summaryrefslogtreecommitdiff
path: root/gcc/lto/lto-partition.c
blob: 37289b694efbb595dccab5b8cc1f32b4eab0ada0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
/* LTO partitioning logic routines.
   Copyright 2009, 2010, 2011, 2012 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "toplev.h"
#include "tree.h"
#include "tm.h"
#include "cgraph.h"
#include "lto-streamer.h"
#include "timevar.h"
#include "params.h"
#include "ipa-inline.h"
#include "ipa-utils.h"
#include "lto-partition.h"

VEC(ltrans_partition, heap) *ltrans_partitions;

static void add_cgraph_node_to_partition (ltrans_partition part, struct cgraph_node *node);
static void add_varpool_node_to_partition (ltrans_partition part, struct varpool_node *vnode);

/* Create new partition with name NAME.  */
static ltrans_partition
new_partition (const char *name)
{
  ltrans_partition part = XCNEW (struct ltrans_partition_def);
  part->cgraph_set = cgraph_node_set_new ();
  part->varpool_set = varpool_node_set_new ();
  part->name = name;
  part->insns = 0;
  VEC_safe_push (ltrans_partition, heap, ltrans_partitions, part);
  return part;
}

/* Free memory used by ltrans datastructures.  */
void
free_ltrans_partitions (void)
{
  unsigned int idx;
  ltrans_partition part;
  for (idx = 0; VEC_iterate (ltrans_partition, ltrans_partitions, idx, part); idx++)
    {
      free_cgraph_node_set (part->cgraph_set);
      free (part);
    }
  VEC_free (ltrans_partition, heap, ltrans_partitions);
}

/* See all references that go to comdat objects and bring them into partition too.
   Also see all aliases of the newly added entry and bring them, too.  */
static void
add_references_to_partition (ltrans_partition part, struct ipa_ref_list *refs)
{
  int i;
  struct ipa_ref *ref;
  for (i = 0; ipa_ref_list_reference_iterate (refs, i, ref); i++)
    {
      if (symtab_function_p (ref->referred)
	  && (DECL_COMDAT (cgraph_function_node (ipa_ref_node (ref),
			   NULL)->symbol.decl)
	      || (ref->use == IPA_REF_ALIAS
		  && lookup_attribute
		       ("weakref", DECL_ATTRIBUTES (ipa_ref_node (ref)->symbol.decl))))
	  && !cgraph_node_in_set_p (ipa_ref_node (ref), part->cgraph_set))
	add_cgraph_node_to_partition (part, ipa_ref_node (ref));
      else
        if (symtab_variable_p (ref->referred)
	    && (DECL_COMDAT (ipa_ref_varpool_node (ref)->symbol.decl)
		|| DECL_EXTERNAL (ipa_ref_varpool_node (ref)->symbol.decl)
	        || (ref->use == IPA_REF_ALIAS
		    && lookup_attribute
		         ("weakref",
			  DECL_ATTRIBUTES (ipa_ref_varpool_node (ref)->symbol.decl))))
	    && !varpool_node_in_set_p (ipa_ref_varpool_node (ref),
				       part->varpool_set))
	  add_varpool_node_to_partition (part, ipa_ref_varpool_node (ref));
    }
  for (i = 0; ipa_ref_list_referring_iterate (refs, i, ref); i++)
    {
      if (symtab_function_p (ref->referring)
	  && ref->use == IPA_REF_ALIAS
	  && !cgraph_node_in_set_p (ipa_ref_referring_node (ref),
				    part->cgraph_set)
	  && !lookup_attribute ("weakref",
				DECL_ATTRIBUTES
				  (ipa_ref_referring_node (ref)->symbol.decl)))
	add_cgraph_node_to_partition (part, ipa_ref_referring_node (ref));
      else
        if (symtab_variable_p (ref->referring)
	    && ref->use == IPA_REF_ALIAS
	    && !varpool_node_in_set_p (ipa_ref_referring_varpool_node (ref),
				       part->varpool_set)
	    && !lookup_attribute ("weakref",
				  DECL_ATTRIBUTES
				    (ipa_ref_referring_varpool_node (ref)->symbol.decl)))
	  add_varpool_node_to_partition (part,
					 ipa_ref_referring_varpool_node (ref));
    }
}

/* Worker for add_cgraph_node_to_partition.  */

static bool
add_cgraph_node_to_partition_1 (struct cgraph_node *node, void *data)
{
  ltrans_partition part = (ltrans_partition) data;

  /* non-COMDAT aliases of COMDAT functions needs to be output just once.  */
  if (!DECL_COMDAT (node->symbol.decl)
      && !node->global.inlined_to
      && node->symbol.aux)
    {
      gcc_assert (node->thunk.thunk_p || node->alias);
      return false;
    }

  if (node->symbol.aux)
    {
      node->symbol.in_other_partition = 1;
      if (cgraph_dump_file)
        fprintf (cgraph_dump_file, "Node %s/%i now used in multiple partitions\n",
		 cgraph_node_name (node), node->uid);
    }
  node->symbol.aux = (void *)((size_t)node->symbol.aux + 1);
  cgraph_node_set_add (part->cgraph_set, node);
  return false;
}

/* Add NODE to partition as well as the inline callees and referred comdats into partition PART. */

static void
add_cgraph_node_to_partition (ltrans_partition part, struct cgraph_node *node)
{
  struct cgraph_edge *e;
  cgraph_node_set_iterator csi;
  struct cgraph_node *n;

  /* If NODE is already there, we have nothing to do.  */
  csi = cgraph_node_set_find (part->cgraph_set, node);
  if (!csi_end_p (csi))
    return;

  cgraph_for_node_thunks_and_aliases (node, add_cgraph_node_to_partition_1, part, true);

  part->insns += inline_summary (node)->self_size;


  cgraph_node_set_add (part->cgraph_set, node);

  for (e = node->callees; e; e = e->next_callee)
    if ((!e->inline_failed
	 || DECL_COMDAT (cgraph_function_node (e->callee, NULL)->symbol.decl))
	&& !cgraph_node_in_set_p (e->callee, part->cgraph_set))
      add_cgraph_node_to_partition (part, e->callee);

  /* The only way to assemble non-weakref alias is to add the aliased object into
     the unit.  */
  add_references_to_partition (part, &node->symbol.ref_list);
  n = cgraph_function_node (node, NULL);
  if (n != node
      && !lookup_attribute ("weakref",
			    DECL_ATTRIBUTES (node->symbol.decl)))
    add_cgraph_node_to_partition (part, n);

  if (node->symbol.same_comdat_group)
    for (n = cgraph (node->symbol.same_comdat_group);
	 n != node; n = cgraph (n->symbol.same_comdat_group))
      add_cgraph_node_to_partition (part, n);
}

/* Add VNODE to partition as well as comdat references partition PART. */

static void
add_varpool_node_to_partition (ltrans_partition part, struct varpool_node *vnode)
{
  varpool_node_set_iterator vsi;
  struct varpool_node *v;

  /* If NODE is already there, we have nothing to do.  */
  vsi = varpool_node_set_find (part->varpool_set, vnode);
  if (!vsi_end_p (vsi))
    return;

  varpool_node_set_add (part->varpool_set, vnode);

  if (vnode->symbol.aux)
    {
      vnode->symbol.in_other_partition = 1;
      if (cgraph_dump_file)
        fprintf (cgraph_dump_file, "Varpool node %s now used in multiple partitions\n",
		 varpool_node_name (vnode));
    }
  vnode->symbol.aux = (void *)((size_t)vnode->symbol.aux + 1);

  /* The only way to assemble non-weakref alias is to add the aliased object into
     the unit.  */
  v = varpool_variable_node (vnode, NULL);
  if (v != vnode
      && !lookup_attribute ("weakref",
			    DECL_ATTRIBUTES (vnode->symbol.decl)))
    add_varpool_node_to_partition (part, v);

  add_references_to_partition (part, &vnode->symbol.ref_list);

  if (vnode->symbol.same_comdat_group
      && !varpool_node_in_set_p (varpool (vnode->symbol.same_comdat_group),
				 part->varpool_set))
    add_varpool_node_to_partition (part, varpool (vnode->symbol.same_comdat_group));
}

/* Undo all additions until number of cgraph nodes in PARITION is N_CGRAPH_NODES
   and number of varpool nodes is N_VARPOOL_NODES.  */

static void
undo_partition (ltrans_partition partition, unsigned int n_cgraph_nodes,
		unsigned int n_varpool_nodes)
{
  while (VEC_length (cgraph_node_ptr, partition->cgraph_set->nodes) >
	 n_cgraph_nodes)
    {
      struct cgraph_node *node = VEC_index (cgraph_node_ptr,
					    partition->cgraph_set->nodes,
					    n_cgraph_nodes);
      partition->insns -= inline_summary (node)->self_size;
      cgraph_node_set_remove (partition->cgraph_set, node);
      node->symbol.aux = (void *)((size_t)node->symbol.aux - 1);
    }
  while (VEC_length (varpool_node_ptr, partition->varpool_set->nodes) >
	 n_varpool_nodes)
    {
      struct varpool_node *node = VEC_index (varpool_node_ptr,
					     partition->varpool_set->nodes,
					     n_varpool_nodes);
      varpool_node_set_remove (partition->varpool_set, node);
      node->symbol.aux = (void *)((size_t)node->symbol.aux - 1);
    }
}

/* Return true if NODE should be partitioned.
   This means that partitioning algorithm should put NODE into one of partitions.
   This apply to most functions with bodies.  Functions that are not partitions
   are put into every unit needing them.  This is the case of i.e. COMDATs.  */

static bool
partition_cgraph_node_p (struct cgraph_node *node)
{
  /* We will get proper partition based on function they are inlined to.  */
  if (node->global.inlined_to)
    return false;
  /* Nodes without a body do not need partitioning.  */
  if (!node->analyzed)
    return false;
  /* Extern inlines and comdat are always only in partitions they are needed.  */
  if (DECL_EXTERNAL (node->symbol.decl)
      || (DECL_COMDAT (node->symbol.decl)
	  && !node->symbol.force_output
	  && !symtab_used_from_object_file_p ((symtab_node) node)))
    return false;
  if (lookup_attribute ("weakref", DECL_ATTRIBUTES (node->symbol.decl)))
    return false;
  return true;
}

/* Return true if VNODE should be partitioned. 
   This means that partitioning algorithm should put VNODE into one of partitions. */

static bool
partition_varpool_node_p (struct varpool_node *vnode)
{
  if (vnode->alias || !vnode->analyzed)
    return false;
  /* Constant pool and comdat are always only in partitions they are needed.  */
  if (DECL_IN_CONSTANT_POOL (vnode->symbol.decl)
      || DECL_EXTERNAL (vnode->symbol.decl)
      || (DECL_COMDAT (vnode->symbol.decl)
	  && !vnode->symbol.force_output
	  && !symtab_used_from_object_file_p ((symtab_node) vnode)))
    return false;
  if (lookup_attribute ("weakref", DECL_ATTRIBUTES (vnode->symbol.decl)))
    return false;
  return true;
}

/* Group cgrah nodes by input files.  This is used mainly for testing
   right now.  */

void
lto_1_to_1_map (void)
{
  struct cgraph_node *node;
  struct varpool_node *vnode;
  struct lto_file_decl_data *file_data;
  struct pointer_map_t *pmap;
  ltrans_partition partition;
  void **slot;
  int npartitions = 0;

  timevar_push (TV_WHOPR_WPA);

  pmap = pointer_map_create ();

  FOR_EACH_DEFINED_FUNCTION (node)
    {
      if (!partition_cgraph_node_p (node)
	  || node->symbol.aux)
	continue;

      file_data = node->symbol.lto_file_data;

      if (file_data)
	{
          slot = pointer_map_contains (pmap, file_data);
          if (slot)
	    partition = (ltrans_partition) *slot;
	  else
	    {
	      partition = new_partition (file_data->file_name);
	      slot = pointer_map_insert (pmap, file_data);
	      *slot = partition;
	      npartitions++;
	    }
	}
      else if (!file_data
	       && VEC_length (ltrans_partition, ltrans_partitions))
	partition = VEC_index (ltrans_partition, ltrans_partitions, 0);
      else
	{
	  partition = new_partition ("");
	  slot = pointer_map_insert (pmap, NULL);
	  *slot = partition;
	  npartitions++;
	}

      add_cgraph_node_to_partition (partition, node);
    }

  FOR_EACH_VARIABLE (vnode)
    {
      if (!partition_varpool_node_p (vnode)
	  || vnode->symbol.aux)
	continue;
      file_data = vnode->symbol.lto_file_data;
      slot = pointer_map_contains (pmap, file_data);
      if (slot)
	partition = (ltrans_partition) *slot;
      else
	{
	  partition = new_partition (file_data->file_name);
	  slot = pointer_map_insert (pmap, file_data);
	  *slot = partition;
	  npartitions++;
	}

      add_varpool_node_to_partition (partition, vnode);
    }
  FOR_EACH_FUNCTION (node)
    node->symbol.aux = NULL;
  FOR_EACH_VARIABLE (vnode)
    vnode->symbol.aux = NULL;

  /* If the cgraph is empty, create one cgraph node set so that there is still
     an output file for any variables that need to be exported in a DSO.  */
  if (!npartitions)
    new_partition ("empty");

  pointer_map_destroy (pmap);

  timevar_pop (TV_WHOPR_WPA);

  lto_stats.num_cgraph_partitions += VEC_length (ltrans_partition, 
						 ltrans_partitions);
}

/* Helper function for qsort; sort nodes by order.  */
static int
node_cmp (const void *pa, const void *pb)
{
  const struct cgraph_node *a = *(const struct cgraph_node * const *) pa;
  const struct cgraph_node *b = *(const struct cgraph_node * const *) pb;
  return b->symbol.order - a->symbol.order;
}

/* Helper function for qsort; sort nodes by order.  */
static int
varpool_node_cmp (const void *pa, const void *pb)
{
  const struct varpool_node *a = *(const struct varpool_node * const *) pa;
  const struct varpool_node *b = *(const struct varpool_node * const *) pb;
  return b->symbol.order - a->symbol.order;
}

/* Group cgraph nodes into equally-sized partitions.

   The partitioning algorithm is simple: nodes are taken in predefined order.
   The order corresponds to the order we want functions to have in the final
   output.  In the future this will be given by function reordering pass, but
   at the moment we use the topological order, which is a good approximation.

   The goal is to partition this linear order into intervals (partitions) so
   that all the partitions have approximately the same size and the number of
   callgraph or IPA reference edges crossing boundaries is minimal.

   This is a lot faster (O(n) in size of callgraph) than algorithms doing
   priority-based graph clustering that are generally O(n^2) and, since
   WHOPR is designed to make things go well across partitions, it leads
   to good results.

   We compute the expected size of a partition as:

     max (total_size / lto_partitions, min_partition_size)

   We use dynamic expected size of partition so small programs are partitioned
   into enough partitions to allow use of multiple CPUs, while large programs
   are not partitioned too much.  Creating too many partitions significantly
   increases the streaming overhead.

   In the future, we would like to bound the maximal size of partitions so as
   to prevent the LTRANS stage from consuming too much memory.  At the moment,
   however, the WPA stage is the most memory intensive for large benchmarks,
   since too many types and declarations are read into memory.

   The function implements a simple greedy algorithm.  Nodes are being added
   to the current partition until after 3/4 of the expected partition size is
   reached.  Past this threshold, we keep track of boundary size (number of
   edges going to other partitions) and continue adding functions until after
   the current partition has grown to twice the expected partition size.  Then
   the process is undone to the point where the minimal ratio of boundary size
   and in-partition calls was reached.  */

void
lto_balanced_map (void)
{
  int n_nodes = 0;
  int n_varpool_nodes = 0, varpool_pos = 0;
  struct cgraph_node **postorder =
    XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
  struct cgraph_node **order = XNEWVEC (struct cgraph_node *, cgraph_max_uid);
  struct varpool_node **varpool_order = NULL;
  int i, postorder_len;
  struct cgraph_node *node;
  int total_size = 0, best_total_size = 0;
  int partition_size;
  ltrans_partition partition;
  unsigned int last_visited_cgraph_node = 0, last_visited_varpool_node = 0;
  struct varpool_node *vnode;
  int cost = 0, internal = 0;
  int best_n_nodes = 0, best_n_varpool_nodes = 0, best_i = 0, best_cost =
    INT_MAX, best_internal = 0;
  int npartitions;
  int current_order = -1;

  FOR_EACH_VARIABLE (vnode)
    gcc_assert (!vnode->symbol.aux);
  /* Until we have better ordering facility, use toplogical order.
     Include only nodes we will partition and compute estimate of program
     size.  Note that since nodes that are not partitioned might be put into
     multiple partitions, this is just an estimate of real size.  This is why
     we keep partition_size updated after every partition is finalized.  */
  postorder_len = ipa_reverse_postorder (postorder);
    
  for (i = 0; i < postorder_len; i++)
    {
      node = postorder[i];
      if (partition_cgraph_node_p (node))
	{
	  order[n_nodes++] = node;
          total_size += inline_summary (node)->size;
	}
    }
  free (postorder);

  if (!flag_toplevel_reorder)
    {
      qsort (order, n_nodes, sizeof (struct cgraph_node *), node_cmp);

      FOR_EACH_VARIABLE (vnode)
	if (partition_varpool_node_p (vnode))
	  n_varpool_nodes++;
      varpool_order = XNEWVEC (struct varpool_node *, n_varpool_nodes);

      n_varpool_nodes = 0;
      FOR_EACH_VARIABLE (vnode)
	if (partition_varpool_node_p (vnode))
	  varpool_order[n_varpool_nodes++] = vnode;
      qsort (varpool_order, n_varpool_nodes, sizeof (struct varpool_node *),
	     varpool_node_cmp);
    }

  /* Compute partition size and create the first partition.  */
  partition_size = total_size / PARAM_VALUE (PARAM_LTO_PARTITIONS);
  if (partition_size < PARAM_VALUE (MIN_PARTITION_SIZE))
    partition_size = PARAM_VALUE (MIN_PARTITION_SIZE);
  npartitions = 1;
  partition = new_partition ("");
  if (cgraph_dump_file)
    fprintf (cgraph_dump_file, "Total unit size: %i, partition size: %i\n",
	     total_size, partition_size);

  for (i = 0; i < n_nodes; i++)
    {
      if (order[i]->symbol.aux)
	continue;

      current_order = order[i]->symbol.order;

      if (!flag_toplevel_reorder)
	while (varpool_pos < n_varpool_nodes
	       && varpool_order[varpool_pos]->symbol.order < current_order)
	  {
	    if (!varpool_order[varpool_pos]->symbol.aux)
	      add_varpool_node_to_partition (partition, varpool_order[varpool_pos]);
	    varpool_pos++;
	  }

      add_cgraph_node_to_partition (partition, order[i]);
      total_size -= inline_summary (order[i])->size;
	  

      /* Once we added a new node to the partition, we also want to add
         all referenced variables unless they was already added into some
         earlier partition.
	 add_cgraph_node_to_partition adds possibly multiple nodes and
	 variables that are needed to satisfy needs of ORDER[i].
         We remember last visited cgraph and varpool node from last iteration
         of outer loop that allows us to process every new addition. 

	 At the same time we compute size of the boundary into COST.  Every
         callgraph or IPA reference edge leaving the partition contributes into
         COST.  Every edge inside partition was earlier computed as one leaving
	 it and thus we need to subtract it from COST.  */
      while (last_visited_cgraph_node <
	     VEC_length (cgraph_node_ptr, partition->cgraph_set->nodes)
	     || last_visited_varpool_node < VEC_length (varpool_node_ptr,
							partition->varpool_set->
							nodes))
	{
	  struct ipa_ref_list *refs;
	  int j;
	  struct ipa_ref *ref;
	  bool cgraph_p = false;

	  if (last_visited_cgraph_node <
	      VEC_length (cgraph_node_ptr, partition->cgraph_set->nodes))
	    {
	      struct cgraph_edge *edge;

	      cgraph_p = true;
	      node = VEC_index (cgraph_node_ptr, partition->cgraph_set->nodes,
				last_visited_cgraph_node);
	      refs = &node->symbol.ref_list;

	      last_visited_cgraph_node++;

	      gcc_assert (node->analyzed);

	      /* Compute boundary cost of callgraph edges.  */
	      for (edge = node->callees; edge; edge = edge->next_callee)
		if (edge->callee->analyzed)
		  {
		    int edge_cost = edge->frequency;
		    cgraph_node_set_iterator csi;

		    if (!edge_cost)
		      edge_cost = 1;
		    gcc_assert (edge_cost > 0);
		    csi = cgraph_node_set_find (partition->cgraph_set, edge->callee);
		    if (!csi_end_p (csi)
		        && csi.index < last_visited_cgraph_node - 1)
		      cost -= edge_cost, internal+= edge_cost;
		    else
		      cost += edge_cost;
		  }
	      for (edge = node->callers; edge; edge = edge->next_caller)
		{
		  int edge_cost = edge->frequency;
		  cgraph_node_set_iterator csi;

		  gcc_assert (edge->caller->analyzed);
		  if (!edge_cost)
		    edge_cost = 1;
		  gcc_assert (edge_cost > 0);
		  csi = cgraph_node_set_find (partition->cgraph_set, edge->caller);
		  if (!csi_end_p (csi)
		      && csi.index < last_visited_cgraph_node)
		    cost -= edge_cost;
		  else
		    cost += edge_cost;
		}
	    }
	  else
	    {
	      refs =
		&VEC_index (varpool_node_ptr, partition->varpool_set->nodes,
			    last_visited_varpool_node)->symbol.ref_list;
	      last_visited_varpool_node++;
	    }

	  /* Compute boundary cost of IPA REF edges and at the same time look into
	     variables referenced from current partition and try to add them.  */
	  for (j = 0; ipa_ref_list_reference_iterate (refs, j, ref); j++)
	    if (symtab_variable_p (ref->referred))
	      {
		varpool_node_set_iterator vsi;

		vnode = ipa_ref_varpool_node (ref);
		if (!vnode->finalized)
		  continue;
		if (!vnode->symbol.aux && flag_toplevel_reorder
		    && partition_varpool_node_p (vnode))
		  add_varpool_node_to_partition (partition, vnode);
		vsi = varpool_node_set_find (partition->varpool_set, vnode);
		if (!vsi_end_p (vsi)
		    && vsi.index < last_visited_varpool_node - !cgraph_p)
		  cost--, internal++;
		else
		  cost++;
	      }
	    else
	      {
		cgraph_node_set_iterator csi;

		node = ipa_ref_node (ref);
		if (!node->analyzed)
		  continue;
		csi = cgraph_node_set_find (partition->cgraph_set, node);
		if (!csi_end_p (csi)
		    && csi.index < last_visited_cgraph_node - cgraph_p)
		  cost--, internal++;
		else
		  cost++;
	      }
	  for (j = 0; ipa_ref_list_referring_iterate (refs, j, ref); j++)
	    if (symtab_variable_p (ref->referring))
	      {
		varpool_node_set_iterator vsi;

		vnode = ipa_ref_referring_varpool_node (ref);
		gcc_assert (vnode->finalized);
		if (!vnode->symbol.aux && flag_toplevel_reorder
		    && partition_varpool_node_p (vnode))
		  add_varpool_node_to_partition (partition, vnode);
		vsi = varpool_node_set_find (partition->varpool_set, vnode);
		if (!vsi_end_p (vsi)
		    && vsi.index < last_visited_varpool_node)
		  cost--;
		else
		  cost++;
	      }
	    else
	      {
		cgraph_node_set_iterator csi;

		node = ipa_ref_referring_node (ref);
		gcc_assert (node->analyzed);
		csi = cgraph_node_set_find (partition->cgraph_set, node);
		if (!csi_end_p (csi)
		    && csi.index < last_visited_cgraph_node)
		  cost--;
		else
		  cost++;
	      }
	}

      /* If the partition is large enough, start looking for smallest boundary cost.  */
      if (partition->insns < partition_size * 3 / 4
	  || best_cost == INT_MAX
	  || ((!cost 
	       || (best_internal * (HOST_WIDE_INT) cost
		   > (internal * (HOST_WIDE_INT)best_cost)))
  	      && partition->insns < partition_size * 5 / 4))
	{
	  best_cost = cost;
	  best_internal = internal;
	  best_i = i;
	  best_n_nodes = VEC_length (cgraph_node_ptr,
				     partition->cgraph_set->nodes);
	  best_n_varpool_nodes = VEC_length (varpool_node_ptr,
					     partition->varpool_set->nodes);
	  best_total_size = total_size;
	}
      if (cgraph_dump_file)
	fprintf (cgraph_dump_file, "Step %i: added %s/%i, size %i, cost %i/%i best %i/%i, step %i\n", i,
		 cgraph_node_name (order[i]), order[i]->uid, partition->insns, cost, internal,
		 best_cost, best_internal, best_i);
      /* Partition is too large, unwind into step when best cost was reached and
	 start new partition.  */
      if (partition->insns > 2 * partition_size)
	{
	  if (best_i != i)
	    {
	      if (cgraph_dump_file)
		fprintf (cgraph_dump_file, "Unwinding %i insertions to step %i\n",
			 i - best_i, best_i);
	      undo_partition (partition, best_n_nodes, best_n_varpool_nodes);
	    }
	  i = best_i;
 	  /* When we are finished, avoid creating empty partition.  */
	  while (i < n_nodes - 1 && order[i + 1]->symbol.aux)
	    i++;
	  if (i == n_nodes - 1)
	    break;
	  partition = new_partition ("");
	  last_visited_cgraph_node = 0;
	  last_visited_varpool_node = 0;
	  total_size = best_total_size;
	  cost = 0;

	  if (cgraph_dump_file)
	    fprintf (cgraph_dump_file, "New partition\n");
	  best_n_nodes = 0;
	  best_n_varpool_nodes = 0;
	  best_cost = INT_MAX;

	  /* Since the size of partitions is just approximate, update the size after
	     we finished current one.  */
	  if (npartitions < PARAM_VALUE (PARAM_LTO_PARTITIONS))
	    partition_size = total_size
	      / (PARAM_VALUE (PARAM_LTO_PARTITIONS) - npartitions);
	  else
	    partition_size = INT_MAX;

	  if (partition_size < PARAM_VALUE (MIN_PARTITION_SIZE))
	    partition_size = PARAM_VALUE (MIN_PARTITION_SIZE);
	  npartitions ++;
	}
    }

  /* Varables that are not reachable from the code go into last partition.  */
  if (flag_toplevel_reorder)
    {
      FOR_EACH_VARIABLE (vnode)
        if (partition_varpool_node_p (vnode) && !vnode->symbol.aux)
	  add_varpool_node_to_partition (partition, vnode);
    }
  else
    {
      while (varpool_pos < n_varpool_nodes)
	{
	  if (!varpool_order[varpool_pos]->symbol.aux)
	    add_varpool_node_to_partition (partition, varpool_order[varpool_pos]);
	  varpool_pos++;
	}
      free (varpool_order);
    }
  free (order);
}

/* Promote variable VNODE to be static.  */

static bool
promote_var (struct varpool_node *vnode)
{
  if (TREE_PUBLIC (vnode->symbol.decl) || DECL_EXTERNAL (vnode->symbol.decl))
    return false;
  gcc_assert (flag_wpa);
  TREE_PUBLIC (vnode->symbol.decl) = 1;
  DECL_VISIBILITY (vnode->symbol.decl) = VISIBILITY_HIDDEN;
  DECL_VISIBILITY_SPECIFIED (vnode->symbol.decl) = true;
  if (cgraph_dump_file)
    fprintf (cgraph_dump_file,
	    "Promoting var as hidden: %s\n", varpool_node_name (vnode));
  return true;
}

/* Promote function NODE to be static.  */

static bool
promote_fn (struct cgraph_node *node)
{
  gcc_assert (flag_wpa);
  if (TREE_PUBLIC (node->symbol.decl) || DECL_EXTERNAL (node->symbol.decl))
    return false;
  TREE_PUBLIC (node->symbol.decl) = 1;
  DECL_VISIBILITY (node->symbol.decl) = VISIBILITY_HIDDEN;
  DECL_VISIBILITY_SPECIFIED (node->symbol.decl) = true;
  if (cgraph_dump_file)
    fprintf (cgraph_dump_file,
	     "Promoting function as hidden: %s/%i\n",
	     cgraph_node_name (node), node->uid);
  return true;
}

/* Return if LIST contain references from other partitions.  
   TODO: remove this once lto partitioning is using encoders.  */

static bool
set_referenced_from_other_partition_p (struct ipa_ref_list *list, cgraph_node_set set,
				       varpool_node_set vset)
{
  int i;
  struct ipa_ref *ref;
  for (i = 0; ipa_ref_list_referring_iterate (list, i, ref); i++)
    {
      if (symtab_function_p (ref->referring))
	{
	  if (ipa_ref_referring_node (ref)->symbol.in_other_partition
	      || !cgraph_node_in_set_p (ipa_ref_referring_node (ref), set))
	    return true;
	}
      else
	{
	  if (ipa_ref_referring_varpool_node (ref)->symbol.in_other_partition
	      || !varpool_node_in_set_p (ipa_ref_referring_varpool_node (ref),
				         vset))
	    return true;
	}
    }
  return false;
}

/* Return true when node is reachable from other partition. 
   TODO: remove this once lto partitioning is using encoders.  */

static bool
set_reachable_from_other_partition_p (struct cgraph_node *node, cgraph_node_set set)
{
  struct cgraph_edge *e;
  if (!node->analyzed)
    return false;
  if (node->global.inlined_to)
    return false;
  for (e = node->callers; e; e = e->next_caller)
    if (e->caller->symbol.in_other_partition
	|| !cgraph_node_in_set_p (e->caller, set))
      return true;
  return false;
}


/* Return if LIST contain references from other partitions. 
   TODO: remove this once lto partitioning is using encoders.  */

static bool
set_referenced_from_this_partition_p (struct ipa_ref_list *list, cgraph_node_set set,
				  varpool_node_set vset)
{
  int i;
  struct ipa_ref *ref;
  for (i = 0; ipa_ref_list_referring_iterate (list, i, ref); i++)
    {
      if (symtab_function_p (ref->referring))
	{
	  if (cgraph_node_in_set_p (ipa_ref_referring_node (ref), set))
	    return true;
	}
      else
	{
	  if (varpool_node_in_set_p (ipa_ref_referring_varpool_node (ref),
				     vset))
	    return true;
	}
    }
  return false;
}

/* Find out all static decls that need to be promoted to global because
   of cross file sharing.  This function must be run in the WPA mode after
   all inlinees are added.  */

void
lto_promote_cross_file_statics (void)
{
  struct varpool_node *vnode;
  unsigned i, n_sets;
  cgraph_node_set set;
  varpool_node_set vset;
  cgraph_node_set_iterator csi;
  varpool_node_set_iterator vsi;
  VEC(varpool_node_ptr, heap) *promoted_initializers = NULL;
  struct pointer_set_t *inserted = pointer_set_create ();

  gcc_assert (flag_wpa);

  n_sets = VEC_length (ltrans_partition, ltrans_partitions);
  for (i = 0; i < n_sets; i++)
    {
      ltrans_partition part
	= VEC_index (ltrans_partition, ltrans_partitions, i);
      set = part->cgraph_set;
      vset = part->varpool_set;

      /* If node called or referred to from other partition, it needs to be
	 globalized.  */
      for (csi = csi_start (set); !csi_end_p (csi); csi_next (&csi))
	{
	  struct cgraph_node *node = csi_node (csi);
	  if (node->symbol.externally_visible)
	    continue;
	  if (node->global.inlined_to)
	    continue;
	  if ((!DECL_EXTERNAL (node->symbol.decl)
	       && !DECL_COMDAT (node->symbol.decl))
	      && (set_referenced_from_other_partition_p (&node->symbol.ref_list, set, vset)
		  || set_reachable_from_other_partition_p (node, set)))
	    promote_fn (node);
	}
      for (vsi = vsi_start (vset); !vsi_end_p (vsi); vsi_next (&vsi))
	{
	  vnode = vsi_node (vsi);
	  /* Constant pool references use internal labels and thus can not
	     be made global.  It is sensible to keep those ltrans local to
	     allow better optimization.  */
	  if (!DECL_IN_CONSTANT_POOL (vnode->symbol.decl)
	      && !DECL_EXTERNAL (vnode->symbol.decl)
	      && !DECL_COMDAT (vnode->symbol.decl)
	      && !vnode->symbol.externally_visible && vnode->analyzed
	      && set_referenced_from_other_partition_p (&vnode->symbol.ref_list,
						    set, vset))
	    promote_var (vnode);
	}

      /* We export the initializer of a read-only var into each partition
	 referencing the var.  Folding might take declarations from the
	 initializer and use them, so everything referenced from the
	 initializer can be accessed from this partition after folding.

	 This means that we need to promote all variables and functions
	 referenced from all initializers of read-only vars referenced
	 from this partition that are not in this partition.  This needs
	 to be done recursively.  */
      FOR_EACH_VARIABLE (vnode)
	if (const_value_known_p (vnode->symbol.decl)
	    && DECL_INITIAL (vnode->symbol.decl)
	    && !varpool_node_in_set_p (vnode, vset)
	    && set_referenced_from_this_partition_p (&vnode->symbol.ref_list, set, vset)
	    && !pointer_set_insert (inserted, vnode))
	VEC_safe_push (varpool_node_ptr, heap, promoted_initializers, vnode);

      while (!VEC_empty (varpool_node_ptr, promoted_initializers))
	{
	  int i;
	  struct ipa_ref *ref;

	  vnode = VEC_pop (varpool_node_ptr, promoted_initializers);
	  for (i = 0;
	       ipa_ref_list_reference_iterate (&vnode->symbol.ref_list, i, ref);
	       i++)
	    {
	      if (symtab_function_p (ref->referred))
		{
		  struct cgraph_node *n = ipa_ref_node (ref);
		  gcc_assert (!n->global.inlined_to);
		  if (!n->symbol.externally_visible
		      && !cgraph_node_in_set_p (n, set))
		    promote_fn (n);
		}
	      else
		{
		  struct varpool_node *v = ipa_ref_varpool_node (ref);
		  if (varpool_node_in_set_p (v, vset))
		    continue;

		  /* Constant pool references use internal labels and thus
		     cannot be made global.  It is sensible to keep those
		     ltrans local to allow better optimization.
		     Similarly we ship external vars initializers into
		     every ltrans unit possibly referring to it.  */
		  if (DECL_IN_CONSTANT_POOL (v->symbol.decl)
		      || DECL_EXTERNAL (v->symbol.decl))
		    {
		      if (!pointer_set_insert (inserted, vnode))
			VEC_safe_push (varpool_node_ptr, heap,
				       promoted_initializers, v);
		    }
		  else if (!v->symbol.externally_visible && v->analyzed)
		    {
		      if (promote_var (v)
			  && DECL_INITIAL (v->symbol.decl)
			  && const_value_known_p (v->symbol.decl)
			  && !pointer_set_insert (inserted, vnode))
			VEC_safe_push (varpool_node_ptr, heap,
				       promoted_initializers, v);
		    }
		}
	    }
	}
    }
  pointer_set_destroy (inserted);
}