summaryrefslogtreecommitdiff
path: root/gcc/lto/lto.c
blob: cbc192a664493a7a0e8e042c4b30f9384db94fa9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
/* Top-level LTO routines.
   Copyright 2009, 2010 Free Software Foundation, Inc.
   Contributed by CodeSourcery, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "opts.h"
#include "toplev.h"
#include "tree.h"
#include "diagnostic-core.h"
#include "tm.h"
#include "cgraph.h"
#include "ggc.h"
#include "tree-ssa-operands.h"
#include "tree-pass.h"
#include "langhooks.h"
#include "vec.h"
#include "bitmap.h"
#include "pointer-set.h"
#include "ipa-prop.h"
#include "common.h"
#include "debug.h"
#include "timevar.h"
#include "gimple.h"
#include "lto.h"
#include "lto-tree.h"
#include "lto-streamer.h"
#include "splay-tree.h"
#include "params.h"

static GTY(()) tree first_personality_decl;

/* Returns a hash code for P.  */

static hashval_t
hash_name (const void *p)
{
  const struct lto_section_slot *ds = (const struct lto_section_slot *) p;
  return (hashval_t) htab_hash_string (ds->name);
}


/* Returns nonzero if P1 and P2 are equal.  */

static int
eq_name (const void *p1, const void *p2)
{
  const struct lto_section_slot *s1 =
    (const struct lto_section_slot *) p1;
  const struct lto_section_slot *s2 =
    (const struct lto_section_slot *) p2;

  return strcmp (s1->name, s2->name) == 0;
}

/* Free lto_section_slot */

static void
free_with_string (void *arg)
{
  struct lto_section_slot *s = (struct lto_section_slot *)arg;

  free (CONST_CAST (char *, s->name));
  free (arg);
}

/* Create section hash table */

htab_t 
lto_obj_create_section_hash_table (void)
{
  return htab_create (37, hash_name, eq_name, free_with_string);
}

/* Read the constructors and inits.  */

static void
lto_materialize_constructors_and_inits (struct lto_file_decl_data * file_data)
{
  size_t len;
  const char *data = lto_get_section_data (file_data, 
					   LTO_section_static_initializer,
					   NULL, &len);
  lto_input_constructors_and_inits (file_data, data);
  lto_free_section_data (file_data, LTO_section_static_initializer, NULL,
			 data, len);
}

/* Return true when NODE has a clone that is analyzed (i.e. we need
   to load its body even if the node itself is not needed).  */

static bool
has_analyzed_clone_p (struct cgraph_node *node)
{
  struct cgraph_node *orig = node;
  node = node->clones;
  if (node)
    while (node != orig)
      {
	if (node->analyzed)
	  return true;
	if (node->clones)
	  node = node->clones;
	else if (node->next_sibling_clone)
	  node = node->next_sibling_clone;
	else
	  {
	    while (node != orig && !node->next_sibling_clone)
	      node = node->clone_of;
	    if (node != orig)
	      node = node->next_sibling_clone;
	  }
      }
  return false;
}

/* Read the function body for the function associated with NODE.  */

static void
lto_materialize_function (struct cgraph_node *node)
{
  tree decl;
  struct lto_file_decl_data *file_data;
  const char *data, *name;
  size_t len;

  decl = node->decl;
  /* Read in functions with body (analyzed nodes)
     and also functions that are needed to produce virtual clones.  */
  if (node->analyzed || has_analyzed_clone_p (node))
    {
      /* Clones don't need to be read.  */
      if (node->clone_of)
	return;
      file_data = node->local.lto_file_data;
      name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)); 

      /* We may have renamed the declaration, e.g., a static function.  */
      name = lto_get_decl_name_mapping (file_data, name);

      data = lto_get_section_data (file_data, LTO_section_function_body,
				   name, &len);
      if (!data)
	fatal_error ("%s: section %s is missing",
		     file_data->file_name,
		     name);

      gcc_assert (DECL_STRUCT_FUNCTION (decl) == NULL);

      /* Load the function body only if not operating in WPA mode.  In
	 WPA mode, the body of the function is not needed.  */
      if (!flag_wpa)
	{
	  allocate_struct_function (decl, false);
	  announce_function (decl);
	  lto_input_function_body (file_data, decl, data);
	  if (DECL_FUNCTION_PERSONALITY (decl) && !first_personality_decl)
	    first_personality_decl = DECL_FUNCTION_PERSONALITY (decl);
	  lto_stats.num_function_bodies++;
	}

      lto_free_section_data (file_data, LTO_section_function_body, name,
			     data, len);
      if (!flag_wpa)
	ggc_collect ();
    }

  /* Let the middle end know about the function.  */
  rest_of_decl_compilation (decl, 1, 0);
}


/* Decode the content of memory pointed to by DATA in the the
   in decl state object STATE. DATA_IN points to a data_in structure for
   decoding. Return the address after the decoded object in the input.  */

static const uint32_t *
lto_read_in_decl_state (struct data_in *data_in, const uint32_t *data,
			struct lto_in_decl_state *state)
{
  uint32_t ix;
  tree decl;
  uint32_t i, j;
  
  ix = *data++;
  decl = lto_streamer_cache_get (data_in->reader_cache, (int) ix);
  if (TREE_CODE (decl) != FUNCTION_DECL)
    {
      gcc_assert (decl == void_type_node);
      decl = NULL_TREE;
    }
  state->fn_decl = decl;

  for (i = 0; i < LTO_N_DECL_STREAMS; i++)
    {
      uint32_t size = *data++;
      tree *decls = ggc_alloc_vec_tree (size);

      for (j = 0; j < size; j++)
	{
	  decls[j] = lto_streamer_cache_get (data_in->reader_cache, data[j]);

	  /* Register every type in the global type table.  If the
	     type existed already, use the existing type.  */
	  if (TYPE_P (decls[j]))
	    decls[j] = gimple_register_type (decls[j]);
	}

      state->streams[i].size = size;
      state->streams[i].trees = decls;
      data += size;
    }

  return data;
}


/* Read all the symbols from buffer DATA, using descriptors in DECL_DATA.
   RESOLUTIONS is the set of symbols picked by the linker (read from the
   resolution file when the linker plugin is being used).  */

static void
lto_read_decls (struct lto_file_decl_data *decl_data, const void *data,
		VEC(ld_plugin_symbol_resolution_t,heap) *resolutions)
{
  const struct lto_decl_header *header = (const struct lto_decl_header *) data;
  const int32_t decl_offset = sizeof (struct lto_decl_header);
  const int32_t main_offset = decl_offset + header->decl_state_size;
  const int32_t string_offset = main_offset + header->main_size;
  struct lto_input_block ib_main;
  struct data_in *data_in;
  unsigned int i;
  const uint32_t *data_ptr, *data_end;
  uint32_t num_decl_states;

  LTO_INIT_INPUT_BLOCK (ib_main, (const char *) data + main_offset, 0,
			header->main_size);

  data_in = lto_data_in_create (decl_data, (const char *) data + string_offset,
				header->string_size, resolutions);

  /* Read the global declarations and types.  */
  while (ib_main.p < ib_main.len)
    {
      tree t = lto_input_tree (&ib_main, data_in);
      gcc_assert (t && ib_main.p <= ib_main.len);
    }

  /* Read in lto_in_decl_state objects.  */
  data_ptr = (const uint32_t *) ((const char*) data + decl_offset); 
  data_end =
     (const uint32_t *) ((const char*) data_ptr + header->decl_state_size);
  num_decl_states = *data_ptr++;
  
  gcc_assert (num_decl_states > 0);
  decl_data->global_decl_state = lto_new_in_decl_state ();
  data_ptr = lto_read_in_decl_state (data_in, data_ptr,
				     decl_data->global_decl_state);

  /* Read in per-function decl states and enter them in hash table.  */
  decl_data->function_decl_states =
    htab_create_ggc (37, lto_hash_in_decl_state, lto_eq_in_decl_state, NULL);

  for (i = 1; i < num_decl_states; i++)
    {
      struct lto_in_decl_state *state = lto_new_in_decl_state ();
      void **slot;

      data_ptr = lto_read_in_decl_state (data_in, data_ptr, state);
      slot = htab_find_slot (decl_data->function_decl_states, state, INSERT);
      gcc_assert (*slot == NULL);
      *slot = state;
    }

  if (data_ptr != data_end)
    internal_error ("bytecode stream: garbage at the end of symbols section");
  
  /* Set the current decl state to be the global state. */
  decl_data->current_decl_state = decl_data->global_decl_state;

  lto_data_in_delete (data_in);
}

/* strtoll is not portable. */
int64_t
lto_parse_hex (const char *p) {
  uint64_t ret = 0;
  for (; *p != '\0'; ++p)
    {
      char c = *p;
      unsigned char part;
      ret <<= 4;
      if (c >= '0' && c <= '9')
        part = c - '0';
      else if (c >= 'a' && c <= 'f')
        part = c - 'a' + 10;
      else if (c >= 'A' && c <= 'F')
        part = c - 'A' + 10;
      else
        internal_error ("could not parse hex number");
      ret |= part;
    }
  return ret;
}

/* Read resolution for file named FILE_NAME. The resolution is read from
   RESOLUTION. */

static void
lto_resolution_read (splay_tree file_ids, FILE *resolution, lto_file *file)
{
  /* We require that objects in the resolution file are in the same
     order as the lto1 command line. */
  unsigned int name_len;
  char *obj_name;
  unsigned int num_symbols;
  unsigned int i;
  struct lto_file_decl_data *file_data;
  unsigned max_index = 0;
  splay_tree_node nd = NULL; 

  if (!resolution)
    return;

  name_len = strlen (file->filename);
  obj_name = XNEWVEC (char, name_len + 1);
  fscanf (resolution, " ");   /* Read white space. */

  fread (obj_name, sizeof (char), name_len, resolution);
  obj_name[name_len] = '\0';
  if (strcmp (obj_name, file->filename) != 0)
    internal_error ("unexpected file name %s in linker resolution file. "
		    "Expected %s", obj_name, file->filename);
  if (file->offset != 0)
    {
      int t;
      char offset_p[17];
      int64_t offset;
      t = fscanf (resolution, "@0x%16s", offset_p);
      if (t != 1)
        internal_error ("could not parse file offset");
      offset = lto_parse_hex (offset_p);
      if (offset != file->offset)
        internal_error ("unexpected offset");
    }

  free (obj_name);

  fscanf (resolution, "%u", &num_symbols);

  for (i = 0; i < num_symbols; i++)
    {
      int t;
      unsigned index, id;
      char r_str[27];
      enum ld_plugin_symbol_resolution r = (enum ld_plugin_symbol_resolution) 0;
      unsigned int j;
      unsigned int lto_resolution_str_len =
	sizeof (lto_resolution_str) / sizeof (char *);

      t = fscanf (resolution, "%u %x %26s %*[^\n]\n", &index, &id, r_str);
      if (t != 3)
        internal_error ("invalid line in the resolution file");
      if (index > max_index)
	max_index = index;

      for (j = 0; j < lto_resolution_str_len; j++)
	{
	  if (strcmp (lto_resolution_str[j], r_str) == 0)
	    {
	      r = (enum ld_plugin_symbol_resolution) j;
	      break;
	    }
	}
      if (j == lto_resolution_str_len)
	internal_error ("invalid resolution in the resolution file");

      if (!(nd && nd->key == id))
	{
	  nd = splay_tree_lookup (file_ids, id);
	  if (nd == NULL)
	    internal_error ("resolution sub id %x not in object file", id);
	}

      file_data = (struct lto_file_decl_data *)nd->value;
      if (cgraph_dump_file)
	fprintf (cgraph_dump_file, "Adding resolution %u %u to id %x\n",
		 index, r, file_data->id);
      VEC_safe_grow_cleared (ld_plugin_symbol_resolution_t, heap, 
			     file_data->resolutions,
			     max_index + 1);
      VEC_replace (ld_plugin_symbol_resolution_t, 
		   file_data->resolutions, index, r);
    }
}

/* Is the name for a id'ed LTO section? */

static int 
lto_section_with_id (const char *name, unsigned *id)
{
  const char *s;

  if (strncmp (name, LTO_SECTION_NAME_PREFIX, strlen (LTO_SECTION_NAME_PREFIX)))
    return 0;
  s = strrchr (name, '.');
  return s && sscanf (s, ".%x", id) == 1;
}

/* Create file_data of each sub file id */

static int 
create_subid_section_table (void **slot, void *data)
{
  struct lto_section_slot s_slot, *new_slot;
  struct lto_section_slot *ls = *(struct lto_section_slot **)slot;
  splay_tree file_ids = (splay_tree)data;
  unsigned id;
  splay_tree_node nd;
  void **hash_slot;
  char *new_name;
  struct lto_file_decl_data *file_data;

  if (!lto_section_with_id (ls->name, &id))
    return 1;
  
  /* Find hash table of sub module id */
  nd = splay_tree_lookup (file_ids, id);
  if (nd != NULL)
    {
      file_data = (struct lto_file_decl_data *)nd->value;
    }
  else
    {
      file_data = ggc_alloc_lto_file_decl_data ();
      memset(file_data, 0, sizeof (struct lto_file_decl_data));
      file_data->id = id;
      file_data->section_hash_table = lto_obj_create_section_hash_table ();;
      splay_tree_insert (file_ids, id, (splay_tree_value)file_data);
    }

  /* Copy section into sub module hash table */
  new_name = XDUPVEC (char, ls->name, strlen (ls->name) + 1);
  s_slot.name = new_name;
  hash_slot = htab_find_slot (file_data->section_hash_table, &s_slot, INSERT);
  gcc_assert (*hash_slot == NULL);

  new_slot = XDUP (struct lto_section_slot, ls);
  new_slot->name = new_name;
  *hash_slot = new_slot;
  return 1;
}

/* Read declarations and other initializations for a FILE_DATA. */

static void
lto_file_finalize (struct lto_file_decl_data *file_data, lto_file *file)
{
  const char *data;
  size_t len;

  file_data->renaming_hash_table = lto_create_renaming_table ();
  file_data->file_name = file->filename;
  data = lto_get_section_data (file_data, LTO_section_decls, NULL, &len);
  if (data == NULL)
    {
      internal_error ("cannot read LTO decls from %s", file_data->file_name);
      return;
    }
  lto_read_decls (file_data, data, file_data->resolutions);
  lto_free_section_data (file_data, LTO_section_decls, NULL, data, len);
}

struct lwstate
{
  lto_file *file;
  struct lto_file_decl_data **file_data;
  int *count;
};

/* Traverse ids and create a list of file_datas out of it. */      

static int lto_create_files_from_ids (splay_tree_node node, void *data)
{
  struct lwstate *lw = (struct lwstate *)data;
  struct lto_file_decl_data *file_data = (struct lto_file_decl_data *)node->value;

  lto_file_finalize (file_data, lw->file);
  if (cgraph_dump_file)
    fprintf (cgraph_dump_file, "Creating file %s with sub id %x\n", 
	     file_data->file_name, file_data->id);
  file_data->next = *lw->file_data;
  *lw->file_data = file_data;
  (*lw->count)++;
  return 0;
}

/* Generate a TREE representation for all types and external decls
   entities in FILE.  

   Read all of the globals out of the file.  Then read the cgraph
   and process the .o index into the cgraph nodes so that it can open
   the .o file to load the functions and ipa information.   */

static struct lto_file_decl_data *
lto_file_read (lto_file *file, FILE *resolution_file, int *count)
{
  struct lto_file_decl_data *file_data = NULL;
  splay_tree file_ids;
  htab_t section_hash_table;
  struct lwstate state;
  
  section_hash_table = lto_obj_build_section_table (file);

  /* Find all sub modules in the object and put their sections into new hash
     tables in a splay tree. */
  file_ids = splay_tree_new (splay_tree_compare_ints, NULL, NULL);
  htab_traverse (section_hash_table, create_subid_section_table, file_ids);
  
  /* Add resolutions to file ids */
  lto_resolution_read (file_ids, resolution_file, file);

  /* Finalize each lto file for each submodule in the merged object
     and create list for returning. */
  state.file = file;
  state.file_data = &file_data;
  state.count = count;
  splay_tree_foreach (file_ids, lto_create_files_from_ids, &state);
    
  splay_tree_delete (file_ids);
  htab_delete (section_hash_table);

  return file_data;
}

#if HAVE_MMAP_FILE && HAVE_SYSCONF && defined _SC_PAGE_SIZE
#define LTO_MMAP_IO 1
#endif

#if LTO_MMAP_IO
/* Page size of machine is used for mmap and munmap calls.  */
static size_t page_mask;
#endif

/* Get the section data of length LEN from FILENAME starting at
   OFFSET.  The data segment must be freed by the caller when the
   caller is finished.  Returns NULL if all was not well.  */

static char *
lto_read_section_data (struct lto_file_decl_data *file_data,
		       intptr_t offset, size_t len)
{
  char *result;
  static int fd = -1;
  static char *fd_name;
#if LTO_MMAP_IO
  intptr_t computed_len;
  intptr_t computed_offset;
  intptr_t diff;
#endif

  /* Keep a single-entry file-descriptor cache.  The last file we
     touched will get closed at exit.
     ???  Eventually we want to add a more sophisticated larger cache
     or rather fix function body streaming to not stream them in
     practically random order.  */
  if (fd != -1
      && strcmp (fd_name, file_data->file_name) != 0)
    {
      free (fd_name);
      close (fd);
      fd = -1;
    }
  if (fd == -1)
    {
      fd_name = xstrdup (file_data->file_name);
      fd = open (file_data->file_name, O_RDONLY|O_BINARY);
      if (fd == -1)
	return NULL;
    }

#if LTO_MMAP_IO
  if (!page_mask)
    {
      size_t page_size = sysconf (_SC_PAGE_SIZE);
      page_mask = ~(page_size - 1);
    }

  computed_offset = offset & page_mask;
  diff = offset - computed_offset;
  computed_len = len + diff;

  result = (char *) mmap (NULL, computed_len, PROT_READ, MAP_PRIVATE,
			  fd, computed_offset);
  if (result == MAP_FAILED)
    return NULL;

  return result + diff;
#else
  result = (char *) xmalloc (len);
  if (lseek (fd, offset, SEEK_SET) != offset
      || read (fd, result, len) != (ssize_t) len)
    {
      free (result);
      return NULL;
    }

  return result;
#endif
}    


/* Get the section data from FILE_DATA of SECTION_TYPE with NAME.
   NAME will be NULL unless the section type is for a function
   body.  */

static const char *
get_section_data (struct lto_file_decl_data *file_data,
		      enum lto_section_type section_type,
		      const char *name,
		      size_t *len)
{
  htab_t section_hash_table = file_data->section_hash_table;
  struct lto_section_slot *f_slot;
  struct lto_section_slot s_slot;
  const char *section_name = lto_get_section_name (section_type, name, file_data);
  char *data = NULL;

  *len = 0;
  s_slot.name = section_name;
  f_slot = (struct lto_section_slot *) htab_find (section_hash_table, &s_slot);
  if (f_slot)
    {
      data = lto_read_section_data (file_data, f_slot->start, f_slot->len);
      *len = f_slot->len;
    }

  free (CONST_CAST (char *, section_name));
  return data;
}


/* Free the section data from FILE_DATA of SECTION_TYPE with NAME that
   starts at OFFSET and has LEN bytes.  */

static void
free_section_data (struct lto_file_decl_data *file_data ATTRIBUTE_UNUSED,
		   enum lto_section_type section_type ATTRIBUTE_UNUSED,
		   const char *name ATTRIBUTE_UNUSED,
		   const char *offset, size_t len ATTRIBUTE_UNUSED)
{
#if LTO_MMAP_IO
  intptr_t computed_len;
  intptr_t computed_offset;
  intptr_t diff;
#endif

#if LTO_MMAP_IO
  computed_offset = ((intptr_t) offset) & page_mask;
  diff = (intptr_t) offset - computed_offset;
  computed_len = len + diff;

  munmap ((caddr_t) computed_offset, computed_len);
#else
  free (CONST_CAST(char *, offset));
#endif
}

/* Structure describing ltrans partitions.  */

struct GTY (()) ltrans_partition_def
{
  cgraph_node_set cgraph_set;
  varpool_node_set varpool_set;
  const char * GTY ((skip)) name;
  int insns;
};

typedef struct ltrans_partition_def *ltrans_partition;
DEF_VEC_P(ltrans_partition);
DEF_VEC_ALLOC_P(ltrans_partition,gc);

static GTY (()) VEC(ltrans_partition, gc) *ltrans_partitions;

static void add_cgraph_node_to_partition (ltrans_partition part, struct cgraph_node *node);
static void add_varpool_node_to_partition (ltrans_partition part, struct varpool_node *vnode);

/* Create new partition with name NAME.  */
static ltrans_partition
new_partition (const char *name)
{
  ltrans_partition part = ggc_alloc_ltrans_partition_def ();
  part->cgraph_set = cgraph_node_set_new ();
  part->varpool_set = varpool_node_set_new ();
  part->name = name;
  part->insns = 0;
  VEC_safe_push (ltrans_partition, gc, ltrans_partitions, part);
  return part;
}

/* See all references that go to comdat objects and bring them into partition too.  */
static void
add_references_to_partition (ltrans_partition part, struct ipa_ref_list *refs)
{
  int i;
  struct ipa_ref *ref;
  for (i = 0; ipa_ref_list_reference_iterate (refs, i, ref); i++)
    {
      if (ref->refered_type == IPA_REF_CGRAPH
	  && DECL_COMDAT (ipa_ref_node (ref)->decl)
	  && !cgraph_node_in_set_p (ipa_ref_node (ref), part->cgraph_set))
	add_cgraph_node_to_partition (part, ipa_ref_node (ref));
      else
	if (ref->refered_type == IPA_REF_VARPOOL
	    && DECL_COMDAT (ipa_ref_varpool_node (ref)->decl)
	    && !varpool_node_in_set_p (ipa_ref_varpool_node (ref), part->varpool_set))
	  add_varpool_node_to_partition (part, ipa_ref_varpool_node (ref));
    }
}

/* Add NODE to partition as well as the inline callees and referred comdats into partition PART. */

static void
add_cgraph_node_to_partition (ltrans_partition part, struct cgraph_node *node)
{
  struct cgraph_edge *e;

  part->insns += node->local.inline_summary.self_size;

  if (node->aux)
    {
      node->in_other_partition = 1;
      if (cgraph_dump_file)
        fprintf (cgraph_dump_file, "Node %s/%i now used in multiple partitions\n",
		 cgraph_node_name (node), node->uid);
    }
  node->aux = (void *)((size_t)node->aux + 1);

  cgraph_node_set_add (part->cgraph_set, node);

  for (e = node->callees; e; e = e->next_callee)
    if ((!e->inline_failed || DECL_COMDAT (e->callee->decl))
	&& !cgraph_node_in_set_p (e->callee, part->cgraph_set))
      add_cgraph_node_to_partition (part, e->callee);

  add_references_to_partition (part, &node->ref_list);

  if (node->same_comdat_group
      && !cgraph_node_in_set_p (node->same_comdat_group, part->cgraph_set))
    add_cgraph_node_to_partition (part, node->same_comdat_group);
}

/* Add VNODE to partition as well as comdat references partition PART. */

static void
add_varpool_node_to_partition (ltrans_partition part, struct varpool_node *vnode)
{
  varpool_node_set_add (part->varpool_set, vnode);

  if (vnode->aux)
    {
      vnode->in_other_partition = 1;
      if (cgraph_dump_file)
        fprintf (cgraph_dump_file, "Varpool node %s now used in multiple partitions\n",
		 varpool_node_name (vnode));
    }
  vnode->aux = (void *)((size_t)vnode->aux + 1);

  add_references_to_partition (part, &vnode->ref_list);

  if (vnode->same_comdat_group
      && !varpool_node_in_set_p (vnode->same_comdat_group, part->varpool_set))
    add_varpool_node_to_partition (part, vnode->same_comdat_group);
}

/* Undo all additions until number of cgraph nodes in PARITION is N_CGRAPH_NODES
   and number of varpool nodes is N_VARPOOL_NODES.  */

static void
undo_partition (ltrans_partition partition, unsigned int n_cgraph_nodes,
		unsigned int n_varpool_nodes)
{
  while (VEC_length (cgraph_node_ptr, partition->cgraph_set->nodes) >
	 n_cgraph_nodes)
    {
      struct cgraph_node *node = VEC_index (cgraph_node_ptr,
					    partition->cgraph_set->nodes,
					    n_cgraph_nodes);
      partition->insns -= node->local.inline_summary.self_size;
      cgraph_node_set_remove (partition->cgraph_set, node);
      node->aux = (void *)((size_t)node->aux - 1);
    }
  while (VEC_length (varpool_node_ptr, partition->varpool_set->nodes) >
	 n_varpool_nodes)
    {
      struct varpool_node *node = VEC_index (varpool_node_ptr,
					     partition->varpool_set->nodes,
					     n_varpool_nodes);
      varpool_node_set_remove (partition->varpool_set, node);
      node->aux = (void *)((size_t)node->aux - 1);
    }
}

/* Return true if NODE should be partitioned.
   This means that partitioning algorithm should put NODE into one of partitions.
   This apply to most functions with bodies.  Functions that are not partitions
   are put into every unit needing them.  This is the case of i.e. COMDATs.  */

static bool
partition_cgraph_node_p (struct cgraph_node *node)
{
  /* We will get proper partition based on function they are inlined to.  */
  if (node->global.inlined_to)
    return false;
  /* Nodes without a body do not need partitioning.  */
  if (!node->analyzed)
    return false;
  /* Extern inlines and comdat are always only in partitions they are needed.  */
  if (DECL_EXTERNAL (node->decl)
      || (DECL_COMDAT (node->decl)
	  && !cgraph_used_from_object_file_p (node)))
    return false;
  if (lookup_attribute ("weakref", DECL_ATTRIBUTES (node->decl)))
    return false;
  return true;
}

/* Return true if VNODE should be partitioned. 
   This means that partitioning algorithm should put VNODE into one of partitions. */

static bool
partition_varpool_node_p (struct varpool_node *vnode)
{
  if (vnode->alias || !vnode->needed)
    return false;
  /* Constant pool and comdat are always only in partitions they are needed.  */
  if (DECL_IN_CONSTANT_POOL (vnode->decl)
      || (DECL_COMDAT (vnode->decl)
	  && !vnode->force_output
	  && !varpool_used_from_object_file_p (vnode)))
    return false;
  if (lookup_attribute ("weakref", DECL_ATTRIBUTES (vnode->decl)))
    return false;
  return true;
}

/* Group cgrah nodes by input files.  This is used mainly for testing
   right now.  */

static void
lto_1_to_1_map (void)
{
  struct cgraph_node *node;
  struct varpool_node *vnode;
  struct lto_file_decl_data *file_data;
  struct pointer_map_t *pmap;
  ltrans_partition partition;
  void **slot;
  int npartitions = 0;

  timevar_push (TV_WHOPR_WPA);

  pmap = pointer_map_create ();

  for (node = cgraph_nodes; node; node = node->next)
    {
      if (!partition_cgraph_node_p (node))
	continue;

      file_data = node->local.lto_file_data;
      gcc_assert (!node->same_body_alias);

      if (file_data)
	{
          slot = pointer_map_contains (pmap, file_data);
          if (slot)
	    partition = (ltrans_partition) *slot;
	  else
	    {
	      partition = new_partition (file_data->file_name);
	      slot = pointer_map_insert (pmap, file_data);
	      *slot = partition;
	      npartitions++;
	    }
	}
      else if (!file_data
	       && VEC_length (ltrans_partition, ltrans_partitions))
	partition = VEC_index (ltrans_partition, ltrans_partitions, 0);
      else
	{
	  partition = new_partition ("");
	  slot = pointer_map_insert (pmap, NULL);
	  *slot = partition;
	  npartitions++;
	}

      if (!node->aux)
        add_cgraph_node_to_partition (partition, node);
    }

  for (vnode = varpool_nodes; vnode; vnode = vnode->next)
    {
      if (!partition_varpool_node_p (vnode))
	continue;
      file_data = vnode->lto_file_data;
      slot = pointer_map_contains (pmap, file_data);
      if (slot)
	partition = (ltrans_partition) *slot;
      else
	{
	  partition = new_partition (file_data->file_name);
	  slot = pointer_map_insert (pmap, file_data);
	  *slot = partition;
	  npartitions++;
	}

      if (!vnode->aux)
        add_varpool_node_to_partition (partition, vnode);
    }
  for (node = cgraph_nodes; node; node = node->next)
    node->aux = NULL;
  for (vnode = varpool_nodes; vnode; vnode = vnode->next)
    vnode->aux = NULL;

  /* If the cgraph is empty, create one cgraph node set so that there is still
     an output file for any variables that need to be exported in a DSO.  */
  if (!npartitions)
    new_partition ("empty");

  pointer_map_destroy (pmap);

  timevar_pop (TV_WHOPR_WPA);

  lto_stats.num_cgraph_partitions += VEC_length (ltrans_partition, 
						 ltrans_partitions);
}


/* Group cgraph nodes in qually sized partitions.

   The algorithm deciding paritions are simple: nodes are taken in predefined
   order.  The order correspond to order we wish to have functions in final
   output.  In future this will be given by function reordering pass, but at
   the moment we use topological order that serve a good approximation.

   The goal is to partition this linear order into intervals (partitions) such
   that all partitions have approximately the same size and that the number of
   callgraph or IPA reference edgess crossing boundaries is minimal.

   This is a lot faster (O(n) in size of callgraph) than algorithms doing
   priority based graph clustering that are generally O(n^2) and since WHOPR
   is designed to make things go well across partitions, it leads to good results.

   We compute the expected size of partition as
   max (total_size / lto_partitions, min_partition_size).
   We use dynamic expected size of partition, so small programs
   are partitioning into enough partitions to allow use of multiple CPUs while
   large programs are not partitioned too much. Creating too many partition
   increase streaming overhead significandly.

   In the future we would like to bound maximal size of partition to avoid
   ltrans stage consuming too much memory.  At the moment however WPA stage is
   most memory intensive phase at large benchmark since too many types and
   declarations are read into memory.

   The function implement simple greedy algorithm.  Nodes are begin added into
   current partition until 3/4th of expected partition size is reached.
   After this threshold we keep track of boundary size (number of edges going to
   other partitions) and continue adding functions until the current partition
   grows into a double of expected partition size.  Then the process is undone
   till the point when minimal ration of boundary size and in partition calls
   was reached.  */

static void
lto_balanced_map (void)
{
  int n_nodes = 0;
  struct cgraph_node **postorder =
    XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
  struct cgraph_node **order = XNEWVEC (struct cgraph_node *, cgraph_max_uid);
  int i, postorder_len;
  struct cgraph_node *node;
  int total_size = 0, best_total_size = 0;
  int partition_size;
  ltrans_partition partition;
  unsigned int last_visited_cgraph_node = 0, last_visited_varpool_node = 0;
  struct varpool_node *vnode;
  int cost = 0, internal = 0;
  int best_n_nodes = 0, best_n_varpool_nodes = 0, best_i = 0, best_cost =
    INT_MAX, best_internal = 0;
  int npartitions;

  for (vnode = varpool_nodes; vnode; vnode = vnode->next)
    gcc_assert (!vnode->aux);
  /* Until we have better ordering facility, use toplogical order.
     Include only nodes we will partition and compute estimate of program
     size.  Note that since nodes that are not partitioned might be put into
     multiple partitions, this is just an estimate of real size.  This is why
     we keep partition_size updated after every partition is finalized.  */
  postorder_len = cgraph_postorder (postorder);
  for (i = 0; i < postorder_len; i++)
    {
      node = postorder[i];
      if (partition_cgraph_node_p (node))
	{
	  order[n_nodes++] = node;
          total_size += node->global.size;
	}
    }
  free (postorder);

  /* Compute partition size and create the first partition.  */
  partition_size = total_size / PARAM_VALUE (PARAM_LTO_PARTITIONS);
  if (partition_size < PARAM_VALUE (MIN_PARTITION_SIZE))
    partition_size = PARAM_VALUE (MIN_PARTITION_SIZE);
  npartitions = 1;
  partition = new_partition ("");
  if (cgraph_dump_file)
    fprintf (cgraph_dump_file, "Total unit size: %i, partition size: %i\n",
	     total_size, partition_size);

  for (i = 0; i < n_nodes; i++)
    {
      if (!order[i]->aux)
        add_cgraph_node_to_partition (partition, order[i]);
      total_size -= order[i]->global.size;

      /* Once we added a new node to the partition, we also want to add
         all referenced variables unless they was already added into some
         earlier partition.
	 add_cgraph_node_to_partition adds possibly multiple nodes and
	 variables that are needed to satisfy needs of ORDER[i].
         We remember last visited cgraph and varpool node from last iteration
         of outer loop that allows us to process every new addition. 

	 At the same time we compute size of the boundary into COST.  Every
         callgraph or IPA reference edge leaving the partition contributes into
         COST.  Every edge inside partition was earlier computed as one leaving
	 it and thus we need to subtract it from COST.  */
      while (last_visited_cgraph_node <
	     VEC_length (cgraph_node_ptr, partition->cgraph_set->nodes)
	     || last_visited_varpool_node < VEC_length (varpool_node_ptr,
							partition->varpool_set->
							nodes))
	{
	  struct ipa_ref_list *refs;
	  int j;
	  struct ipa_ref *ref;
	  bool cgraph_p = false;

	  if (last_visited_cgraph_node <
	      VEC_length (cgraph_node_ptr, partition->cgraph_set->nodes))
	    {
	      struct cgraph_edge *edge;

	      cgraph_p = true;
	      node = VEC_index (cgraph_node_ptr, partition->cgraph_set->nodes,
				last_visited_cgraph_node);
	      refs = &node->ref_list;

	      last_visited_cgraph_node++;

	      gcc_assert (node->analyzed);

	      /* Compute boundary cost of callgrpah edges.  */
	      for (edge = node->callees; edge; edge = edge->next_callee)
		if (edge->callee->analyzed)
		  {
		    int edge_cost = edge->frequency;
		    cgraph_node_set_iterator csi;

		    if (!edge_cost)
		      edge_cost = 1;
		    gcc_assert (edge_cost > 0);
		    csi = cgraph_node_set_find (partition->cgraph_set, edge->callee);
		    if (!csi_end_p (csi)
		        && csi.index < last_visited_cgraph_node - 1)
		      cost -= edge_cost, internal+= edge_cost;
		    else
		      cost += edge_cost;
		  }
	      for (edge = node->callers; edge; edge = edge->next_caller)
		{
		  int edge_cost = edge->frequency;
		  cgraph_node_set_iterator csi;

		  gcc_assert (edge->caller->analyzed);
		  if (!edge_cost)
		    edge_cost = 1;
		  gcc_assert (edge_cost > 0);
		  csi = cgraph_node_set_find (partition->cgraph_set, edge->caller);
		  if (!csi_end_p (csi)
		      && csi.index < last_visited_cgraph_node)
		    cost -= edge_cost;
		  else
		    cost += edge_cost;
		}
	    }
	  else
	    {
	      refs =
		&VEC_index (varpool_node_ptr, partition->varpool_set->nodes,
			    last_visited_varpool_node)->ref_list;
	      last_visited_varpool_node++;
	    }

	  /* Compute boundary cost of IPA REF edges and at the same time look into
	     variables referenced from current partition and try to add them.  */
	  for (j = 0; ipa_ref_list_reference_iterate (refs, j, ref); j++)
	    if (ref->refered_type == IPA_REF_VARPOOL)
	      {
		varpool_node_set_iterator vsi;

		vnode = ipa_ref_varpool_node (ref);
		if (!vnode->finalized)
		  continue;
		if (!vnode->aux && partition_varpool_node_p (vnode))
		  add_varpool_node_to_partition (partition, vnode);
		vsi = varpool_node_set_find (partition->varpool_set, vnode);
		if (!vsi_end_p (vsi)
		    && vsi.index < last_visited_varpool_node - !cgraph_p)
		  cost--, internal++;
		else
		  cost++;
	      }
	    else
	      {
		cgraph_node_set_iterator csi;

		node = ipa_ref_node (ref);
		if (!node->analyzed)
		  continue;
		csi = cgraph_node_set_find (partition->cgraph_set, node);
		if (!csi_end_p (csi)
		    && csi.index < last_visited_cgraph_node - cgraph_p)
		  cost--, internal++;
		else
		  cost++;
	      }
	  for (j = 0; ipa_ref_list_refering_iterate (refs, j, ref); j++)
	    if (ref->refering_type == IPA_REF_VARPOOL)
	      {
		varpool_node_set_iterator vsi;

		vnode = ipa_ref_refering_varpool_node (ref);
		gcc_assert (vnode->finalized);
		if (!vnode->aux && partition_varpool_node_p (vnode))
		  add_varpool_node_to_partition (partition, vnode);
		vsi = varpool_node_set_find (partition->varpool_set, vnode);
		if (!vsi_end_p (vsi)
		    && vsi.index < last_visited_varpool_node)
		  cost--;
		else
		  cost++;
	      }
	    else
	      {
		cgraph_node_set_iterator csi;

		node = ipa_ref_refering_node (ref);
		gcc_assert (node->analyzed);
		csi = cgraph_node_set_find (partition->cgraph_set, node);
		if (!csi_end_p (csi)
		    && csi.index < last_visited_cgraph_node)
		  cost--;
		else
		  cost++;
	      }
	}

      /* If the partition is large enough, start looking for smallest boundary cost.  */
      if (partition->insns < partition_size * 3 / 4
	  || best_cost == INT_MAX
	  || ((!cost 
	       || (best_internal * (HOST_WIDE_INT) cost
		   > (internal * (HOST_WIDE_INT)best_cost)))
  	      && partition->insns < partition_size * 5 / 4))
	{
	  best_cost = cost;
	  best_internal = internal;
	  best_i = i;
	  best_n_nodes = VEC_length (cgraph_node_ptr,
				     partition->cgraph_set->nodes);
	  best_n_varpool_nodes = VEC_length (varpool_node_ptr,
					     partition->varpool_set->nodes);
	  best_total_size = total_size;
	}
      if (cgraph_dump_file)
	fprintf (cgraph_dump_file, "Step %i: added %s/%i, size %i, cost %i/%i best %i/%i, step %i\n", i,
		 cgraph_node_name (order[i]), order[i]->uid, partition->insns, cost, internal,
		 best_cost, best_internal, best_i);
      /* Partition is too large, unwind into step when best cost was reached and
	 start new partition.  */
      if (partition->insns > 2 * partition_size)
	{
	  if (best_i != i)
	    {
	      if (cgraph_dump_file)
		fprintf (cgraph_dump_file, "Unwinding %i insertions to step %i\n",
			 i - best_i, best_i);
	      undo_partition (partition, best_n_nodes, best_n_varpool_nodes);
	    }
	  i = best_i;
 	  /* When we are finished, avoid creating empty partition.  */
	  if (i == n_nodes - 1)
	    break;
	  partition = new_partition ("");
	  last_visited_cgraph_node = 0;
	  last_visited_varpool_node = 0;
	  total_size = best_total_size;
	  cost = 0;

	  if (cgraph_dump_file)
	    fprintf (cgraph_dump_file, "New partition\n");
	  best_n_nodes = 0;
	  best_n_varpool_nodes = 0;
	  best_cost = INT_MAX;

	  /* Since the size of partitions is just approximate, update the size after
	     we finished current one.  */
	  if (npartitions < PARAM_VALUE (PARAM_LTO_PARTITIONS))
	    partition_size = total_size
	      / (PARAM_VALUE (PARAM_LTO_PARTITIONS) - npartitions);
	  else
	    partition_size = INT_MAX;

	  if (partition_size < PARAM_VALUE (MIN_PARTITION_SIZE))
	    partition_size = PARAM_VALUE (MIN_PARTITION_SIZE);
	  npartitions ++;
	}
    }

  /* Varables that are not reachable from the code go into last partition.  */
  for (vnode = varpool_nodes; vnode; vnode = vnode->next)
    if (partition_varpool_node_p (vnode) && !vnode->aux)
      add_varpool_node_to_partition (partition, vnode);
  free (order);
}

/* Promote variable VNODE to be static.  */

static bool
promote_var (struct varpool_node *vnode)
{
  if (TREE_PUBLIC (vnode->decl) || DECL_EXTERNAL (vnode->decl))
    return false;
  gcc_assert (flag_wpa);
  TREE_PUBLIC (vnode->decl) = 1;
  DECL_VISIBILITY (vnode->decl) = VISIBILITY_HIDDEN;
  DECL_VISIBILITY_SPECIFIED (vnode->decl) = true;
  if (cgraph_dump_file)
    fprintf (cgraph_dump_file,
	    "Promoting var as hidden: %s\n", varpool_node_name (vnode));
  return true;
}

/* Promote function NODE to be static.  */

static bool
promote_fn (struct cgraph_node *node)
{
  gcc_assert (flag_wpa);
  if (TREE_PUBLIC (node->decl) || DECL_EXTERNAL (node->decl))
    return false;
  TREE_PUBLIC (node->decl) = 1;
  DECL_VISIBILITY (node->decl) = VISIBILITY_HIDDEN;
  DECL_VISIBILITY_SPECIFIED (node->decl) = true;
  if (node->same_body)
    {
      struct cgraph_node *alias;
      for (alias = node->same_body;
	   alias; alias = alias->next)
	{
	  TREE_PUBLIC (alias->decl) = 1;
	  DECL_VISIBILITY (alias->decl) = VISIBILITY_HIDDEN;
	  DECL_VISIBILITY_SPECIFIED (alias->decl) = true;
	}
    }
  if (cgraph_dump_file)
    fprintf (cgraph_dump_file,
	     "Promoting function as hidden: %s/%i\n",
	     cgraph_node_name (node), node->uid);
  return true;
}

/* Find out all static decls that need to be promoted to global because
   of cross file sharing.  This function must be run in the WPA mode after
   all inlinees are added.  */

static void
lto_promote_cross_file_statics (void)
{
  struct varpool_node *vnode;
  unsigned i, n_sets;
  cgraph_node_set set;
  varpool_node_set vset;
  cgraph_node_set_iterator csi;
  varpool_node_set_iterator vsi;
  VEC(varpool_node_ptr, heap) *promoted_initializers = NULL;
  struct pointer_set_t *inserted = pointer_set_create ();

  gcc_assert (flag_wpa);

  n_sets = VEC_length (ltrans_partition, ltrans_partitions);
  for (i = 0; i < n_sets; i++)
    {
      ltrans_partition part = VEC_index (ltrans_partition, ltrans_partitions, i);
      set = part->cgraph_set;
      vset = part->varpool_set;

      /* If node has either address taken (and we have no clue from where)
	 or it is called from other partition, it needs to be globalized.  */
      for (csi = csi_start (set); !csi_end_p (csi); csi_next (&csi))
	{
	  struct cgraph_node *node = csi_node (csi);
	  if (node->local.externally_visible)
	    continue;
	  if (node->global.inlined_to)
	    continue;
	  if ((!DECL_EXTERNAL (node->decl) && !DECL_COMDAT (node->decl))
	      && (referenced_from_other_partition_p (&node->ref_list, set, vset)
		  || reachable_from_other_partition_p (node, set)))
	    promote_fn (node);
	}
      for (vsi = vsi_start (vset); !vsi_end_p (vsi); vsi_next (&vsi))
	{
	  vnode = vsi_node (vsi);
	  /* Constant pool references use internal labels and thus can not
	     be made global.  It is sensible to keep those ltrans local to
	     allow better optimization.  */
	  if (!DECL_IN_CONSTANT_POOL (vnode->decl) && !DECL_COMDAT (vnode->decl)
	      && !vnode->externally_visible && vnode->analyzed
	      && referenced_from_other_partition_p (&vnode->ref_list,
						    set, vset))
	    promote_var (vnode);
	}

      /* We export initializers of read-only var into each partition
	 referencing it.  Folding might take declarations from the
	 initializers and use it; so everything referenced from the
	 initializers needs can be accessed from this partition after
	 folding.

	 This means that we need to promote all variables and functions
	 referenced from all initializers from readonly vars referenced
	 from this partition that are not in this partition.
	 This needs to be done recursively.  */
      for (vnode = varpool_nodes; vnode; vnode = vnode->next)
	if (const_value_known_p (vnode->decl)
	    && DECL_INITIAL (vnode->decl)
	    && !varpool_node_in_set_p (vnode, vset)
	    && referenced_from_this_partition_p (&vnode->ref_list, set, vset)
	    && !pointer_set_insert (inserted, vnode))
	VEC_safe_push (varpool_node_ptr, heap, promoted_initializers, vnode);
      while (!VEC_empty (varpool_node_ptr, promoted_initializers))
	{
	  int i;
	  struct ipa_ref *ref;

	  vnode = VEC_pop (varpool_node_ptr, promoted_initializers);
	  for (i = 0; ipa_ref_list_reference_iterate (&vnode->ref_list, i, ref); i++)
	    {
	      if (ref->refered_type == IPA_REF_CGRAPH)
		{
		  struct cgraph_node *n = ipa_ref_node (ref);
		  gcc_assert (!n->global.inlined_to);
		  if (!n->local.externally_visible
		      && !cgraph_node_in_set_p (n, set))
		    promote_fn (n);
		}
	      else
		{
		  struct varpool_node *v = ipa_ref_varpool_node (ref);
		  if (varpool_node_in_set_p (v, vset))
		    continue;
		  /* Constant pool references use internal labels and thus can not
		     be made global.  It is sensible to keep those ltrans local to
		     allow better optimization.  */
		  if (DECL_IN_CONSTANT_POOL (v->decl))
		    {
		      if (!pointer_set_insert (inserted, vnode))
			VEC_safe_push (varpool_node_ptr, heap,
				       promoted_initializers, v);
		    }
		  else if (!DECL_IN_CONSTANT_POOL (v->decl)
			   && !v->externally_visible && v->analyzed)
		    {
		      if (promote_var (v)
			  && DECL_INITIAL (v->decl)
			  && const_value_known_p (v->decl)
			  && !pointer_set_insert (inserted, vnode))
			VEC_safe_push (varpool_node_ptr, heap,
				       promoted_initializers, v);
		    }
		}
	    }
	}
    }
  pointer_set_destroy (inserted);
}

static lto_file *current_lto_file;

/* Helper for qsort; compare partitions and return one with smaller size.
   We sort from greatest to smallest so parallel build doesn't stale on the
   longest compilation being executed too late.  */

static int
cmp_partitions (const void *a, const void *b)
{
  const struct ltrans_partition_def *pa
     = *(struct ltrans_partition_def *const *)a;
  const struct ltrans_partition_def *pb
     = *(struct ltrans_partition_def *const *)b;
  return pb->insns - pa->insns;
}

/* Write all output files in WPA mode and the file with the list of
   LTRANS units.  */

static void
lto_wpa_write_files (void)
{
  unsigned i, n_sets;
  lto_file *file;
  cgraph_node_set set;
  varpool_node_set vset;
  ltrans_partition part;
  FILE *ltrans_output_list_stream;
  char *temp_filename;
  size_t blen;

  /* Open the LTRANS output list.  */
  if (!ltrans_output_list)
    fatal_error ("no LTRANS output list filename provided");
  ltrans_output_list_stream = fopen (ltrans_output_list, "w");
  if (ltrans_output_list_stream == NULL)
    fatal_error ("opening LTRANS output list %s: %m", ltrans_output_list);

  timevar_push (TV_WHOPR_WPA);

  FOR_EACH_VEC_ELT (ltrans_partition, ltrans_partitions, i, part)
    lto_stats.num_output_cgraph_nodes += VEC_length (cgraph_node_ptr,
						     part->cgraph_set->nodes);

  /* Find out statics that need to be promoted
     to globals with hidden visibility because they are accessed from multiple
     partitions.  */
  lto_promote_cross_file_statics ();

  timevar_pop (TV_WHOPR_WPA);

  timevar_push (TV_WHOPR_WPA_IO);

  /* Generate a prefix for the LTRANS unit files.  */
  blen = strlen (ltrans_output_list);
  temp_filename = (char *) xmalloc (blen + sizeof ("2147483648.o"));
  strcpy (temp_filename, ltrans_output_list);
  if (blen > sizeof (".out")
      && strcmp (temp_filename + blen - sizeof (".out") + 1,
		 ".out") == 0)
    temp_filename[blen - sizeof (".out") + 1] = '\0';
  blen = strlen (temp_filename);

  n_sets = VEC_length (ltrans_partition, ltrans_partitions);
  VEC_qsort (ltrans_partition, ltrans_partitions, cmp_partitions);
  for (i = 0; i < n_sets; i++)
    {
      size_t len;
      ltrans_partition part = VEC_index (ltrans_partition, ltrans_partitions, i);

      set = part->cgraph_set;
      vset = part->varpool_set;

      /* Write all the nodes in SET.  */
      sprintf (temp_filename + blen, "%u.o", i);
      file = lto_obj_file_open (temp_filename, true);
      if (!file)
	fatal_error ("lto_obj_file_open() failed");

      if (!quiet_flag)
	fprintf (stderr, " %s (%s %i insns)", temp_filename, part->name, part->insns);
      if (cgraph_dump_file)
	{
	  fprintf (cgraph_dump_file, "Writting partition %s to file %s, %i insns\n",
		   part->name, temp_filename, part->insns);
	  fprintf (cgraph_dump_file, "cgraph nodes:");
	  dump_cgraph_node_set (cgraph_dump_file, set);
	  fprintf (cgraph_dump_file, "varpool nodes:");
	  dump_varpool_node_set (cgraph_dump_file, vset);
	}
      gcc_assert (cgraph_node_set_nonempty_p (set)
		  || varpool_node_set_nonempty_p (vset) || !i);

      lto_set_current_out_file (file);

      ipa_write_optimization_summaries (set, vset);

      lto_set_current_out_file (NULL);
      lto_obj_file_close (file);

      len = strlen (temp_filename);
      if (fwrite (temp_filename, 1, len, ltrans_output_list_stream) < len
	  || fwrite ("\n", 1, 1, ltrans_output_list_stream) < 1)
	fatal_error ("writing to LTRANS output list %s: %m",
		     ltrans_output_list);
    }

  lto_stats.num_output_files += n_sets;

  /* Close the LTRANS output list.  */
  if (fclose (ltrans_output_list_stream))
    fatal_error ("closing LTRANS output list %s: %m", ltrans_output_list);

  timevar_pop (TV_WHOPR_WPA_IO);
}


typedef struct {
  struct pointer_set_t *seen;
} lto_fixup_data_t;

#define LTO_FIXUP_SUBTREE(t) \
  do \
    walk_tree (&(t), lto_fixup_tree, data, NULL); \
  while (0)

#define LTO_REGISTER_TYPE_AND_FIXUP_SUBTREE(t) \
  do \
    { \
      if (t) \
	(t) = gimple_register_type (t); \
      walk_tree (&(t), lto_fixup_tree, data, NULL); \
    } \
  while (0)

static tree lto_fixup_tree (tree *, int *, void *);

/* Return true if T does not need to be fixed up recursively.  */

static inline bool
no_fixup_p (tree t)
{
  return (t == NULL
	  || CONSTANT_CLASS_P (t)
	  || TREE_CODE (t) == IDENTIFIER_NODE);
}

/* Fix up fields of a tree_common T.  DATA points to fix-up states.  */

static void
lto_fixup_common (tree t, void *data)
{
  /* The following re-creates the TYPE_REFERENCE_TO and TYPE_POINTER_TO
     lists.  We do not stream TYPE_REFERENCE_TO, TYPE_POINTER_TO or
     TYPE_NEXT_PTR_TO and TYPE_NEXT_REF_TO.
     First remove us from any pointer list we are on.  */
  if (TREE_CODE (t) == POINTER_TYPE)
    {
      if (TYPE_POINTER_TO (TREE_TYPE (t)) == t)
	TYPE_POINTER_TO (TREE_TYPE (t)) = TYPE_NEXT_PTR_TO (t);
      else
	{
	  tree tem = TYPE_POINTER_TO (TREE_TYPE (t));
	  while (tem && TYPE_NEXT_PTR_TO (tem) != t)
	    tem = TYPE_NEXT_PTR_TO (tem);
	  if (tem)
	    TYPE_NEXT_PTR_TO (tem) = TYPE_NEXT_PTR_TO (t);
	}
      TYPE_NEXT_PTR_TO (t) = NULL_TREE;
    }
  else if (TREE_CODE (t) == REFERENCE_TYPE)
    {
      if (TYPE_REFERENCE_TO (TREE_TYPE (t)) == t)
	TYPE_REFERENCE_TO (TREE_TYPE (t)) = TYPE_NEXT_REF_TO (t);
      else
	{
	  tree tem = TYPE_REFERENCE_TO (TREE_TYPE (t));
	  while (tem && TYPE_NEXT_REF_TO (tem) != t)
	    tem = TYPE_NEXT_REF_TO (tem);
	  if (tem)
	    TYPE_NEXT_REF_TO (tem) = TYPE_NEXT_REF_TO (t);
	}
      TYPE_NEXT_REF_TO (t) = NULL_TREE;
    }

  /* Fixup our type.  */
  LTO_REGISTER_TYPE_AND_FIXUP_SUBTREE (TREE_TYPE (t));

  /* Second put us on the list of pointers of the new pointed-to type
     if we are a main variant.  This is done in lto_fixup_type after
     fixing up our main variant.  */

  /* This is not very efficient because we cannot do tail-recursion with
     a long chain of trees. */
  LTO_FIXUP_SUBTREE (TREE_CHAIN (t));
}

/* Fix up fields of a decl_minimal T.  DATA points to fix-up states.  */

static void
lto_fixup_decl_minimal (tree t, void *data)
{
  lto_fixup_common (t, data);
  LTO_FIXUP_SUBTREE (DECL_NAME (t));
  LTO_FIXUP_SUBTREE (DECL_CONTEXT (t));
}

/* Fix up fields of a decl_common T.  DATA points to fix-up states.  */

static void
lto_fixup_decl_common (tree t, void *data)
{
  lto_fixup_decl_minimal (t, data);
  LTO_FIXUP_SUBTREE (DECL_SIZE (t));
  LTO_FIXUP_SUBTREE (DECL_SIZE_UNIT (t));
  LTO_FIXUP_SUBTREE (DECL_INITIAL (t));
  LTO_FIXUP_SUBTREE (DECL_ATTRIBUTES (t));
  LTO_FIXUP_SUBTREE (DECL_ABSTRACT_ORIGIN (t));
}

/* Fix up fields of a decl_with_vis T.  DATA points to fix-up states.  */

static void
lto_fixup_decl_with_vis (tree t, void *data)
{
  lto_fixup_decl_common (t, data);

  /* Accessor macro has side-effects, use field-name here. */
  LTO_FIXUP_SUBTREE (t->decl_with_vis.assembler_name);

  gcc_assert (no_fixup_p (DECL_SECTION_NAME (t)));
}

/* Fix up fields of a decl_non_common T.  DATA points to fix-up states.  */

static void
lto_fixup_decl_non_common (tree t, void *data)
{
  lto_fixup_decl_with_vis (t, data);
  LTO_FIXUP_SUBTREE (DECL_ARGUMENT_FLD (t));
  LTO_FIXUP_SUBTREE (DECL_RESULT_FLD (t));
  LTO_FIXUP_SUBTREE (DECL_VINDEX (t));

  /* SAVED_TREE should not cleared by now.  Also no accessor for base type. */
  gcc_assert (no_fixup_p (t->decl_non_common.saved_tree));
}

/* Fix up fields of a decl_non_common T.  DATA points to fix-up states.  */

static void
lto_fixup_function (tree t, void *data)
{
  lto_fixup_decl_non_common (t, data);
  LTO_FIXUP_SUBTREE (DECL_FUNCTION_PERSONALITY (t));
}

/* Fix up fields of a field_decl T.  DATA points to fix-up states.  */

static void
lto_fixup_field_decl (tree t, void *data)
{
  lto_fixup_decl_common (t, data);
  LTO_FIXUP_SUBTREE (DECL_FIELD_OFFSET (t));
  LTO_FIXUP_SUBTREE (DECL_BIT_FIELD_TYPE (t));
  LTO_FIXUP_SUBTREE (DECL_QUALIFIER (t));
  gcc_assert (no_fixup_p (DECL_FIELD_BIT_OFFSET (t)));
  LTO_FIXUP_SUBTREE (DECL_FCONTEXT (t));
}

/* Fix up fields of a type T.  DATA points to fix-up states.  */

static void
lto_fixup_type (tree t, void *data)
{
  tree tem, mv;

  lto_fixup_common (t, data);
  LTO_FIXUP_SUBTREE (TYPE_CACHED_VALUES (t));
  LTO_FIXUP_SUBTREE (TYPE_SIZE (t));
  LTO_FIXUP_SUBTREE (TYPE_SIZE_UNIT (t));
  LTO_FIXUP_SUBTREE (TYPE_ATTRIBUTES (t));
  LTO_FIXUP_SUBTREE (TYPE_NAME (t));

  /* Accessors are for derived node types only. */
  if (!POINTER_TYPE_P (t))
    LTO_FIXUP_SUBTREE (t->type.minval);
  LTO_FIXUP_SUBTREE (t->type.maxval);

  /* Accessor is for derived node types only. */
  LTO_FIXUP_SUBTREE (t->type.binfo);

  if (TYPE_CONTEXT (t))
    {
      if (TYPE_P (TYPE_CONTEXT (t)))
	LTO_REGISTER_TYPE_AND_FIXUP_SUBTREE (TYPE_CONTEXT (t));
      else
	LTO_FIXUP_SUBTREE (TYPE_CONTEXT (t));
    }

  /* Compute the canonical type of t and fix that up.  From this point
     there are no longer any types with TYPE_STRUCTURAL_EQUALITY_P
     and its type-based alias problems.  */
  if (!TYPE_CANONICAL (t))
    {
      TYPE_CANONICAL (t) = gimple_register_canonical_type (t);
      LTO_FIXUP_SUBTREE (TYPE_CANONICAL (t));
    }

  /* The following re-creates proper variant lists while fixing up
     the variant leaders.  We do not stream TYPE_NEXT_VARIANT so the
     variant list state before fixup is broken.  */

  /* Remove us from our main variant list if we are not the variant leader.  */
  if (TYPE_MAIN_VARIANT (t) != t)
    {
      tem = TYPE_MAIN_VARIANT (t);
      while (tem && TYPE_NEXT_VARIANT (tem) != t)
	tem = TYPE_NEXT_VARIANT (tem);
      if (tem)
	TYPE_NEXT_VARIANT (tem) = TYPE_NEXT_VARIANT (t);
      TYPE_NEXT_VARIANT (t) = NULL_TREE;
    }

  /* Query our new main variant.  */
  mv = gimple_register_type (TYPE_MAIN_VARIANT (t));

  /* If we were the variant leader and we get replaced ourselves drop
     all variants from our list.  */
  if (TYPE_MAIN_VARIANT (t) == t
      && mv != t)
    {
      tem = t;
      while (tem)
	{
	  tree tem2 = TYPE_NEXT_VARIANT (tem);
	  TYPE_NEXT_VARIANT (tem) = NULL_TREE;
	  tem = tem2;
	}
    }

  /* If we are not our own variant leader link us into our new leaders
     variant list.  */
  if (mv != t)
    {
      TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (mv);
      TYPE_NEXT_VARIANT (mv) = t;
    }

  /* Finally adjust our main variant and fix it up.  */
  TYPE_MAIN_VARIANT (t) = mv;
  LTO_FIXUP_SUBTREE (TYPE_MAIN_VARIANT (t));

  /* As the second step of reconstructing the pointer chains put us
     on the list of pointers of the new pointed-to type
     if we are a main variant.  See lto_fixup_common for the first step.  */
  if (TREE_CODE (t) == POINTER_TYPE
      && TYPE_MAIN_VARIANT (t) == t)
    {
      TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (TREE_TYPE (t));
      TYPE_POINTER_TO (TREE_TYPE (t)) = t;
    }
  else if (TREE_CODE (t) == REFERENCE_TYPE
	   && TYPE_MAIN_VARIANT (t) == t)
    {
      TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (TREE_TYPE (t));
      TYPE_REFERENCE_TO (TREE_TYPE (t)) = t;
    }
}

/* Fix up fields of a BINFO T.  DATA points to fix-up states.  */

static void
lto_fixup_binfo (tree t, void *data)
{
  unsigned HOST_WIDE_INT i, n;
  tree base, saved_base;

  lto_fixup_common (t, data);
  gcc_assert (no_fixup_p (BINFO_OFFSET (t)));
  LTO_FIXUP_SUBTREE (BINFO_VTABLE (t));
  LTO_FIXUP_SUBTREE (BINFO_VIRTUALS (t));
  LTO_FIXUP_SUBTREE (BINFO_VPTR_FIELD (t));
  n = VEC_length (tree, BINFO_BASE_ACCESSES (t));
  for (i = 0; i < n; i++)
    {
      saved_base = base = BINFO_BASE_ACCESS (t, i);
      LTO_FIXUP_SUBTREE (base);
      if (base != saved_base)
	VEC_replace (tree, BINFO_BASE_ACCESSES (t), i, base);
    }
  LTO_FIXUP_SUBTREE (BINFO_INHERITANCE_CHAIN (t));
  LTO_FIXUP_SUBTREE (BINFO_SUBVTT_INDEX (t));
  LTO_FIXUP_SUBTREE (BINFO_VPTR_INDEX (t));
  n = BINFO_N_BASE_BINFOS (t);
  for (i = 0; i < n; i++)
    {
      saved_base = base = BINFO_BASE_BINFO (t, i);
      LTO_FIXUP_SUBTREE (base);
      if (base != saved_base)
	VEC_replace (tree, BINFO_BASE_BINFOS (t), i, base);
    }
}

/* Fix up fields of a CONSTRUCTOR T.  DATA points to fix-up states.  */

static void
lto_fixup_constructor (tree t, void *data)
{
  unsigned HOST_WIDE_INT idx;
  constructor_elt *ce;

  LTO_REGISTER_TYPE_AND_FIXUP_SUBTREE (TREE_TYPE (t));

  for (idx = 0;
       VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (t), idx, ce);
       idx++)
    {
      LTO_FIXUP_SUBTREE (ce->index);
      LTO_FIXUP_SUBTREE (ce->value);
    }
}

/* A walk_tree callback used by lto_fixup_state. TP is the pointer to the
   current tree. WALK_SUBTREES indicates if the subtrees will be walked.
   DATA is a pointer set to record visited nodes. */

static tree
lto_fixup_tree (tree *tp, int *walk_subtrees, void *data)
{
  tree t;
  lto_fixup_data_t *fixup_data = (lto_fixup_data_t *) data;
  tree prevailing;

  t = *tp;
  *walk_subtrees = 0;
  if (!t || pointer_set_contains (fixup_data->seen, t))
    return NULL;

  if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == FUNCTION_DECL)
    {
      prevailing = lto_symtab_prevailing_decl (t);

      if (t != prevailing)
	{
	   /* Also replace t with prevailing defintion.  We don't want to
	      insert the other defintion in the seen set as we want to
	      replace all instances of it.  */
	  *tp = prevailing;
	  t = prevailing;
	}
    }
  else if (TYPE_P (t))
    {
      /* Replace t with the prevailing type.  We don't want to insert the
         other type in the seen set as we want to replace all instances of it.  */
      t = gimple_register_type (t);
      *tp = t;
    }

  if (pointer_set_insert (fixup_data->seen, t))
    return NULL;

  /* walk_tree does not visit all reachable nodes that need to be fixed up.
     Hence we do special processing here for those kind of nodes. */
  switch (TREE_CODE (t))
    {
    case FIELD_DECL:
      lto_fixup_field_decl (t, data);
      break;

    case LABEL_DECL:
    case CONST_DECL:
    case PARM_DECL:
    case RESULT_DECL:
    case IMPORTED_DECL:
      lto_fixup_decl_common (t, data);
      break;

    case VAR_DECL:
      lto_fixup_decl_with_vis (t, data);
      break;	

    case TYPE_DECL:
      lto_fixup_decl_non_common (t, data);
      break;

    case FUNCTION_DECL:
      lto_fixup_function (t, data);
      break;

    case TREE_BINFO:
      lto_fixup_binfo (t, data);
      break;

    default:
      if (TYPE_P (t))
	lto_fixup_type (t, data);
      else if (TREE_CODE (t) == CONSTRUCTOR)
	lto_fixup_constructor (t, data);
      else if (CONSTANT_CLASS_P (t))
	LTO_REGISTER_TYPE_AND_FIXUP_SUBTREE (TREE_TYPE (t));
      else if (EXPR_P (t))
	{
	  /* walk_tree only handles TREE_OPERANDs. Do the rest here.  */
	  lto_fixup_common (t, data);
	  LTO_FIXUP_SUBTREE (t->exp.block);
	  *walk_subtrees = 1;
	}
      else
	{
	  /* Let walk_tree handle sub-trees.  */
	  *walk_subtrees = 1;
	}
    }

  return NULL;
}

/* Helper function of lto_fixup_decls. Walks the var and fn streams in STATE,
   replaces var and function decls with the corresponding prevailing def and
   records the old decl in the free-list in DATA. We also record visted nodes
   in the seen-set in DATA to avoid multiple visit for nodes that need not
   to be replaced.  */

static void
lto_fixup_state (struct lto_in_decl_state *state, lto_fixup_data_t *data)
{
  unsigned i, si;
  struct lto_tree_ref_table *table;

  /* Although we only want to replace FUNCTION_DECLs and VAR_DECLs,
     we still need to walk from all DECLs to find the reachable
     FUNCTION_DECLs and VAR_DECLs.  */
  for (si = 0; si < LTO_N_DECL_STREAMS; si++)
    {
      table = &state->streams[si];
      for (i = 0; i < table->size; i++)
	walk_tree (table->trees + i, lto_fixup_tree, data, NULL);
    }
}

/* A callback of htab_traverse. Just extract a state from SLOT and the
   lto_fixup_data_t object from AUX and calls lto_fixup_state. */

static int
lto_fixup_state_aux (void **slot, void *aux)
{
  struct lto_in_decl_state *state = (struct lto_in_decl_state *) *slot;
  lto_fixup_state (state, (lto_fixup_data_t *) aux);
  return 1;
}

/* Fix the decls from all FILES. Replaces each decl with the corresponding
   prevailing one.  */

static void
lto_fixup_decls (struct lto_file_decl_data **files)
{
  unsigned int i;
  tree decl;
  struct pointer_set_t *seen = pointer_set_create ();
  lto_fixup_data_t data;

  data.seen = seen;
  for (i = 0; files[i]; i++)
    {
      struct lto_file_decl_data *file = files[i];
      struct lto_in_decl_state *state = file->global_decl_state;
      lto_fixup_state (state, &data);

      htab_traverse (file->function_decl_states, lto_fixup_state_aux, &data);
    }

  FOR_EACH_VEC_ELT (tree, lto_global_var_decls, i, decl)
    {
      tree saved_decl = decl;
      walk_tree (&decl, lto_fixup_tree, &data, NULL);
      if (decl != saved_decl)
	VEC_replace (tree, lto_global_var_decls, i, decl);
    }

  pointer_set_destroy (seen);
}

/* Read the options saved from each file in the command line.  Called
   from lang_hooks.post_options which is called by process_options
   right before all the options are used to initialize the compiler.
   This assumes that decode_options has already run, so the
   num_in_fnames and in_fnames are properly set.

   Note that this assumes that all the files had been compiled with
   the same options, which is not a good assumption.  In general,
   options ought to be read from all the files in the set and merged.
   However, it is still unclear what the merge rules should be.  */

void
lto_read_all_file_options (void)
{
  size_t i;

  /* Clear any file options currently saved.  */
  lto_clear_file_options ();

  /* Set the hooks to read ELF sections.  */
  lto_set_in_hooks (NULL, get_section_data, free_section_data);
  if (!quiet_flag)
    fprintf (stderr, "Reading command line options:");

  for (i = 0; i < num_in_fnames; i++)
    {
      struct lto_file_decl_data *file_data;
      lto_file *file = lto_obj_file_open (in_fnames[i], false);
      if (!file)
	break;
      if (!quiet_flag)
	{
	  fprintf (stderr, " %s", in_fnames[i]);
	  fflush (stderr);
	}

      file_data = XCNEW (struct lto_file_decl_data);
      file_data->file_name = file->filename;
      file_data->section_hash_table = lto_obj_build_section_table (file);

      lto_read_file_options (file_data);

      lto_obj_file_close (file);
      htab_delete (file_data->section_hash_table);
      free (file_data);
    }

  if (!quiet_flag)
    fprintf (stderr, "\n");

  /* Apply globally the options read from all the files.  */
  lto_reissue_options ();
}

static GTY((length ("lto_stats.num_input_files + 1"))) struct lto_file_decl_data **all_file_decl_data;

/* Turn file datas for sub files into a single array, so that they look
   like separate files for further passes. */

static void
lto_flatten_files (struct lto_file_decl_data **orig, int count, int last_file_ix)
{
  struct lto_file_decl_data *n, *next;
  int i, k;

  lto_stats.num_input_files = count;
  all_file_decl_data
    = ggc_alloc_cleared_vec_lto_file_decl_data_ptr (count + 1);
  /* Set the hooks so that all of the ipa passes can read in their data.  */
  lto_set_in_hooks (all_file_decl_data, get_section_data, free_section_data);
  for (i = 0, k = 0; i < last_file_ix; i++) 
    {
      for (n = orig[i]; n != NULL; n = next)
	{
	  all_file_decl_data[k++] = n;
	  next = n->next;
	  n->next = NULL;
	}
    }
  all_file_decl_data[k] = NULL;
  gcc_assert (k == count);
}

/* Input file data before flattening (i.e. splitting them to subfiles to support
   incremental linking.  */
static int real_file_count;
static GTY((length ("real_file_count + 1"))) struct lto_file_decl_data **real_file_decl_data;

/* Read all the symbols from the input files FNAMES.  NFILES is the
   number of files requested in the command line.  Instantiate a
   global call graph by aggregating all the sub-graphs found in each
   file.  */

static void
read_cgraph_and_symbols (unsigned nfiles, const char **fnames)
{
  unsigned int i, last_file_ix;
  FILE *resolution;
  struct cgraph_node *node;
  int count = 0;
  struct lto_file_decl_data **decl_data;

  init_cgraph ();

  timevar_push (TV_IPA_LTO_DECL_IN);

  real_file_decl_data
    = decl_data = ggc_alloc_cleared_vec_lto_file_decl_data_ptr (nfiles + 1);
  real_file_count = nfiles;

  /* Read the resolution file.  */
  resolution = NULL;
  if (resolution_file_name)
    {
      int t;
      unsigned num_objects;

      resolution = fopen (resolution_file_name, "r");
      if (resolution == NULL)
	fatal_error ("could not open symbol resolution file: %m");

      t = fscanf (resolution, "%u", &num_objects);
      gcc_assert (t == 1);

      /* True, since the plugin splits the archives.  */
      gcc_assert (num_objects == nfiles);
    }

  if (!quiet_flag)
    fprintf (stderr, "Reading object files:");

  /* Read all of the object files specified on the command line.  */
  for (i = 0, last_file_ix = 0; i < nfiles; ++i)
    {
      struct lto_file_decl_data *file_data = NULL;
      if (!quiet_flag)
	{
	  fprintf (stderr, " %s", fnames[i]);
	  fflush (stderr);
	}

      current_lto_file = lto_obj_file_open (fnames[i], false);
      if (!current_lto_file)
	break;

      file_data = lto_file_read (current_lto_file, resolution, &count);
      if (!file_data)
	break;

      decl_data[last_file_ix++] = file_data;

      lto_obj_file_close (current_lto_file);
      current_lto_file = NULL;
      ggc_collect ();
    }

  lto_flatten_files (decl_data, count, last_file_ix);
  lto_stats.num_input_files = count;
  ggc_free(decl_data);
  real_file_decl_data = NULL;

  if (resolution_file_name)
    fclose (resolution);

  /* Set the hooks so that all of the ipa passes can read in their data.  */
  lto_set_in_hooks (all_file_decl_data, get_section_data, free_section_data);

  timevar_pop (TV_IPA_LTO_DECL_IN);

  if (!quiet_flag)
    fprintf (stderr, "\nReading the callgraph\n");

  timevar_push (TV_IPA_LTO_CGRAPH_IO);
  /* Read the callgraph.  */
  input_cgraph ();
  timevar_pop (TV_IPA_LTO_CGRAPH_IO);

  if (!quiet_flag)
    fprintf (stderr, "Merging declarations\n");

  timevar_push (TV_IPA_LTO_DECL_MERGE);
  /* Merge global decls.  */
  lto_symtab_merge_decls ();

  /* If there were errors during symbol merging bail out, we have no
     good way to recover here.  */
  if (seen_error ())
    fatal_error ("errors during merging of translation units");

  /* Fixup all decls and types and free the type hash tables.  */
  lto_fixup_decls (all_file_decl_data);
  free_gimple_type_tables ();
  ggc_collect ();

  timevar_pop (TV_IPA_LTO_DECL_MERGE);
  /* Each pass will set the appropriate timer.  */

  if (!quiet_flag)
    fprintf (stderr, "Reading summaries\n");

  /* Read the IPA summary data.  */
  if (flag_ltrans)
    ipa_read_optimization_summaries ();
  else
    ipa_read_summaries ();

  /* Finally merge the cgraph according to the decl merging decisions.  */
  timevar_push (TV_IPA_LTO_CGRAPH_MERGE);
  if (cgraph_dump_file)
    {
      fprintf (cgraph_dump_file, "Before merging:\n");
      dump_cgraph (cgraph_dump_file);
      dump_varpool (cgraph_dump_file);
    }
  lto_symtab_merge_cgraph_nodes ();
  ggc_collect ();

  if (flag_ltrans)
    for (node = cgraph_nodes; node; node = node->next)
      {
	/* FIXME: ipa_transforms_to_apply holds list of passes that have optimization
	   summaries computed and needs to apply changes.  At the moment WHOPR only
	   supports inlining, so we can push it here by hand.  In future we need to stream
	   this field into ltrans compilation.  */
	if (node->analyzed)
	  VEC_safe_push (ipa_opt_pass, heap,
			 node->ipa_transforms_to_apply,
			 (ipa_opt_pass)&pass_ipa_inline);
      }
  lto_symtab_free ();

  timevar_pop (TV_IPA_LTO_CGRAPH_MERGE);

  timevar_push (TV_IPA_LTO_DECL_INIT_IO);

  /* FIXME lto. This loop needs to be changed to use the pass manager to
     call the ipa passes directly.  */
  if (!seen_error ())
    for (i = 0; i < last_file_ix; i++)
      {
	struct lto_file_decl_data *file_data = all_file_decl_data [i];
	lto_materialize_constructors_and_inits (file_data);
      }

  /* Indicate that the cgraph is built and ready.  */
  cgraph_function_flags_ready = true;

  timevar_pop (TV_IPA_LTO_DECL_INIT_IO);
  ggc_free (all_file_decl_data);
  all_file_decl_data = NULL;
}


/* Materialize all the bodies for all the nodes in the callgraph.  */

static void
materialize_cgraph (void)
{
  tree decl;
  struct cgraph_node *node; 
  unsigned i;
  timevar_id_t lto_timer;

  if (!quiet_flag)
    fprintf (stderr,
	     flag_wpa ? "Materializing decls:" : "Reading function bodies:");


  /* Now that we have input the cgraph, we need to clear all of the aux
     nodes and read the functions if we are not running in WPA mode.  */
  timevar_push (TV_IPA_LTO_GIMPLE_IN);

  for (node = cgraph_nodes; node; node = node->next)
    {
      if (node->local.lto_file_data)
	{
	  lto_materialize_function (node);
	  lto_stats.num_input_cgraph_nodes++;
	}
    }

  timevar_pop (TV_IPA_LTO_GIMPLE_IN);

  /* Start the appropriate timer depending on the mode that we are
     operating in.  */
  lto_timer = (flag_wpa) ? TV_WHOPR_WPA
	      : (flag_ltrans) ? TV_WHOPR_LTRANS
	      : TV_LTO;
  timevar_push (lto_timer);

  current_function_decl = NULL;
  set_cfun (NULL);

  /* Inform the middle end about the global variables we have seen.  */
  FOR_EACH_VEC_ELT (tree, lto_global_var_decls, i, decl)
    rest_of_decl_compilation (decl, 1, 0);

  if (!quiet_flag)
    fprintf (stderr, "\n");

  timevar_pop (lto_timer);
}


/* Perform whole program analysis (WPA) on the callgraph and write out the
   optimization plan.  */

static void
do_whole_program_analysis (void)
{
  /* Note that since we are in WPA mode, materialize_cgraph will not
     actually read in all the function bodies.  It only materializes
     the decls and cgraph nodes so that analysis can be performed.  */
  materialize_cgraph ();

  /* Reading in the cgraph uses different timers, start timing WPA now.  */
  timevar_push (TV_WHOPR_WPA);

  if (pre_ipa_mem_report)
    {
      fprintf (stderr, "Memory consumption before IPA\n");
      dump_memory_report (false);
    }

  cgraph_function_flags_ready = true;

  if (cgraph_dump_file)
    {
      dump_cgraph (cgraph_dump_file);
      dump_varpool (cgraph_dump_file);
    }
  bitmap_obstack_initialize (NULL);
  ipa_register_cgraph_hooks ();
  cgraph_state = CGRAPH_STATE_IPA_SSA;

  execute_ipa_pass_list (all_regular_ipa_passes);

  if (cgraph_dump_file)
    {
      fprintf (cgraph_dump_file, "Optimized ");
      dump_cgraph (cgraph_dump_file);
      dump_varpool (cgraph_dump_file);
    }
  verify_cgraph ();
  bitmap_obstack_release (NULL);

  /* We are about to launch the final LTRANS phase, stop the WPA timer.  */
  timevar_pop (TV_WHOPR_WPA);

  if (flag_lto_partition_1to1)
    lto_1_to_1_map ();
  else
    lto_balanced_map ();

  if (!quiet_flag)
    {
      fprintf (stderr, "\nStreaming out");
      fflush (stderr);
    }
  lto_wpa_write_files ();
  ggc_collect ();
  if (!quiet_flag)
    fprintf (stderr, "\n");

  if (post_ipa_mem_report)
    {
      fprintf (stderr, "Memory consumption after IPA\n");
      dump_memory_report (false);
    }

  /* Show the LTO report before launching LTRANS.  */
  if (flag_lto_report)
    print_lto_report ();
}


static GTY(()) tree lto_eh_personality_decl;

/* Return the LTO personality function decl.  */

tree
lto_eh_personality (void)
{
  if (!lto_eh_personality_decl)
    {
      /* Use the first personality DECL for our personality if we don't
	 support multiple ones.  This ensures that we don't artificially
	 create the need for them in a single-language program.  */
      if (first_personality_decl && !dwarf2out_do_cfi_asm ())
	lto_eh_personality_decl = first_personality_decl;
      else
	lto_eh_personality_decl = lhd_gcc_personality ();
    }

  return lto_eh_personality_decl;
}

/* Set the process name based on the LTO mode. */

static void 
lto_process_name (void)
{
  if (flag_lto)
    setproctitle ("lto1-lto");
  if (flag_wpa)
    setproctitle ("lto1-wpa");
  if (flag_ltrans)
    setproctitle ("lto1-ltrans");
}

/* Main entry point for the GIMPLE front end.  This front end has
   three main personalities:

   - LTO (-flto).  All the object files on the command line are
     loaded in memory and processed as a single translation unit.
     This is the traditional link-time optimization behavior.

   - WPA (-fwpa).  Only the callgraph and summary information for
     files in the command file are loaded.  A single callgraph
     (without function bodies) is instantiated for the whole set of
     files.  IPA passes are only allowed to analyze the call graph
     and make transformation decisions.  The callgraph is
     partitioned, each partition is written to a new object file
     together with the transformation decisions.

   - LTRANS (-fltrans).  Similar to -flto but it prevents the IPA
     summary files from running again.  Since WPA computed summary
     information and decided what transformations to apply, LTRANS
     simply applies them.  */

void
lto_main (void)
{
  lto_process_name ();

  lto_init_reader ();

  /* Read all the symbols and call graph from all the files in the
     command line.  */
  read_cgraph_and_symbols (num_in_fnames, in_fnames);

  if (!seen_error ())
    {
      /* If WPA is enabled analyze the whole call graph and create an
	 optimization plan.  Otherwise, read in all the function
	 bodies and continue with optimization.  */
      if (flag_wpa)
	do_whole_program_analysis ();
      else
	{
	  materialize_cgraph ();

	  /* Let the middle end know that we have read and merged all of
	     the input files.  */ 
	  cgraph_optimize ();

	  /* FIXME lto, if the processes spawned by WPA fail, we miss
	     the chance to print WPA's report, so WPA will call
	     print_lto_report before launching LTRANS.  If LTRANS was
	     launched directly by the driver we would not need to do
	     this.  */
	  if (flag_lto_report)
	    print_lto_report ();
	}
    }
}

#include "gt-lto-lto.h"