1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
|
/* Loop transformation code generation
Copyright (C) 2003, 2004 Free Software Foundation, Inc.
Contributed by Daniel Berlin <dberlin@dberlin.org>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "errors.h"
#include "ggc.h"
#include "tree.h"
#include "target.h"
#include "rtl.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "timevar.h"
#include "cfgloop.h"
#include "expr.h"
#include "optabs.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-pass.h"
#include "tree-scalar-evolution.h"
#include "vec.h"
#include "lambda.h"
/* This loop nest code generation is based on non-singular matrix
math.
A little terminology and a general sketch of the algorithm. See "A singular
loop transformation framework based on non-singular matrices" by Wei Li and
Keshav Pingali for formal proofs that the various statements below are
correct.
A loop iteration space are the points traversed by the loop. A point in the
iteration space can be represented by a vector of size <loop depth>. You can
therefore represent the iteration space as a integral combinations of a set
of basis vectors.
A loop iteration space is dense if every integer point between the loop
bounds is a point in the iteration space. Every loop with a step of 1
therefore has a dense iteration space.
for i = 1 to 3, step 1 is a dense iteration space.
A loop iteration space is sparse if it is not dense. That is, the iteration
space skips integer points that are within the loop bounds.
for i = 1 to 3, step 2 is a sparse iteration space, because the integer point
2 is skipped.
Dense source spaces are easy to transform, because they don't skip any
points to begin with. Thus we can compute the exact bounds of the target
space using min/max and floor/ceil.
For a dense source space, we take the transformation matrix, decompose it
into a lower triangular part (H) and a unimodular part (U).
We then compute the auxiliary space from the unimodular part (source loop
nest . U = auxiliary space) , which has two important properties:
1. It traverses the iterations in the same lexicographic order as the source
space.
2. It is a dense space when the source is a dense space (even if the target
space is going to be sparse).
Given the auxiliary space, we use the lower triangular part to compute the
bounds in the target space by simple matrix multiplication.
The gaps in the target space (IE the new loop step sizes) will be the
diagonals of the H matrix.
Sparse source spaces require another step, because you can't directly compute
the exact bounds of the auxiliary and target space from the sparse space.
Rather than try to come up with a separate algorithm to handle sparse source
spaces directly, we just find a legal transformation matrix that gives you
the sparse source space, from a dense space, and then transform the dense
space.
For a regular sparse space, you can represent the source space as an integer
lattice, and the base space of that lattice will always be dense. Thus, we
effectively use the lattice to figure out the transformation from the lattice
base space, to the sparse iteration space (IE what transform was applied to
the dense space to make it sparse). We then compose this transform with the
transformation matrix specified by the user (since our matrix transformations
are closed under composition, this is okay). We can then use the base space
(which is dense) plus the composed transformation matrix, to compute the rest
of the transform using the dense space algorithm above.
In other words, our sparse source space (B) is decomposed into a dense base
space (A), and a matrix (L) that transforms A into B, such that A.L = B.
We then compute the composition of L and the user transformation matrix (T),
so that T is now a transform from A to the result, instead of from B to the
result.
IE A.(LT) = result instead of B.T = result
Since A is now a dense source space, we can use the dense source space
algorithm above to compute the result of applying transform (LT) to A.
Fourier-Motzkin elimination is used to compute the bounds of the base space
of the lattice. */
/* Lattice stuff that is internal to the code generation algorithm. */
typedef struct
{
/* Lattice base matrix. */
lambda_matrix base;
/* Lattice dimension. */
int dimension;
/* Origin vector for the coefficients. */
lambda_vector origin;
/* Origin matrix for the invariants. */
lambda_matrix origin_invariants;
/* Number of invariants. */
int invariants;
} *lambda_lattice;
#define LATTICE_BASE(T) ((T)->base)
#define LATTICE_DIMENSION(T) ((T)->dimension)
#define LATTICE_ORIGIN(T) ((T)->origin)
#define LATTICE_ORIGIN_INVARIANTS(T) ((T)->origin_invariants)
#define LATTICE_INVARIANTS(T) ((T)->invariants)
static bool lle_equal (lambda_linear_expression, lambda_linear_expression,
int, int);
static lambda_lattice lambda_lattice_new (int, int);
static lambda_lattice lambda_lattice_compute_base (lambda_loopnest);
static tree find_induction_var_from_exit_cond (struct loop *);
/* Create a new lambda body vector. */
lambda_body_vector
lambda_body_vector_new (int size)
{
lambda_body_vector ret;
ret = ggc_alloc (sizeof (*ret));
LBV_COEFFICIENTS (ret) = lambda_vector_new (size);
LBV_SIZE (ret) = size;
LBV_DENOMINATOR (ret) = 1;
return ret;
}
/* Compute the new coefficients for the vector based on the
*inverse* of the transformation matrix. */
lambda_body_vector
lambda_body_vector_compute_new (lambda_trans_matrix transform,
lambda_body_vector vect)
{
lambda_body_vector temp;
int depth;
/* Make sure the matrix is square. */
gcc_assert (LTM_ROWSIZE (transform) == LTM_COLSIZE (transform));
depth = LTM_ROWSIZE (transform);
temp = lambda_body_vector_new (depth);
LBV_DENOMINATOR (temp) =
LBV_DENOMINATOR (vect) * LTM_DENOMINATOR (transform);
lambda_vector_matrix_mult (LBV_COEFFICIENTS (vect), depth,
LTM_MATRIX (transform), depth,
LBV_COEFFICIENTS (temp));
LBV_SIZE (temp) = LBV_SIZE (vect);
return temp;
}
/* Print out a lambda body vector. */
void
print_lambda_body_vector (FILE * outfile, lambda_body_vector body)
{
print_lambda_vector (outfile, LBV_COEFFICIENTS (body), LBV_SIZE (body));
}
/* Return TRUE if two linear expressions are equal. */
static bool
lle_equal (lambda_linear_expression lle1, lambda_linear_expression lle2,
int depth, int invariants)
{
int i;
if (lle1 == NULL || lle2 == NULL)
return false;
if (LLE_CONSTANT (lle1) != LLE_CONSTANT (lle2))
return false;
if (LLE_DENOMINATOR (lle1) != LLE_DENOMINATOR (lle2))
return false;
for (i = 0; i < depth; i++)
if (LLE_COEFFICIENTS (lle1)[i] != LLE_COEFFICIENTS (lle2)[i])
return false;
for (i = 0; i < invariants; i++)
if (LLE_INVARIANT_COEFFICIENTS (lle1)[i] !=
LLE_INVARIANT_COEFFICIENTS (lle2)[i])
return false;
return true;
}
/* Create a new linear expression with dimension DIM, and total number
of invariants INVARIANTS. */
lambda_linear_expression
lambda_linear_expression_new (int dim, int invariants)
{
lambda_linear_expression ret;
ret = ggc_alloc_cleared (sizeof (*ret));
LLE_COEFFICIENTS (ret) = lambda_vector_new (dim);
LLE_CONSTANT (ret) = 0;
LLE_INVARIANT_COEFFICIENTS (ret) = lambda_vector_new (invariants);
LLE_DENOMINATOR (ret) = 1;
LLE_NEXT (ret) = NULL;
return ret;
}
/* Print out a linear expression EXPR, with SIZE coefficients, to OUTFILE.
The starting letter used for variable names is START. */
static void
print_linear_expression (FILE * outfile, lambda_vector expr, int size,
char start)
{
int i;
bool first = true;
for (i = 0; i < size; i++)
{
if (expr[i] != 0)
{
if (first)
{
if (expr[i] < 0)
fprintf (outfile, "-");
first = false;
}
else if (expr[i] > 0)
fprintf (outfile, " + ");
else
fprintf (outfile, " - ");
if (abs (expr[i]) == 1)
fprintf (outfile, "%c", start + i);
else
fprintf (outfile, "%d%c", abs (expr[i]), start + i);
}
}
}
/* Print out a lambda linear expression structure, EXPR, to OUTFILE. The
depth/number of coefficients is given by DEPTH, the number of invariants is
given by INVARIANTS, and the character to start variable names with is given
by START. */
void
print_lambda_linear_expression (FILE * outfile,
lambda_linear_expression expr,
int depth, int invariants, char start)
{
fprintf (outfile, "\tLinear expression: ");
print_linear_expression (outfile, LLE_COEFFICIENTS (expr), depth, start);
fprintf (outfile, " constant: %d ", LLE_CONSTANT (expr));
fprintf (outfile, " invariants: ");
print_linear_expression (outfile, LLE_INVARIANT_COEFFICIENTS (expr),
invariants, 'A');
fprintf (outfile, " denominator: %d\n", LLE_DENOMINATOR (expr));
}
/* Print a lambda loop structure LOOP to OUTFILE. The depth/number of
coefficients is given by DEPTH, the number of invariants is
given by INVARIANTS, and the character to start variable names with is given
by START. */
void
print_lambda_loop (FILE * outfile, lambda_loop loop, int depth,
int invariants, char start)
{
int step;
lambda_linear_expression expr;
gcc_assert (loop);
expr = LL_LINEAR_OFFSET (loop);
step = LL_STEP (loop);
fprintf (outfile, " step size = %d \n", step);
if (expr)
{
fprintf (outfile, " linear offset: \n");
print_lambda_linear_expression (outfile, expr, depth, invariants,
start);
}
fprintf (outfile, " lower bound: \n");
for (expr = LL_LOWER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
print_lambda_linear_expression (outfile, expr, depth, invariants, start);
fprintf (outfile, " upper bound: \n");
for (expr = LL_UPPER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
print_lambda_linear_expression (outfile, expr, depth, invariants, start);
}
/* Create a new loop nest structure with DEPTH loops, and INVARIANTS as the
number of invariants. */
lambda_loopnest
lambda_loopnest_new (int depth, int invariants)
{
lambda_loopnest ret;
ret = ggc_alloc (sizeof (*ret));
LN_LOOPS (ret) = ggc_alloc_cleared (depth * sizeof (lambda_loop));
LN_DEPTH (ret) = depth;
LN_INVARIANTS (ret) = invariants;
return ret;
}
/* Print a lambda loopnest structure, NEST, to OUTFILE. The starting
character to use for loop names is given by START. */
void
print_lambda_loopnest (FILE * outfile, lambda_loopnest nest, char start)
{
int i;
for (i = 0; i < LN_DEPTH (nest); i++)
{
fprintf (outfile, "Loop %c\n", start + i);
print_lambda_loop (outfile, LN_LOOPS (nest)[i], LN_DEPTH (nest),
LN_INVARIANTS (nest), 'i');
fprintf (outfile, "\n");
}
}
/* Allocate a new lattice structure of DEPTH x DEPTH, with INVARIANTS number
of invariants. */
static lambda_lattice
lambda_lattice_new (int depth, int invariants)
{
lambda_lattice ret;
ret = ggc_alloc (sizeof (*ret));
LATTICE_BASE (ret) = lambda_matrix_new (depth, depth);
LATTICE_ORIGIN (ret) = lambda_vector_new (depth);
LATTICE_ORIGIN_INVARIANTS (ret) = lambda_matrix_new (depth, invariants);
LATTICE_DIMENSION (ret) = depth;
LATTICE_INVARIANTS (ret) = invariants;
return ret;
}
/* Compute the lattice base for NEST. The lattice base is essentially a
non-singular transform from a dense base space to a sparse iteration space.
We use it so that we don't have to specially handle the case of a sparse
iteration space in other parts of the algorithm. As a result, this routine
only does something interesting (IE produce a matrix that isn't the
identity matrix) if NEST is a sparse space. */
static lambda_lattice
lambda_lattice_compute_base (lambda_loopnest nest)
{
lambda_lattice ret;
int depth, invariants;
lambda_matrix base;
int i, j, step;
lambda_loop loop;
lambda_linear_expression expression;
depth = LN_DEPTH (nest);
invariants = LN_INVARIANTS (nest);
ret = lambda_lattice_new (depth, invariants);
base = LATTICE_BASE (ret);
for (i = 0; i < depth; i++)
{
loop = LN_LOOPS (nest)[i];
gcc_assert (loop);
step = LL_STEP (loop);
/* If we have a step of 1, then the base is one, and the
origin and invariant coefficients are 0. */
if (step == 1)
{
for (j = 0; j < depth; j++)
base[i][j] = 0;
base[i][i] = 1;
LATTICE_ORIGIN (ret)[i] = 0;
for (j = 0; j < invariants; j++)
LATTICE_ORIGIN_INVARIANTS (ret)[i][j] = 0;
}
else
{
/* Otherwise, we need the lower bound expression (which must
be an affine function) to determine the base. */
expression = LL_LOWER_BOUND (loop);
gcc_assert (expression && LLE_NEXT (expression)
&& LLE_DENOMINATOR (expression) == 1);
/* The lower triangular portion of the base is going to be the
coefficient times the step */
for (j = 0; j < i; j++)
base[i][j] = LLE_COEFFICIENTS (expression)[j]
* LL_STEP (LN_LOOPS (nest)[j]);
base[i][i] = step;
for (j = i + 1; j < depth; j++)
base[i][j] = 0;
/* Origin for this loop is the constant of the lower bound
expression. */
LATTICE_ORIGIN (ret)[i] = LLE_CONSTANT (expression);
/* Coefficient for the invariants are equal to the invariant
coefficients in the expression. */
for (j = 0; j < invariants; j++)
LATTICE_ORIGIN_INVARIANTS (ret)[i][j] =
LLE_INVARIANT_COEFFICIENTS (expression)[j];
}
}
return ret;
}
/* Compute the greatest common denominator of two numbers (A and B) using
Euclid's algorithm. */
static int
gcd (int a, int b)
{
int x, y, z;
x = abs (a);
y = abs (b);
while (x > 0)
{
z = y % x;
y = x;
x = z;
}
return (y);
}
/* Compute the greatest common denominator of a VECTOR of SIZE numbers. */
static int
gcd_vector (lambda_vector vector, int size)
{
int i;
int gcd1 = 0;
if (size > 0)
{
gcd1 = vector[0];
for (i = 1; i < size; i++)
gcd1 = gcd (gcd1, vector[i]);
}
return gcd1;
}
/* Compute the least common multiple of two numbers A and B . */
static int
lcm (int a, int b)
{
return (abs (a) * abs (b) / gcd (a, b));
}
/* Compute the loop bounds for the auxiliary space NEST.
Input system used is Ax <= b. TRANS is the unimodular transformation. */
static lambda_loopnest
lambda_compute_auxillary_space (lambda_loopnest nest,
lambda_trans_matrix trans)
{
lambda_matrix A, B, A1, B1, temp0;
lambda_vector a, a1, temp1;
lambda_matrix invertedtrans;
int determinant, depth, invariants, size, newsize;
int i, j, k;
lambda_loopnest auxillary_nest;
lambda_loop loop;
lambda_linear_expression expression;
lambda_lattice lattice;
int multiple, f1, f2;
depth = LN_DEPTH (nest);
invariants = LN_INVARIANTS (nest);
/* Unfortunately, we can't know the number of constraints we'll have
ahead of time, but this should be enough even in ridiculous loop nest
cases. We abort if we go over this limit. */
A = lambda_matrix_new (128, depth);
B = lambda_matrix_new (128, invariants);
a = lambda_vector_new (128);
A1 = lambda_matrix_new (128, depth);
B1 = lambda_matrix_new (128, invariants);
a1 = lambda_vector_new (128);
/* Store the bounds in the equation matrix A, constant vector a, and
invariant matrix B, so that we have Ax <= a + B.
This requires a little equation rearranging so that everything is on the
correct side of the inequality. */
size = 0;
for (i = 0; i < depth; i++)
{
loop = LN_LOOPS (nest)[i];
/* First we do the lower bound. */
if (LL_STEP (loop) > 0)
expression = LL_LOWER_BOUND (loop);
else
expression = LL_UPPER_BOUND (loop);
for (; expression != NULL; expression = LLE_NEXT (expression))
{
/* Fill in the coefficient. */
for (j = 0; j < i; j++)
A[size][j] = LLE_COEFFICIENTS (expression)[j];
/* And the invariant coefficient. */
for (j = 0; j < invariants; j++)
B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
/* And the constant. */
a[size] = LLE_CONSTANT (expression);
/* Convert (2x+3y+2+b)/4 <= z to 2x+3y-4z <= -2-b. IE put all
constants and single variables on */
A[size][i] = -1 * LLE_DENOMINATOR (expression);
a[size] *= -1;
for (j = 0; j < invariants; j++)
B[size][j] *= -1;
size++;
/* Need to increase matrix sizes above. */
gcc_assert (size <= 127);
}
/* Then do the exact same thing for the upper bounds. */
if (LL_STEP (loop) > 0)
expression = LL_UPPER_BOUND (loop);
else
expression = LL_LOWER_BOUND (loop);
for (; expression != NULL; expression = LLE_NEXT (expression))
{
/* Fill in the coefficient. */
for (j = 0; j < i; j++)
A[size][j] = LLE_COEFFICIENTS (expression)[j];
/* And the invariant coefficient. */
for (j = 0; j < invariants; j++)
B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
/* And the constant. */
a[size] = LLE_CONSTANT (expression);
/* Convert z <= (2x+3y+2+b)/4 to -2x-3y+4z <= 2+b. */
for (j = 0; j < i; j++)
A[size][j] *= -1;
A[size][i] = LLE_DENOMINATOR (expression);
size++;
/* Need to increase matrix sizes above. */
gcc_assert (size <= 127);
}
}
/* Compute the lattice base x = base * y + origin, where y is the
base space. */
lattice = lambda_lattice_compute_base (nest);
/* Ax <= a + B then becomes ALy <= a+B - A*origin. L is the lattice base */
/* A1 = A * L */
lambda_matrix_mult (A, LATTICE_BASE (lattice), A1, size, depth, depth);
/* a1 = a - A * origin constant. */
lambda_matrix_vector_mult (A, size, depth, LATTICE_ORIGIN (lattice), a1);
lambda_vector_add_mc (a, 1, a1, -1, a1, size);
/* B1 = B - A * origin invariant. */
lambda_matrix_mult (A, LATTICE_ORIGIN_INVARIANTS (lattice), B1, size, depth,
invariants);
lambda_matrix_add_mc (B, 1, B1, -1, B1, size, invariants);
/* Now compute the auxiliary space bounds by first inverting U, multiplying
it by A1, then performing fourier motzkin. */
invertedtrans = lambda_matrix_new (depth, depth);
/* Compute the inverse of U. */
determinant = lambda_matrix_inverse (LTM_MATRIX (trans),
invertedtrans, depth);
/* A = A1 inv(U). */
lambda_matrix_mult (A1, invertedtrans, A, size, depth, depth);
/* Perform Fourier-Motzkin elimination to calculate the bounds of the
auxillary nest.
Fourier-Motzkin is a way of reducing systems of linear inequality so that
it is easy to calculate the answer and bounds.
A sketch of how it works:
Given a system of linear inequalities, ai * xj >= bk, you can always
rewrite the constraints so they are all of the form
a <= x, or x <= b, or x >= constant for some x in x1 ... xj (and some b
in b1 ... bk, and some a in a1...ai)
You can then eliminate this x from the non-constant inequalities by
rewriting these as a <= b, x >= constant, and delete the x variable.
You can then repeat this for any remaining x variables, and then we have
an easy to use variable <= constant (or no variables at all) form that we
can construct our bounds from.
In our case, each time we eliminate, we construct part of the bound from
the ith variable, then delete the ith variable.
Remember the constant are in our vector a, our coefficient matrix is A,
and our invariant coefficient matrix is B */
/* Swap B and B1, and a1 and a */
temp0 = B1;
B1 = B;
B = temp0;
temp1 = a1;
a1 = a;
a = temp1;
auxillary_nest = lambda_loopnest_new (depth, invariants);
for (i = depth - 1; i >= 0; i--)
{
loop = lambda_loop_new ();
LN_LOOPS (auxillary_nest)[i] = loop;
LL_STEP (loop) = 1;
for (j = 0; j < size; j++)
{
if (A[j][i] < 0)
{
/* Lower bound. */
expression = lambda_linear_expression_new (depth, invariants);
for (k = 0; k < i; k++)
LLE_COEFFICIENTS (expression)[k] = A[j][k];
for (k = 0; k < invariants; k++)
LLE_INVARIANT_COEFFICIENTS (expression)[k] = -1 * B[j][k];
LLE_DENOMINATOR (expression) = -1 * A[j][i];
LLE_CONSTANT (expression) = -1 * a[j];
/* Ignore if identical to the existing lower bound. */
if (!lle_equal (LL_LOWER_BOUND (loop),
expression, depth, invariants))
{
LLE_NEXT (expression) = LL_LOWER_BOUND (loop);
LL_LOWER_BOUND (loop) = expression;
}
}
else if (A[j][i] > 0)
{
/* Upper bound. */
expression = lambda_linear_expression_new (depth, invariants);
for (k = 0; k < i; k++)
LLE_COEFFICIENTS (expression)[k] = -1 * A[j][k];
LLE_CONSTANT (expression) = a[j];
for (k = 0; k < invariants; k++)
LLE_INVARIANT_COEFFICIENTS (expression)[k] = B[j][k];
LLE_DENOMINATOR (expression) = A[j][i];
/* Ignore if identical to the existing upper bound. */
if (!lle_equal (LL_UPPER_BOUND (loop),
expression, depth, invariants))
{
LLE_NEXT (expression) = LL_UPPER_BOUND (loop);
LL_UPPER_BOUND (loop) = expression;
}
}
}
/* creates a new system by deleting the i'th variable. */
newsize = 0;
for (j = 0; j < size; j++)
{
if (A[j][i] == 0)
{
lambda_vector_copy (A[j], A1[newsize], depth);
lambda_vector_copy (B[j], B1[newsize], invariants);
a1[newsize] = a[j];
newsize++;
}
else if (A[j][i] > 0)
{
for (k = 0; k < size; k++)
{
if (A[k][i] < 0)
{
multiple = lcm (A[j][i], A[k][i]);
f1 = multiple / A[j][i];
f2 = -1 * multiple / A[k][i];
lambda_vector_add_mc (A[j], f1, A[k], f2,
A1[newsize], depth);
lambda_vector_add_mc (B[j], f1, B[k], f2,
B1[newsize], invariants);
a1[newsize] = f1 * a[j] + f2 * a[k];
newsize++;
}
}
}
}
temp0 = A;
A = A1;
A1 = temp0;
temp0 = B;
B = B1;
B1 = temp0;
temp1 = a;
a = a1;
a1 = temp1;
size = newsize;
}
return auxillary_nest;
}
/* Compute the loop bounds for the target space, using the bounds of
the auxiliary nest AUXILLARY_NEST, and the triangular matrix H. This is
done by matrix multiplication and then transformation of the new matrix
back into linear expression form.
Return the target loopnest. */
static lambda_loopnest
lambda_compute_target_space (lambda_loopnest auxillary_nest,
lambda_trans_matrix H, lambda_vector stepsigns)
{
lambda_matrix inverse, H1;
int determinant, i, j;
int gcd1, gcd2;
int factor;
lambda_loopnest target_nest;
int depth, invariants;
lambda_matrix target;
lambda_loop auxillary_loop, target_loop;
lambda_linear_expression expression, auxillary_expr, target_expr, tmp_expr;
depth = LN_DEPTH (auxillary_nest);
invariants = LN_INVARIANTS (auxillary_nest);
inverse = lambda_matrix_new (depth, depth);
determinant = lambda_matrix_inverse (LTM_MATRIX (H), inverse, depth);
/* H1 is H excluding its diagonal. */
H1 = lambda_matrix_new (depth, depth);
lambda_matrix_copy (LTM_MATRIX (H), H1, depth, depth);
for (i = 0; i < depth; i++)
H1[i][i] = 0;
/* Computes the linear offsets of the loop bounds. */
target = lambda_matrix_new (depth, depth);
lambda_matrix_mult (H1, inverse, target, depth, depth, depth);
target_nest = lambda_loopnest_new (depth, invariants);
for (i = 0; i < depth; i++)
{
/* Get a new loop structure. */
target_loop = lambda_loop_new ();
LN_LOOPS (target_nest)[i] = target_loop;
/* Computes the gcd of the coefficients of the linear part. */
gcd1 = gcd_vector (target[i], i);
/* Include the denominator in the GCD */
gcd1 = gcd (gcd1, determinant);
/* Now divide through by the gcd */
for (j = 0; j < i; j++)
target[i][j] = target[i][j] / gcd1;
expression = lambda_linear_expression_new (depth, invariants);
lambda_vector_copy (target[i], LLE_COEFFICIENTS (expression), depth);
LLE_DENOMINATOR (expression) = determinant / gcd1;
LLE_CONSTANT (expression) = 0;
lambda_vector_clear (LLE_INVARIANT_COEFFICIENTS (expression),
invariants);
LL_LINEAR_OFFSET (target_loop) = expression;
}
/* For each loop, compute the new bounds from H */
for (i = 0; i < depth; i++)
{
auxillary_loop = LN_LOOPS (auxillary_nest)[i];
target_loop = LN_LOOPS (target_nest)[i];
LL_STEP (target_loop) = LTM_MATRIX (H)[i][i];
factor = LTM_MATRIX (H)[i][i];
/* First we do the lower bound. */
auxillary_expr = LL_LOWER_BOUND (auxillary_loop);
for (; auxillary_expr != NULL;
auxillary_expr = LLE_NEXT (auxillary_expr))
{
target_expr = lambda_linear_expression_new (depth, invariants);
lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
depth, inverse, depth,
LLE_COEFFICIENTS (target_expr));
lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
LLE_COEFFICIENTS (target_expr), depth,
factor);
LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
LLE_INVARIANT_COEFFICIENTS (target_expr),
invariants);
lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
LLE_INVARIANT_COEFFICIENTS (target_expr),
invariants, factor);
LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
{
LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
* determinant;
lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
(target_expr),
LLE_INVARIANT_COEFFICIENTS
(target_expr), invariants,
determinant);
LLE_DENOMINATOR (target_expr) =
LLE_DENOMINATOR (target_expr) * determinant;
}
/* Find the gcd and divide by it here, rather than doing it
at the tree level. */
gcd1 = gcd_vector (LLE_COEFFICIENTS (target_expr), depth);
gcd2 = gcd_vector (LLE_INVARIANT_COEFFICIENTS (target_expr),
invariants);
gcd1 = gcd (gcd1, gcd2);
gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
for (j = 0; j < depth; j++)
LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
for (j = 0; j < invariants; j++)
LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
LLE_CONSTANT (target_expr) /= gcd1;
LLE_DENOMINATOR (target_expr) /= gcd1;
/* Ignore if identical to existing bound. */
if (!lle_equal (LL_LOWER_BOUND (target_loop), target_expr, depth,
invariants))
{
LLE_NEXT (target_expr) = LL_LOWER_BOUND (target_loop);
LL_LOWER_BOUND (target_loop) = target_expr;
}
}
/* Now do the upper bound. */
auxillary_expr = LL_UPPER_BOUND (auxillary_loop);
for (; auxillary_expr != NULL;
auxillary_expr = LLE_NEXT (auxillary_expr))
{
target_expr = lambda_linear_expression_new (depth, invariants);
lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
depth, inverse, depth,
LLE_COEFFICIENTS (target_expr));
lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
LLE_COEFFICIENTS (target_expr), depth,
factor);
LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
LLE_INVARIANT_COEFFICIENTS (target_expr),
invariants);
lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
LLE_INVARIANT_COEFFICIENTS (target_expr),
invariants, factor);
LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
{
LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
* determinant;
lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
(target_expr),
LLE_INVARIANT_COEFFICIENTS
(target_expr), invariants,
determinant);
LLE_DENOMINATOR (target_expr) =
LLE_DENOMINATOR (target_expr) * determinant;
}
/* Find the gcd and divide by it here, instead of at the
tree level. */
gcd1 = gcd_vector (LLE_COEFFICIENTS (target_expr), depth);
gcd2 = gcd_vector (LLE_INVARIANT_COEFFICIENTS (target_expr),
invariants);
gcd1 = gcd (gcd1, gcd2);
gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
for (j = 0; j < depth; j++)
LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
for (j = 0; j < invariants; j++)
LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
LLE_CONSTANT (target_expr) /= gcd1;
LLE_DENOMINATOR (target_expr) /= gcd1;
/* Ignore if equal to existing bound. */
if (!lle_equal (LL_UPPER_BOUND (target_loop), target_expr, depth,
invariants))
{
LLE_NEXT (target_expr) = LL_UPPER_BOUND (target_loop);
LL_UPPER_BOUND (target_loop) = target_expr;
}
}
}
for (i = 0; i < depth; i++)
{
target_loop = LN_LOOPS (target_nest)[i];
/* If necessary, exchange the upper and lower bounds and negate
the step size. */
if (stepsigns[i] < 0)
{
LL_STEP (target_loop) *= -1;
tmp_expr = LL_LOWER_BOUND (target_loop);
LL_LOWER_BOUND (target_loop) = LL_UPPER_BOUND (target_loop);
LL_UPPER_BOUND (target_loop) = tmp_expr;
}
}
return target_nest;
}
/* Compute the step signs of TRANS, using TRANS and stepsigns. Return the new
result. */
static lambda_vector
lambda_compute_step_signs (lambda_trans_matrix trans, lambda_vector stepsigns)
{
lambda_matrix matrix, H;
int size;
lambda_vector newsteps;
int i, j, factor, minimum_column;
int temp;
matrix = LTM_MATRIX (trans);
size = LTM_ROWSIZE (trans);
H = lambda_matrix_new (size, size);
newsteps = lambda_vector_new (size);
lambda_vector_copy (stepsigns, newsteps, size);
lambda_matrix_copy (matrix, H, size, size);
for (j = 0; j < size; j++)
{
lambda_vector row;
row = H[j];
for (i = j; i < size; i++)
if (row[i] < 0)
lambda_matrix_col_negate (H, size, i);
while (lambda_vector_first_nz (row, size, j + 1) < size)
{
minimum_column = lambda_vector_min_nz (row, size, j);
lambda_matrix_col_exchange (H, size, j, minimum_column);
temp = newsteps[j];
newsteps[j] = newsteps[minimum_column];
newsteps[minimum_column] = temp;
for (i = j + 1; i < size; i++)
{
factor = row[i] / row[j];
lambda_matrix_col_add (H, size, j, i, -1 * factor);
}
}
}
return newsteps;
}
/* Transform NEST according to TRANS, and return the new loopnest.
This involves
1. Computing a lattice base for the transformation
2. Composing the dense base with the specified transformation (TRANS)
3. Decomposing the combined transformation into a lower triangular portion,
and a unimodular portion.
4. Computing the auxillary nest using the unimodular portion.
5. Computing the target nest using the auxillary nest and the lower
triangular portion. */
lambda_loopnest
lambda_loopnest_transform (lambda_loopnest nest, lambda_trans_matrix trans)
{
lambda_loopnest auxillary_nest, target_nest;
int depth, invariants;
int i, j;
lambda_lattice lattice;
lambda_trans_matrix trans1, H, U;
lambda_loop loop;
lambda_linear_expression expression;
lambda_vector origin;
lambda_matrix origin_invariants;
lambda_vector stepsigns;
int f;
depth = LN_DEPTH (nest);
invariants = LN_INVARIANTS (nest);
/* Keep track of the signs of the loop steps. */
stepsigns = lambda_vector_new (depth);
for (i = 0; i < depth; i++)
{
if (LL_STEP (LN_LOOPS (nest)[i]) > 0)
stepsigns[i] = 1;
else
stepsigns[i] = -1;
}
/* Compute the lattice base. */
lattice = lambda_lattice_compute_base (nest);
trans1 = lambda_trans_matrix_new (depth, depth);
/* Multiply the transformation matrix by the lattice base. */
lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_BASE (lattice),
LTM_MATRIX (trans1), depth, depth, depth);
/* Compute the Hermite normal form for the new transformation matrix. */
H = lambda_trans_matrix_new (depth, depth);
U = lambda_trans_matrix_new (depth, depth);
lambda_matrix_hermite (LTM_MATRIX (trans1), depth, LTM_MATRIX (H),
LTM_MATRIX (U));
/* Compute the auxiliary loop nest's space from the unimodular
portion. */
auxillary_nest = lambda_compute_auxillary_space (nest, U);
/* Compute the loop step signs from the old step signs and the
transformation matrix. */
stepsigns = lambda_compute_step_signs (trans1, stepsigns);
/* Compute the target loop nest space from the auxiliary nest and
the lower triangular matrix H. */
target_nest = lambda_compute_target_space (auxillary_nest, H, stepsigns);
origin = lambda_vector_new (depth);
origin_invariants = lambda_matrix_new (depth, invariants);
lambda_matrix_vector_mult (LTM_MATRIX (trans), depth, depth,
LATTICE_ORIGIN (lattice), origin);
lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_ORIGIN_INVARIANTS (lattice),
origin_invariants, depth, depth, invariants);
for (i = 0; i < depth; i++)
{
loop = LN_LOOPS (target_nest)[i];
expression = LL_LINEAR_OFFSET (loop);
if (lambda_vector_zerop (LLE_COEFFICIENTS (expression), depth))
f = 1;
else
f = LLE_DENOMINATOR (expression);
LLE_CONSTANT (expression) += f * origin[i];
for (j = 0; j < invariants; j++)
LLE_INVARIANT_COEFFICIENTS (expression)[j] +=
f * origin_invariants[i][j];
}
return target_nest;
}
/* Convert a gcc tree expression EXPR to a lambda linear expression, and
return the new expression. DEPTH is the depth of the loopnest.
OUTERINDUCTIONVARS is an array of the induction variables for outer loops
in this nest. INVARIANTS is the array of invariants for the loop. EXTRA
is the amount we have to add/subtract from the expression because of the
type of comparison it is used in. */
static lambda_linear_expression
gcc_tree_to_linear_expression (int depth, tree expr,
VEC(tree) *outerinductionvars,
VEC(tree) *invariants, int extra)
{
lambda_linear_expression lle = NULL;
switch (TREE_CODE (expr))
{
case INTEGER_CST:
{
lle = lambda_linear_expression_new (depth, 2 * depth);
LLE_CONSTANT (lle) = TREE_INT_CST_LOW (expr);
if (extra != 0)
LLE_CONSTANT (lle) = extra;
LLE_DENOMINATOR (lle) = 1;
}
break;
case SSA_NAME:
{
tree iv, invar;
size_t i;
for (i = 0; VEC_iterate (tree, outerinductionvars, i, iv); i++)
if (iv != NULL)
{
if (SSA_NAME_VAR (iv) == SSA_NAME_VAR (expr))
{
lle = lambda_linear_expression_new (depth, 2 * depth);
LLE_COEFFICIENTS (lle)[i] = 1;
if (extra != 0)
LLE_CONSTANT (lle) = extra;
LLE_DENOMINATOR (lle) = 1;
}
}
for (i = 0; VEC_iterate (tree, invariants, i, invar); i++)
if (invar != NULL)
{
if (SSA_NAME_VAR (invar) == SSA_NAME_VAR (expr))
{
lle = lambda_linear_expression_new (depth, 2 * depth);
LLE_INVARIANT_COEFFICIENTS (lle)[i] = 1;
if (extra != 0)
LLE_CONSTANT (lle) = extra;
LLE_DENOMINATOR (lle) = 1;
}
}
}
break;
default:
return NULL;
}
return lle;
}
/* Return true if OP is invariant in LOOP and all outer loops. */
static bool
invariant_in_loop (struct loop *loop, tree op)
{
if (loop->depth == 0)
return true;
if (TREE_CODE (op) == SSA_NAME)
{
if (TREE_CODE (SSA_NAME_VAR (op)) == PARM_DECL
&& IS_EMPTY_STMT (SSA_NAME_DEF_STMT (op)))
return true;
if (IS_EMPTY_STMT (SSA_NAME_DEF_STMT (op)))
return false;
if (loop->outer)
if (!invariant_in_loop (loop->outer, op))
return false;
return !flow_bb_inside_loop_p (loop,
bb_for_stmt (SSA_NAME_DEF_STMT (op)));
}
return false;
}
/* Generate a lambda loop from a gcc loop LOOP. Return the new lambda loop,
or NULL if it could not be converted.
DEPTH is the depth of the loop.
INVARIANTS is a pointer to the array of loop invariants.
The induction variable for this loop should be stored in the parameter
OURINDUCTIONVAR.
OUTERINDUCTIONVARS is an array of induction variables for outer loops. */
static lambda_loop
gcc_loop_to_lambda_loop (struct loop *loop, int depth,
VEC (tree) ** invariants,
tree * ourinductionvar,
VEC (tree) * outerinductionvars)
{
tree phi;
tree exit_cond;
tree access_fn, inductionvar;
tree step;
lambda_loop lloop = NULL;
lambda_linear_expression lbound, ubound;
tree test;
int stepint;
int extra = 0;
tree uboundvar;
use_optype uses;
/* Find out induction var and set the pointer so that the caller can
append it to the outerinductionvars array later. */
inductionvar = find_induction_var_from_exit_cond (loop);
*ourinductionvar = inductionvar;
exit_cond = get_loop_exit_condition (loop);
if (inductionvar == NULL || exit_cond == NULL)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Unable to convert loop: Cannot determine exit condition or induction variable for loop.\n");
return NULL;
}
test = TREE_OPERAND (exit_cond, 0);
if (SSA_NAME_DEF_STMT (inductionvar) == NULL_TREE)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Unable to convert loop: Cannot find PHI node for induction variable\n");
return NULL;
}
phi = SSA_NAME_DEF_STMT (inductionvar);
if (TREE_CODE (phi) != PHI_NODE)
{
get_stmt_operands (phi);
uses = STMT_USE_OPS (phi);
if (!uses)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Unable to convert loop: Cannot find PHI node for induction variable\n");
return NULL;
}
phi = USE_OP (uses, 0);
phi = SSA_NAME_DEF_STMT (phi);
if (TREE_CODE (phi) != PHI_NODE)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Unable to convert loop: Cannot find PHI node for induction variable\n");
return NULL;
}
}
access_fn = instantiate_parameters
(loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
if (!access_fn)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Unable to convert loop: Access function for induction variable phi is NULL\n");
return NULL;
}
step = evolution_part_in_loop_num (access_fn, loop->num);
if (!step || step == chrec_dont_know)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Unable to convert loop: Cannot determine step of loop.\n");
return NULL;
}
if (TREE_CODE (step) != INTEGER_CST)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Unable to convert loop: Step of loop is not integer.\n");
return NULL;
}
stepint = TREE_INT_CST_LOW (step);
/* Only want phis for induction vars, which will have two
arguments. */
if (PHI_NUM_ARGS (phi) != 2)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Unable to convert loop: PHI node for induction variable has >2 arguments\n");
return NULL;
}
/* Another induction variable check. One argument's source should be
in the loop, one outside the loop. */
if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 0)->src)
&& flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 1)->src))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Unable to convert loop: PHI edges both inside loop, or both outside loop.\n");
return NULL;
}
if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 0)->src))
lbound = gcc_tree_to_linear_expression (depth, PHI_ARG_DEF (phi, 1),
outerinductionvars, *invariants,
0);
else
lbound = gcc_tree_to_linear_expression (depth, PHI_ARG_DEF (phi, 0),
outerinductionvars, *invariants,
0);
if (!lbound)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Unable to convert loop: Cannot convert lower bound to linear expression\n");
return NULL;
}
/* One part of the test may be a loop invariant tree. */
if (TREE_CODE (TREE_OPERAND (test, 1)) == SSA_NAME
&& invariant_in_loop (loop, TREE_OPERAND (test, 1)))
VEC_safe_push (tree, *invariants, TREE_OPERAND (test, 1));
else if (TREE_CODE (TREE_OPERAND (test, 0)) == SSA_NAME
&& invariant_in_loop (loop, TREE_OPERAND (test, 0)))
VEC_safe_push (tree, *invariants, TREE_OPERAND (test, 0));
/* The non-induction variable part of the test is the upper bound variable.
*/
if (TREE_OPERAND (test, 0) == inductionvar)
uboundvar = TREE_OPERAND (test, 1);
else
uboundvar = TREE_OPERAND (test, 0);
/* We only size the vectors assuming we have, at max, 2 times as many
invariants as we do loops (one for each bound).
This is just an arbitrary number, but it has to be matched against the
code below. */
gcc_assert (VEC_length (tree, *invariants) <= (unsigned int) (2 * depth));
/* We might have some leftover. */
if (TREE_CODE (test) == LT_EXPR)
extra = -1 * stepint;
else if (TREE_CODE (test) == NE_EXPR)
extra = -1 * stepint;
else if (TREE_CODE (test) == GT_EXPR)
extra = -1 * stepint;
ubound = gcc_tree_to_linear_expression (depth,
uboundvar,
outerinductionvars,
*invariants, extra);
if (!ubound)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Unable to convert loop: Cannot convert upper bound to linear expression\n");
return NULL;
}
lloop = lambda_loop_new ();
LL_STEP (lloop) = stepint;
LL_LOWER_BOUND (lloop) = lbound;
LL_UPPER_BOUND (lloop) = ubound;
return lloop;
}
/* Given a LOOP, find the induction variable it is testing against in the exit
condition. Return the induction variable if found, NULL otherwise. */
static tree
find_induction_var_from_exit_cond (struct loop *loop)
{
tree expr = get_loop_exit_condition (loop);
tree ivarop;
tree test;
if (expr == NULL_TREE)
return NULL_TREE;
if (TREE_CODE (expr) != COND_EXPR)
return NULL_TREE;
test = TREE_OPERAND (expr, 0);
if (TREE_CODE_CLASS (TREE_CODE (test)) != '<')
return NULL_TREE;
/* This is a guess. We say that for a <,!=,<= b, a is the induction
variable.
For >, >=, we guess b is the induction variable.
If we are wrong, it'll fail the rest of the induction variable tests, and
everything will be fine anyway. */
switch (TREE_CODE (test))
{
case LT_EXPR:
case LE_EXPR:
case NE_EXPR:
ivarop = TREE_OPERAND (test, 0);
break;
case GT_EXPR:
case GE_EXPR:
ivarop = TREE_OPERAND (test, 1);
break;
default:
gcc_unreachable();
}
if (TREE_CODE (ivarop) != SSA_NAME)
return NULL_TREE;
return ivarop;
}
DEF_VEC_GC_P(lambda_loop);
/* Generate a lambda loopnest from a gcc loopnest LOOP_NEST.
Return the new loop nest.
INDUCTIONVARS is a pointer to an array of induction variables for the
loopnest that will be filled in during this process.
INVARIANTS is a pointer to an array of invariants that will be filled in
during this process. */
lambda_loopnest
gcc_loopnest_to_lambda_loopnest (struct loop * loop_nest,
VEC (tree) **inductionvars,
VEC (tree) **invariants)
{
lambda_loopnest ret;
struct loop *temp;
int depth = 0;
size_t i;
VEC (lambda_loop) *loops;
lambda_loop newloop;
tree inductionvar = NULL;
temp = loop_nest;
while (temp)
{
depth++;
temp = temp->inner;
}
loops = VEC_alloc (lambda_loop, 1);
*inductionvars = VEC_alloc (tree, 1);
*invariants = VEC_alloc (tree, 1);
temp = loop_nest;
while (temp)
{
newloop = gcc_loop_to_lambda_loop (temp, depth, invariants,
&inductionvar, *inductionvars);
if (!newloop)
return NULL;
VEC_safe_push (tree, *inductionvars, inductionvar);
VEC_safe_push (lambda_loop, loops, newloop);
temp = temp->inner;
}
ret = lambda_loopnest_new (depth, 2 * depth);
for (i = 0; VEC_iterate (lambda_loop, loops, i, newloop); i++)
LN_LOOPS (ret)[i] = newloop;
return ret;
}
/* Convert a lambda body vector LBV to a gcc tree, and return the new tree.
STMTS_TO_INSERT is a pointer to a tree where the statements we need to be
inserted for us are stored. INDUCTION_VARS is the array of induction
variables for the loop this LBV is from. */
static tree
lbv_to_gcc_expression (lambda_body_vector lbv,
VEC (tree) *induction_vars, tree * stmts_to_insert)
{
tree stmts, stmt, resvar, name;
size_t i;
tree_stmt_iterator tsi;
/* Create a statement list and a linear expression temporary. */
stmts = alloc_stmt_list ();
resvar = create_tmp_var (integer_type_node, "lletmp");
add_referenced_tmp_var (resvar);
/* Start at 0. */
stmt = build (MODIFY_EXPR, void_type_node, resvar, integer_zero_node);
name = make_ssa_name (resvar, stmt);
TREE_OPERAND (stmt, 0) = name;
tsi = tsi_last (stmts);
tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
for (i = 0; i < VEC_length (tree ,induction_vars) ; i++)
{
if (LBV_COEFFICIENTS (lbv)[i] != 0)
{
tree newname;
/* newname = coefficient * induction_variable */
stmt = build (MODIFY_EXPR, void_type_node, resvar,
fold (build (MULT_EXPR, integer_type_node,
VEC_index (tree, induction_vars, i),
build_int_cst (integer_type_node,
LBV_COEFFICIENTS (lbv)[i]))));
newname = make_ssa_name (resvar, stmt);
TREE_OPERAND (stmt, 0) = newname;
tsi = tsi_last (stmts);
tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
/* name = name + newname */
stmt = build (MODIFY_EXPR, void_type_node, resvar,
build (PLUS_EXPR, integer_type_node, name, newname));
name = make_ssa_name (resvar, stmt);
TREE_OPERAND (stmt, 0) = name;
tsi = tsi_last (stmts);
tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
}
}
/* Handle any denominator that occurs. */
if (LBV_DENOMINATOR (lbv) != 1)
{
stmt = build (MODIFY_EXPR, void_type_node, resvar,
build (CEIL_DIV_EXPR, integer_type_node,
name, build_int_cst (integer_type_node,
LBV_DENOMINATOR (lbv))));
name = make_ssa_name (resvar, stmt);
TREE_OPERAND (stmt, 0) = name;
tsi = tsi_last (stmts);
tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
}
*stmts_to_insert = stmts;
return name;
}
/* Convert a linear expression from coefficient and constant form to a
gcc tree.
Return the tree that represents the final value of the expression.
LLE is the linear expression to convert.
OFFSET is the linear offset to apply to the expression.
INDUCTION_VARS is a vector of induction variables for the loops.
INVARIANTS is a vector of the loop nest invariants.
WRAP specifies what tree code to wrap the results in, if there is more than
one (it is either MAX_EXPR, or MIN_EXPR).
STMTS_TO_INSERT Is a pointer to the statement list we fill in with
statements that need to be inserted for the linear expression. */
static tree
lle_to_gcc_expression (lambda_linear_expression lle,
lambda_linear_expression offset,
VEC(tree) *induction_vars,
VEC(tree) *invariants,
enum tree_code wrap, tree * stmts_to_insert)
{
tree stmts, stmt, resvar, name;
size_t i;
tree_stmt_iterator tsi;
VEC(tree) *results;
name = NULL_TREE;
/* Create a statement list and a linear expression temporary. */
stmts = alloc_stmt_list ();
resvar = create_tmp_var (integer_type_node, "lletmp");
add_referenced_tmp_var (resvar);
results = VEC_alloc (tree, 1);
/* Build up the linear expressions, and put the variable representing the
result in the results array. */
for (; lle != NULL; lle = LLE_NEXT (lle))
{
/* Start at name = 0. */
stmt = build (MODIFY_EXPR, void_type_node, resvar, integer_zero_node);
name = make_ssa_name (resvar, stmt);
TREE_OPERAND (stmt, 0) = name;
tsi = tsi_last (stmts);
tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
/* First do the induction variables.
at the end, name = name + all the induction variables added
together. */
for (i = 0; i < VEC_length (tree ,induction_vars); i++)
{
if (LLE_COEFFICIENTS (lle)[i] != 0)
{
tree newname;
tree mult;
tree coeff;
/* mult = induction variable * coefficient. */
if (LLE_COEFFICIENTS (lle)[i] == 1)
{
mult = VEC_index (tree, induction_vars, i);
}
else
{
coeff = build_int_cst (integer_type_node,
LLE_COEFFICIENTS (lle)[i]);
mult = fold (build (MULT_EXPR, integer_type_node,
VEC_index (tree, induction_vars, i),
coeff));
}
/* newname = mult */
stmt = build (MODIFY_EXPR, void_type_node, resvar, mult);
newname = make_ssa_name (resvar, stmt);
TREE_OPERAND (stmt, 0) = newname;
tsi = tsi_last (stmts);
tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
/* name = name + newname */
stmt = build (MODIFY_EXPR, void_type_node, resvar,
build (PLUS_EXPR, integer_type_node,
name, newname));
name = make_ssa_name (resvar, stmt);
TREE_OPERAND (stmt, 0) = name;
tsi = tsi_last (stmts);
tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
}
}
/* Handle our invariants.
At the end, we have name = name + result of adding all multiplied
invariants. */
for (i = 0; i < VEC_length (tree, invariants); i++)
{
if (LLE_INVARIANT_COEFFICIENTS (lle)[i] != 0)
{
tree newname;
tree mult;
tree coeff;
/* mult = invariant * coefficient */
if (LLE_INVARIANT_COEFFICIENTS (lle)[i] == 1)
{
mult = VEC_index (tree, invariants, i);
}
else
{
coeff = build_int_cst (integer_type_node,
LLE_INVARIANT_COEFFICIENTS (lle)[i]);
mult = fold (build (MULT_EXPR, integer_type_node,
VEC_index (tree, invariants, i),
coeff));
}
/* newname = mult */
stmt = build (MODIFY_EXPR, void_type_node, resvar, mult);
newname = make_ssa_name (resvar, stmt);
TREE_OPERAND (stmt, 0) = newname;
tsi = tsi_last (stmts);
tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
/* name = name + newname */
stmt = build (MODIFY_EXPR, void_type_node, resvar,
build (PLUS_EXPR, integer_type_node,
name, newname));
name = make_ssa_name (resvar, stmt);
TREE_OPERAND (stmt, 0) = name;
tsi = tsi_last (stmts);
tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
}
}
/* Now handle the constant.
name = name + constant. */
if (LLE_CONSTANT (lle) != 0)
{
stmt = build (MODIFY_EXPR, void_type_node, resvar,
build (PLUS_EXPR, integer_type_node,
name, build_int_cst (integer_type_node,
LLE_CONSTANT (lle))));
name = make_ssa_name (resvar, stmt);
TREE_OPERAND (stmt, 0) = name;
tsi = tsi_last (stmts);
tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
}
/* Now handle the offset.
name = name + linear offset. */
if (LLE_CONSTANT (offset) != 0)
{
stmt = build (MODIFY_EXPR, void_type_node, resvar,
build (PLUS_EXPR, integer_type_node,
name, build_int_cst (integer_type_node,
LLE_CONSTANT (offset))));
name = make_ssa_name (resvar, stmt);
TREE_OPERAND (stmt, 0) = name;
tsi = tsi_last (stmts);
tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
}
/* Handle any denominator that occurs. */
if (LLE_DENOMINATOR (lle) != 1)
{
if (wrap == MAX_EXPR)
stmt = build (MODIFY_EXPR, void_type_node, resvar,
build (CEIL_DIV_EXPR, integer_type_node,
name, build_int_cst (integer_type_node,
LLE_DENOMINATOR (lle))));
else if (wrap == MIN_EXPR)
stmt = build (MODIFY_EXPR, void_type_node, resvar,
build (FLOOR_DIV_EXPR, integer_type_node,
name, build_int_cst (integer_type_node,
LLE_DENOMINATOR (lle))));
else
gcc_unreachable();
/* name = {ceil, floor}(name/denominator) */
name = make_ssa_name (resvar, stmt);
TREE_OPERAND (stmt, 0) = name;
tsi = tsi_last (stmts);
tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
}
VEC_safe_push (tree, results, name);
}
/* Again, out of laziness, we don't handle this case yet. It's not
hard, it just hasn't occurred. */
gcc_assert (VEC_length (tree, results) <= 2);
/* We may need to wrap the results in a MAX_EXPR or MIN_EXPR. */
if (VEC_length (tree, results) > 1)
{
tree op1 = VEC_index (tree, results, 0);
tree op2 = VEC_index (tree, results, 1);
stmt = build (MODIFY_EXPR, void_type_node, resvar,
build (wrap, integer_type_node, op1, op2));
name = make_ssa_name (resvar, stmt);
TREE_OPERAND (stmt, 0) = name;
tsi = tsi_last (stmts);
tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
}
*stmts_to_insert = stmts;
return name;
}
/* Transform a lambda loopnest NEW_LOOPNEST, which had TRANSFORM applied to
it, back into gcc code. This changes the
loops, their induction variables, and their bodies, so that they
match the transformed loopnest.
OLD_LOOPNEST is the loopnest before we've replaced it with the new
loopnest.
OLD_IVS is a vector of induction variables from the old loopnest.
INVARIANTS is a vector of loop invariants from the old loopnest.
NEW_LOOPNEST is the new lambda loopnest to replace OLD_LOOPNEST with.
TRANSFORM is the matrix transform that was applied to OLD_LOOPNEST to get
NEW_LOOPNEST. */
void
lambda_loopnest_to_gcc_loopnest (struct loop *old_loopnest,
VEC(tree) *old_ivs,
VEC(tree) *invariants,
lambda_loopnest new_loopnest,
lambda_trans_matrix transform)
{
struct loop *temp;
size_t i = 0;
size_t depth = 0;
VEC(tree) *new_ivs;
block_stmt_iterator bsi;
basic_block *bbs;
if (dump_file)
{
transform = lambda_trans_matrix_inverse (transform);
fprintf (dump_file, "Inverse of transformation matrix:\n");
print_lambda_trans_matrix (dump_file, transform);
}
temp = old_loopnest;
new_ivs = VEC_alloc (tree, 1);
while (temp)
{
temp = temp->inner;
depth++;
}
temp = old_loopnest;
while (temp)
{
lambda_loop newloop;
basic_block bb;
tree ivvar, ivvarinced, exitcond, stmts;
enum tree_code testtype;
tree newupperbound, newlowerbound;
lambda_linear_expression offset;
/* First, build the new induction variable temporary */
ivvar = create_tmp_var (integer_type_node, "lnivtmp");
add_referenced_tmp_var (ivvar);
VEC_safe_push (tree, new_ivs, ivvar);
newloop = LN_LOOPS (new_loopnest)[i];
/* Linear offset is a bit tricky to handle. Punt on the unhandled
cases for now. */
offset = LL_LINEAR_OFFSET (newloop);
gcc_assert (LLE_DENOMINATOR (offset) == 1 &&
lambda_vector_zerop (LLE_COEFFICIENTS (offset), depth));
/* Now build the new lower bounds, and insert the statements
necessary to generate it on the loop preheader. */
newlowerbound = lle_to_gcc_expression (LL_LOWER_BOUND (newloop),
LL_LINEAR_OFFSET (newloop),
new_ivs,
invariants, MAX_EXPR, &stmts);
bsi_insert_on_edge (loop_preheader_edge (temp), stmts);
bsi_commit_edge_inserts (NULL);
/* Build the new upper bound and insert its statements in the
basic block of the exit condition */
newupperbound = lle_to_gcc_expression (LL_UPPER_BOUND (newloop),
LL_LINEAR_OFFSET (newloop),
new_ivs,
invariants, MIN_EXPR, &stmts);
exitcond = get_loop_exit_condition (temp);
bb = bb_for_stmt (exitcond);
bsi = bsi_start (bb);
bsi_insert_after (&bsi, stmts, BSI_NEW_STMT);
/* Create the new iv, and insert it's increment on the latch
block. */
bb = temp->latch->pred->src;
bsi = bsi_last (bb);
create_iv (newlowerbound,
build_int_cst (integer_type_node, LL_STEP (newloop)),
ivvar, temp, &bsi, false, &ivvar,
&ivvarinced);
/* Replace the exit condition with the new upper bound
comparison. */
testtype = LL_STEP (newloop) >= 0 ? LE_EXPR : GE_EXPR;
COND_EXPR_COND (exitcond) = build (testtype,
boolean_type_node,
ivvarinced, newupperbound);
modify_stmt (exitcond);
VEC_replace (tree, new_ivs, i, ivvar);
i++;
temp = temp->inner;
}
/* Go through the loop and make iv replacements. */
bbs = get_loop_body (old_loopnest);
for (i = 0; i < old_loopnest->num_nodes; i++)
for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi); bsi_next (&bsi))
{
tree stmt = bsi_stmt (bsi);
use_optype uses;
size_t j;
get_stmt_operands (stmt);
uses = STMT_USE_OPS (stmt);
for (j = 0; j < NUM_USES (uses); j++)
{
size_t k;
use_operand_p use = USE_OP_PTR (uses, j);
for (k = 0; k < VEC_length (tree, old_ivs); k++)
{
tree oldiv = VEC_index (tree, old_ivs, k);
if (USE_FROM_PTR (use) == oldiv)
{
tree newiv, stmts;
lambda_body_vector lbv;
/* Compute the new expression for the induction
variable. */
depth = VEC_length (tree, new_ivs);
lbv = lambda_body_vector_new (depth);
LBV_COEFFICIENTS (lbv)[k] = 1;
lbv = lambda_body_vector_compute_new (transform, lbv);
newiv = lbv_to_gcc_expression (lbv, new_ivs, &stmts);
/* Insert the statements to build that
expression. */
bsi_insert_before (&bsi, stmts, BSI_SAME_STMT);
/* Replace the use with the result of that
expression. */
if (dump_file)
{
fprintf (dump_file,
"Replacing induction variable use of ");
print_generic_stmt (dump_file, USE_FROM_PTR (use), 0);
fprintf (dump_file, " with ");
print_generic_stmt (dump_file, newiv, 0);
fprintf (dump_file, "\n");
}
SET_USE (use, newiv);
}
}
}
}
}
/* Returns true when the vector V is lexicographically positive, in
other words, when the first non zero element is positive. */
static bool
lambda_vector_lexico_pos (lambda_vector v, unsigned n)
{
unsigned i;
for (i = 0; i < n; i++)
{
if (v[i] == 0)
continue;
if (v[i] < 0)
return false;
if (v[i] > 0)
return true;
}
return true;
}
/* Return true if TRANS is a legal transformation matrix that respects
the dependence vectors in DISTS and DIRS. The conservative answer
is false.
"Wolfe proves that a unimodular transformation represented by the
matrix T is legal when applied to a loop nest with a set of
lexicographically non-negative distance vectors RDG if and only if
for each vector d in RDG, (T.d >= 0) is lexicographically positive.
i.e.: if and only if it transforms the lexicographically positive
distance vectors to lexicographically positive vectors. Note that
a unimodular matrix must transform the zero vector (and only it) to
the zero vector." S.Muchnick. */
bool
lambda_transform_legal_p (lambda_trans_matrix trans,
int nb_loops, varray_type dependence_relations)
{
unsigned int i;
lambda_vector distres;
struct data_dependence_relation *ddr;
#if defined ENABLE_CHECKING
gcc_assert (LTM_COLSIZE (trans) == nb_loops
&& LTM_ROWSIZE (trans) == nb_loops);
#endif
/* When there is an unknown relation in the dependence_relations, we
know that it is no worth looking at this loop nest: give up. */
ddr = (struct data_dependence_relation *)
VARRAY_GENERIC_PTR (dependence_relations, 0);
if (ddr == NULL)
return true;
if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
return false;
distres = lambda_vector_new (nb_loops);
/* For each distance vector in the dependence graph. */
for (i = 0; i < VARRAY_ACTIVE_SIZE (dependence_relations); i++)
{
ddr = (struct data_dependence_relation *)
VARRAY_GENERIC_PTR (dependence_relations, i);
/* Don't care about relations for which we know that there is no
dependence, nor about read-read (aka. output-dependences):
these data accesses can happen in any order. */
if (DDR_ARE_DEPENDENT (ddr) == chrec_known
|| (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
continue;
/* Conservatively answer: "this transformation is not valid". */
if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
return false;
/* Compute trans.dist_vect */
lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
DDR_DIST_VECT (ddr), distres);
if (!lambda_vector_lexico_pos (distres, nb_loops))
return false;
}
return true;
}
|