bb_pred;
gcov_type max_flow = 0;
int i, u;
fixup_edge_p fedge_list, pfedge, r_pfedge;
gcc_assert (fixup_graph);
fnum_edges = fixup_graph->num_edges;
fedge_list = fixup_graph->edge_list;
/* Initialize flow to 0. */
for (i = 0; i < fnum_edges; i++)
{
pfedge = fedge_list + i;
pfedge->flow = 0;
}
compute_residual_flow (fixup_graph);
init_augmenting_path (&augmenting_path, fixup_graph->num_vertices);
bb_pred = augmenting_path.bb_pred;
while (find_augmenting_path (fixup_graph, &augmenting_path, source, sink))
{
/* Determine the amount by which we can increment the flow. */
gcov_type increment = CAP_INFINITY;
for (u = sink; u != source; u = bb_pred[u])
{
pfedge = find_fixup_edge (fixup_graph, bb_pred[u], u);
increment = MIN (increment, pfedge->rflow);
}
max_flow += increment;
/* Now increment the flow. EXIT vertex index is 1. */
for (u = sink; u != source; u = bb_pred[u])
{
pfedge = find_fixup_edge (fixup_graph, bb_pred[u], u);
r_pfedge = find_fixup_edge (fixup_graph, u, bb_pred[u]);
if (pfedge->type)
{
/* forward edge. */
pfedge->flow += increment;
pfedge->rflow -= increment;
r_pfedge->rflow += increment;
}
else
{
/* backward edge. */
gcc_assert (r_pfedge->type);
r_pfedge->rflow += increment;
r_pfedge->flow -= increment;
pfedge->rflow -= increment;
}
}
if (dump_file)
{
fprintf (dump_file, "\nDump augmenting path:\n");
for (u = sink; u != source; u = bb_pred[u])
{
print_basic_block (dump_file, fixup_graph, u);
fprintf (dump_file, "<-");
}
fprintf (dump_file,
"ENTRY (path_capacity=%" PRId64 ")\n",
increment);
fprintf (dump_file,
"Network flow is %" PRId64 ".\n",
max_flow);
}
}
free_augmenting_path (&augmenting_path);
if (dump_file)
dump_fixup_graph (dump_file, fixup_graph, "After find_max_flow()");
return max_flow;
}
/* Computes the corrected edge and basic block weights using FIXUP_GRAPH
after applying the find_minimum_cost_flow() routine. */
static void
adjust_cfg_counts (fixup_graph_type *fixup_graph)
{
basic_block bb;
edge e;
edge_iterator ei;
int i, j;
fixup_edge_p pfedge, pfedge_n;
gcc_assert (fixup_graph);
if (dump_file)
fprintf (dump_file, "\nadjust_cfg_counts():\n");
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
{
i = 2 * bb->index;
/* Fixup BB. */
if (dump_file)
fprintf (dump_file,
"BB%d: %" PRId64 "", bb->index, bb_gcov_count (bb));
pfedge = find_fixup_edge (fixup_graph, i, i + 1);
if (pfedge->flow)
{
bb_gcov_count (bb) += pfedge->flow;
if (dump_file)
{
fprintf (dump_file, " + %" PRId64 "(",
pfedge->flow);
print_edge (dump_file, fixup_graph, i, i + 1);
fprintf (dump_file, ")");
}
}
pfedge_n =
find_fixup_edge (fixup_graph, i + 1, pfedge->norm_vertex_index);
/* Deduct flow from normalized reverse edge. */
if (pfedge->norm_vertex_index && pfedge_n->flow)
{
bb_gcov_count (bb) -= pfedge_n->flow;
if (dump_file)
{
fprintf (dump_file, " - %" PRId64 "(",
pfedge_n->flow);
print_edge (dump_file, fixup_graph, i + 1,
pfedge->norm_vertex_index);
fprintf (dump_file, ")");
}
}
if (dump_file)
fprintf (dump_file, " = %" PRId64 "\n", bb_gcov_count (bb));
/* Fixup edge. */
FOR_EACH_EDGE (e, ei, bb->succs)
{
/* Treat edges with ignore attribute set as if they don't exist. */
if (EDGE_INFO (e) && EDGE_INFO (e)->ignore)
continue;
j = 2 * e->dest->index;
if (dump_file)
fprintf (dump_file, "%d->%d: %" PRId64 "",
bb->index, e->dest->index, edge_gcov_count (e));
pfedge = find_fixup_edge (fixup_graph, i + 1, j);
if (bb->index != e->dest->index)
{
/* Non-self edge. */
if (pfedge->flow)
{
edge_gcov_count (e) += pfedge->flow;
if (dump_file)
{
fprintf (dump_file, " + %" PRId64 "(",
pfedge->flow);
print_edge (dump_file, fixup_graph, i + 1, j);
fprintf (dump_file, ")");
}
}
pfedge_n =
find_fixup_edge (fixup_graph, j, pfedge->norm_vertex_index);
/* Deduct flow from normalized reverse edge. */
if (pfedge->norm_vertex_index && pfedge_n->flow)
{
edge_gcov_count (e) -= pfedge_n->flow;
if (dump_file)
{
fprintf (dump_file, " - %" PRId64 "(",
pfedge_n->flow);
print_edge (dump_file, fixup_graph, j,
pfedge->norm_vertex_index);
fprintf (dump_file, ")");
}
}
}
else
{
/* Handle self edges. Self edge is split with a normalization
vertex. Here i=j. */
pfedge = find_fixup_edge (fixup_graph, j, i + 1);
pfedge_n =
find_fixup_edge (fixup_graph, i + 1, pfedge->norm_vertex_index);
edge_gcov_count (e) += pfedge_n->flow;
bb_gcov_count (bb) += pfedge_n->flow;
if (dump_file)
{
fprintf (dump_file, "(self edge)");
fprintf (dump_file, " + %" PRId64 "(",
pfedge_n->flow);
print_edge (dump_file, fixup_graph, i + 1,
pfedge->norm_vertex_index);
fprintf (dump_file, ")");
}
}
if (bb_gcov_count (bb))
e->probability = RDIV (REG_BR_PROB_BASE * edge_gcov_count (e),
bb_gcov_count (bb));
if (dump_file)
fprintf (dump_file, " = %" PRId64 "\t(%.1f%%)\n",
edge_gcov_count (e),
e->probability * 100.0 / REG_BR_PROB_BASE);
}
}
bb_gcov_count (ENTRY_BLOCK_PTR_FOR_FN (cfun)) =
sum_edge_counts (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
bb_gcov_count (EXIT_BLOCK_PTR_FOR_FN (cfun)) =
sum_edge_counts (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
/* Compute edge probabilities. */
FOR_ALL_BB_FN (bb, cfun)
{
if (bb_gcov_count (bb))
{
FOR_EACH_EDGE (e, ei, bb->succs)
e->probability = RDIV (REG_BR_PROB_BASE * edge_gcov_count (e),
bb_gcov_count (bb));
}
else
{
int total = 0;
FOR_EACH_EDGE (e, ei, bb->succs)
if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
total++;
if (total)
{
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
e->probability = REG_BR_PROB_BASE / total;
else
e->probability = 0;
}
}
else
{
total += EDGE_COUNT (bb->succs);
FOR_EACH_EDGE (e, ei, bb->succs)
e->probability = REG_BR_PROB_BASE / total;
}
}
}
if (dump_file)
{
fprintf (dump_file, "\nCheck %s() CFG flow conservation:\n",
current_function_name ());
FOR_EACH_BB_FN (bb, cfun)
{
if ((bb_gcov_count (bb) != sum_edge_counts (bb->preds))
|| (bb_gcov_count (bb) != sum_edge_counts (bb->succs)))
{
fprintf (dump_file,
"BB%d(%" PRId64 ") **INVALID**: ",
bb->index, bb_gcov_count (bb));
fprintf (stderr,
"******** BB%d(%" PRId64
") **INVALID**: \n", bb->index, bb_gcov_count (bb));
fprintf (dump_file, "in_edges=%" PRId64 " ",
sum_edge_counts (bb->preds));
fprintf (dump_file, "out_edges=%" PRId64 "\n",
sum_edge_counts (bb->succs));
}
}
}
}
/* Implements the negative cycle canceling algorithm to compute a minimum cost
flow.
Algorithm:
1. Find maximal flow.
2. Form residual network
3. Repeat:
While G contains a negative cost cycle C, reverse the flow on the found cycle
by the minimum residual capacity in that cycle.
4. Form the minimal cost flow
f(u,v) = rf(v, u)
Input:
FIXUP_GRAPH - Initial fixup graph.
The flow field is modified to represent the minimum cost flow. */
static void
find_minimum_cost_flow (fixup_graph_type *fixup_graph)
{
/* Holds the index of predecessor in path. */
int *pred;
/* Used to hold the minimum cost cycle. */
int *cycle;
/* Used to record the number of iterations of cancel_negative_cycle. */
int iteration;
/* Vector d[i] holds the minimum cost of path from i to sink. */
gcov_type *d;
int fnum_vertices;
int new_exit_index;
int new_entry_index;
gcc_assert (fixup_graph);
fnum_vertices = fixup_graph->num_vertices;
new_exit_index = fixup_graph->new_exit_index;
new_entry_index = fixup_graph->new_entry_index;
find_max_flow (fixup_graph, new_entry_index, new_exit_index);
/* Initialize the structures for find_negative_cycle(). */
pred = (int *) xcalloc (fnum_vertices, sizeof (int));
d = (gcov_type *) xcalloc (fnum_vertices, sizeof (gcov_type));
cycle = (int *) xcalloc (fnum_vertices, sizeof (int));
/* Repeatedly find and cancel negative cost cycles, until
no more negative cycles exist. This also updates the flow field
to represent the minimum cost flow so far. */
iteration = 0;
while (cancel_negative_cycle (fixup_graph, pred, d, cycle))
{
iteration++;
if (iteration > MAX_ITER (fixup_graph->num_vertices,
fixup_graph->num_edges))
break;
}
if (dump_file)
dump_fixup_graph (dump_file, fixup_graph,
"After find_minimum_cost_flow()");
/* Cleanup structures. */
free (pred);
free (d);
free (cycle);
}
/* Compute the sum of the edge counts in TO_EDGES. */
gcov_type
sum_edge_counts (vec<edge, va_gc> *to_edges)
{
gcov_type sum = 0;
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, to_edges)
{
if (EDGE_INFO (e) && EDGE_INFO (e)->ignore)
continue;
sum += edge_gcov_count (e);
}
return sum;
}
/* Main routine. Smoothes the initial assigned basic block and edge counts using
a minimum cost flow algorithm, to ensure that the flow consistency rule is
obeyed: sum of outgoing edges = sum of incoming edges for each basic
block. */
void
mcf_smooth_cfg (void)
{
fixup_graph_type fixup_graph;
memset (&fixup_graph, 0, sizeof (fixup_graph));
create_fixup_graph (&fixup_graph);
find_minimum_cost_flow (&fixup_graph);
adjust_cfg_counts (&fixup_graph);
delete_fixup_graph (&fixup_graph);
}
|