1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
|
/* Assign reload pseudos.
Copyright (C) 2010-2015 Free Software Foundation, Inc.
Contributed by Vladimir Makarov <vmakarov@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* This file's main objective is to assign hard registers to reload
pseudos. It also tries to allocate hard registers to other
pseudos, but at a lower priority than the reload pseudos. The pass
does not transform the RTL.
We must allocate a hard register to every reload pseudo. We try to
increase the chances of finding a viable allocation by assigning
the pseudos in order of fewest available hard registers first. If
we still fail to find a hard register, we spill other (non-reload)
pseudos in order to make room.
find_hard_regno_for finds hard registers for allocation without
spilling. spill_for does the same with spilling. Both functions
use a cost model to determine the most profitable choice of hard
and spill registers.
Once we have finished allocating reload pseudos, we also try to
assign registers to other (non-reload) pseudos. This is useful if
hard registers were freed up by the spilling just described.
We try to assign hard registers by collecting pseudos into threads.
These threads contain reload and inheritance pseudos that are
connected by copies (move insns). Doing this improves the chances
of pseudos in the thread getting the same hard register and, as a
result, of allowing some move insns to be deleted.
When we assign a hard register to a pseudo, we decrease the cost of
using the same hard register for pseudos that are connected by
copies.
If two hard registers have the same frequency-derived cost, we
prefer hard registers with higher priorities. The mapping of
registers to priorities is controlled by the register_priority
target hook. For example, x86-64 has a few register priorities:
hard registers with and without REX prefixes have different
priorities. This permits us to generate smaller code as insns
without REX prefixes are shorter.
If a few hard registers are still equally good for the assignment,
we choose the least used hard register. It is called leveling and
may be profitable for some targets.
Only insns with changed allocation pseudos are processed on the
next constraint pass.
The pseudo live-ranges are used to find conflicting pseudos.
For understanding the code, it is important to keep in mind that
inheritance, split, and reload pseudos created since last
constraint pass have regno >= lra_constraint_new_regno_start.
Inheritance and split pseudos created on any pass are in the
corresponding bitmaps. Inheritance and split pseudos since the
last constraint pass have also the corresponding non-negative
restore_regno. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "hard-reg-set.h"
#include "rtl.h"
#include "rtl-error.h"
#include "tm_p.h"
#include "target.h"
#include "insn-config.h"
#include "recog.h"
#include "output.h"
#include "regs.h"
#include "function.h"
#include "symtab.h"
#include "flags.h"
#include "alias.h"
#include "tree.h"
#include "expmed.h"
#include "dojump.h"
#include "explow.h"
#include "calls.h"
#include "emit-rtl.h"
#include "varasm.h"
#include "stmt.h"
#include "expr.h"
#include "predict.h"
#include "dominance.h"
#include "cfg.h"
#include "basic-block.h"
#include "except.h"
#include "df.h"
#include "ira.h"
#include "sparseset.h"
#include "params.h"
#include "lra-int.h"
/* Current iteration number of the pass and current iteration number
of the pass after the latest spill pass when any former reload
pseudo was spilled. */
int lra_assignment_iter;
int lra_assignment_iter_after_spill;
/* Flag of spilling former reload pseudos on this pass. */
static bool former_reload_pseudo_spill_p;
/* Array containing corresponding values of function
lra_get_allocno_class. It is used to speed up the code. */
static enum reg_class *regno_allocno_class_array;
/* Information about the thread to which a pseudo belongs. Threads are
a set of connected reload and inheritance pseudos with the same set of
available hard registers. Lone registers belong to their own threads. */
struct regno_assign_info
{
/* First/next pseudo of the same thread. */
int first, next;
/* Frequency of the thread (execution frequency of only reload
pseudos in the thread when the thread contains a reload pseudo).
Defined only for the first thread pseudo. */
int freq;
};
/* Map regno to the corresponding regno assignment info. */
static struct regno_assign_info *regno_assign_info;
/* All inherited, subreg or optional pseudos created before last spill
sub-pass. Such pseudos are permitted to get memory instead of hard
regs. */
static bitmap_head non_reload_pseudos;
/* Process a pseudo copy with execution frequency COPY_FREQ connecting
REGNO1 and REGNO2 to form threads. */
static void
process_copy_to_form_thread (int regno1, int regno2, int copy_freq)
{
int last, regno1_first, regno2_first;
lra_assert (regno1 >= lra_constraint_new_regno_start
&& regno2 >= lra_constraint_new_regno_start);
regno1_first = regno_assign_info[regno1].first;
regno2_first = regno_assign_info[regno2].first;
if (regno1_first != regno2_first)
{
for (last = regno2_first;
regno_assign_info[last].next >= 0;
last = regno_assign_info[last].next)
regno_assign_info[last].first = regno1_first;
regno_assign_info[last].first = regno1_first;
regno_assign_info[last].next = regno_assign_info[regno1_first].next;
regno_assign_info[regno1_first].next = regno2_first;
regno_assign_info[regno1_first].freq
+= regno_assign_info[regno2_first].freq;
}
regno_assign_info[regno1_first].freq -= 2 * copy_freq;
lra_assert (regno_assign_info[regno1_first].freq >= 0);
}
/* Initialize REGNO_ASSIGN_INFO and form threads. */
static void
init_regno_assign_info (void)
{
int i, regno1, regno2, max_regno = max_reg_num ();
lra_copy_t cp;
regno_assign_info = XNEWVEC (struct regno_assign_info, max_regno);
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
{
regno_assign_info[i].first = i;
regno_assign_info[i].next = -1;
regno_assign_info[i].freq = lra_reg_info[i].freq;
}
/* Form the threads. */
for (i = 0; (cp = lra_get_copy (i)) != NULL; i++)
if ((regno1 = cp->regno1) >= lra_constraint_new_regno_start
&& (regno2 = cp->regno2) >= lra_constraint_new_regno_start
&& reg_renumber[regno1] < 0 && lra_reg_info[regno1].nrefs != 0
&& reg_renumber[regno2] < 0 && lra_reg_info[regno2].nrefs != 0
&& (ira_class_hard_regs_num[regno_allocno_class_array[regno1]]
== ira_class_hard_regs_num[regno_allocno_class_array[regno2]]))
process_copy_to_form_thread (regno1, regno2, cp->freq);
}
/* Free REGNO_ASSIGN_INFO. */
static void
finish_regno_assign_info (void)
{
free (regno_assign_info);
}
/* The function is used to sort *reload* and *inheritance* pseudos to
try to assign them hard registers. We put pseudos from the same
thread always nearby. */
static int
reload_pseudo_compare_func (const void *v1p, const void *v2p)
{
int r1 = *(const int *) v1p, r2 = *(const int *) v2p;
enum reg_class cl1 = regno_allocno_class_array[r1];
enum reg_class cl2 = regno_allocno_class_array[r2];
int diff;
lra_assert (r1 >= lra_constraint_new_regno_start
&& r2 >= lra_constraint_new_regno_start);
/* Prefer to assign reload registers with smaller classes first to
guarantee assignment to all reload registers. */
if ((diff = (ira_class_hard_regs_num[cl1]
- ira_class_hard_regs_num[cl2])) != 0)
return diff;
if ((diff
= (ira_reg_class_max_nregs[cl2][lra_reg_info[r2].biggest_mode]
- ira_reg_class_max_nregs[cl1][lra_reg_info[r1].biggest_mode])) != 0
/* The code below executes rarely as nregs == 1 in most cases.
So we should not worry about using faster data structures to
check reload pseudos. */
&& ! bitmap_bit_p (&non_reload_pseudos, r1)
&& ! bitmap_bit_p (&non_reload_pseudos, r2))
return diff;
if ((diff = (regno_assign_info[regno_assign_info[r2].first].freq
- regno_assign_info[regno_assign_info[r1].first].freq)) != 0)
return diff;
/* Allocate bigger pseudos first to avoid register file
fragmentation. */
if ((diff
= (ira_reg_class_max_nregs[cl2][lra_reg_info[r2].biggest_mode]
- ira_reg_class_max_nregs[cl1][lra_reg_info[r1].biggest_mode])) != 0)
return diff;
/* Put pseudos from the thread nearby. */
if ((diff = regno_assign_info[r1].first - regno_assign_info[r2].first) != 0)
return diff;
/* If regs are equally good, sort by their numbers, so that the
results of qsort leave nothing to chance. */
return r1 - r2;
}
/* The function is used to sort *non-reload* pseudos to try to assign
them hard registers. The order calculation is simpler than in the
previous function and based on the pseudo frequency usage. */
static int
pseudo_compare_func (const void *v1p, const void *v2p)
{
int r1 = *(const int *) v1p, r2 = *(const int *) v2p;
int diff;
/* Prefer to assign more frequently used registers first. */
if ((diff = lra_reg_info[r2].freq - lra_reg_info[r1].freq) != 0)
return diff;
/* If regs are equally good, sort by their numbers, so that the
results of qsort leave nothing to chance. */
return r1 - r2;
}
/* Arrays of size LRA_LIVE_MAX_POINT mapping a program point to the
pseudo live ranges with given start point. We insert only live
ranges of pseudos interesting for assignment purposes. They are
reload pseudos and pseudos assigned to hard registers. */
static lra_live_range_t *start_point_ranges;
/* Used as a flag that a live range is not inserted in the start point
chain. */
static struct lra_live_range not_in_chain_mark;
/* Create and set up START_POINT_RANGES. */
static void
create_live_range_start_chains (void)
{
int i, max_regno;
lra_live_range_t r;
start_point_ranges = XCNEWVEC (lra_live_range_t, lra_live_max_point);
max_regno = max_reg_num ();
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
if (i >= lra_constraint_new_regno_start || reg_renumber[i] >= 0)
{
for (r = lra_reg_info[i].live_ranges; r != NULL; r = r->next)
{
r->start_next = start_point_ranges[r->start];
start_point_ranges[r->start] = r;
}
}
else
{
for (r = lra_reg_info[i].live_ranges; r != NULL; r = r->next)
r->start_next = ¬_in_chain_mark;
}
}
/* Insert live ranges of pseudo REGNO into start chains if they are
not there yet. */
static void
insert_in_live_range_start_chain (int regno)
{
lra_live_range_t r = lra_reg_info[regno].live_ranges;
if (r->start_next != ¬_in_chain_mark)
return;
for (; r != NULL; r = r->next)
{
r->start_next = start_point_ranges[r->start];
start_point_ranges[r->start] = r;
}
}
/* Free START_POINT_RANGES. */
static void
finish_live_range_start_chains (void)
{
gcc_assert (start_point_ranges != NULL);
free (start_point_ranges);
start_point_ranges = NULL;
}
/* Map: program point -> bitmap of all pseudos living at the point and
assigned to hard registers. */
static bitmap_head *live_hard_reg_pseudos;
static bitmap_obstack live_hard_reg_pseudos_bitmap_obstack;
/* reg_renumber corresponding to pseudos marked in
live_hard_reg_pseudos. reg_renumber might be not matched to
live_hard_reg_pseudos but live_pseudos_reg_renumber always reflects
live_hard_reg_pseudos. */
static int *live_pseudos_reg_renumber;
/* Sparseset used to calculate living hard reg pseudos for some program
point range. */
static sparseset live_range_hard_reg_pseudos;
/* Sparseset used to calculate living reload/inheritance pseudos for
some program point range. */
static sparseset live_range_reload_inheritance_pseudos;
/* Allocate and initialize the data about living pseudos at program
points. */
static void
init_lives (void)
{
int i, max_regno = max_reg_num ();
live_range_hard_reg_pseudos = sparseset_alloc (max_regno);
live_range_reload_inheritance_pseudos = sparseset_alloc (max_regno);
live_hard_reg_pseudos = XNEWVEC (bitmap_head, lra_live_max_point);
bitmap_obstack_initialize (&live_hard_reg_pseudos_bitmap_obstack);
for (i = 0; i < lra_live_max_point; i++)
bitmap_initialize (&live_hard_reg_pseudos[i],
&live_hard_reg_pseudos_bitmap_obstack);
live_pseudos_reg_renumber = XNEWVEC (int, max_regno);
for (i = 0; i < max_regno; i++)
live_pseudos_reg_renumber[i] = -1;
}
/* Free the data about living pseudos at program points. */
static void
finish_lives (void)
{
sparseset_free (live_range_hard_reg_pseudos);
sparseset_free (live_range_reload_inheritance_pseudos);
free (live_hard_reg_pseudos);
bitmap_obstack_release (&live_hard_reg_pseudos_bitmap_obstack);
free (live_pseudos_reg_renumber);
}
/* Update the LIVE_HARD_REG_PSEUDOS and LIVE_PSEUDOS_REG_RENUMBER
entries for pseudo REGNO. Assume that the register has been
spilled if FREE_P, otherwise assume that it has been assigned
reg_renumber[REGNO] (if >= 0). We also insert the pseudo live
ranges in the start chains when it is assumed to be assigned to a
hard register because we use the chains of pseudos assigned to hard
registers during allocation. */
static void
update_lives (int regno, bool free_p)
{
int p;
lra_live_range_t r;
if (reg_renumber[regno] < 0)
return;
live_pseudos_reg_renumber[regno] = free_p ? -1 : reg_renumber[regno];
for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next)
{
for (p = r->start; p <= r->finish; p++)
if (free_p)
bitmap_clear_bit (&live_hard_reg_pseudos[p], regno);
else
{
bitmap_set_bit (&live_hard_reg_pseudos[p], regno);
insert_in_live_range_start_chain (regno);
}
}
}
/* Sparseset used to calculate reload pseudos conflicting with a given
pseudo when we are trying to find a hard register for the given
pseudo. */
static sparseset conflict_reload_and_inheritance_pseudos;
/* Map: program point -> bitmap of all reload and inheritance pseudos
living at the point. */
static bitmap_head *live_reload_and_inheritance_pseudos;
static bitmap_obstack live_reload_and_inheritance_pseudos_bitmap_obstack;
/* Allocate and initialize data about living reload pseudos at any
given program point. */
static void
init_live_reload_and_inheritance_pseudos (void)
{
int i, p, max_regno = max_reg_num ();
lra_live_range_t r;
conflict_reload_and_inheritance_pseudos = sparseset_alloc (max_regno);
live_reload_and_inheritance_pseudos = XNEWVEC (bitmap_head, lra_live_max_point);
bitmap_obstack_initialize (&live_reload_and_inheritance_pseudos_bitmap_obstack);
for (p = 0; p < lra_live_max_point; p++)
bitmap_initialize (&live_reload_and_inheritance_pseudos[p],
&live_reload_and_inheritance_pseudos_bitmap_obstack);
for (i = lra_constraint_new_regno_start; i < max_regno; i++)
{
for (r = lra_reg_info[i].live_ranges; r != NULL; r = r->next)
for (p = r->start; p <= r->finish; p++)
bitmap_set_bit (&live_reload_and_inheritance_pseudos[p], i);
}
}
/* Finalize data about living reload pseudos at any given program
point. */
static void
finish_live_reload_and_inheritance_pseudos (void)
{
sparseset_free (conflict_reload_and_inheritance_pseudos);
free (live_reload_and_inheritance_pseudos);
bitmap_obstack_release (&live_reload_and_inheritance_pseudos_bitmap_obstack);
}
/* The value used to check that cost of given hard reg is really
defined currently. */
static int curr_hard_regno_costs_check = 0;
/* Array used to check that cost of the corresponding hard reg (the
array element index) is really defined currently. */
static int hard_regno_costs_check[FIRST_PSEUDO_REGISTER];
/* The current costs of allocation of hard regs. Defined only if the
value of the corresponding element of the previous array is equal to
CURR_HARD_REGNO_COSTS_CHECK. */
static int hard_regno_costs[FIRST_PSEUDO_REGISTER];
/* Adjust cost of HARD_REGNO by INCR. Reset the cost first if it is
not defined yet. */
static inline void
adjust_hard_regno_cost (int hard_regno, int incr)
{
if (hard_regno_costs_check[hard_regno] != curr_hard_regno_costs_check)
hard_regno_costs[hard_regno] = 0;
hard_regno_costs_check[hard_regno] = curr_hard_regno_costs_check;
hard_regno_costs[hard_regno] += incr;
}
/* Try to find a free hard register for pseudo REGNO. Return the
hard register on success and set *COST to the cost of using
that register. (If several registers have equal cost, the one with
the highest priority wins.) Return -1 on failure.
If FIRST_P, return the first available hard reg ignoring other
criteria, e.g. allocation cost. This approach results in less hard
reg pool fragmentation and permit to allocate hard regs to reload
pseudos in complicated situations where pseudo sizes are different.
If TRY_ONLY_HARD_REGNO >= 0, consider only that hard register,
otherwise consider all hard registers in REGNO's class.
If REGNO_SET is not empty, only hard registers from the set are
considered. */
static int
find_hard_regno_for_1 (int regno, int *cost, int try_only_hard_regno,
bool first_p, HARD_REG_SET regno_set)
{
HARD_REG_SET conflict_set;
int best_cost = INT_MAX, best_priority = INT_MIN, best_usage = INT_MAX;
lra_live_range_t r;
int p, i, j, rclass_size, best_hard_regno, priority, hard_regno;
int hr, conflict_hr, nregs;
machine_mode biggest_mode;
unsigned int k, conflict_regno;
int offset, val, biggest_nregs, nregs_diff;
enum reg_class rclass;
bitmap_iterator bi;
bool *rclass_intersect_p;
HARD_REG_SET impossible_start_hard_regs, available_regs;
if (hard_reg_set_empty_p (regno_set))
COPY_HARD_REG_SET (conflict_set, lra_no_alloc_regs);
else
{
COMPL_HARD_REG_SET (conflict_set, regno_set);
IOR_HARD_REG_SET (conflict_set, lra_no_alloc_regs);
}
rclass = regno_allocno_class_array[regno];
rclass_intersect_p = ira_reg_classes_intersect_p[rclass];
curr_hard_regno_costs_check++;
sparseset_clear (conflict_reload_and_inheritance_pseudos);
sparseset_clear (live_range_hard_reg_pseudos);
IOR_HARD_REG_SET (conflict_set, lra_reg_info[regno].conflict_hard_regs);
biggest_mode = lra_reg_info[regno].biggest_mode;
for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next)
{
EXECUTE_IF_SET_IN_BITMAP (&live_hard_reg_pseudos[r->start], 0, k, bi)
if (rclass_intersect_p[regno_allocno_class_array[k]])
sparseset_set_bit (live_range_hard_reg_pseudos, k);
EXECUTE_IF_SET_IN_BITMAP (&live_reload_and_inheritance_pseudos[r->start],
0, k, bi)
if (lra_reg_info[k].preferred_hard_regno1 >= 0
&& live_pseudos_reg_renumber[k] < 0
&& rclass_intersect_p[regno_allocno_class_array[k]])
sparseset_set_bit (conflict_reload_and_inheritance_pseudos, k);
for (p = r->start + 1; p <= r->finish; p++)
{
lra_live_range_t r2;
for (r2 = start_point_ranges[p];
r2 != NULL;
r2 = r2->start_next)
{
if (r2->regno >= lra_constraint_new_regno_start
&& lra_reg_info[r2->regno].preferred_hard_regno1 >= 0
&& live_pseudos_reg_renumber[r2->regno] < 0
&& rclass_intersect_p[regno_allocno_class_array[r2->regno]])
sparseset_set_bit (conflict_reload_and_inheritance_pseudos,
r2->regno);
if (live_pseudos_reg_renumber[r2->regno] >= 0
&& rclass_intersect_p[regno_allocno_class_array[r2->regno]])
sparseset_set_bit (live_range_hard_reg_pseudos, r2->regno);
}
}
}
if ((hard_regno = lra_reg_info[regno].preferred_hard_regno1) >= 0)
{
adjust_hard_regno_cost
(hard_regno, -lra_reg_info[regno].preferred_hard_regno_profit1);
if ((hard_regno = lra_reg_info[regno].preferred_hard_regno2) >= 0)
adjust_hard_regno_cost
(hard_regno, -lra_reg_info[regno].preferred_hard_regno_profit2);
}
#ifdef STACK_REGS
if (lra_reg_info[regno].no_stack_p)
for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
SET_HARD_REG_BIT (conflict_set, i);
#endif
sparseset_clear_bit (conflict_reload_and_inheritance_pseudos, regno);
val = lra_reg_info[regno].val;
offset = lra_reg_info[regno].offset;
CLEAR_HARD_REG_SET (impossible_start_hard_regs);
EXECUTE_IF_SET_IN_SPARSESET (live_range_hard_reg_pseudos, conflict_regno)
if (lra_reg_val_equal_p (conflict_regno, val, offset))
{
conflict_hr = live_pseudos_reg_renumber[conflict_regno];
nregs = (hard_regno_nregs[conflict_hr]
[lra_reg_info[conflict_regno].biggest_mode]);
/* Remember about multi-register pseudos. For example, 2 hard
register pseudos can start on the same hard register but can
not start on HR and HR+1/HR-1. */
for (hr = conflict_hr + 1;
hr < FIRST_PSEUDO_REGISTER && hr < conflict_hr + nregs;
hr++)
SET_HARD_REG_BIT (impossible_start_hard_regs, hr);
for (hr = conflict_hr - 1;
hr >= 0 && hr + hard_regno_nregs[hr][biggest_mode] > conflict_hr;
hr--)
SET_HARD_REG_BIT (impossible_start_hard_regs, hr);
}
else
{
add_to_hard_reg_set (&conflict_set,
lra_reg_info[conflict_regno].biggest_mode,
live_pseudos_reg_renumber[conflict_regno]);
if (hard_reg_set_subset_p (reg_class_contents[rclass],
conflict_set))
return -1;
}
EXECUTE_IF_SET_IN_SPARSESET (conflict_reload_and_inheritance_pseudos,
conflict_regno)
if (!lra_reg_val_equal_p (conflict_regno, val, offset))
{
lra_assert (live_pseudos_reg_renumber[conflict_regno] < 0);
if ((hard_regno
= lra_reg_info[conflict_regno].preferred_hard_regno1) >= 0)
{
adjust_hard_regno_cost
(hard_regno,
lra_reg_info[conflict_regno].preferred_hard_regno_profit1);
if ((hard_regno
= lra_reg_info[conflict_regno].preferred_hard_regno2) >= 0)
adjust_hard_regno_cost
(hard_regno,
lra_reg_info[conflict_regno].preferred_hard_regno_profit2);
}
}
/* Make sure that all registers in a multi-word pseudo belong to the
required class. */
IOR_COMPL_HARD_REG_SET (conflict_set, reg_class_contents[rclass]);
lra_assert (rclass != NO_REGS);
rclass_size = ira_class_hard_regs_num[rclass];
best_hard_regno = -1;
hard_regno = ira_class_hard_regs[rclass][0];
biggest_nregs = hard_regno_nregs[hard_regno][biggest_mode];
nregs_diff = (biggest_nregs
- hard_regno_nregs[hard_regno][PSEUDO_REGNO_MODE (regno)]);
COPY_HARD_REG_SET (available_regs, reg_class_contents[rclass]);
AND_COMPL_HARD_REG_SET (available_regs, lra_no_alloc_regs);
for (i = 0; i < rclass_size; i++)
{
if (try_only_hard_regno >= 0)
hard_regno = try_only_hard_regno;
else
hard_regno = ira_class_hard_regs[rclass][i];
if (! overlaps_hard_reg_set_p (conflict_set,
PSEUDO_REGNO_MODE (regno), hard_regno)
/* We can not use prohibited_class_mode_regs because it is
not defined for all classes. */
&& HARD_REGNO_MODE_OK (hard_regno, PSEUDO_REGNO_MODE (regno))
&& ! TEST_HARD_REG_BIT (impossible_start_hard_regs, hard_regno)
&& (nregs_diff == 0
|| (WORDS_BIG_ENDIAN
? (hard_regno - nregs_diff >= 0
&& TEST_HARD_REG_BIT (available_regs,
hard_regno - nregs_diff))
: TEST_HARD_REG_BIT (available_regs,
hard_regno + nregs_diff))))
{
if (hard_regno_costs_check[hard_regno]
!= curr_hard_regno_costs_check)
{
hard_regno_costs_check[hard_regno] = curr_hard_regno_costs_check;
hard_regno_costs[hard_regno] = 0;
}
for (j = 0;
j < hard_regno_nregs[hard_regno][PSEUDO_REGNO_MODE (regno)];
j++)
if (! TEST_HARD_REG_BIT (call_used_reg_set, hard_regno + j)
&& ! df_regs_ever_live_p (hard_regno + j))
/* It needs save restore. */
hard_regno_costs[hard_regno]
+= (2
* REG_FREQ_FROM_BB (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb)
+ 1);
priority = targetm.register_priority (hard_regno);
if (best_hard_regno < 0 || hard_regno_costs[hard_regno] < best_cost
|| (hard_regno_costs[hard_regno] == best_cost
&& (priority > best_priority
|| (targetm.register_usage_leveling_p ()
&& priority == best_priority
&& best_usage > lra_hard_reg_usage[hard_regno]))))
{
best_hard_regno = hard_regno;
best_cost = hard_regno_costs[hard_regno];
best_priority = priority;
best_usage = lra_hard_reg_usage[hard_regno];
}
}
if (try_only_hard_regno >= 0 || (first_p && best_hard_regno >= 0))
break;
}
if (best_hard_regno >= 0)
*cost = best_cost - lra_reg_info[regno].freq;
return best_hard_regno;
}
/* A wrapper for find_hard_regno_for_1 (see comments for that function
description). This function tries to find a hard register for
preferred class first if it is worth. */
static int
find_hard_regno_for (int regno, int *cost, int try_only_hard_regno, bool first_p)
{
int hard_regno;
HARD_REG_SET regno_set;
/* Only original pseudos can have a different preferred class. */
if (try_only_hard_regno < 0 && regno < lra_new_regno_start)
{
enum reg_class pref_class = reg_preferred_class (regno);
if (regno_allocno_class_array[regno] != pref_class)
{
hard_regno = find_hard_regno_for_1 (regno, cost, -1, first_p,
reg_class_contents[pref_class]);
if (hard_regno >= 0)
return hard_regno;
}
}
CLEAR_HARD_REG_SET (regno_set);
return find_hard_regno_for_1 (regno, cost, try_only_hard_regno, first_p,
regno_set);
}
/* Current value used for checking elements in
update_hard_regno_preference_check. */
static int curr_update_hard_regno_preference_check;
/* If an element value is equal to the above variable value, then the
corresponding regno has been processed for preference
propagation. */
static int *update_hard_regno_preference_check;
/* Update the preference for using HARD_REGNO for pseudos that are
connected directly or indirectly with REGNO. Apply divisor DIV
to any preference adjustments.
The more indirectly a pseudo is connected, the smaller its effect
should be. We therefore increase DIV on each "hop". */
static void
update_hard_regno_preference (int regno, int hard_regno, int div)
{
int another_regno, cost;
lra_copy_t cp, next_cp;
/* Search depth 5 seems to be enough. */
if (div > (1 << 5))
return;
for (cp = lra_reg_info[regno].copies; cp != NULL; cp = next_cp)
{
if (cp->regno1 == regno)
{
next_cp = cp->regno1_next;
another_regno = cp->regno2;
}
else if (cp->regno2 == regno)
{
next_cp = cp->regno2_next;
another_regno = cp->regno1;
}
else
gcc_unreachable ();
if (reg_renumber[another_regno] < 0
&& (update_hard_regno_preference_check[another_regno]
!= curr_update_hard_regno_preference_check))
{
update_hard_regno_preference_check[another_regno]
= curr_update_hard_regno_preference_check;
cost = cp->freq < div ? 1 : cp->freq / div;
lra_setup_reload_pseudo_preferenced_hard_reg
(another_regno, hard_regno, cost);
update_hard_regno_preference (another_regno, hard_regno, div * 2);
}
}
}
/* Return prefix title for pseudo REGNO. */
static const char *
pseudo_prefix_title (int regno)
{
return
(regno < lra_constraint_new_regno_start ? ""
: bitmap_bit_p (&lra_inheritance_pseudos, regno) ? "inheritance "
: bitmap_bit_p (&lra_split_regs, regno) ? "split "
: bitmap_bit_p (&lra_optional_reload_pseudos, regno) ? "optional reload "
: bitmap_bit_p (&lra_subreg_reload_pseudos, regno) ? "subreg reload "
: "reload ");
}
/* Update REG_RENUMBER and other pseudo preferences by assignment of
HARD_REGNO to pseudo REGNO and print about it if PRINT_P. */
void
lra_setup_reg_renumber (int regno, int hard_regno, bool print_p)
{
int i, hr;
/* We can not just reassign hard register. */
lra_assert (hard_regno < 0 || reg_renumber[regno] < 0);
if ((hr = hard_regno) < 0)
hr = reg_renumber[regno];
reg_renumber[regno] = hard_regno;
lra_assert (hr >= 0);
for (i = 0; i < hard_regno_nregs[hr][PSEUDO_REGNO_MODE (regno)]; i++)
if (hard_regno < 0)
lra_hard_reg_usage[hr + i] -= lra_reg_info[regno].freq;
else
lra_hard_reg_usage[hr + i] += lra_reg_info[regno].freq;
if (print_p && lra_dump_file != NULL)
fprintf (lra_dump_file, " Assign %d to %sr%d (freq=%d)\n",
reg_renumber[regno], pseudo_prefix_title (regno),
regno, lra_reg_info[regno].freq);
if (hard_regno >= 0)
{
curr_update_hard_regno_preference_check++;
update_hard_regno_preference (regno, hard_regno, 1);
}
}
/* Pseudos which occur in insns containing a particular pseudo. */
static bitmap_head insn_conflict_pseudos;
/* Bitmaps used to contain spill pseudos for given pseudo hard regno
and best spill pseudos for given pseudo (and best hard regno). */
static bitmap_head spill_pseudos_bitmap, best_spill_pseudos_bitmap;
/* Current pseudo check for validity of elements in
TRY_HARD_REG_PSEUDOS. */
static int curr_pseudo_check;
/* Array used for validity of elements in TRY_HARD_REG_PSEUDOS. */
static int try_hard_reg_pseudos_check[FIRST_PSEUDO_REGISTER];
/* Pseudos who hold given hard register at the considered points. */
static bitmap_head try_hard_reg_pseudos[FIRST_PSEUDO_REGISTER];
/* Set up try_hard_reg_pseudos for given program point P and class
RCLASS. Those are pseudos living at P and assigned to a hard
register of RCLASS. In other words, those are pseudos which can be
spilled to assign a hard register of RCLASS to a pseudo living at
P. */
static void
setup_try_hard_regno_pseudos (int p, enum reg_class rclass)
{
int i, hard_regno;
machine_mode mode;
unsigned int spill_regno;
bitmap_iterator bi;
/* Find what pseudos could be spilled. */
EXECUTE_IF_SET_IN_BITMAP (&live_hard_reg_pseudos[p], 0, spill_regno, bi)
{
mode = PSEUDO_REGNO_MODE (spill_regno);
hard_regno = live_pseudos_reg_renumber[spill_regno];
if (overlaps_hard_reg_set_p (reg_class_contents[rclass],
mode, hard_regno))
{
for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
{
if (try_hard_reg_pseudos_check[hard_regno + i]
!= curr_pseudo_check)
{
try_hard_reg_pseudos_check[hard_regno + i]
= curr_pseudo_check;
bitmap_clear (&try_hard_reg_pseudos[hard_regno + i]);
}
bitmap_set_bit (&try_hard_reg_pseudos[hard_regno + i],
spill_regno);
}
}
}
}
/* Assign temporarily HARD_REGNO to pseudo REGNO. Temporary
assignment means that we might undo the data change. */
static void
assign_temporarily (int regno, int hard_regno)
{
int p;
lra_live_range_t r;
for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next)
{
for (p = r->start; p <= r->finish; p++)
if (hard_regno < 0)
bitmap_clear_bit (&live_hard_reg_pseudos[p], regno);
else
{
bitmap_set_bit (&live_hard_reg_pseudos[p], regno);
insert_in_live_range_start_chain (regno);
}
}
live_pseudos_reg_renumber[regno] = hard_regno;
}
/* Array used for sorting reload pseudos for subsequent allocation
after spilling some pseudo. */
static int *sorted_reload_pseudos;
/* Spill some pseudos for a reload pseudo REGNO and return hard
register which should be used for pseudo after spilling. The
function adds spilled pseudos to SPILLED_PSEUDO_BITMAP. When we
choose hard register (and pseudos occupying the hard registers and
to be spilled), we take into account not only how REGNO will
benefit from the spills but also how other reload pseudos not yet
assigned to hard registers benefit from the spills too. In very
rare cases, the function can fail and return -1.
If FIRST_P, return the first available hard reg ignoring other
criteria, e.g. allocation cost and cost of spilling non-reload
pseudos. This approach results in less hard reg pool fragmentation
and permit to allocate hard regs to reload pseudos in complicated
situations where pseudo sizes are different. */
static int
spill_for (int regno, bitmap spilled_pseudo_bitmap, bool first_p)
{
int i, j, n, p, hard_regno, best_hard_regno, cost, best_cost, rclass_size;
int reload_hard_regno, reload_cost;
machine_mode mode;
enum reg_class rclass;
unsigned int spill_regno, reload_regno, uid;
int insn_pseudos_num, best_insn_pseudos_num;
int bad_spills_num, smallest_bad_spills_num;
lra_live_range_t r;
bitmap_iterator bi;
rclass = regno_allocno_class_array[regno];
lra_assert (reg_renumber[regno] < 0 && rclass != NO_REGS);
bitmap_clear (&insn_conflict_pseudos);
bitmap_clear (&best_spill_pseudos_bitmap);
EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi)
{
struct lra_insn_reg *ir;
for (ir = lra_get_insn_regs (uid); ir != NULL; ir = ir->next)
if (ir->regno >= FIRST_PSEUDO_REGISTER)
bitmap_set_bit (&insn_conflict_pseudos, ir->regno);
}
best_hard_regno = -1;
best_cost = INT_MAX;
best_insn_pseudos_num = INT_MAX;
smallest_bad_spills_num = INT_MAX;
rclass_size = ira_class_hard_regs_num[rclass];
mode = PSEUDO_REGNO_MODE (regno);
/* Invalidate try_hard_reg_pseudos elements. */
curr_pseudo_check++;
for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next)
for (p = r->start; p <= r->finish; p++)
setup_try_hard_regno_pseudos (p, rclass);
for (i = 0; i < rclass_size; i++)
{
hard_regno = ira_class_hard_regs[rclass][i];
bitmap_clear (&spill_pseudos_bitmap);
for (j = hard_regno_nregs[hard_regno][mode] - 1; j >= 0; j--)
{
if (try_hard_reg_pseudos_check[hard_regno + j] != curr_pseudo_check)
continue;
lra_assert (!bitmap_empty_p (&try_hard_reg_pseudos[hard_regno + j]));
bitmap_ior_into (&spill_pseudos_bitmap,
&try_hard_reg_pseudos[hard_regno + j]);
}
/* Spill pseudos. */
EXECUTE_IF_SET_IN_BITMAP (&spill_pseudos_bitmap, 0, spill_regno, bi)
if ((pic_offset_table_rtx != NULL
&& spill_regno == REGNO (pic_offset_table_rtx))
|| ((int) spill_regno >= lra_constraint_new_regno_start
&& ! bitmap_bit_p (&lra_inheritance_pseudos, spill_regno)
&& ! bitmap_bit_p (&lra_split_regs, spill_regno)
&& ! bitmap_bit_p (&lra_subreg_reload_pseudos, spill_regno)
&& ! bitmap_bit_p (&lra_optional_reload_pseudos, spill_regno)))
goto fail;
insn_pseudos_num = 0;
bad_spills_num = 0;
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " Trying %d:", hard_regno);
sparseset_clear (live_range_reload_inheritance_pseudos);
EXECUTE_IF_SET_IN_BITMAP (&spill_pseudos_bitmap, 0, spill_regno, bi)
{
if (bitmap_bit_p (&insn_conflict_pseudos, spill_regno))
insn_pseudos_num++;
if (spill_regno >= (unsigned int) lra_bad_spill_regno_start)
bad_spills_num++;
for (r = lra_reg_info[spill_regno].live_ranges;
r != NULL;
r = r->next)
{
for (p = r->start; p <= r->finish; p++)
{
lra_live_range_t r2;
for (r2 = start_point_ranges[p];
r2 != NULL;
r2 = r2->start_next)
if (r2->regno >= lra_constraint_new_regno_start)
sparseset_set_bit (live_range_reload_inheritance_pseudos,
r2->regno);
}
}
}
n = 0;
if (sparseset_cardinality (live_range_reload_inheritance_pseudos)
<= (unsigned)LRA_MAX_CONSIDERED_RELOAD_PSEUDOS)
EXECUTE_IF_SET_IN_SPARSESET (live_range_reload_inheritance_pseudos,
reload_regno)
if ((int) reload_regno != regno
&& (ira_reg_classes_intersect_p
[rclass][regno_allocno_class_array[reload_regno]])
&& live_pseudos_reg_renumber[reload_regno] < 0
&& find_hard_regno_for (reload_regno, &cost, -1, first_p) < 0)
sorted_reload_pseudos[n++] = reload_regno;
EXECUTE_IF_SET_IN_BITMAP (&spill_pseudos_bitmap, 0, spill_regno, bi)
{
update_lives (spill_regno, true);
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " spill %d(freq=%d)",
spill_regno, lra_reg_info[spill_regno].freq);
}
hard_regno = find_hard_regno_for (regno, &cost, -1, first_p);
if (hard_regno >= 0)
{
assign_temporarily (regno, hard_regno);
qsort (sorted_reload_pseudos, n, sizeof (int),
reload_pseudo_compare_func);
for (j = 0; j < n; j++)
{
reload_regno = sorted_reload_pseudos[j];
lra_assert (live_pseudos_reg_renumber[reload_regno] < 0);
if ((reload_hard_regno
= find_hard_regno_for (reload_regno,
&reload_cost, -1, first_p)) >= 0)
{
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " assign %d(cost=%d)",
reload_regno, reload_cost);
assign_temporarily (reload_regno, reload_hard_regno);
cost += reload_cost;
}
}
EXECUTE_IF_SET_IN_BITMAP (&spill_pseudos_bitmap, 0, spill_regno, bi)
{
rtx_insn_list *x;
cost += lra_reg_info[spill_regno].freq;
if (ira_reg_equiv[spill_regno].memory != NULL
|| ira_reg_equiv[spill_regno].constant != NULL)
for (x = ira_reg_equiv[spill_regno].init_insns;
x != NULL;
x = x->next ())
cost -= REG_FREQ_FROM_BB (BLOCK_FOR_INSN (x->insn ()));
}
if (best_insn_pseudos_num > insn_pseudos_num
|| (best_insn_pseudos_num == insn_pseudos_num
&& (bad_spills_num < smallest_bad_spills_num
|| (bad_spills_num == smallest_bad_spills_num
&& best_cost > cost))))
{
best_insn_pseudos_num = insn_pseudos_num;
smallest_bad_spills_num = bad_spills_num;
best_cost = cost;
best_hard_regno = hard_regno;
bitmap_copy (&best_spill_pseudos_bitmap, &spill_pseudos_bitmap);
if (lra_dump_file != NULL)
fprintf (lra_dump_file,
" Now best %d(cost=%d, bad_spills=%d, insn_pseudos=%d)\n",
hard_regno, cost, bad_spills_num, insn_pseudos_num);
}
assign_temporarily (regno, -1);
for (j = 0; j < n; j++)
{
reload_regno = sorted_reload_pseudos[j];
if (live_pseudos_reg_renumber[reload_regno] >= 0)
assign_temporarily (reload_regno, -1);
}
}
if (lra_dump_file != NULL)
fprintf (lra_dump_file, "\n");
/* Restore the live hard reg pseudo info for spilled pseudos. */
EXECUTE_IF_SET_IN_BITMAP (&spill_pseudos_bitmap, 0, spill_regno, bi)
update_lives (spill_regno, false);
fail:
;
}
/* Spill: */
EXECUTE_IF_SET_IN_BITMAP (&best_spill_pseudos_bitmap, 0, spill_regno, bi)
{
if ((int) spill_regno >= lra_constraint_new_regno_start)
former_reload_pseudo_spill_p = true;
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " Spill %sr%d(hr=%d, freq=%d) for r%d\n",
pseudo_prefix_title (spill_regno),
spill_regno, reg_renumber[spill_regno],
lra_reg_info[spill_regno].freq, regno);
update_lives (spill_regno, true);
lra_setup_reg_renumber (spill_regno, -1, false);
}
bitmap_ior_into (spilled_pseudo_bitmap, &best_spill_pseudos_bitmap);
return best_hard_regno;
}
/* Assign HARD_REGNO to REGNO. */
static void
assign_hard_regno (int hard_regno, int regno)
{
int i;
lra_assert (hard_regno >= 0);
lra_setup_reg_renumber (regno, hard_regno, true);
update_lives (regno, false);
for (i = 0;
i < hard_regno_nregs[hard_regno][lra_reg_info[regno].biggest_mode];
i++)
df_set_regs_ever_live (hard_regno + i, true);
}
/* Array used for sorting different pseudos. */
static int *sorted_pseudos;
/* The constraints pass is allowed to create equivalences between
pseudos that make the current allocation "incorrect" (in the sense
that pseudos are assigned to hard registers from their own conflict
sets). The global variable lra_risky_transformations_p says
whether this might have happened.
Process pseudos assigned to hard registers (less frequently used
first), spill if a conflict is found, and mark the spilled pseudos
in SPILLED_PSEUDO_BITMAP. Set up LIVE_HARD_REG_PSEUDOS from
pseudos, assigned to hard registers. */
static void
setup_live_pseudos_and_spill_after_risky_transforms (bitmap
spilled_pseudo_bitmap)
{
int p, i, j, n, regno, hard_regno;
unsigned int k, conflict_regno;
int val, offset;
HARD_REG_SET conflict_set;
machine_mode mode;
lra_live_range_t r;
bitmap_iterator bi;
int max_regno = max_reg_num ();
if (! lra_risky_transformations_p)
{
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
if (reg_renumber[i] >= 0 && lra_reg_info[i].nrefs > 0)
update_lives (i, false);
return;
}
for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
if ((pic_offset_table_rtx == NULL_RTX
|| i != (int) REGNO (pic_offset_table_rtx))
&& reg_renumber[i] >= 0 && lra_reg_info[i].nrefs > 0)
sorted_pseudos[n++] = i;
qsort (sorted_pseudos, n, sizeof (int), pseudo_compare_func);
if (pic_offset_table_rtx != NULL_RTX
&& (regno = REGNO (pic_offset_table_rtx)) >= FIRST_PSEUDO_REGISTER
&& reg_renumber[regno] >= 0 && lra_reg_info[regno].nrefs > 0)
sorted_pseudos[n++] = regno;
for (i = n - 1; i >= 0; i--)
{
regno = sorted_pseudos[i];
hard_regno = reg_renumber[regno];
lra_assert (hard_regno >= 0);
mode = lra_reg_info[regno].biggest_mode;
sparseset_clear (live_range_hard_reg_pseudos);
for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next)
{
EXECUTE_IF_SET_IN_BITMAP (&live_hard_reg_pseudos[r->start], 0, k, bi)
sparseset_set_bit (live_range_hard_reg_pseudos, k);
for (p = r->start + 1; p <= r->finish; p++)
{
lra_live_range_t r2;
for (r2 = start_point_ranges[p];
r2 != NULL;
r2 = r2->start_next)
if (live_pseudos_reg_renumber[r2->regno] >= 0)
sparseset_set_bit (live_range_hard_reg_pseudos, r2->regno);
}
}
COPY_HARD_REG_SET (conflict_set, lra_no_alloc_regs);
IOR_HARD_REG_SET (conflict_set, lra_reg_info[regno].conflict_hard_regs);
val = lra_reg_info[regno].val;
offset = lra_reg_info[regno].offset;
EXECUTE_IF_SET_IN_SPARSESET (live_range_hard_reg_pseudos, conflict_regno)
if (!lra_reg_val_equal_p (conflict_regno, val, offset)
/* If it is multi-register pseudos they should start on
the same hard register. */
|| hard_regno != reg_renumber[conflict_regno])
add_to_hard_reg_set (&conflict_set,
lra_reg_info[conflict_regno].biggest_mode,
reg_renumber[conflict_regno]);
if (! overlaps_hard_reg_set_p (conflict_set, mode, hard_regno))
{
update_lives (regno, false);
continue;
}
bitmap_set_bit (spilled_pseudo_bitmap, regno);
for (j = 0;
j < hard_regno_nregs[hard_regno][PSEUDO_REGNO_MODE (regno)];
j++)
lra_hard_reg_usage[hard_regno + j] -= lra_reg_info[regno].freq;
reg_renumber[regno] = -1;
if (regno >= lra_constraint_new_regno_start)
former_reload_pseudo_spill_p = true;
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " Spill r%d after risky transformations\n",
regno);
}
}
/* Improve allocation by assigning the same hard regno of inheritance
pseudos to the connected pseudos. We need this because inheritance
pseudos are allocated after reload pseudos in the thread and when
we assign a hard register to a reload pseudo we don't know yet that
the connected inheritance pseudos can get the same hard register.
Add pseudos with changed allocation to bitmap CHANGED_PSEUDOS. */
static void
improve_inheritance (bitmap changed_pseudos)
{
unsigned int k;
int regno, another_regno, hard_regno, another_hard_regno, cost, i, n;
lra_copy_t cp, next_cp;
bitmap_iterator bi;
if (lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
return;
n = 0;
EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, k, bi)
if (reg_renumber[k] >= 0 && lra_reg_info[k].nrefs != 0)
sorted_pseudos[n++] = k;
qsort (sorted_pseudos, n, sizeof (int), pseudo_compare_func);
for (i = 0; i < n; i++)
{
regno = sorted_pseudos[i];
hard_regno = reg_renumber[regno];
lra_assert (hard_regno >= 0);
for (cp = lra_reg_info[regno].copies; cp != NULL; cp = next_cp)
{
if (cp->regno1 == regno)
{
next_cp = cp->regno1_next;
another_regno = cp->regno2;
}
else if (cp->regno2 == regno)
{
next_cp = cp->regno2_next;
another_regno = cp->regno1;
}
else
gcc_unreachable ();
/* Don't change reload pseudo allocation. It might have
this allocation for a purpose and changing it can result
in LRA cycling. */
if ((another_regno < lra_constraint_new_regno_start
|| bitmap_bit_p (&lra_inheritance_pseudos, another_regno))
&& (another_hard_regno = reg_renumber[another_regno]) >= 0
&& another_hard_regno != hard_regno)
{
if (lra_dump_file != NULL)
fprintf
(lra_dump_file,
" Improving inheritance for %d(%d) and %d(%d)...\n",
regno, hard_regno, another_regno, another_hard_regno);
update_lives (another_regno, true);
lra_setup_reg_renumber (another_regno, -1, false);
if (hard_regno == find_hard_regno_for (another_regno, &cost,
hard_regno, false))
assign_hard_regno (hard_regno, another_regno);
else
assign_hard_regno (another_hard_regno, another_regno);
bitmap_set_bit (changed_pseudos, another_regno);
}
}
}
}
/* Bitmap finally containing all pseudos spilled on this assignment
pass. */
static bitmap_head all_spilled_pseudos;
/* All pseudos whose allocation was changed. */
static bitmap_head changed_pseudo_bitmap;
/* Add to LIVE_RANGE_HARD_REG_PSEUDOS all pseudos conflicting with
REGNO and whose hard regs can be assigned to REGNO. */
static void
find_all_spills_for (int regno)
{
int p;
lra_live_range_t r;
unsigned int k;
bitmap_iterator bi;
enum reg_class rclass;
bool *rclass_intersect_p;
rclass = regno_allocno_class_array[regno];
rclass_intersect_p = ira_reg_classes_intersect_p[rclass];
for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next)
{
EXECUTE_IF_SET_IN_BITMAP (&live_hard_reg_pseudos[r->start], 0, k, bi)
if (rclass_intersect_p[regno_allocno_class_array[k]])
sparseset_set_bit (live_range_hard_reg_pseudos, k);
for (p = r->start + 1; p <= r->finish; p++)
{
lra_live_range_t r2;
for (r2 = start_point_ranges[p];
r2 != NULL;
r2 = r2->start_next)
{
if (live_pseudos_reg_renumber[r2->regno] >= 0
&& rclass_intersect_p[regno_allocno_class_array[r2->regno]])
sparseset_set_bit (live_range_hard_reg_pseudos, r2->regno);
}
}
}
}
/* Assign hard registers to reload pseudos and other pseudos. */
static void
assign_by_spills (void)
{
int i, n, nfails, iter, regno, hard_regno, cost, restore_regno;
rtx_insn *insn;
bitmap_head changed_insns, do_not_assign_nonreload_pseudos;
unsigned int u, conflict_regno;
bitmap_iterator bi;
bool reload_p;
int max_regno = max_reg_num ();
for (n = 0, i = lra_constraint_new_regno_start; i < max_regno; i++)
if (reg_renumber[i] < 0 && lra_reg_info[i].nrefs != 0
&& regno_allocno_class_array[i] != NO_REGS)
sorted_pseudos[n++] = i;
bitmap_initialize (&insn_conflict_pseudos, ®_obstack);
bitmap_initialize (&spill_pseudos_bitmap, ®_obstack);
bitmap_initialize (&best_spill_pseudos_bitmap, ®_obstack);
update_hard_regno_preference_check = XCNEWVEC (int, max_regno);
curr_update_hard_regno_preference_check = 0;
memset (try_hard_reg_pseudos_check, 0, sizeof (try_hard_reg_pseudos_check));
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
bitmap_initialize (&try_hard_reg_pseudos[i], ®_obstack);
curr_pseudo_check = 0;
bitmap_initialize (&changed_insns, ®_obstack);
bitmap_initialize (&non_reload_pseudos, ®_obstack);
bitmap_ior (&non_reload_pseudos, &lra_inheritance_pseudos, &lra_split_regs);
bitmap_ior_into (&non_reload_pseudos, &lra_subreg_reload_pseudos);
bitmap_ior_into (&non_reload_pseudos, &lra_optional_reload_pseudos);
for (iter = 0; iter <= 1; iter++)
{
qsort (sorted_pseudos, n, sizeof (int), reload_pseudo_compare_func);
nfails = 0;
for (i = 0; i < n; i++)
{
regno = sorted_pseudos[i];
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " Assigning to %d "
"(cl=%s, orig=%d, freq=%d, tfirst=%d, tfreq=%d)...\n",
regno, reg_class_names[regno_allocno_class_array[regno]],
ORIGINAL_REGNO (regno_reg_rtx[regno]),
lra_reg_info[regno].freq, regno_assign_info[regno].first,
regno_assign_info[regno_assign_info[regno].first].freq);
hard_regno = find_hard_regno_for (regno, &cost, -1, iter == 1);
reload_p = ! bitmap_bit_p (&non_reload_pseudos, regno);
if (hard_regno < 0 && reload_p)
hard_regno = spill_for (regno, &all_spilled_pseudos, iter == 1);
if (hard_regno < 0)
{
if (reload_p)
sorted_pseudos[nfails++] = regno;
}
else
{
/* This register might have been spilled by the previous
pass. Indicate that it is no longer spilled. */
bitmap_clear_bit (&all_spilled_pseudos, regno);
assign_hard_regno (hard_regno, regno);
if (! reload_p)
/* As non-reload pseudo assignment is changed we
should reconsider insns referring for the
pseudo. */
bitmap_set_bit (&changed_pseudo_bitmap, regno);
}
}
if (nfails == 0)
break;
if (iter > 0)
{
/* We did not assign hard regs to reload pseudos after two iterations.
Either it's an asm and something is wrong with the constraints, or
we have run out of spill registers; error out in either case. */
bool asm_p = false;
bitmap_head failed_reload_insns;
bitmap_initialize (&failed_reload_insns, ®_obstack);
for (i = 0; i < nfails; i++)
{
regno = sorted_pseudos[i];
bitmap_ior_into (&failed_reload_insns,
&lra_reg_info[regno].insn_bitmap);
/* Assign an arbitrary hard register of regno class to
avoid further trouble with this insn. */
bitmap_clear_bit (&all_spilled_pseudos, regno);
assign_hard_regno
(ira_class_hard_regs[regno_allocno_class_array[regno]][0],
regno);
}
EXECUTE_IF_SET_IN_BITMAP (&failed_reload_insns, 0, u, bi)
{
insn = lra_insn_recog_data[u]->insn;
if (asm_noperands (PATTERN (insn)) >= 0)
{
asm_p = true;
error_for_asm (insn,
"%<asm%> operand has impossible constraints");
/* Avoid further trouble with this insn.
For asm goto, instead of fixing up all the edges
just clear the template and clear input operands
(asm goto doesn't have any output operands). */
if (JUMP_P (insn))
{
rtx asm_op = extract_asm_operands (PATTERN (insn));
ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
lra_update_insn_regno_info (insn);
}
else
{
PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
lra_set_insn_deleted (insn);
}
}
else if (!asm_p)
{
error ("unable to find a register to spill");
fatal_insn ("this is the insn:", insn);
}
}
break;
}
/* This is a very rare event. We can not assign a hard register
to reload pseudo because the hard register was assigned to
another reload pseudo on a previous assignment pass. For x86
example, on the 1st pass we assigned CX (although another
hard register could be used for this) to reload pseudo in an
insn, on the 2nd pass we need CX (and only this) hard
register for a new reload pseudo in the same insn. Another
possible situation may occur in assigning to multi-regs
reload pseudos when hard regs pool is too fragmented even
after spilling non-reload pseudos.
We should do something radical here to succeed. Here we
spill *all* conflicting pseudos and reassign them. */
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " 2nd iter for reload pseudo assignments:\n");
sparseset_clear (live_range_hard_reg_pseudos);
for (i = 0; i < nfails; i++)
{
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " Reload r%d assignment failure\n",
sorted_pseudos[i]);
find_all_spills_for (sorted_pseudos[i]);
}
EXECUTE_IF_SET_IN_SPARSESET (live_range_hard_reg_pseudos, conflict_regno)
{
if ((int) conflict_regno >= lra_constraint_new_regno_start)
{
sorted_pseudos[nfails++] = conflict_regno;
former_reload_pseudo_spill_p = true;
}
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " Spill %s r%d(hr=%d, freq=%d)\n",
pseudo_prefix_title (conflict_regno), conflict_regno,
reg_renumber[conflict_regno],
lra_reg_info[conflict_regno].freq);
update_lives (conflict_regno, true);
lra_setup_reg_renumber (conflict_regno, -1, false);
}
n = nfails;
}
improve_inheritance (&changed_pseudo_bitmap);
bitmap_clear (&non_reload_pseudos);
bitmap_clear (&changed_insns);
if (! lra_simple_p)
{
/* We should not assign to original pseudos of inheritance
pseudos or split pseudos if any its inheritance pseudo did
not get hard register or any its split pseudo was not split
because undo inheritance/split pass will extend live range of
such inheritance or split pseudos. */
bitmap_initialize (&do_not_assign_nonreload_pseudos, ®_obstack);
EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, u, bi)
if ((restore_regno = lra_reg_info[u].restore_regno) >= 0
&& reg_renumber[u] < 0
&& bitmap_bit_p (&lra_inheritance_pseudos, u))
bitmap_set_bit (&do_not_assign_nonreload_pseudos, restore_regno);
EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, u, bi)
if ((restore_regno = lra_reg_info[u].restore_regno) >= 0
&& reg_renumber[u] >= 0)
bitmap_set_bit (&do_not_assign_nonreload_pseudos, restore_regno);
for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
if (((i < lra_constraint_new_regno_start
&& ! bitmap_bit_p (&do_not_assign_nonreload_pseudos, i))
|| (bitmap_bit_p (&lra_inheritance_pseudos, i)
&& lra_reg_info[i].restore_regno >= 0)
|| (bitmap_bit_p (&lra_split_regs, i)
&& lra_reg_info[i].restore_regno >= 0)
|| bitmap_bit_p (&lra_subreg_reload_pseudos, i)
|| bitmap_bit_p (&lra_optional_reload_pseudos, i))
&& reg_renumber[i] < 0 && lra_reg_info[i].nrefs != 0
&& regno_allocno_class_array[i] != NO_REGS)
sorted_pseudos[n++] = i;
bitmap_clear (&do_not_assign_nonreload_pseudos);
if (n != 0 && lra_dump_file != NULL)
fprintf (lra_dump_file, " Reassigning non-reload pseudos\n");
qsort (sorted_pseudos, n, sizeof (int), pseudo_compare_func);
for (i = 0; i < n; i++)
{
regno = sorted_pseudos[i];
hard_regno = find_hard_regno_for (regno, &cost, -1, false);
if (hard_regno >= 0)
{
assign_hard_regno (hard_regno, regno);
/* We change allocation for non-reload pseudo on this
iteration -- mark the pseudo for invalidation of used
alternatives of insns containing the pseudo. */
bitmap_set_bit (&changed_pseudo_bitmap, regno);
}
else
{
enum reg_class rclass = lra_get_allocno_class (regno);
enum reg_class spill_class;
if (targetm.spill_class == NULL
|| lra_reg_info[regno].restore_regno < 0
|| ! bitmap_bit_p (&lra_inheritance_pseudos, regno)
|| (spill_class
= ((enum reg_class)
targetm.spill_class
((reg_class_t) rclass,
PSEUDO_REGNO_MODE (regno)))) == NO_REGS)
continue;
regno_allocno_class_array[regno] = spill_class;
hard_regno = find_hard_regno_for (regno, &cost, -1, false);
if (hard_regno < 0)
regno_allocno_class_array[regno] = rclass;
else
{
setup_reg_classes
(regno, spill_class, spill_class, spill_class);
assign_hard_regno (hard_regno, regno);
bitmap_set_bit (&changed_pseudo_bitmap, regno);
}
}
}
}
free (update_hard_regno_preference_check);
bitmap_clear (&best_spill_pseudos_bitmap);
bitmap_clear (&spill_pseudos_bitmap);
bitmap_clear (&insn_conflict_pseudos);
}
/* Entry function to assign hard registers to new reload pseudos
starting with LRA_CONSTRAINT_NEW_REGNO_START (by possible spilling
of old pseudos) and possibly to the old pseudos. The function adds
what insns to process for the next constraint pass. Those are all
insns who contains non-reload and non-inheritance pseudos with
changed allocation.
Return true if we did not spill any non-reload and non-inheritance
pseudos. */
bool
lra_assign (void)
{
int i;
unsigned int u;
bitmap_iterator bi;
bitmap_head insns_to_process;
bool no_spills_p;
int max_regno = max_reg_num ();
timevar_push (TV_LRA_ASSIGN);
lra_assignment_iter++;
if (lra_dump_file != NULL)
fprintf (lra_dump_file, "\n********** Assignment #%d: **********\n\n",
lra_assignment_iter);
init_lives ();
sorted_pseudos = XNEWVEC (int, max_regno);
sorted_reload_pseudos = XNEWVEC (int, max_regno);
regno_allocno_class_array = XNEWVEC (enum reg_class, max_regno);
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
regno_allocno_class_array[i] = lra_get_allocno_class (i);
former_reload_pseudo_spill_p = false;
init_regno_assign_info ();
bitmap_initialize (&all_spilled_pseudos, ®_obstack);
create_live_range_start_chains ();
setup_live_pseudos_and_spill_after_risky_transforms (&all_spilled_pseudos);
#ifdef ENABLE_CHECKING
if (!flag_ipa_ra)
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
if (lra_reg_info[i].nrefs != 0 && reg_renumber[i] >= 0
&& lra_reg_info[i].call_p
&& overlaps_hard_reg_set_p (call_used_reg_set,
PSEUDO_REGNO_MODE (i), reg_renumber[i]))
gcc_unreachable ();
#endif
/* Setup insns to process on the next constraint pass. */
bitmap_initialize (&changed_pseudo_bitmap, ®_obstack);
init_live_reload_and_inheritance_pseudos ();
assign_by_spills ();
finish_live_reload_and_inheritance_pseudos ();
bitmap_ior_into (&changed_pseudo_bitmap, &all_spilled_pseudos);
no_spills_p = true;
EXECUTE_IF_SET_IN_BITMAP (&all_spilled_pseudos, 0, u, bi)
/* We ignore spilled pseudos created on last inheritance pass
because they will be removed. */
if (lra_reg_info[u].restore_regno < 0)
{
no_spills_p = false;
break;
}
finish_live_range_start_chains ();
bitmap_clear (&all_spilled_pseudos);
bitmap_initialize (&insns_to_process, ®_obstack);
EXECUTE_IF_SET_IN_BITMAP (&changed_pseudo_bitmap, 0, u, bi)
bitmap_ior_into (&insns_to_process, &lra_reg_info[u].insn_bitmap);
bitmap_clear (&changed_pseudo_bitmap);
EXECUTE_IF_SET_IN_BITMAP (&insns_to_process, 0, u, bi)
{
lra_push_insn_by_uid (u);
/* Invalidate alternatives for insn should be processed. */
lra_set_used_insn_alternative_by_uid (u, -1);
}
bitmap_clear (&insns_to_process);
finish_regno_assign_info ();
free (regno_allocno_class_array);
free (sorted_pseudos);
free (sorted_reload_pseudos);
finish_lives ();
timevar_pop (TV_LRA_ASSIGN);
if (former_reload_pseudo_spill_p)
lra_assignment_iter_after_spill++;
if (lra_assignment_iter_after_spill > LRA_MAX_ASSIGNMENT_ITERATION_NUMBER)
internal_error
("Maximum number of LRA assignment passes is achieved (%d)\n",
LRA_MAX_ASSIGNMENT_ITERATION_NUMBER);
return no_spills_p;
}
|