1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
|
/* Optimize jump instructions, for GNU compiler.
Copyright (C) 1987, 88, 89, 91-99, 2000 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* This is the jump-optimization pass of the compiler.
It is run two or three times: once before cse, sometimes once after cse,
and once after reload (before final).
jump_optimize deletes unreachable code and labels that are not used.
It also deletes jumps that jump to the following insn,
and simplifies jumps around unconditional jumps and jumps
to unconditional jumps.
Each CODE_LABEL has a count of the times it is used
stored in the LABEL_NUSES internal field, and each JUMP_INSN
has one label that it refers to stored in the
JUMP_LABEL internal field. With this we can detect labels that
become unused because of the deletion of all the jumps that
formerly used them. The JUMP_LABEL info is sometimes looked
at by later passes.
Optionally, cross-jumping can be done. Currently it is done
only the last time (when after reload and before final).
In fact, the code for cross-jumping now assumes that register
allocation has been done, since it uses `rtx_renumbered_equal_p'.
Jump optimization is done after cse when cse's constant-propagation
causes jumps to become unconditional or to be deleted.
Unreachable loops are not detected here, because the labels
have references and the insns appear reachable from the labels.
find_basic_blocks in flow.c finds and deletes such loops.
The subroutines delete_insn, redirect_jump, and invert_jump are used
from other passes as well. */
#include "config.h"
#include "system.h"
#include "rtl.h"
#include "tm_p.h"
#include "flags.h"
#include "hard-reg-set.h"
#include "regs.h"
#include "insn-config.h"
#include "insn-flags.h"
#include "insn-attr.h"
#include "recog.h"
#include "function.h"
#include "expr.h"
#include "real.h"
#include "except.h"
#include "toplev.h"
/* ??? Eventually must record somehow the labels used by jumps
from nested functions. */
/* Pre-record the next or previous real insn for each label?
No, this pass is very fast anyway. */
/* Condense consecutive labels?
This would make life analysis faster, maybe. */
/* Optimize jump y; x: ... y: jumpif... x?
Don't know if it is worth bothering with. */
/* Optimize two cases of conditional jump to conditional jump?
This can never delete any instruction or make anything dead,
or even change what is live at any point.
So perhaps let combiner do it. */
/* Vector indexed by uid.
For each CODE_LABEL, index by its uid to get first unconditional jump
that jumps to the label.
For each JUMP_INSN, index by its uid to get the next unconditional jump
that jumps to the same label.
Element 0 is the start of a chain of all return insns.
(It is safe to use element 0 because insn uid 0 is not used. */
static rtx *jump_chain;
/* Maximum index in jump_chain. */
static int max_jump_chain;
/* Set nonzero by jump_optimize if control can fall through
to the end of the function. */
int can_reach_end;
/* Indicates whether death notes are significant in cross jump analysis.
Normally they are not significant, because of A and B jump to C,
and R dies in A, it must die in B. But this might not be true after
stack register conversion, and we must compare death notes in that
case. */
static int cross_jump_death_matters = 0;
static int init_label_info PARAMS ((rtx));
static void delete_barrier_successors PARAMS ((rtx));
static void mark_all_labels PARAMS ((rtx, int));
static rtx delete_unreferenced_labels PARAMS ((rtx));
static void delete_noop_moves PARAMS ((rtx));
static int calculate_can_reach_end PARAMS ((rtx, int, int));
static int duplicate_loop_exit_test PARAMS ((rtx));
static void find_cross_jump PARAMS ((rtx, rtx, int, rtx *, rtx *));
static void do_cross_jump PARAMS ((rtx, rtx, rtx));
static int jump_back_p PARAMS ((rtx, rtx));
static int tension_vector_labels PARAMS ((rtx, int));
static void mark_jump_label PARAMS ((rtx, rtx, int));
static void delete_computation PARAMS ((rtx));
static void delete_from_jump_chain PARAMS ((rtx));
static int delete_labelref_insn PARAMS ((rtx, rtx, int));
static void mark_modified_reg PARAMS ((rtx, rtx, void *));
static void redirect_tablejump PARAMS ((rtx, rtx));
static void jump_optimize_1 PARAMS ((rtx, int, int, int, int));
#if ! defined(HAVE_cc0) && ! defined(HAVE_conditional_arithmetic)
static rtx find_insert_position PARAMS ((rtx, rtx));
#endif
static int returnjump_p_1 PARAMS ((rtx *, void *));
static void delete_prior_computation PARAMS ((rtx, rtx));
/* Main external entry point into the jump optimizer. See comments before
jump_optimize_1 for descriptions of the arguments. */
void
jump_optimize (f, cross_jump, noop_moves, after_regscan)
rtx f;
int cross_jump;
int noop_moves;
int after_regscan;
{
jump_optimize_1 (f, cross_jump, noop_moves, after_regscan, 0);
}
/* Alternate entry into the jump optimizer. This entry point only rebuilds
the JUMP_LABEL field in jumping insns and REG_LABEL notes in non-jumping
instructions. */
void
rebuild_jump_labels (f)
rtx f;
{
jump_optimize_1 (f, 0, 0, 0, 1);
}
/* Delete no-op jumps and optimize jumps to jumps
and jumps around jumps.
Delete unused labels and unreachable code.
If CROSS_JUMP is 1, detect matching code
before a jump and its destination and unify them.
If CROSS_JUMP is 2, do cross-jumping, but pay attention to death notes.
If NOOP_MOVES is nonzero, delete no-op move insns.
If AFTER_REGSCAN is nonzero, then this jump pass is being run immediately
after regscan, and it is safe to use regno_first_uid and regno_last_uid.
If MARK_LABELS_ONLY is nonzero, then we only rebuild the jump chain
and JUMP_LABEL field for jumping insns.
If `optimize' is zero, don't change any code,
just determine whether control drops off the end of the function.
This case occurs when we have -W and not -O.
It works because `delete_insn' checks the value of `optimize'
and refrains from actually deleting when that is 0. */
static void
jump_optimize_1 (f, cross_jump, noop_moves, after_regscan, mark_labels_only)
rtx f;
int cross_jump;
int noop_moves;
int after_regscan;
int mark_labels_only;
{
register rtx insn, next;
int changed;
int old_max_reg;
int first = 1;
int max_uid = 0;
rtx last_insn;
cross_jump_death_matters = (cross_jump == 2);
max_uid = init_label_info (f) + 1;
/* If we are performing cross jump optimizations, then initialize
tables mapping UIDs to EH regions to avoid incorrect movement
of insns from one EH region to another. */
if (flag_exceptions && cross_jump)
init_insn_eh_region (f, max_uid);
delete_barrier_successors (f);
/* Leave some extra room for labels and duplicate exit test insns
we make. */
max_jump_chain = max_uid * 14 / 10;
jump_chain = (rtx *) xcalloc (max_jump_chain, sizeof (rtx));
mark_all_labels (f, cross_jump);
/* Keep track of labels used from static data;
they cannot ever be deleted. */
for (insn = forced_labels; insn; insn = XEXP (insn, 1))
LABEL_NUSES (XEXP (insn, 0))++;
check_exception_handler_labels ();
/* Keep track of labels used for marking handlers for exception
regions; they cannot usually be deleted. */
for (insn = exception_handler_labels; insn; insn = XEXP (insn, 1))
LABEL_NUSES (XEXP (insn, 0))++;
/* Quit now if we just wanted to rebuild the JUMP_LABEL and REG_LABEL
notes and recompute LABEL_NUSES. */
if (mark_labels_only)
goto end;
exception_optimize ();
last_insn = delete_unreferenced_labels (f);
if (optimize == 0)
{
/* CAN_REACH_END is persistent for each function. Once set it should
not be cleared. This is especially true for the case where we
delete the NOTE_FUNCTION_END note. CAN_REACH_END is cleared by
the front-end before compiling each function. */
if (calculate_can_reach_end (last_insn, 1, 0))
can_reach_end = 1;
/* Zero the "deleted" flag of all the "deleted" insns. */
for (insn = f; insn; insn = NEXT_INSN (insn))
INSN_DELETED_P (insn) = 0;
goto end;
}
#ifdef HAVE_return
if (HAVE_return)
{
/* If we fall through to the epilogue, see if we can insert a RETURN insn
in front of it. If the machine allows it at this point (we might be
after reload for a leaf routine), it will improve optimization for it
to be there. */
insn = get_last_insn ();
while (insn && GET_CODE (insn) == NOTE)
insn = PREV_INSN (insn);
if (insn && GET_CODE (insn) != BARRIER)
{
emit_jump_insn (gen_return ());
emit_barrier ();
}
}
#endif
if (noop_moves)
delete_noop_moves (f);
/* If we haven't yet gotten to reload and we have just run regscan,
delete any insn that sets a register that isn't used elsewhere.
This helps some of the optimizations below by having less insns
being jumped around. */
if (! reload_completed && after_regscan)
for (insn = f; insn; insn = next)
{
rtx set = single_set (insn);
next = NEXT_INSN (insn);
if (set && GET_CODE (SET_DEST (set)) == REG
&& REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
&& REGNO_FIRST_UID (REGNO (SET_DEST (set))) == INSN_UID (insn)
/* We use regno_last_note_uid so as not to delete the setting
of a reg that's used in notes. A subsequent optimization
might arrange to use that reg for real. */
&& REGNO_LAST_NOTE_UID (REGNO (SET_DEST (set))) == INSN_UID (insn)
&& ! side_effects_p (SET_SRC (set))
&& ! find_reg_note (insn, REG_RETVAL, 0)
/* An ADDRESSOF expression can turn into a use of the internal arg
pointer, so do not delete the initialization of the internal
arg pointer yet. If it is truly dead, flow will delete the
initializing insn. */
&& SET_DEST (set) != current_function_internal_arg_pointer)
delete_insn (insn);
}
/* Now iterate optimizing jumps until nothing changes over one pass. */
changed = 1;
old_max_reg = max_reg_num ();
while (changed)
{
changed = 0;
for (insn = f; insn; insn = next)
{
rtx reallabelprev;
rtx temp, temp1, temp2 = NULL_RTX, temp3, temp4, temp5, temp6;
rtx nlabel;
int this_is_simplejump, this_is_condjump, reversep = 0;
int this_is_condjump_in_parallel;
next = NEXT_INSN (insn);
/* See if this is a NOTE_INSN_LOOP_BEG followed by an unconditional
jump. Try to optimize by duplicating the loop exit test if so.
This is only safe immediately after regscan, because it uses
the values of regno_first_uid and regno_last_uid. */
if (after_regscan && GET_CODE (insn) == NOTE
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
&& (temp1 = next_nonnote_insn (insn)) != 0
&& simplejump_p (temp1))
{
temp = PREV_INSN (insn);
if (duplicate_loop_exit_test (insn))
{
changed = 1;
next = NEXT_INSN (temp);
continue;
}
}
if (GET_CODE (insn) != JUMP_INSN)
continue;
this_is_simplejump = simplejump_p (insn);
this_is_condjump = condjump_p (insn);
this_is_condjump_in_parallel = condjump_in_parallel_p (insn);
/* Tension the labels in dispatch tables. */
if (GET_CODE (PATTERN (insn)) == ADDR_VEC)
changed |= tension_vector_labels (PATTERN (insn), 0);
if (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
changed |= tension_vector_labels (PATTERN (insn), 1);
/* See if this jump goes to another jump and redirect if so. */
nlabel = follow_jumps (JUMP_LABEL (insn));
if (nlabel != JUMP_LABEL (insn))
changed |= redirect_jump (insn, nlabel);
/* If a dispatch table always goes to the same place,
get rid of it and replace the insn that uses it. */
if (GET_CODE (PATTERN (insn)) == ADDR_VEC
|| GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
{
int i;
rtx pat = PATTERN (insn);
int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
int len = XVECLEN (pat, diff_vec_p);
rtx dispatch = prev_real_insn (insn);
rtx set;
for (i = 0; i < len; i++)
if (XEXP (XVECEXP (pat, diff_vec_p, i), 0)
!= XEXP (XVECEXP (pat, diff_vec_p, 0), 0))
break;
if (i == len
&& dispatch != 0
&& GET_CODE (dispatch) == JUMP_INSN
&& JUMP_LABEL (dispatch) != 0
/* Don't mess with a casesi insn.
XXX according to the comment before computed_jump_p(),
all casesi insns should be a parallel of the jump
and a USE of a LABEL_REF. */
&& ! ((set = single_set (dispatch)) != NULL
&& (GET_CODE (SET_SRC (set)) == IF_THEN_ELSE))
&& next_real_insn (JUMP_LABEL (dispatch)) == insn)
{
redirect_tablejump (dispatch,
XEXP (XVECEXP (pat, diff_vec_p, 0), 0));
changed = 1;
}
}
/* If a jump references the end of the function, try to turn
it into a RETURN insn, possibly a conditional one. */
if (JUMP_LABEL (insn) != 0
&& (next_active_insn (JUMP_LABEL (insn)) == 0
|| GET_CODE (PATTERN (next_active_insn (JUMP_LABEL (insn))))
== RETURN))
changed |= redirect_jump (insn, NULL_RTX);
reallabelprev = prev_active_insn (JUMP_LABEL (insn));
/* Detect jump to following insn. */
if (reallabelprev == insn && this_is_condjump)
{
next = next_real_insn (JUMP_LABEL (insn));
delete_jump (insn);
changed = 1;
continue;
}
/* Detect a conditional jump going to the same place
as an immediately following unconditional jump. */
else if (this_is_condjump
&& (temp = next_active_insn (insn)) != 0
&& simplejump_p (temp)
&& (next_active_insn (JUMP_LABEL (insn))
== next_active_insn (JUMP_LABEL (temp))))
{
/* Don't mess up test coverage analysis. */
temp2 = temp;
if (flag_test_coverage && !reload_completed)
for (temp2 = insn; temp2 != temp; temp2 = NEXT_INSN (temp2))
if (GET_CODE (temp2) == NOTE && NOTE_LINE_NUMBER (temp2) > 0)
break;
if (temp2 == temp)
{
delete_jump (insn);
changed = 1;
continue;
}
}
/* Detect a conditional jump jumping over an unconditional jump. */
else if ((this_is_condjump || this_is_condjump_in_parallel)
&& ! this_is_simplejump
&& reallabelprev != 0
&& GET_CODE (reallabelprev) == JUMP_INSN
&& prev_active_insn (reallabelprev) == insn
&& no_labels_between_p (insn, reallabelprev)
&& simplejump_p (reallabelprev))
{
/* When we invert the unconditional jump, we will be
decrementing the usage count of its old label.
Make sure that we don't delete it now because that
might cause the following code to be deleted. */
rtx prev_uses = prev_nonnote_insn (reallabelprev);
rtx prev_label = JUMP_LABEL (insn);
if (prev_label)
++LABEL_NUSES (prev_label);
if (invert_jump (insn, JUMP_LABEL (reallabelprev)))
{
/* It is very likely that if there are USE insns before
this jump, they hold REG_DEAD notes. These REG_DEAD
notes are no longer valid due to this optimization,
and will cause the life-analysis that following passes
(notably delayed-branch scheduling) to think that
these registers are dead when they are not.
To prevent this trouble, we just remove the USE insns
from the insn chain. */
while (prev_uses && GET_CODE (prev_uses) == INSN
&& GET_CODE (PATTERN (prev_uses)) == USE)
{
rtx useless = prev_uses;
prev_uses = prev_nonnote_insn (prev_uses);
delete_insn (useless);
}
delete_insn (reallabelprev);
changed = 1;
}
/* We can now safely delete the label if it is unreferenced
since the delete_insn above has deleted the BARRIER. */
if (prev_label && --LABEL_NUSES (prev_label) == 0)
delete_insn (prev_label);
next = NEXT_INSN (insn);
}
/* If we have an unconditional jump preceded by a USE, try to put
the USE before the target and jump there. This simplifies many
of the optimizations below since we don't have to worry about
dealing with these USE insns. We only do this if the label
being branch to already has the identical USE or if code
never falls through to that label. */
else if (this_is_simplejump
&& (temp = prev_nonnote_insn (insn)) != 0
&& GET_CODE (temp) == INSN
&& GET_CODE (PATTERN (temp)) == USE
&& (temp1 = prev_nonnote_insn (JUMP_LABEL (insn))) != 0
&& (GET_CODE (temp1) == BARRIER
|| (GET_CODE (temp1) == INSN
&& rtx_equal_p (PATTERN (temp), PATTERN (temp1))))
/* Don't do this optimization if we have a loop containing
only the USE instruction, and the loop start label has
a usage count of 1. This is because we will redo this
optimization everytime through the outer loop, and jump
opt will never exit. */
&& ! ((temp2 = prev_nonnote_insn (temp)) != 0
&& temp2 == JUMP_LABEL (insn)
&& LABEL_NUSES (temp2) == 1))
{
if (GET_CODE (temp1) == BARRIER)
{
emit_insn_after (PATTERN (temp), temp1);
temp1 = NEXT_INSN (temp1);
}
delete_insn (temp);
redirect_jump (insn, get_label_before (temp1));
reallabelprev = prev_real_insn (temp1);
changed = 1;
next = NEXT_INSN (insn);
}
/* Simplify if (...) x = a; else x = b; by converting it
to x = b; if (...) x = a;
if B is sufficiently simple, the test doesn't involve X,
and nothing in the test modifies B or X.
If we have small register classes, we also can't do this if X
is a hard register.
If the "x = b;" insn has any REG_NOTES, we don't do this because
of the possibility that we are running after CSE and there is a
REG_EQUAL note that is only valid if the branch has already been
taken. If we move the insn with the REG_EQUAL note, we may
fold the comparison to always be false in a later CSE pass.
(We could also delete the REG_NOTES when moving the insn, but it
seems simpler to not move it.) An exception is that we can move
the insn if the only note is a REG_EQUAL or REG_EQUIV whose
value is the same as "b".
INSN is the branch over the `else' part.
We set:
TEMP to the jump insn preceding "x = a;"
TEMP1 to X
TEMP2 to the insn that sets "x = b;"
TEMP3 to the insn that sets "x = a;"
TEMP4 to the set of "x = b"; */
if (this_is_simplejump
&& (temp3 = prev_active_insn (insn)) != 0
&& GET_CODE (temp3) == INSN
&& (temp4 = single_set (temp3)) != 0
&& GET_CODE (temp1 = SET_DEST (temp4)) == REG
&& (! SMALL_REGISTER_CLASSES
|| REGNO (temp1) >= FIRST_PSEUDO_REGISTER)
&& (temp2 = next_active_insn (insn)) != 0
&& GET_CODE (temp2) == INSN
&& (temp4 = single_set (temp2)) != 0
&& rtx_equal_p (SET_DEST (temp4), temp1)
&& ! side_effects_p (SET_SRC (temp4))
&& ! may_trap_p (SET_SRC (temp4))
&& (REG_NOTES (temp2) == 0
|| ((REG_NOTE_KIND (REG_NOTES (temp2)) == REG_EQUAL
|| REG_NOTE_KIND (REG_NOTES (temp2)) == REG_EQUIV)
&& XEXP (REG_NOTES (temp2), 1) == 0
&& rtx_equal_p (XEXP (REG_NOTES (temp2), 0),
SET_SRC (temp4))))
&& (temp = prev_active_insn (temp3)) != 0
&& condjump_p (temp) && ! simplejump_p (temp)
/* TEMP must skip over the "x = a;" insn */
&& prev_real_insn (JUMP_LABEL (temp)) == insn
&& no_labels_between_p (insn, JUMP_LABEL (temp))
/* There must be no other entries to the "x = b;" insn. */
&& no_labels_between_p (JUMP_LABEL (temp), temp2)
/* INSN must either branch to the insn after TEMP2 or the insn
after TEMP2 must branch to the same place as INSN. */
&& (reallabelprev == temp2
|| ((temp5 = next_active_insn (temp2)) != 0
&& simplejump_p (temp5)
&& JUMP_LABEL (temp5) == JUMP_LABEL (insn))))
{
/* The test expression, X, may be a complicated test with
multiple branches. See if we can find all the uses of
the label that TEMP branches to without hitting a CALL_INSN
or a jump to somewhere else. */
rtx target = JUMP_LABEL (temp);
int nuses = LABEL_NUSES (target);
rtx p;
#ifdef HAVE_cc0
rtx q;
#endif
/* Set P to the first jump insn that goes around "x = a;". */
for (p = temp; nuses && p; p = prev_nonnote_insn (p))
{
if (GET_CODE (p) == JUMP_INSN)
{
if (condjump_p (p) && ! simplejump_p (p)
&& JUMP_LABEL (p) == target)
{
nuses--;
if (nuses == 0)
break;
}
else
break;
}
else if (GET_CODE (p) == CALL_INSN)
break;
}
#ifdef HAVE_cc0
/* We cannot insert anything between a set of cc and its use
so if P uses cc0, we must back up to the previous insn. */
q = prev_nonnote_insn (p);
if (q && GET_RTX_CLASS (GET_CODE (q)) == 'i'
&& sets_cc0_p (PATTERN (q)))
p = q;
#endif
if (p)
p = PREV_INSN (p);
/* If we found all the uses and there was no data conflict, we
can move the assignment unless we can branch into the middle
from somewhere. */
if (nuses == 0 && p
&& no_labels_between_p (p, insn)
&& ! reg_referenced_between_p (temp1, p, NEXT_INSN (temp3))
&& ! reg_set_between_p (temp1, p, temp3)
&& (GET_CODE (SET_SRC (temp4)) == CONST_INT
|| ! modified_between_p (SET_SRC (temp4), p, temp2))
/* Verify that registers used by the jump are not clobbered
by the instruction being moved. */
&& ! regs_set_between_p (PATTERN (temp),
PREV_INSN (temp2),
NEXT_INSN (temp2)))
{
emit_insn_after_with_line_notes (PATTERN (temp2), p, temp2);
delete_insn (temp2);
/* Set NEXT to an insn that we know won't go away. */
next = next_active_insn (insn);
/* Delete the jump around the set. Note that we must do
this before we redirect the test jumps so that it won't
delete the code immediately following the assignment
we moved (which might be a jump). */
delete_insn (insn);
/* We either have two consecutive labels or a jump to
a jump, so adjust all the JUMP_INSNs to branch to where
INSN branches to. */
for (p = NEXT_INSN (p); p != next; p = NEXT_INSN (p))
if (GET_CODE (p) == JUMP_INSN)
redirect_jump (p, target);
changed = 1;
next = NEXT_INSN (insn);
continue;
}
}
/* Simplify if (...) { x = a; goto l; } x = b; by converting it
to x = a; if (...) goto l; x = b;
if A is sufficiently simple, the test doesn't involve X,
and nothing in the test modifies A or X.
If we have small register classes, we also can't do this if X
is a hard register.
If the "x = a;" insn has any REG_NOTES, we don't do this because
of the possibility that we are running after CSE and there is a
REG_EQUAL note that is only valid if the branch has already been
taken. If we move the insn with the REG_EQUAL note, we may
fold the comparison to always be false in a later CSE pass.
(We could also delete the REG_NOTES when moving the insn, but it
seems simpler to not move it.) An exception is that we can move
the insn if the only note is a REG_EQUAL or REG_EQUIV whose
value is the same as "a".
INSN is the goto.
We set:
TEMP to the jump insn preceding "x = a;"
TEMP1 to X
TEMP2 to the insn that sets "x = b;"
TEMP3 to the insn that sets "x = a;"
TEMP4 to the set of "x = a"; */
if (this_is_simplejump
&& (temp2 = next_active_insn (insn)) != 0
&& GET_CODE (temp2) == INSN
&& (temp4 = single_set (temp2)) != 0
&& GET_CODE (temp1 = SET_DEST (temp4)) == REG
&& (! SMALL_REGISTER_CLASSES
|| REGNO (temp1) >= FIRST_PSEUDO_REGISTER)
&& (temp3 = prev_active_insn (insn)) != 0
&& GET_CODE (temp3) == INSN
&& (temp4 = single_set (temp3)) != 0
&& rtx_equal_p (SET_DEST (temp4), temp1)
&& ! side_effects_p (SET_SRC (temp4))
&& ! may_trap_p (SET_SRC (temp4))
&& (REG_NOTES (temp3) == 0
|| ((REG_NOTE_KIND (REG_NOTES (temp3)) == REG_EQUAL
|| REG_NOTE_KIND (REG_NOTES (temp3)) == REG_EQUIV)
&& XEXP (REG_NOTES (temp3), 1) == 0
&& rtx_equal_p (XEXP (REG_NOTES (temp3), 0),
SET_SRC (temp4))))
&& (temp = prev_active_insn (temp3)) != 0
&& condjump_p (temp) && ! simplejump_p (temp)
/* TEMP must skip over the "x = a;" insn */
&& prev_real_insn (JUMP_LABEL (temp)) == insn
&& no_labels_between_p (temp, insn))
{
rtx prev_label = JUMP_LABEL (temp);
rtx insert_after = prev_nonnote_insn (temp);
#ifdef HAVE_cc0
/* We cannot insert anything between a set of cc and its use. */
if (insert_after && GET_RTX_CLASS (GET_CODE (insert_after)) == 'i'
&& sets_cc0_p (PATTERN (insert_after)))
insert_after = prev_nonnote_insn (insert_after);
#endif
++LABEL_NUSES (prev_label);
if (insert_after
&& no_labels_between_p (insert_after, temp)
&& ! reg_referenced_between_p (temp1, insert_after, temp3)
&& ! reg_referenced_between_p (temp1, temp3,
NEXT_INSN (temp2))
&& ! reg_set_between_p (temp1, insert_after, temp)
&& ! modified_between_p (SET_SRC (temp4), insert_after, temp)
/* Verify that registers used by the jump are not clobbered
by the instruction being moved. */
&& ! regs_set_between_p (PATTERN (temp),
PREV_INSN (temp3),
NEXT_INSN (temp3))
&& invert_jump (temp, JUMP_LABEL (insn)))
{
emit_insn_after_with_line_notes (PATTERN (temp3),
insert_after, temp3);
delete_insn (temp3);
delete_insn (insn);
/* Set NEXT to an insn that we know won't go away. */
next = temp2;
changed = 1;
}
if (prev_label && --LABEL_NUSES (prev_label) == 0)
delete_insn (prev_label);
if (changed)
continue;
}
#if !defined(HAVE_cc0) && !defined(HAVE_conditional_arithmetic)
/* If we have if (...) x = exp; and branches are expensive,
EXP is a single insn, does not have any side effects, cannot
trap, and is not too costly, convert this to
t = exp; if (...) x = t;
Don't do this when we have CC0 because it is unlikely to help
and we'd need to worry about where to place the new insn and
the potential for conflicts. We also can't do this when we have
notes on the insn for the same reason as above.
If we have conditional arithmetic, this will make this
harder to optimize later and isn't needed, so don't do it
in that case either.
We set:
TEMP to the "x = exp;" insn.
TEMP1 to the single set in the "x = exp;" insn.
TEMP2 to "x". */
if (! reload_completed
&& this_is_condjump && ! this_is_simplejump
&& BRANCH_COST >= 3
&& (temp = next_nonnote_insn (insn)) != 0
&& GET_CODE (temp) == INSN
&& REG_NOTES (temp) == 0
&& (reallabelprev == temp
|| ((temp2 = next_active_insn (temp)) != 0
&& simplejump_p (temp2)
&& JUMP_LABEL (temp2) == JUMP_LABEL (insn)))
&& (temp1 = single_set (temp)) != 0
&& (temp2 = SET_DEST (temp1), GET_CODE (temp2) == REG)
&& (! SMALL_REGISTER_CLASSES
|| REGNO (temp2) >= FIRST_PSEUDO_REGISTER)
&& GET_CODE (SET_SRC (temp1)) != REG
&& GET_CODE (SET_SRC (temp1)) != SUBREG
&& GET_CODE (SET_SRC (temp1)) != CONST_INT
&& ! side_effects_p (SET_SRC (temp1))
&& ! may_trap_p (SET_SRC (temp1))
&& rtx_cost (SET_SRC (temp1), SET) < 10)
{
rtx new = gen_reg_rtx (GET_MODE (temp2));
if ((temp3 = find_insert_position (insn, temp))
&& validate_change (temp, &SET_DEST (temp1), new, 0))
{
next = emit_insn_after (gen_move_insn (temp2, new), insn);
emit_insn_after_with_line_notes (PATTERN (temp),
PREV_INSN (temp3), temp);
delete_insn (temp);
reallabelprev = prev_active_insn (JUMP_LABEL (insn));
if (after_regscan)
{
reg_scan_update (temp3, NEXT_INSN (next), old_max_reg);
old_max_reg = max_reg_num ();
}
}
}
/* Similarly, if it takes two insns to compute EXP but they
have the same destination. Here TEMP3 will be the second
insn and TEMP4 the SET from that insn. */
if (! reload_completed
&& this_is_condjump && ! this_is_simplejump
&& BRANCH_COST >= 4
&& (temp = next_nonnote_insn (insn)) != 0
&& GET_CODE (temp) == INSN
&& REG_NOTES (temp) == 0
&& (temp3 = next_nonnote_insn (temp)) != 0
&& GET_CODE (temp3) == INSN
&& REG_NOTES (temp3) == 0
&& (reallabelprev == temp3
|| ((temp2 = next_active_insn (temp3)) != 0
&& simplejump_p (temp2)
&& JUMP_LABEL (temp2) == JUMP_LABEL (insn)))
&& (temp1 = single_set (temp)) != 0
&& (temp2 = SET_DEST (temp1), GET_CODE (temp2) == REG)
&& GET_MODE_CLASS (GET_MODE (temp2)) == MODE_INT
&& (! SMALL_REGISTER_CLASSES
|| REGNO (temp2) >= FIRST_PSEUDO_REGISTER)
&& ! side_effects_p (SET_SRC (temp1))
&& ! may_trap_p (SET_SRC (temp1))
&& rtx_cost (SET_SRC (temp1), SET) < 10
&& (temp4 = single_set (temp3)) != 0
&& rtx_equal_p (SET_DEST (temp4), temp2)
&& ! side_effects_p (SET_SRC (temp4))
&& ! may_trap_p (SET_SRC (temp4))
&& rtx_cost (SET_SRC (temp4), SET) < 10)
{
rtx new = gen_reg_rtx (GET_MODE (temp2));
if ((temp5 = find_insert_position (insn, temp))
&& (temp6 = find_insert_position (insn, temp3))
&& validate_change (temp, &SET_DEST (temp1), new, 0))
{
/* Use the earliest of temp5 and temp6. */
if (temp5 != insn)
temp6 = temp5;
next = emit_insn_after (gen_move_insn (temp2, new), insn);
emit_insn_after_with_line_notes (PATTERN (temp),
PREV_INSN (temp6), temp);
emit_insn_after_with_line_notes
(replace_rtx (PATTERN (temp3), temp2, new),
PREV_INSN (temp6), temp3);
delete_insn (temp);
delete_insn (temp3);
reallabelprev = prev_active_insn (JUMP_LABEL (insn));
if (after_regscan)
{
reg_scan_update (temp6, NEXT_INSN (next), old_max_reg);
old_max_reg = max_reg_num ();
}
}
}
/* Finally, handle the case where two insns are used to
compute EXP but a temporary register is used. Here we must
ensure that the temporary register is not used anywhere else. */
if (! reload_completed
&& after_regscan
&& this_is_condjump && ! this_is_simplejump
&& BRANCH_COST >= 4
&& (temp = next_nonnote_insn (insn)) != 0
&& GET_CODE (temp) == INSN
&& REG_NOTES (temp) == 0
&& (temp3 = next_nonnote_insn (temp)) != 0
&& GET_CODE (temp3) == INSN
&& REG_NOTES (temp3) == 0
&& (reallabelprev == temp3
|| ((temp2 = next_active_insn (temp3)) != 0
&& simplejump_p (temp2)
&& JUMP_LABEL (temp2) == JUMP_LABEL (insn)))
&& (temp1 = single_set (temp)) != 0
&& (temp5 = SET_DEST (temp1),
(GET_CODE (temp5) == REG
|| (GET_CODE (temp5) == SUBREG
&& (temp5 = SUBREG_REG (temp5),
GET_CODE (temp5) == REG))))
&& REGNO (temp5) >= FIRST_PSEUDO_REGISTER
&& REGNO_FIRST_UID (REGNO (temp5)) == INSN_UID (temp)
&& REGNO_LAST_UID (REGNO (temp5)) == INSN_UID (temp3)
&& ! side_effects_p (SET_SRC (temp1))
&& ! may_trap_p (SET_SRC (temp1))
&& rtx_cost (SET_SRC (temp1), SET) < 10
&& (temp4 = single_set (temp3)) != 0
&& (temp2 = SET_DEST (temp4), GET_CODE (temp2) == REG)
&& GET_MODE_CLASS (GET_MODE (temp2)) == MODE_INT
&& (! SMALL_REGISTER_CLASSES
|| REGNO (temp2) >= FIRST_PSEUDO_REGISTER)
&& rtx_equal_p (SET_DEST (temp4), temp2)
&& ! side_effects_p (SET_SRC (temp4))
&& ! may_trap_p (SET_SRC (temp4))
&& rtx_cost (SET_SRC (temp4), SET) < 10)
{
rtx new = gen_reg_rtx (GET_MODE (temp2));
if ((temp5 = find_insert_position (insn, temp))
&& (temp6 = find_insert_position (insn, temp3))
&& validate_change (temp3, &SET_DEST (temp4), new, 0))
{
/* Use the earliest of temp5 and temp6. */
if (temp5 != insn)
temp6 = temp5;
next = emit_insn_after (gen_move_insn (temp2, new), insn);
emit_insn_after_with_line_notes (PATTERN (temp),
PREV_INSN (temp6), temp);
emit_insn_after_with_line_notes (PATTERN (temp3),
PREV_INSN (temp6), temp3);
delete_insn (temp);
delete_insn (temp3);
reallabelprev = prev_active_insn (JUMP_LABEL (insn));
if (after_regscan)
{
reg_scan_update (temp6, NEXT_INSN (next), old_max_reg);
old_max_reg = max_reg_num ();
}
}
}
#endif /* HAVE_cc0 */
#ifdef HAVE_conditional_arithmetic
/* ??? This is disabled in genconfig, as this simple-minded
transformation can incredibly lengthen register lifetimes.
Consider this example from cexp.c's yyparse:
234 (set (pc)
(if_then_else (ne (reg:DI 149) (const_int 0 [0x0]))
(label_ref 248) (pc)))
237 (set (reg/i:DI 0 $0) (const_int 1 [0x1]))
239 (set (pc) (label_ref 2382))
248 (code_label ("yybackup"))
This will be transformed to:
237 (set (reg/i:DI 0 $0)
(if_then_else:DI (eq (reg:DI 149) (const_int 0 [0x0]))
(const_int 1 [0x1]) (reg/i:DI 0 $0)))
239 (set (pc)
(if_then_else (eq (reg:DI 149) (const_int 0 [0x0]))
(label_ref 2382) (pc)))
which, from this narrow viewpoint looks fine. Except that
between this and 3 other ocurrences of the same pattern, $0
is now live for basically the entire function, and we'll
get an abort in caller_save.
Any replacement for this code should recall that a set of
a register that is not live need not, and indeed should not,
be conditionalized. Either that, or delay the transformation
until after register allocation. */
/* See if this is a conditional jump around a small number of
instructions that we can conditionalize. Don't do this before
the initial CSE pass or after reload.
We reject any insns that have side effects or may trap.
Strictly speaking, this is not needed since the machine may
support conditionalizing these too, but we won't deal with that
now. Specifically, this means that we can't conditionalize a
CALL_INSN, which some machines, such as the ARC, can do, but
this is a very minor optimization. */
if (this_is_condjump && ! this_is_simplejump
&& cse_not_expected && optimize > 0 && ! reload_completed
&& BRANCH_COST > 2
&& can_reverse_comparison_p (XEXP (SET_SRC (PATTERN (insn)), 0),
insn))
{
rtx ourcond = XEXP (SET_SRC (PATTERN (insn)), 0);
int num_insns = 0;
char *storage = (char *) oballoc (0);
int last_insn = 0, failed = 0;
rtx changed_jump = 0;
ourcond = gen_rtx (reverse_condition (GET_CODE (ourcond)),
VOIDmode, XEXP (ourcond, 0),
XEXP (ourcond, 1));
/* Scan forward BRANCH_COST real insns looking for the JUMP_LABEL
of this insn. We see if we think we can conditionalize the
insns we pass. For now, we only deal with insns that have
one SET. We stop after an insn that modifies anything in
OURCOND, if we have too many insns, or if we have an insn
with a side effect or that may trip. Note that we will
be modifying any unconditional jumps we encounter to be
conditional; this will have the effect of also doing this
optimization on the "else" the next time around. */
for (temp1 = NEXT_INSN (insn);
num_insns <= BRANCH_COST && ! failed && temp1 != 0
&& GET_CODE (temp1) != CODE_LABEL;
temp1 = NEXT_INSN (temp1))
{
/* Ignore everything but an active insn. */
if (GET_RTX_CLASS (GET_CODE (temp1)) != 'i'
|| GET_CODE (PATTERN (temp1)) == USE
|| GET_CODE (PATTERN (temp1)) == CLOBBER)
continue;
/* If this was an unconditional jump, record it since we'll
need to remove the BARRIER if we succeed. We can only
have one such jump since there must be a label after
the BARRIER and it's either ours, in which case it's the
only one or some other, in which case we'd fail.
Likewise if it's a CALL_INSN followed by a BARRIER. */
if (simplejump_p (temp1)
|| (GET_CODE (temp1) == CALL_INSN
&& NEXT_INSN (temp1) != 0
&& GET_CODE (NEXT_INSN (temp1)) == BARRIER))
{
if (changed_jump == 0)
changed_jump = temp1;
else
changed_jump
= gen_rtx_INSN_LIST (VOIDmode, temp1, changed_jump);
}
/* See if we are allowed another insn and if this insn
if one we think we may be able to handle. */
if (++num_insns > BRANCH_COST
|| last_insn
|| (((temp2 = single_set (temp1)) == 0
|| side_effects_p (SET_SRC (temp2))
|| may_trap_p (SET_SRC (temp2)))
&& GET_CODE (temp1) != CALL_INSN))
failed = 1;
else if (temp2 != 0)
validate_change (temp1, &SET_SRC (temp2),
gen_rtx_IF_THEN_ELSE
(GET_MODE (SET_DEST (temp2)),
copy_rtx (ourcond),
SET_SRC (temp2), SET_DEST (temp2)),
1);
else
{
/* This is a CALL_INSN that doesn't have a SET. */
rtx *call_loc = &PATTERN (temp1);
if (GET_CODE (*call_loc) == PARALLEL)
call_loc = &XVECEXP (*call_loc, 0, 0);
validate_change (temp1, call_loc,
gen_rtx_IF_THEN_ELSE
(VOIDmode, copy_rtx (ourcond),
*call_loc, const0_rtx),
1);
}
if (modified_in_p (ourcond, temp1))
last_insn = 1;
}
/* If we've reached our jump label, haven't failed, and all
the changes above are valid, we can delete this jump
insn. Also remove a BARRIER after any jump that used
to be unconditional and remove any REG_EQUAL or REG_EQUIV
that might have previously been present on insns we
made conditional. */
if (temp1 == JUMP_LABEL (insn) && ! failed
&& apply_change_group ())
{
for (temp1 = NEXT_INSN (insn); temp1 != JUMP_LABEL (insn);
temp1 = NEXT_INSN (temp1))
if (GET_RTX_CLASS (GET_CODE (temp1)) == 'i')
for (temp2 = REG_NOTES (temp1); temp2 != 0;
temp2 = XEXP (temp2, 1))
if (REG_NOTE_KIND (temp2) == REG_EQUAL
|| REG_NOTE_KIND (temp2) == REG_EQUIV)
remove_note (temp1, temp2);
if (changed_jump != 0)
{
while (GET_CODE (changed_jump) == INSN_LIST)
{
delete_barrier (NEXT_INSN (XEXP (changed_jump, 0)));
changed_jump = XEXP (changed_jump, 1);
}
delete_barrier (NEXT_INSN (changed_jump));
}
delete_insn (insn);
changed = 1;
continue;
}
else
{
cancel_changes (0);
obfree (storage);
}
}
#endif
/* If branches are expensive, convert
if (foo) bar++; to bar += (foo != 0);
and similarly for "bar--;"
INSN is the conditional branch around the arithmetic. We set:
TEMP is the arithmetic insn.
TEMP1 is the SET doing the arithmetic.
TEMP2 is the operand being incremented or decremented.
TEMP3 to the condition being tested.
TEMP4 to the earliest insn used to find the condition. */
if ((BRANCH_COST >= 2
#ifdef HAVE_incscc
|| HAVE_incscc
#endif
#ifdef HAVE_decscc
|| HAVE_decscc
#endif
)
&& ! reload_completed
&& this_is_condjump && ! this_is_simplejump
&& (temp = next_nonnote_insn (insn)) != 0
&& (temp1 = single_set (temp)) != 0
&& (temp2 = SET_DEST (temp1),
GET_MODE_CLASS (GET_MODE (temp2)) == MODE_INT)
&& GET_CODE (SET_SRC (temp1)) == PLUS
&& (XEXP (SET_SRC (temp1), 1) == const1_rtx
|| XEXP (SET_SRC (temp1), 1) == constm1_rtx)
&& rtx_equal_p (temp2, XEXP (SET_SRC (temp1), 0))
&& ! side_effects_p (temp2)
&& ! may_trap_p (temp2)
/* INSN must either branch to the insn after TEMP or the insn
after TEMP must branch to the same place as INSN. */
&& (reallabelprev == temp
|| ((temp3 = next_active_insn (temp)) != 0
&& simplejump_p (temp3)
&& JUMP_LABEL (temp3) == JUMP_LABEL (insn)))
&& (temp3 = get_condition (insn, &temp4)) != 0
/* We must be comparing objects whose modes imply the size.
We could handle BLKmode if (1) emit_store_flag could
and (2) we could find the size reliably. */
&& GET_MODE (XEXP (temp3, 0)) != BLKmode
&& can_reverse_comparison_p (temp3, insn))
{
rtx temp6, target = 0, seq, init_insn = 0, init = temp2;
enum rtx_code code = reverse_condition (GET_CODE (temp3));
start_sequence ();
/* It must be the case that TEMP2 is not modified in the range
[TEMP4, INSN). The one exception we make is if the insn
before INSN sets TEMP2 to something which is also unchanged
in that range. In that case, we can move the initialization
into our sequence. */
if ((temp5 = prev_active_insn (insn)) != 0
&& no_labels_between_p (temp5, insn)
&& GET_CODE (temp5) == INSN
&& (temp6 = single_set (temp5)) != 0
&& rtx_equal_p (temp2, SET_DEST (temp6))
&& (CONSTANT_P (SET_SRC (temp6))
|| GET_CODE (SET_SRC (temp6)) == REG
|| GET_CODE (SET_SRC (temp6)) == SUBREG))
{
emit_insn (PATTERN (temp5));
init_insn = temp5;
init = SET_SRC (temp6);
}
if (CONSTANT_P (init)
|| ! reg_set_between_p (init, PREV_INSN (temp4), insn))
target = emit_store_flag (gen_reg_rtx (GET_MODE (temp2)), code,
XEXP (temp3, 0), XEXP (temp3, 1),
VOIDmode,
(code == LTU || code == LEU
|| code == GTU || code == GEU), 1);
/* If we can do the store-flag, do the addition or
subtraction. */
if (target)
target = expand_binop (GET_MODE (temp2),
(XEXP (SET_SRC (temp1), 1) == const1_rtx
? add_optab : sub_optab),
temp2, target, temp2, 0, OPTAB_WIDEN);
if (target != 0)
{
/* Put the result back in temp2 in case it isn't already.
Then replace the jump, possible a CC0-setting insn in
front of the jump, and TEMP, with the sequence we have
made. */
if (target != temp2)
emit_move_insn (temp2, target);
seq = get_insns ();
end_sequence ();
emit_insns_before (seq, temp4);
delete_insn (temp);
if (init_insn)
delete_insn (init_insn);
next = NEXT_INSN (insn);
#ifdef HAVE_cc0
delete_insn (prev_nonnote_insn (insn));
#endif
delete_insn (insn);
if (after_regscan)
{
reg_scan_update (seq, NEXT_INSN (next), old_max_reg);
old_max_reg = max_reg_num ();
}
changed = 1;
continue;
}
else
end_sequence ();
}
/* Try to use a conditional move (if the target has them), or a
store-flag insn. If the target has conditional arithmetic as
well as conditional move, the above code will have done something.
Note that we prefer the above code since it is more general: the
code below can make changes that require work to undo.
The general case here is:
1) x = a; if (...) x = b; and
2) if (...) x = b;
If the jump would be faster, the machine should not have defined
the movcc or scc insns!. These cases are often made by the
previous optimization.
The second case is treated as x = x; if (...) x = b;.
INSN here is the jump around the store. We set:
TEMP to the "x op= b;" insn.
TEMP1 to X.
TEMP2 to B.
TEMP3 to A (X in the second case).
TEMP4 to the condition being tested.
TEMP5 to the earliest insn used to find the condition.
TEMP6 to the SET of TEMP. */
if (/* We can't do this after reload has completed. */
! reload_completed
#ifdef HAVE_conditional_arithmetic
/* Defer this until after CSE so the above code gets the
first crack at it. */
&& cse_not_expected
#endif
&& this_is_condjump && ! this_is_simplejump
/* Set TEMP to the "x = b;" insn. */
&& (temp = next_nonnote_insn (insn)) != 0
&& GET_CODE (temp) == INSN
&& (temp6 = single_set (temp)) != NULL_RTX
&& GET_CODE (temp1 = SET_DEST (temp6)) == REG
&& (! SMALL_REGISTER_CLASSES
|| REGNO (temp1) >= FIRST_PSEUDO_REGISTER)
&& ! side_effects_p (temp2 = SET_SRC (temp6))
&& ! may_trap_p (temp2)
/* Allow either form, but prefer the former if both apply.
There is no point in using the old value of TEMP1 if
it is a register, since cse will alias them. It can
lose if the old value were a hard register since CSE
won't replace hard registers. Avoid using TEMP3 if
small register classes and it is a hard register. */
&& (((temp3 = reg_set_last (temp1, insn)) != 0
&& ! (SMALL_REGISTER_CLASSES && GET_CODE (temp3) == REG
&& REGNO (temp3) < FIRST_PSEUDO_REGISTER))
/* Make the latter case look like x = x; if (...) x = b; */
|| (temp3 = temp1, 1))
/* INSN must either branch to the insn after TEMP or the insn
after TEMP must branch to the same place as INSN. */
&& (reallabelprev == temp
|| ((temp4 = next_active_insn (temp)) != 0
&& simplejump_p (temp4)
&& JUMP_LABEL (temp4) == JUMP_LABEL (insn)))
&& (temp4 = get_condition (insn, &temp5)) != 0
/* We must be comparing objects whose modes imply the size.
We could handle BLKmode if (1) emit_store_flag could
and (2) we could find the size reliably. */
&& GET_MODE (XEXP (temp4, 0)) != BLKmode
/* Even if branches are cheap, the store_flag optimization
can win when the operation to be performed can be
expressed directly. */
#ifdef HAVE_cc0
/* If the previous insn sets CC0 and something else, we can't
do this since we are going to delete that insn. */
&& ! ((temp6 = prev_nonnote_insn (insn)) != 0
&& GET_CODE (temp6) == INSN
&& (sets_cc0_p (PATTERN (temp6)) == -1
|| (sets_cc0_p (PATTERN (temp6)) == 1
&& FIND_REG_INC_NOTE (temp6, NULL_RTX))))
#endif
)
{
#ifdef HAVE_conditional_move
/* First try a conditional move. */
{
enum rtx_code code = GET_CODE (temp4);
rtx var = temp1;
rtx cond0, cond1, aval, bval;
rtx target, new_insn;
/* Copy the compared variables into cond0 and cond1, so that
any side effects performed in or after the old comparison,
will not affect our compare which will come later. */
/* ??? Is it possible to just use the comparison in the jump
insn? After all, we're going to delete it. We'd have
to modify emit_conditional_move to take a comparison rtx
instead or write a new function. */
cond0 = gen_reg_rtx (GET_MODE (XEXP (temp4, 0)));
/* We want the target to be able to simplify comparisons with
zero (and maybe other constants as well), so don't create
pseudos for them. There's no need to either. */
if (GET_CODE (XEXP (temp4, 1)) == CONST_INT
|| GET_CODE (XEXP (temp4, 1)) == CONST_DOUBLE)
cond1 = XEXP (temp4, 1);
else
cond1 = gen_reg_rtx (GET_MODE (XEXP (temp4, 1)));
/* Careful about copying these values -- an IOR or what may
need to do other things, like clobber flags. */
/* ??? Assume for the moment that AVAL is ok. */
aval = temp3;
start_sequence ();
/* We're dealing with a single_set insn with no side effects
on SET_SRC. We do need to be reasonably certain that if
we need to force BVAL into a register that we won't
clobber the flags -- general_operand should suffice. */
if (general_operand (temp2, GET_MODE (var)))
bval = temp2;
else
{
bval = gen_reg_rtx (GET_MODE (var));
new_insn = copy_rtx (temp);
temp6 = single_set (new_insn);
SET_DEST (temp6) = bval;
emit_insn (PATTERN (new_insn));
}
target = emit_conditional_move (var, code,
cond0, cond1, VOIDmode,
aval, bval, GET_MODE (var),
(code == LTU || code == GEU
|| code == LEU || code == GTU));
if (target)
{
rtx seq1, seq2, last;
int copy_ok;
/* Save the conditional move sequence but don't emit it
yet. On some machines, like the alpha, it is possible
that temp5 == insn, so next generate the sequence that
saves the compared values and then emit both
sequences ensuring seq1 occurs before seq2. */
seq2 = get_insns ();
end_sequence ();
/* "Now that we can't fail..." Famous last words.
Generate the copy insns that preserve the compared
values. */
start_sequence ();
emit_move_insn (cond0, XEXP (temp4, 0));
if (cond1 != XEXP (temp4, 1))
emit_move_insn (cond1, XEXP (temp4, 1));
seq1 = get_insns ();
end_sequence ();
/* Validate the sequence -- this may be some weird
bit-extract-and-test instruction for which there
exists no complimentary bit-extract insn. */
copy_ok = 1;
for (last = seq1; last ; last = NEXT_INSN (last))
if (recog_memoized (last) < 0)
{
copy_ok = 0;
break;
}
if (copy_ok)
{
emit_insns_before (seq1, temp5);
/* Insert conditional move after insn, to be sure
that the jump and a possible compare won't be
separated. */
last = emit_insns_after (seq2, insn);
/* ??? We can also delete the insn that sets X to A.
Flow will do it too though. */
delete_insn (temp);
next = NEXT_INSN (insn);
delete_jump (insn);
if (after_regscan)
{
reg_scan_update (seq1, NEXT_INSN (last),
old_max_reg);
old_max_reg = max_reg_num ();
}
changed = 1;
continue;
}
}
else
end_sequence ();
}
#endif
/* That didn't work, try a store-flag insn.
We further divide the cases into:
1) x = a; if (...) x = b; and either A or B is zero,
2) if (...) x = 0; and jumps are expensive,
3) x = a; if (...) x = b; and A and B are constants where all
the set bits in A are also set in B and jumps are expensive,
4) x = a; if (...) x = b; and A and B non-zero, and jumps are
more expensive, and
5) if (...) x = b; if jumps are even more expensive. */
if (GET_MODE_CLASS (GET_MODE (temp1)) == MODE_INT
/* We will be passing this as operand into expand_and. No
good if it's not valid as an operand. */
&& general_operand (temp2, GET_MODE (temp2))
&& ((GET_CODE (temp3) == CONST_INT)
/* Make the latter case look like
x = x; if (...) x = 0; */
|| (temp3 = temp1,
((BRANCH_COST >= 2
&& temp2 == const0_rtx)
|| BRANCH_COST >= 3)))
/* If B is zero, OK; if A is zero, can only do (1) if we
can reverse the condition. See if (3) applies possibly
by reversing the condition. Prefer reversing to (4) when
branches are very expensive. */
&& (((BRANCH_COST >= 2
|| STORE_FLAG_VALUE == -1
|| (STORE_FLAG_VALUE == 1
/* Check that the mask is a power of two,
so that it can probably be generated
with a shift. */
&& GET_CODE (temp3) == CONST_INT
&& exact_log2 (INTVAL (temp3)) >= 0))
&& (reversep = 0, temp2 == const0_rtx))
|| ((BRANCH_COST >= 2
|| STORE_FLAG_VALUE == -1
|| (STORE_FLAG_VALUE == 1
&& GET_CODE (temp2) == CONST_INT
&& exact_log2 (INTVAL (temp2)) >= 0))
&& temp3 == const0_rtx
&& (reversep = can_reverse_comparison_p (temp4, insn)))
|| (BRANCH_COST >= 2
&& GET_CODE (temp2) == CONST_INT
&& GET_CODE (temp3) == CONST_INT
&& ((INTVAL (temp2) & INTVAL (temp3)) == INTVAL (temp2)
|| ((INTVAL (temp2) & INTVAL (temp3)) == INTVAL (temp3)
&& (reversep = can_reverse_comparison_p (temp4,
insn)))))
|| BRANCH_COST >= 3)
)
{
enum rtx_code code = GET_CODE (temp4);
rtx uval, cval, var = temp1;
int normalizep;
rtx target;
/* If necessary, reverse the condition. */
if (reversep)
code = reverse_condition (code), uval = temp2, cval = temp3;
else
uval = temp3, cval = temp2;
/* If CVAL is non-zero, normalize to -1. Otherwise, if UVAL
is the constant 1, it is best to just compute the result
directly. If UVAL is constant and STORE_FLAG_VALUE
includes all of its bits, it is best to compute the flag
value unnormalized and `and' it with UVAL. Otherwise,
normalize to -1 and `and' with UVAL. */
normalizep = (cval != const0_rtx ? -1
: (uval == const1_rtx ? 1
: (GET_CODE (uval) == CONST_INT
&& (INTVAL (uval) & ~STORE_FLAG_VALUE) == 0)
? 0 : -1));
/* We will be putting the store-flag insn immediately in
front of the comparison that was originally being done,
so we know all the variables in TEMP4 will be valid.
However, this might be in front of the assignment of
A to VAR. If it is, it would clobber the store-flag
we will be emitting.
Therefore, emit into a temporary which will be copied to
VAR immediately after TEMP. */
start_sequence ();
target = emit_store_flag (gen_reg_rtx (GET_MODE (var)), code,
XEXP (temp4, 0), XEXP (temp4, 1),
VOIDmode,
(code == LTU || code == LEU
|| code == GEU || code == GTU),
normalizep);
if (target)
{
rtx seq;
rtx before = insn;
seq = get_insns ();
end_sequence ();
/* Put the store-flag insns in front of the first insn
used to compute the condition to ensure that we
use the same values of them as the current
comparison. However, the remainder of the insns we
generate will be placed directly in front of the
jump insn, in case any of the pseudos we use
are modified earlier. */
emit_insns_before (seq, temp5);
start_sequence ();
/* Both CVAL and UVAL are non-zero. */
if (cval != const0_rtx && uval != const0_rtx)
{
rtx tem1, tem2;
tem1 = expand_and (uval, target, NULL_RTX);
if (GET_CODE (cval) == CONST_INT
&& GET_CODE (uval) == CONST_INT
&& (INTVAL (cval) & INTVAL (uval)) == INTVAL (cval))
tem2 = cval;
else
{
tem2 = expand_unop (GET_MODE (var), one_cmpl_optab,
target, NULL_RTX, 0);
tem2 = expand_and (cval, tem2,
(GET_CODE (tem2) == REG
? tem2 : 0));
}
/* If we usually make new pseudos, do so here. This
turns out to help machines that have conditional
move insns. */
/* ??? Conditional moves have already been handled.
This may be obsolete. */
if (flag_expensive_optimizations)
target = 0;
target = expand_binop (GET_MODE (var), ior_optab,
tem1, tem2, target,
1, OPTAB_WIDEN);
}
else if (normalizep != 1)
{
/* We know that either CVAL or UVAL is zero. If
UVAL is zero, negate TARGET and `and' with CVAL.
Otherwise, `and' with UVAL. */
if (uval == const0_rtx)
{
target = expand_unop (GET_MODE (var), one_cmpl_optab,
target, NULL_RTX, 0);
uval = cval;
}
target = expand_and (uval, target,
(GET_CODE (target) == REG
&& ! preserve_subexpressions_p ()
? target : NULL_RTX));
}
emit_move_insn (var, target);
seq = get_insns ();
end_sequence ();
#ifdef HAVE_cc0
/* If INSN uses CC0, we must not separate it from the
insn that sets cc0. */
if (reg_mentioned_p (cc0_rtx, PATTERN (before)))
before = prev_nonnote_insn (before);
#endif
emit_insns_before (seq, before);
delete_insn (temp);
next = NEXT_INSN (insn);
delete_jump (insn);
if (after_regscan)
{
reg_scan_update (seq, NEXT_INSN (next), old_max_reg);
old_max_reg = max_reg_num ();
}
changed = 1;
continue;
}
else
end_sequence ();
}
}
/* Simplify if (...) x = 1; else {...} if (x) ...
We recognize this case scanning backwards as well.
TEMP is the assignment to x;
TEMP1 is the label at the head of the second if. */
/* ?? This should call get_condition to find the values being
compared, instead of looking for a COMPARE insn when HAVE_cc0
is not defined. This would allow it to work on the m88k. */
/* ?? This optimization is only safe before cse is run if HAVE_cc0
is not defined and the condition is tested by a separate compare
insn. This is because the code below assumes that the result
of the compare dies in the following branch.
Not only that, but there might be other insns between the
compare and branch whose results are live. Those insns need
to be executed.
A way to fix this is to move the insns at JUMP_LABEL (insn)
to before INSN. If we are running before flow, they will
be deleted if they aren't needed. But this doesn't work
well after flow.
This is really a special-case of jump threading, anyway. The
right thing to do is to replace this and jump threading with
much simpler code in cse.
This code has been turned off in the non-cc0 case in the
meantime. */
#ifdef HAVE_cc0
else if (this_is_simplejump
/* Safe to skip USE and CLOBBER insns here
since they will not be deleted. */
&& (temp = prev_active_insn (insn))
&& no_labels_between_p (temp, insn)
&& GET_CODE (temp) == INSN
&& GET_CODE (PATTERN (temp)) == SET
&& GET_CODE (SET_DEST (PATTERN (temp))) == REG
&& CONSTANT_P (SET_SRC (PATTERN (temp)))
&& (temp1 = next_active_insn (JUMP_LABEL (insn)))
/* If we find that the next value tested is `x'
(TEMP1 is the insn where this happens), win. */
&& GET_CODE (temp1) == INSN
&& GET_CODE (PATTERN (temp1)) == SET
#ifdef HAVE_cc0
/* Does temp1 `tst' the value of x? */
&& SET_SRC (PATTERN (temp1)) == SET_DEST (PATTERN (temp))
&& SET_DEST (PATTERN (temp1)) == cc0_rtx
&& (temp1 = next_nonnote_insn (temp1))
#else
/* Does temp1 compare the value of x against zero? */
&& GET_CODE (SET_SRC (PATTERN (temp1))) == COMPARE
&& XEXP (SET_SRC (PATTERN (temp1)), 1) == const0_rtx
&& (XEXP (SET_SRC (PATTERN (temp1)), 0)
== SET_DEST (PATTERN (temp)))
&& GET_CODE (SET_DEST (PATTERN (temp1))) == REG
&& (temp1 = find_next_ref (SET_DEST (PATTERN (temp1)), temp1))
#endif
&& condjump_p (temp1))
{
/* Get the if_then_else from the condjump. */
rtx choice = SET_SRC (PATTERN (temp1));
if (GET_CODE (choice) == IF_THEN_ELSE)
{
enum rtx_code code = GET_CODE (XEXP (choice, 0));
rtx val = SET_SRC (PATTERN (temp));
rtx cond
= simplify_relational_operation (code, GET_MODE (SET_DEST (PATTERN (temp))),
val, const0_rtx);
rtx ultimate;
if (cond == const_true_rtx)
ultimate = XEXP (choice, 1);
else if (cond == const0_rtx)
ultimate = XEXP (choice, 2);
else
ultimate = 0;
if (ultimate == pc_rtx)
ultimate = get_label_after (temp1);
else if (ultimate && GET_CODE (ultimate) != RETURN)
ultimate = XEXP (ultimate, 0);
if (ultimate && JUMP_LABEL(insn) != ultimate)
changed |= redirect_jump (insn, ultimate);
}
}
#endif
#if 0
/* @@ This needs a bit of work before it will be right.
Any type of comparison can be accepted for the first and
second compare. When rewriting the first jump, we must
compute the what conditions can reach label3, and use the
appropriate code. We can not simply reverse/swap the code
of the first jump. In some cases, the second jump must be
rewritten also.
For example,
< == converts to > ==
< != converts to == >
etc.
If the code is written to only accept an '==' test for the second
compare, then all that needs to be done is to swap the condition
of the first branch.
It is questionable whether we want this optimization anyways,
since if the user wrote code like this because he/she knew that
the jump to label1 is taken most of the time, then rewriting
this gives slower code. */
/* @@ This should call get_condition to find the values being
compared, instead of looking for a COMPARE insn when HAVE_cc0
is not defined. This would allow it to work on the m88k. */
/* @@ This optimization is only safe before cse is run if HAVE_cc0
is not defined and the condition is tested by a separate compare
insn. This is because the code below assumes that the result
of the compare dies in the following branch. */
/* Simplify test a ~= b
condjump label1;
test a == b
condjump label2;
jump label3;
label1:
rewriting as
test a ~~= b
condjump label3
test a == b
condjump label2
label1:
where ~= is an inequality, e.g. >, and ~~= is the swapped
inequality, e.g. <.
We recognize this case scanning backwards.
TEMP is the conditional jump to `label2';
TEMP1 is the test for `a == b';
TEMP2 is the conditional jump to `label1';
TEMP3 is the test for `a ~= b'. */
else if (this_is_simplejump
&& (temp = prev_active_insn (insn))
&& no_labels_between_p (temp, insn)
&& condjump_p (temp)
&& (temp1 = prev_active_insn (temp))
&& no_labels_between_p (temp1, temp)
&& GET_CODE (temp1) == INSN
&& GET_CODE (PATTERN (temp1)) == SET
#ifdef HAVE_cc0
&& sets_cc0_p (PATTERN (temp1)) == 1
#else
&& GET_CODE (SET_SRC (PATTERN (temp1))) == COMPARE
&& GET_CODE (SET_DEST (PATTERN (temp1))) == REG
&& (temp == find_next_ref (SET_DEST (PATTERN (temp1)), temp1))
#endif
&& (temp2 = prev_active_insn (temp1))
&& no_labels_between_p (temp2, temp1)
&& condjump_p (temp2)
&& JUMP_LABEL (temp2) == next_nonnote_insn (NEXT_INSN (insn))
&& (temp3 = prev_active_insn (temp2))
&& no_labels_between_p (temp3, temp2)
&& GET_CODE (PATTERN (temp3)) == SET
&& rtx_equal_p (SET_DEST (PATTERN (temp3)),
SET_DEST (PATTERN (temp1)))
&& rtx_equal_p (SET_SRC (PATTERN (temp1)),
SET_SRC (PATTERN (temp3)))
&& ! inequality_comparisons_p (PATTERN (temp))
&& inequality_comparisons_p (PATTERN (temp2)))
{
rtx fallthrough_label = JUMP_LABEL (temp2);
++LABEL_NUSES (fallthrough_label);
if (swap_jump (temp2, JUMP_LABEL (insn)))
{
delete_insn (insn);
changed = 1;
}
if (--LABEL_NUSES (fallthrough_label) == 0)
delete_insn (fallthrough_label);
}
#endif
/* Simplify if (...) {... x = 1;} if (x) ...
We recognize this case backwards.
TEMP is the test of `x';
TEMP1 is the assignment to `x' at the end of the
previous statement. */
/* @@ This should call get_condition to find the values being
compared, instead of looking for a COMPARE insn when HAVE_cc0
is not defined. This would allow it to work on the m88k. */
/* @@ This optimization is only safe before cse is run if HAVE_cc0
is not defined and the condition is tested by a separate compare
insn. This is because the code below assumes that the result
of the compare dies in the following branch. */
/* ??? This has to be turned off. The problem is that the
unconditional jump might indirectly end up branching to the
label between TEMP1 and TEMP. We can't detect this, in general,
since it may become a jump to there after further optimizations.
If that jump is done, it will be deleted, so we will retry
this optimization in the next pass, thus an infinite loop.
The present code prevents this by putting the jump after the
label, but this is not logically correct. */
#if 0
else if (this_is_condjump
/* Safe to skip USE and CLOBBER insns here
since they will not be deleted. */
&& (temp = prev_active_insn (insn))
&& no_labels_between_p (temp, insn)
&& GET_CODE (temp) == INSN
&& GET_CODE (PATTERN (temp)) == SET
#ifdef HAVE_cc0
&& sets_cc0_p (PATTERN (temp)) == 1
&& GET_CODE (SET_SRC (PATTERN (temp))) == REG
#else
/* Temp must be a compare insn, we can not accept a register
to register move here, since it may not be simply a
tst insn. */
&& GET_CODE (SET_SRC (PATTERN (temp))) == COMPARE
&& XEXP (SET_SRC (PATTERN (temp)), 1) == const0_rtx
&& GET_CODE (XEXP (SET_SRC (PATTERN (temp)), 0)) == REG
&& GET_CODE (SET_DEST (PATTERN (temp))) == REG
&& insn == find_next_ref (SET_DEST (PATTERN (temp)), temp)
#endif
/* May skip USE or CLOBBER insns here
for checking for opportunity, since we
take care of them later. */
&& (temp1 = prev_active_insn (temp))
&& GET_CODE (temp1) == INSN
&& GET_CODE (PATTERN (temp1)) == SET
#ifdef HAVE_cc0
&& SET_SRC (PATTERN (temp)) == SET_DEST (PATTERN (temp1))
#else
&& (XEXP (SET_SRC (PATTERN (temp)), 0)
== SET_DEST (PATTERN (temp1)))
#endif
&& CONSTANT_P (SET_SRC (PATTERN (temp1)))
/* If this isn't true, cse will do the job. */
&& ! no_labels_between_p (temp1, temp))
{
/* Get the if_then_else from the condjump. */
rtx choice = SET_SRC (PATTERN (insn));
if (GET_CODE (choice) == IF_THEN_ELSE
&& (GET_CODE (XEXP (choice, 0)) == EQ
|| GET_CODE (XEXP (choice, 0)) == NE))
{
int want_nonzero = (GET_CODE (XEXP (choice, 0)) == NE);
rtx last_insn;
rtx ultimate;
rtx p;
/* Get the place that condjump will jump to
if it is reached from here. */
if ((SET_SRC (PATTERN (temp1)) != const0_rtx)
== want_nonzero)
ultimate = XEXP (choice, 1);
else
ultimate = XEXP (choice, 2);
/* Get it as a CODE_LABEL. */
if (ultimate == pc_rtx)
ultimate = get_label_after (insn);
else
/* Get the label out of the LABEL_REF. */
ultimate = XEXP (ultimate, 0);
/* Insert the jump immediately before TEMP, specifically
after the label that is between TEMP1 and TEMP. */
last_insn = PREV_INSN (temp);
/* If we would be branching to the next insn, the jump
would immediately be deleted and the re-inserted in
a subsequent pass over the code. So don't do anything
in that case. */
if (next_active_insn (last_insn)
!= next_active_insn (ultimate))
{
emit_barrier_after (last_insn);
p = emit_jump_insn_after (gen_jump (ultimate),
last_insn);
JUMP_LABEL (p) = ultimate;
++LABEL_NUSES (ultimate);
if (INSN_UID (ultimate) < max_jump_chain
&& INSN_CODE (p) < max_jump_chain)
{
jump_chain[INSN_UID (p)]
= jump_chain[INSN_UID (ultimate)];
jump_chain[INSN_UID (ultimate)] = p;
}
changed = 1;
continue;
}
}
}
#endif
#ifdef HAVE_trap
/* Detect a conditional jump jumping over an unconditional trap. */
else if (HAVE_trap
&& this_is_condjump && ! this_is_simplejump
&& reallabelprev != 0
&& GET_CODE (reallabelprev) == INSN
&& GET_CODE (PATTERN (reallabelprev)) == TRAP_IF
&& TRAP_CONDITION (PATTERN (reallabelprev)) == const_true_rtx
&& prev_active_insn (reallabelprev) == insn
&& no_labels_between_p (insn, reallabelprev)
&& (temp2 = get_condition (insn, &temp4))
&& can_reverse_comparison_p (temp2, insn))
{
rtx new = gen_cond_trap (reverse_condition (GET_CODE (temp2)),
XEXP (temp2, 0), XEXP (temp2, 1),
TRAP_CODE (PATTERN (reallabelprev)));
if (new)
{
emit_insn_before (new, temp4);
delete_insn (reallabelprev);
delete_jump (insn);
changed = 1;
continue;
}
}
/* Detect a jump jumping to an unconditional trap. */
else if (HAVE_trap && this_is_condjump
&& (temp = next_active_insn (JUMP_LABEL (insn)))
&& GET_CODE (temp) == INSN
&& GET_CODE (PATTERN (temp)) == TRAP_IF
&& (this_is_simplejump
|| (temp2 = get_condition (insn, &temp4))))
{
rtx tc = TRAP_CONDITION (PATTERN (temp));
if (tc == const_true_rtx
|| (! this_is_simplejump && rtx_equal_p (temp2, tc)))
{
rtx new;
/* Replace an unconditional jump to a trap with a trap. */
if (this_is_simplejump)
{
emit_barrier_after (emit_insn_before (gen_trap (), insn));
delete_jump (insn);
changed = 1;
continue;
}
new = gen_cond_trap (GET_CODE (temp2), XEXP (temp2, 0),
XEXP (temp2, 1),
TRAP_CODE (PATTERN (temp)));
if (new)
{
emit_insn_before (new, temp4);
delete_jump (insn);
changed = 1;
continue;
}
}
/* If the trap condition and jump condition are mutually
exclusive, redirect the jump to the following insn. */
else if (GET_RTX_CLASS (GET_CODE (tc)) == '<'
&& ! this_is_simplejump
&& swap_condition (GET_CODE (temp2)) == GET_CODE (tc)
&& rtx_equal_p (XEXP (tc, 0), XEXP (temp2, 0))
&& rtx_equal_p (XEXP (tc, 1), XEXP (temp2, 1))
&& redirect_jump (insn, get_label_after (temp)))
{
changed = 1;
continue;
}
}
#endif
else
{
/* Detect a jump to a jump. */
/* Look for if (foo) bar; else break; */
/* The insns look like this:
insn = condjump label1;
...range1 (some insns)...
jump label2;
label1:
...range2 (some insns)...
jump somewhere unconditionally
label2: */
{
rtx label1 = next_label (insn);
rtx range1end = label1 ? prev_active_insn (label1) : 0;
/* Don't do this optimization on the first round, so that
jump-around-a-jump gets simplified before we ask here
whether a jump is unconditional.
Also don't do it when we are called after reload since
it will confuse reorg. */
if (! first
&& (reload_completed ? ! flag_delayed_branch : 1)
/* Make sure INSN is something we can invert. */
&& condjump_p (insn)
&& label1 != 0
&& JUMP_LABEL (insn) == label1
&& LABEL_NUSES (label1) == 1
&& GET_CODE (range1end) == JUMP_INSN
&& simplejump_p (range1end))
{
rtx label2 = next_label (label1);
rtx range2end = label2 ? prev_active_insn (label2) : 0;
if (range1end != range2end
&& JUMP_LABEL (range1end) == label2
&& GET_CODE (range2end) == JUMP_INSN
&& GET_CODE (NEXT_INSN (range2end)) == BARRIER
/* Invert the jump condition, so we
still execute the same insns in each case. */
&& invert_jump (insn, label1))
{
rtx range1beg = next_active_insn (insn);
rtx range2beg = next_active_insn (label1);
rtx range1after, range2after;
rtx range1before, range2before;
rtx rangenext;
/* Include in each range any notes before it, to be
sure that we get the line number note if any, even
if there are other notes here. */
while (PREV_INSN (range1beg)
&& GET_CODE (PREV_INSN (range1beg)) == NOTE)
range1beg = PREV_INSN (range1beg);
while (PREV_INSN (range2beg)
&& GET_CODE (PREV_INSN (range2beg)) == NOTE)
range2beg = PREV_INSN (range2beg);
/* Don't move NOTEs for blocks or loops; shift them
outside the ranges, where they'll stay put. */
range1beg = squeeze_notes (range1beg, range1end);
range2beg = squeeze_notes (range2beg, range2end);
/* Get current surrounds of the 2 ranges. */
range1before = PREV_INSN (range1beg);
range2before = PREV_INSN (range2beg);
range1after = NEXT_INSN (range1end);
range2after = NEXT_INSN (range2end);
/* Splice range2 where range1 was. */
NEXT_INSN (range1before) = range2beg;
PREV_INSN (range2beg) = range1before;
NEXT_INSN (range2end) = range1after;
PREV_INSN (range1after) = range2end;
/* Splice range1 where range2 was. */
NEXT_INSN (range2before) = range1beg;
PREV_INSN (range1beg) = range2before;
NEXT_INSN (range1end) = range2after;
PREV_INSN (range2after) = range1end;
/* Check for loop notes between the end of
range2, and the next code label. If there is one,
then what we have really seen is
if (foo) break; end_of_loop;
and moved the break sequence outside the loop.
We must move LOOP_END, LOOP_VTOP and LOOP_CONT
notes (in order) to where the loop really ends now,
or we will confuse loop optimization. Stop if we
find a LOOP_BEG note first, since we don't want to
move the notes in that case. */
for (;range2after != label2; range2after = rangenext)
{
rangenext = NEXT_INSN (range2after);
if (GET_CODE (range2after) == NOTE)
{
int kind = NOTE_LINE_NUMBER (range2after);
if (kind == NOTE_INSN_LOOP_END
|| kind == NOTE_INSN_LOOP_VTOP
|| kind == NOTE_INSN_LOOP_CONT)
{
NEXT_INSN (PREV_INSN (range2after))
= rangenext;
PREV_INSN (rangenext)
= PREV_INSN (range2after);
PREV_INSN (range2after)
= PREV_INSN (range1beg);
NEXT_INSN (range2after) = range1beg;
NEXT_INSN (PREV_INSN (range1beg))
= range2after;
PREV_INSN (range1beg) = range2after;
}
else if (NOTE_LINE_NUMBER (range2after)
== NOTE_INSN_LOOP_BEG)
break;
}
}
changed = 1;
continue;
}
}
}
/* Now that the jump has been tensioned,
try cross jumping: check for identical code
before the jump and before its target label. */
/* First, cross jumping of conditional jumps: */
if (cross_jump && condjump_p (insn))
{
rtx newjpos, newlpos;
rtx x = prev_real_insn (JUMP_LABEL (insn));
/* A conditional jump may be crossjumped
only if the place it jumps to follows
an opposing jump that comes back here. */
if (x != 0 && ! jump_back_p (x, insn))
/* We have no opposing jump;
cannot cross jump this insn. */
x = 0;
newjpos = 0;
/* TARGET is nonzero if it is ok to cross jump
to code before TARGET. If so, see if matches. */
if (x != 0)
find_cross_jump (insn, x, 2,
&newjpos, &newlpos);
if (newjpos != 0)
{
do_cross_jump (insn, newjpos, newlpos);
/* Make the old conditional jump
into an unconditional one. */
SET_SRC (PATTERN (insn))
= gen_rtx_LABEL_REF (VOIDmode, JUMP_LABEL (insn));
INSN_CODE (insn) = -1;
emit_barrier_after (insn);
/* Add to jump_chain unless this is a new label
whose UID is too large. */
if (INSN_UID (JUMP_LABEL (insn)) < max_jump_chain)
{
jump_chain[INSN_UID (insn)]
= jump_chain[INSN_UID (JUMP_LABEL (insn))];
jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
}
changed = 1;
next = insn;
}
}
/* Cross jumping of unconditional jumps:
a few differences. */
if (cross_jump && simplejump_p (insn))
{
rtx newjpos, newlpos;
rtx target;
newjpos = 0;
/* TARGET is nonzero if it is ok to cross jump
to code before TARGET. If so, see if matches. */
find_cross_jump (insn, JUMP_LABEL (insn), 1,
&newjpos, &newlpos);
/* If cannot cross jump to code before the label,
see if we can cross jump to another jump to
the same label. */
/* Try each other jump to this label. */
if (INSN_UID (JUMP_LABEL (insn)) < max_uid)
for (target = jump_chain[INSN_UID (JUMP_LABEL (insn))];
target != 0 && newjpos == 0;
target = jump_chain[INSN_UID (target)])
if (target != insn
&& JUMP_LABEL (target) == JUMP_LABEL (insn)
/* Ignore TARGET if it's deleted. */
&& ! INSN_DELETED_P (target))
find_cross_jump (insn, target, 2,
&newjpos, &newlpos);
if (newjpos != 0)
{
do_cross_jump (insn, newjpos, newlpos);
changed = 1;
next = insn;
}
}
/* This code was dead in the previous jump.c! */
if (cross_jump && GET_CODE (PATTERN (insn)) == RETURN)
{
/* Return insns all "jump to the same place"
so we can cross-jump between any two of them. */
rtx newjpos, newlpos, target;
newjpos = 0;
/* If cannot cross jump to code before the label,
see if we can cross jump to another jump to
the same label. */
/* Try each other jump to this label. */
for (target = jump_chain[0];
target != 0 && newjpos == 0;
target = jump_chain[INSN_UID (target)])
if (target != insn
&& ! INSN_DELETED_P (target)
&& GET_CODE (PATTERN (target)) == RETURN)
find_cross_jump (insn, target, 2,
&newjpos, &newlpos);
if (newjpos != 0)
{
do_cross_jump (insn, newjpos, newlpos);
changed = 1;
next = insn;
}
}
}
}
first = 0;
}
/* Delete extraneous line number notes.
Note that two consecutive notes for different lines are not really
extraneous. There should be some indication where that line belonged,
even if it became empty. */
{
rtx last_note = 0;
for (insn = f; insn; insn = NEXT_INSN (insn))
if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) >= 0)
{
/* Delete this note if it is identical to previous note. */
if (last_note
&& NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last_note)
&& NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last_note))
{
delete_insn (insn);
continue;
}
last_note = insn;
}
}
#ifdef HAVE_return
if (HAVE_return)
{
/* If we fall through to the epilogue, see if we can insert a RETURN insn
in front of it. If the machine allows it at this point (we might be
after reload for a leaf routine), it will improve optimization for it
to be there. We do this both here and at the start of this pass since
the RETURN might have been deleted by some of our optimizations. */
insn = get_last_insn ();
while (insn && GET_CODE (insn) == NOTE)
insn = PREV_INSN (insn);
if (insn && GET_CODE (insn) != BARRIER)
{
emit_jump_insn (gen_return ());
emit_barrier ();
}
}
#endif
/* CAN_REACH_END is persistent for each function. Once set it should
not be cleared. This is especially true for the case where we
delete the NOTE_FUNCTION_END note. CAN_REACH_END is cleared by
the front-end before compiling each function. */
if (calculate_can_reach_end (last_insn, 0, 1))
can_reach_end = 1;
end:
/* Clean up. */
free (jump_chain);
jump_chain = 0;
}
/* Initialize LABEL_NUSES and JUMP_LABEL fields. Delete any REG_LABEL
notes whose labels don't occur in the insn any more. Returns the
largest INSN_UID found. */
static int
init_label_info (f)
rtx f;
{
int largest_uid = 0;
rtx insn;
for (insn = f; insn; insn = NEXT_INSN (insn))
{
if (GET_CODE (insn) == CODE_LABEL)
LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
else if (GET_CODE (insn) == JUMP_INSN)
JUMP_LABEL (insn) = 0;
else if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
{
rtx note, next;
for (note = REG_NOTES (insn); note; note = next)
{
next = XEXP (note, 1);
if (REG_NOTE_KIND (note) == REG_LABEL
&& ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
remove_note (insn, note);
}
}
if (INSN_UID (insn) > largest_uid)
largest_uid = INSN_UID (insn);
}
return largest_uid;
}
/* Delete insns following barriers, up to next label.
Also delete no-op jumps created by gcse. */
static void
delete_barrier_successors (f)
rtx f;
{
rtx insn;
for (insn = f; insn;)
{
if (GET_CODE (insn) == BARRIER)
{
insn = NEXT_INSN (insn);
never_reached_warning (insn);
while (insn != 0 && GET_CODE (insn) != CODE_LABEL)
{
if (GET_CODE (insn) == NOTE
&& NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_END)
insn = NEXT_INSN (insn);
else
insn = delete_insn (insn);
}
/* INSN is now the code_label. */
}
/* Also remove (set (pc) (pc)) insns which can be created by
gcse. We eliminate such insns now to avoid having them
cause problems later. */
else if (GET_CODE (insn) == JUMP_INSN
&& GET_CODE (PATTERN (insn)) == SET
&& SET_SRC (PATTERN (insn)) == pc_rtx
&& SET_DEST (PATTERN (insn)) == pc_rtx)
insn = delete_insn (insn);
else
insn = NEXT_INSN (insn);
}
}
/* Mark the label each jump jumps to.
Combine consecutive labels, and count uses of labels.
For each label, make a chain (using `jump_chain')
of all the *unconditional* jumps that jump to it;
also make a chain of all returns.
CROSS_JUMP indicates whether we are doing cross jumping
and if we are whether we will be paying attention to
death notes or not. */
static void
mark_all_labels (f, cross_jump)
rtx f;
int cross_jump;
{
rtx insn;
for (insn = f; insn; insn = NEXT_INSN (insn))
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
{
mark_jump_label (PATTERN (insn), insn, cross_jump);
if (! INSN_DELETED_P (insn) && GET_CODE (insn) == JUMP_INSN)
{
if (JUMP_LABEL (insn) != 0 && simplejump_p (insn))
{
jump_chain[INSN_UID (insn)]
= jump_chain[INSN_UID (JUMP_LABEL (insn))];
jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
}
if (GET_CODE (PATTERN (insn)) == RETURN)
{
jump_chain[INSN_UID (insn)] = jump_chain[0];
jump_chain[0] = insn;
}
}
}
}
/* Delete all labels already not referenced.
Also find and return the last insn. */
static rtx
delete_unreferenced_labels (f)
rtx f;
{
rtx final = NULL_RTX;
rtx insn;
for (insn = f; insn; )
{
if (GET_CODE (insn) == CODE_LABEL
&& LABEL_NUSES (insn) == 0
&& LABEL_ALTERNATE_NAME (insn) == NULL)
insn = delete_insn (insn);
else
{
final = insn;
insn = NEXT_INSN (insn);
}
}
return final;
}
/* Delete various simple forms of moves which have no necessary
side effect. */
static void
delete_noop_moves (f)
rtx f;
{
rtx insn, next;
for (insn = f; insn; )
{
next = NEXT_INSN (insn);
if (GET_CODE (insn) == INSN)
{
register rtx body = PATTERN (insn);
/* Combine stack_adjusts with following push_insns. */
#ifdef PUSH_ROUNDING
if (GET_CODE (body) == SET
&& SET_DEST (body) == stack_pointer_rtx
&& GET_CODE (SET_SRC (body)) == PLUS
&& XEXP (SET_SRC (body), 0) == stack_pointer_rtx
&& GET_CODE (XEXP (SET_SRC (body), 1)) == CONST_INT
&& INTVAL (XEXP (SET_SRC (body), 1)) > 0)
{
rtx p;
rtx stack_adjust_insn = insn;
int stack_adjust_amount = INTVAL (XEXP (SET_SRC (body), 1));
int total_pushed = 0;
int pushes = 0;
/* Find all successive push insns. */
p = insn;
/* Don't convert more than three pushes;
that starts adding too many displaced addresses
and the whole thing starts becoming a losing
proposition. */
while (pushes < 3)
{
rtx pbody, dest;
p = next_nonnote_insn (p);
if (p == 0 || GET_CODE (p) != INSN)
break;
pbody = PATTERN (p);
if (GET_CODE (pbody) != SET)
break;
dest = SET_DEST (pbody);
/* Allow a no-op move between the adjust and the push. */
if (GET_CODE (dest) == REG
&& GET_CODE (SET_SRC (pbody)) == REG
&& REGNO (dest) == REGNO (SET_SRC (pbody)))
continue;
if (! (GET_CODE (dest) == MEM
&& GET_CODE (XEXP (dest, 0)) == POST_INC
&& XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx))
break;
pushes++;
if (total_pushed + GET_MODE_SIZE (GET_MODE (SET_DEST (pbody)))
> stack_adjust_amount)
break;
total_pushed += GET_MODE_SIZE (GET_MODE (SET_DEST (pbody)));
}
/* Discard the amount pushed from the stack adjust;
maybe eliminate it entirely. */
if (total_pushed >= stack_adjust_amount)
{
delete_computation (stack_adjust_insn);
total_pushed = stack_adjust_amount;
}
else
XEXP (SET_SRC (PATTERN (stack_adjust_insn)), 1)
= GEN_INT (stack_adjust_amount - total_pushed);
/* Change the appropriate push insns to ordinary stores. */
p = insn;
while (total_pushed > 0)
{
rtx pbody, dest;
p = next_nonnote_insn (p);
if (GET_CODE (p) != INSN)
break;
pbody = PATTERN (p);
if (GET_CODE (pbody) != SET)
break;
dest = SET_DEST (pbody);
/* Allow a no-op move between the adjust and the push. */
if (GET_CODE (dest) == REG
&& GET_CODE (SET_SRC (pbody)) == REG
&& REGNO (dest) == REGNO (SET_SRC (pbody)))
continue;
if (! (GET_CODE (dest) == MEM
&& GET_CODE (XEXP (dest, 0)) == POST_INC
&& XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx))
break;
total_pushed -= GET_MODE_SIZE (GET_MODE (SET_DEST (pbody)));
/* If this push doesn't fully fit in the space
of the stack adjust that we deleted,
make another stack adjust here for what we
didn't use up. There should be peepholes
to recognize the resulting sequence of insns. */
if (total_pushed < 0)
{
emit_insn_before (gen_add2_insn (stack_pointer_rtx,
GEN_INT (- total_pushed)),
p);
break;
}
XEXP (dest, 0)
= plus_constant (stack_pointer_rtx, total_pushed);
}
}
#endif
/* Detect and delete no-op move instructions
resulting from not allocating a parameter in a register. */
if (GET_CODE (body) == SET
&& (SET_DEST (body) == SET_SRC (body)
|| (GET_CODE (SET_DEST (body)) == MEM
&& GET_CODE (SET_SRC (body)) == MEM
&& rtx_equal_p (SET_SRC (body), SET_DEST (body))))
&& ! (GET_CODE (SET_DEST (body)) == MEM
&& MEM_VOLATILE_P (SET_DEST (body)))
&& ! (GET_CODE (SET_SRC (body)) == MEM
&& MEM_VOLATILE_P (SET_SRC (body))))
delete_computation (insn);
/* Detect and ignore no-op move instructions
resulting from smart or fortuitous register allocation. */
else if (GET_CODE (body) == SET)
{
int sreg = true_regnum (SET_SRC (body));
int dreg = true_regnum (SET_DEST (body));
if (sreg == dreg && sreg >= 0)
delete_insn (insn);
else if (sreg >= 0 && dreg >= 0)
{
rtx trial;
rtx tem = find_equiv_reg (NULL_RTX, insn, 0,
sreg, NULL_PTR, dreg,
GET_MODE (SET_SRC (body)));
if (tem != 0
&& GET_MODE (tem) == GET_MODE (SET_DEST (body)))
{
/* DREG may have been the target of a REG_DEAD note in
the insn which makes INSN redundant. If so, reorg
would still think it is dead. So search for such a
note and delete it if we find it. */
if (! find_regno_note (insn, REG_UNUSED, dreg))
for (trial = prev_nonnote_insn (insn);
trial && GET_CODE (trial) != CODE_LABEL;
trial = prev_nonnote_insn (trial))
if (find_regno_note (trial, REG_DEAD, dreg))
{
remove_death (dreg, trial);
break;
}
/* Deleting insn could lose a death-note for SREG. */
if ((trial = find_regno_note (insn, REG_DEAD, sreg)))
{
/* Change this into a USE so that we won't emit
code for it, but still can keep the note. */
PATTERN (insn)
= gen_rtx_USE (VOIDmode, XEXP (trial, 0));
INSN_CODE (insn) = -1;
/* Remove all reg notes but the REG_DEAD one. */
REG_NOTES (insn) = trial;
XEXP (trial, 1) = NULL_RTX;
}
else
delete_insn (insn);
}
}
else if (dreg >= 0 && CONSTANT_P (SET_SRC (body))
&& find_equiv_reg (SET_SRC (body), insn, 0, dreg,
NULL_PTR, 0,
GET_MODE (SET_DEST (body))))
{
/* This handles the case where we have two consecutive
assignments of the same constant to pseudos that didn't
get a hard reg. Each SET from the constant will be
converted into a SET of the spill register and an
output reload will be made following it. This produces
two loads of the same constant into the same spill
register. */
rtx in_insn = insn;
/* Look back for a death note for the first reg.
If there is one, it is no longer accurate. */
while (in_insn && GET_CODE (in_insn) != CODE_LABEL)
{
if ((GET_CODE (in_insn) == INSN
|| GET_CODE (in_insn) == JUMP_INSN)
&& find_regno_note (in_insn, REG_DEAD, dreg))
{
remove_death (dreg, in_insn);
break;
}
in_insn = PREV_INSN (in_insn);
}
/* Delete the second load of the value. */
delete_insn (insn);
}
}
else if (GET_CODE (body) == PARALLEL)
{
/* If each part is a set between two identical registers or
a USE or CLOBBER, delete the insn. */
int i, sreg, dreg;
rtx tem;
for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
{
tem = XVECEXP (body, 0, i);
if (GET_CODE (tem) == USE || GET_CODE (tem) == CLOBBER)
continue;
if (GET_CODE (tem) != SET
|| (sreg = true_regnum (SET_SRC (tem))) < 0
|| (dreg = true_regnum (SET_DEST (tem))) < 0
|| dreg != sreg)
break;
}
if (i < 0)
delete_insn (insn);
}
/* Also delete insns to store bit fields if they are no-ops. */
/* Not worth the hair to detect this in the big-endian case. */
else if (! BYTES_BIG_ENDIAN
&& GET_CODE (body) == SET
&& GET_CODE (SET_DEST (body)) == ZERO_EXTRACT
&& XEXP (SET_DEST (body), 2) == const0_rtx
&& XEXP (SET_DEST (body), 0) == SET_SRC (body)
&& ! (GET_CODE (SET_SRC (body)) == MEM
&& MEM_VOLATILE_P (SET_SRC (body))))
delete_insn (insn);
}
insn = next;
}
}
/* See if there is still a NOTE_INSN_FUNCTION_END in this function.
If so indicate that this function can drop off the end by returning
1, else return 0.
CHECK_DELETED indicates whether we must check if the note being
searched for has the deleted flag set.
DELETE_FINAL_NOTE indicates whether we should delete the note
if we find it. */
static int
calculate_can_reach_end (last, check_deleted, delete_final_note)
rtx last;
int check_deleted;
int delete_final_note;
{
rtx insn = last;
int n_labels = 1;
while (insn != NULL_RTX)
{
int ok = 0;
/* One label can follow the end-note: the return label. */
if (GET_CODE (insn) == CODE_LABEL && n_labels-- > 0)
ok = 1;
/* Ordinary insns can follow it if returning a structure. */
else if (GET_CODE (insn) == INSN)
ok = 1;
/* If machine uses explicit RETURN insns, no epilogue,
then one of them follows the note. */
else if (GET_CODE (insn) == JUMP_INSN
&& GET_CODE (PATTERN (insn)) == RETURN)
ok = 1;
/* A barrier can follow the return insn. */
else if (GET_CODE (insn) == BARRIER)
ok = 1;
/* Other kinds of notes can follow also. */
else if (GET_CODE (insn) == NOTE
&& NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_END)
ok = 1;
if (ok != 1)
break;
insn = PREV_INSN (insn);
}
/* See if we backed up to the appropriate type of note. */
if (insn != NULL_RTX
&& GET_CODE (insn) == NOTE
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END
&& (check_deleted == 0
|| ! INSN_DELETED_P (insn)))
{
if (delete_final_note)
delete_insn (insn);
return 1;
}
return 0;
}
/* LOOP_START is a NOTE_INSN_LOOP_BEG note that is followed by an unconditional
jump. Assume that this unconditional jump is to the exit test code. If
the code is sufficiently simple, make a copy of it before INSN,
followed by a jump to the exit of the loop. Then delete the unconditional
jump after INSN.
Return 1 if we made the change, else 0.
This is only safe immediately after a regscan pass because it uses the
values of regno_first_uid and regno_last_uid. */
static int
duplicate_loop_exit_test (loop_start)
rtx loop_start;
{
rtx insn, set, reg, p, link;
rtx copy = 0, first_copy = 0;
int num_insns = 0;
rtx exitcode = NEXT_INSN (JUMP_LABEL (next_nonnote_insn (loop_start)));
rtx lastexit;
int max_reg = max_reg_num ();
rtx *reg_map = 0;
/* Scan the exit code. We do not perform this optimization if any insn:
is a CALL_INSN
is a CODE_LABEL
has a REG_RETVAL or REG_LIBCALL note (hard to adjust)
is a NOTE_INSN_LOOP_BEG because this means we have a nested loop
is a NOTE_INSN_BLOCK_{BEG,END} because duplicating these notes
is not valid.
We also do not do this if we find an insn with ASM_OPERANDS. While
this restriction should not be necessary, copying an insn with
ASM_OPERANDS can confuse asm_noperands in some cases.
Also, don't do this if the exit code is more than 20 insns. */
for (insn = exitcode;
insn
&& ! (GET_CODE (insn) == NOTE
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
insn = NEXT_INSN (insn))
{
switch (GET_CODE (insn))
{
case CODE_LABEL:
case CALL_INSN:
return 0;
case NOTE:
/* We could be in front of the wrong NOTE_INSN_LOOP_END if there is
a jump immediately after the loop start that branches outside
the loop but within an outer loop, near the exit test.
If we copied this exit test and created a phony
NOTE_INSN_LOOP_VTOP, this could make instructions immediately
before the exit test look like these could be safely moved
out of the loop even if they actually may be never executed.
This can be avoided by checking here for NOTE_INSN_LOOP_CONT. */
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
|| NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
return 0;
if (optimize < 2
&& (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
|| NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
/* If we were to duplicate this code, we would not move
the BLOCK notes, and so debugging the moved code would
be difficult. Thus, we only move the code with -O2 or
higher. */
return 0;
break;
case JUMP_INSN:
case INSN:
/* The code below would grossly mishandle REG_WAS_0 notes,
so get rid of them here. */
while ((p = find_reg_note (insn, REG_WAS_0, NULL_RTX)) != 0)
remove_note (insn, p);
if (++num_insns > 20
|| find_reg_note (insn, REG_RETVAL, NULL_RTX)
|| find_reg_note (insn, REG_LIBCALL, NULL_RTX))
return 0;
break;
default:
break;
}
}
/* Unless INSN is zero, we can do the optimization. */
if (insn == 0)
return 0;
lastexit = insn;
/* See if any insn sets a register only used in the loop exit code and
not a user variable. If so, replace it with a new register. */
for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
if (GET_CODE (insn) == INSN
&& (set = single_set (insn)) != 0
&& ((reg = SET_DEST (set), GET_CODE (reg) == REG)
|| (GET_CODE (reg) == SUBREG
&& (reg = SUBREG_REG (reg), GET_CODE (reg) == REG)))
&& REGNO (reg) >= FIRST_PSEUDO_REGISTER
&& REGNO_FIRST_UID (REGNO (reg)) == INSN_UID (insn))
{
for (p = NEXT_INSN (insn); p != lastexit; p = NEXT_INSN (p))
if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (p))
break;
if (p != lastexit)
{
/* We can do the replacement. Allocate reg_map if this is the
first replacement we found. */
if (reg_map == 0)
reg_map = (rtx *) xcalloc (max_reg, sizeof (rtx));
REG_LOOP_TEST_P (reg) = 1;
reg_map[REGNO (reg)] = gen_reg_rtx (GET_MODE (reg));
}
}
/* Now copy each insn. */
for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
{
switch (GET_CODE (insn))
{
case BARRIER:
copy = emit_barrier_before (loop_start);
break;
case NOTE:
/* Only copy line-number notes. */
if (NOTE_LINE_NUMBER (insn) >= 0)
{
copy = emit_note_before (NOTE_LINE_NUMBER (insn), loop_start);
NOTE_SOURCE_FILE (copy) = NOTE_SOURCE_FILE (insn);
}
break;
case INSN:
copy = emit_insn_before (copy_insn (PATTERN (insn)), loop_start);
if (reg_map)
replace_regs (PATTERN (copy), reg_map, max_reg, 1);
mark_jump_label (PATTERN (copy), copy, 0);
/* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
make them. */
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) != REG_LABEL)
REG_NOTES (copy)
= copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
XEXP (link, 0),
REG_NOTES (copy)));
if (reg_map && REG_NOTES (copy))
replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
break;
case JUMP_INSN:
copy = emit_jump_insn_before (copy_insn (PATTERN (insn)), loop_start);
if (reg_map)
replace_regs (PATTERN (copy), reg_map, max_reg, 1);
mark_jump_label (PATTERN (copy), copy, 0);
if (REG_NOTES (insn))
{
REG_NOTES (copy) = copy_insn_1 (REG_NOTES (insn));
if (reg_map)
replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
}
/* If this is a simple jump, add it to the jump chain. */
if (INSN_UID (copy) < max_jump_chain && JUMP_LABEL (copy)
&& simplejump_p (copy))
{
jump_chain[INSN_UID (copy)]
= jump_chain[INSN_UID (JUMP_LABEL (copy))];
jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
}
break;
default:
abort ();
}
/* Record the first insn we copied. We need it so that we can
scan the copied insns for new pseudo registers. */
if (! first_copy)
first_copy = copy;
}
/* Now clean up by emitting a jump to the end label and deleting the jump
at the start of the loop. */
if (! copy || GET_CODE (copy) != BARRIER)
{
copy = emit_jump_insn_before (gen_jump (get_label_after (insn)),
loop_start);
/* Record the first insn we copied. We need it so that we can
scan the copied insns for new pseudo registers. This may not
be strictly necessary since we should have copied at least one
insn above. But I am going to be safe. */
if (! first_copy)
first_copy = copy;
mark_jump_label (PATTERN (copy), copy, 0);
if (INSN_UID (copy) < max_jump_chain
&& INSN_UID (JUMP_LABEL (copy)) < max_jump_chain)
{
jump_chain[INSN_UID (copy)]
= jump_chain[INSN_UID (JUMP_LABEL (copy))];
jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
}
emit_barrier_before (loop_start);
}
/* Now scan from the first insn we copied to the last insn we copied
(copy) for new pseudo registers. Do this after the code to jump to
the end label since that might create a new pseudo too. */
reg_scan_update (first_copy, copy, max_reg);
/* Mark the exit code as the virtual top of the converted loop. */
emit_note_before (NOTE_INSN_LOOP_VTOP, exitcode);
delete_insn (next_nonnote_insn (loop_start));
/* Clean up. */
if (reg_map)
free (reg_map);
return 1;
}
/* Move all block-beg, block-end, loop-beg, loop-cont, loop-vtop, and
loop-end notes between START and END out before START. Assume that
END is not such a note. START may be such a note. Returns the value
of the new starting insn, which may be different if the original start
was such a note. */
rtx
squeeze_notes (start, end)
rtx start, end;
{
rtx insn;
rtx next;
for (insn = start; insn != end; insn = next)
{
next = NEXT_INSN (insn);
if (GET_CODE (insn) == NOTE
&& (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
|| NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
|| NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
|| NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END
|| NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT
|| NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_VTOP))
{
if (insn == start)
start = next;
else
{
rtx prev = PREV_INSN (insn);
PREV_INSN (insn) = PREV_INSN (start);
NEXT_INSN (insn) = start;
NEXT_INSN (PREV_INSN (insn)) = insn;
PREV_INSN (NEXT_INSN (insn)) = insn;
NEXT_INSN (prev) = next;
PREV_INSN (next) = prev;
}
}
}
return start;
}
/* Compare the instructions before insn E1 with those before E2
to find an opportunity for cross jumping.
(This means detecting identical sequences of insns followed by
jumps to the same place, or followed by a label and a jump
to that label, and replacing one with a jump to the other.)
Assume E1 is a jump that jumps to label E2
(that is not always true but it might as well be).
Find the longest possible equivalent sequences
and store the first insns of those sequences into *F1 and *F2.
Store zero there if no equivalent preceding instructions are found.
We give up if we find a label in stream 1.
Actually we could transfer that label into stream 2. */
static void
find_cross_jump (e1, e2, minimum, f1, f2)
rtx e1, e2;
int minimum;
rtx *f1, *f2;
{
register rtx i1 = e1, i2 = e2;
register rtx p1, p2;
int lose = 0;
rtx last1 = 0, last2 = 0;
rtx afterlast1 = 0, afterlast2 = 0;
*f1 = 0;
*f2 = 0;
while (1)
{
i1 = prev_nonnote_insn (i1);
i2 = PREV_INSN (i2);
while (i2 && (GET_CODE (i2) == NOTE || GET_CODE (i2) == CODE_LABEL))
i2 = PREV_INSN (i2);
if (i1 == 0)
break;
/* Don't allow the range of insns preceding E1 or E2
to include the other (E2 or E1). */
if (i2 == e1 || i1 == e2)
break;
/* If we will get to this code by jumping, those jumps will be
tensioned to go directly to the new label (before I2),
so this cross-jumping won't cost extra. So reduce the minimum. */
if (GET_CODE (i1) == CODE_LABEL)
{
--minimum;
break;
}
if (i2 == 0 || GET_CODE (i1) != GET_CODE (i2))
break;
/* Avoid moving insns across EH regions if either of the insns
can throw. */
if (flag_exceptions
&& (asynchronous_exceptions || GET_CODE (i1) == CALL_INSN)
&& !in_same_eh_region (i1, i2))
break;
p1 = PATTERN (i1);
p2 = PATTERN (i2);
/* If this is a CALL_INSN, compare register usage information.
If we don't check this on stack register machines, the two
CALL_INSNs might be merged leaving reg-stack.c with mismatching
numbers of stack registers in the same basic block.
If we don't check this on machines with delay slots, a delay slot may
be filled that clobbers a parameter expected by the subroutine.
??? We take the simple route for now and assume that if they're
equal, they were constructed identically. */
if (GET_CODE (i1) == CALL_INSN
&& ! rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
CALL_INSN_FUNCTION_USAGE (i2)))
lose = 1;
#ifdef STACK_REGS
/* If cross_jump_death_matters is not 0, the insn's mode
indicates whether or not the insn contains any stack-like
regs. */
if (!lose && cross_jump_death_matters && stack_regs_mentioned (i1))
{
/* If register stack conversion has already been done, then
death notes must also be compared before it is certain that
the two instruction streams match. */
rtx note;
HARD_REG_SET i1_regset, i2_regset;
CLEAR_HARD_REG_SET (i1_regset);
CLEAR_HARD_REG_SET (i2_regset);
for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
if (REG_NOTE_KIND (note) == REG_DEAD
&& STACK_REG_P (XEXP (note, 0)))
SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
if (REG_NOTE_KIND (note) == REG_DEAD
&& STACK_REG_P (XEXP (note, 0)))
SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
lose = 1;
done:
;
}
#endif
/* Don't allow old-style asm or volatile extended asms to be accepted
for cross jumping purposes. It is conceptually correct to allow
them, since cross-jumping preserves the dynamic instruction order
even though it is changing the static instruction order. However,
if an asm is being used to emit an assembler pseudo-op, such as
the MIPS `.set reorder' pseudo-op, then the static instruction order
matters and it must be preserved. */
if (GET_CODE (p1) == ASM_INPUT || GET_CODE (p2) == ASM_INPUT
|| (GET_CODE (p1) == ASM_OPERANDS && MEM_VOLATILE_P (p1))
|| (GET_CODE (p2) == ASM_OPERANDS && MEM_VOLATILE_P (p2)))
lose = 1;
if (lose || GET_CODE (p1) != GET_CODE (p2)
|| ! rtx_renumbered_equal_p (p1, p2))
{
/* The following code helps take care of G++ cleanups. */
rtx equiv1;
rtx equiv2;
if (!lose && GET_CODE (p1) == GET_CODE (p2)
&& ((equiv1 = find_reg_note (i1, REG_EQUAL, NULL_RTX)) != 0
|| (equiv1 = find_reg_note (i1, REG_EQUIV, NULL_RTX)) != 0)
&& ((equiv2 = find_reg_note (i2, REG_EQUAL, NULL_RTX)) != 0
|| (equiv2 = find_reg_note (i2, REG_EQUIV, NULL_RTX)) != 0)
/* If the equivalences are not to a constant, they may
reference pseudos that no longer exist, so we can't
use them. */
&& CONSTANT_P (XEXP (equiv1, 0))
&& rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
{
rtx s1 = single_set (i1);
rtx s2 = single_set (i2);
if (s1 != 0 && s2 != 0
&& rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
{
validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
if (! rtx_renumbered_equal_p (p1, p2))
cancel_changes (0);
else if (apply_change_group ())
goto win;
}
}
/* Insns fail to match; cross jumping is limited to the following
insns. */
#ifdef HAVE_cc0
/* Don't allow the insn after a compare to be shared by
cross-jumping unless the compare is also shared.
Here, if either of these non-matching insns is a compare,
exclude the following insn from possible cross-jumping. */
if (sets_cc0_p (p1) || sets_cc0_p (p2))
last1 = afterlast1, last2 = afterlast2, ++minimum;
#endif
/* If cross-jumping here will feed a jump-around-jump
optimization, this jump won't cost extra, so reduce
the minimum. */
if (GET_CODE (i1) == JUMP_INSN
&& JUMP_LABEL (i1)
&& prev_real_insn (JUMP_LABEL (i1)) == e1)
--minimum;
break;
}
win:
if (GET_CODE (p1) != USE && GET_CODE (p1) != CLOBBER)
{
/* Ok, this insn is potentially includable in a cross-jump here. */
afterlast1 = last1, afterlast2 = last2;
last1 = i1, last2 = i2, --minimum;
}
}
if (minimum <= 0 && last1 != 0 && last1 != e1)
*f1 = last1, *f2 = last2;
}
static void
do_cross_jump (insn, newjpos, newlpos)
rtx insn, newjpos, newlpos;
{
/* Find an existing label at this point
or make a new one if there is none. */
register rtx label = get_label_before (newlpos);
/* Make the same jump insn jump to the new point. */
if (GET_CODE (PATTERN (insn)) == RETURN)
{
/* Remove from jump chain of returns. */
delete_from_jump_chain (insn);
/* Change the insn. */
PATTERN (insn) = gen_jump (label);
INSN_CODE (insn) = -1;
JUMP_LABEL (insn) = label;
LABEL_NUSES (label)++;
/* Add to new the jump chain. */
if (INSN_UID (label) < max_jump_chain
&& INSN_UID (insn) < max_jump_chain)
{
jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (label)];
jump_chain[INSN_UID (label)] = insn;
}
}
else
redirect_jump (insn, label);
/* Delete the matching insns before the jump. Also, remove any REG_EQUAL
or REG_EQUIV note in the NEWLPOS stream that isn't also present in
the NEWJPOS stream. */
while (newjpos != insn)
{
rtx lnote;
for (lnote = REG_NOTES (newlpos); lnote; lnote = XEXP (lnote, 1))
if ((REG_NOTE_KIND (lnote) == REG_EQUAL
|| REG_NOTE_KIND (lnote) == REG_EQUIV)
&& ! find_reg_note (newjpos, REG_EQUAL, XEXP (lnote, 0))
&& ! find_reg_note (newjpos, REG_EQUIV, XEXP (lnote, 0)))
remove_note (newlpos, lnote);
delete_insn (newjpos);
newjpos = next_real_insn (newjpos);
newlpos = next_real_insn (newlpos);
}
}
/* Return the label before INSN, or put a new label there. */
rtx
get_label_before (insn)
rtx insn;
{
rtx label;
/* Find an existing label at this point
or make a new one if there is none. */
label = prev_nonnote_insn (insn);
if (label == 0 || GET_CODE (label) != CODE_LABEL)
{
rtx prev = PREV_INSN (insn);
label = gen_label_rtx ();
emit_label_after (label, prev);
LABEL_NUSES (label) = 0;
}
return label;
}
/* Return the label after INSN, or put a new label there. */
rtx
get_label_after (insn)
rtx insn;
{
rtx label;
/* Find an existing label at this point
or make a new one if there is none. */
label = next_nonnote_insn (insn);
if (label == 0 || GET_CODE (label) != CODE_LABEL)
{
label = gen_label_rtx ();
emit_label_after (label, insn);
LABEL_NUSES (label) = 0;
}
return label;
}
/* Return 1 if INSN is a jump that jumps to right after TARGET
only on the condition that TARGET itself would drop through.
Assumes that TARGET is a conditional jump. */
static int
jump_back_p (insn, target)
rtx insn, target;
{
rtx cinsn, ctarget;
enum rtx_code codei, codet;
if (simplejump_p (insn) || ! condjump_p (insn)
|| simplejump_p (target)
|| target != prev_real_insn (JUMP_LABEL (insn)))
return 0;
cinsn = XEXP (SET_SRC (PATTERN (insn)), 0);
ctarget = XEXP (SET_SRC (PATTERN (target)), 0);
codei = GET_CODE (cinsn);
codet = GET_CODE (ctarget);
if (XEXP (SET_SRC (PATTERN (insn)), 1) == pc_rtx)
{
if (! can_reverse_comparison_p (cinsn, insn))
return 0;
codei = reverse_condition (codei);
}
if (XEXP (SET_SRC (PATTERN (target)), 2) == pc_rtx)
{
if (! can_reverse_comparison_p (ctarget, target))
return 0;
codet = reverse_condition (codet);
}
return (codei == codet
&& rtx_renumbered_equal_p (XEXP (cinsn, 0), XEXP (ctarget, 0))
&& rtx_renumbered_equal_p (XEXP (cinsn, 1), XEXP (ctarget, 1)));
}
/* Given a comparison, COMPARISON, inside a conditional jump insn, INSN,
return non-zero if it is safe to reverse this comparison. It is if our
floating-point is not IEEE, if this is an NE or EQ comparison, or if
this is known to be an integer comparison. */
int
can_reverse_comparison_p (comparison, insn)
rtx comparison;
rtx insn;
{
rtx arg0;
/* If this is not actually a comparison, we can't reverse it. */
if (GET_RTX_CLASS (GET_CODE (comparison)) != '<')
return 0;
if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
/* If this is an NE comparison, it is safe to reverse it to an EQ
comparison and vice versa, even for floating point. If no operands
are NaNs, the reversal is valid. If some operand is a NaN, EQ is
always false and NE is always true, so the reversal is also valid. */
|| flag_fast_math
|| GET_CODE (comparison) == NE
|| GET_CODE (comparison) == EQ)
return 1;
arg0 = XEXP (comparison, 0);
/* Make sure ARG0 is one of the actual objects being compared. If we
can't do this, we can't be sure the comparison can be reversed.
Handle cc0 and a MODE_CC register. */
if ((GET_CODE (arg0) == REG && GET_MODE_CLASS (GET_MODE (arg0)) == MODE_CC)
#ifdef HAVE_cc0
|| arg0 == cc0_rtx
#endif
)
{
rtx prev = prev_nonnote_insn (insn);
rtx set;
/* First see if the condition code mode alone if enough to say we can
reverse the condition. If not, then search backwards for a set of
ARG0. We do not need to check for an insn clobbering it since valid
code will contain set a set with no intervening clobber. But
stop when we reach a label. */
#ifdef REVERSIBLE_CC_MODE
if (GET_MODE_CLASS (GET_MODE (arg0)) == MODE_CC
&& REVERSIBLE_CC_MODE (GET_MODE (arg0)))
return 1;
#endif
for (prev = prev_nonnote_insn (insn);
prev != 0 && GET_CODE (prev) != CODE_LABEL;
prev = prev_nonnote_insn (prev))
if ((set = single_set (prev)) != 0
&& rtx_equal_p (SET_DEST (set), arg0))
{
arg0 = SET_SRC (set);
if (GET_CODE (arg0) == COMPARE)
arg0 = XEXP (arg0, 0);
break;
}
}
/* We can reverse this if ARG0 is a CONST_INT or if its mode is
not VOIDmode and neither a MODE_CC nor MODE_FLOAT type. */
return (GET_CODE (arg0) == CONST_INT
|| (GET_MODE (arg0) != VOIDmode
&& GET_MODE_CLASS (GET_MODE (arg0)) != MODE_CC
&& GET_MODE_CLASS (GET_MODE (arg0)) != MODE_FLOAT));
}
/* Given an rtx-code for a comparison, return the code
for the negated comparison.
WATCH OUT! reverse_condition is not safe to use on a jump
that might be acting on the results of an IEEE floating point comparison,
because of the special treatment of non-signaling nans in comparisons.
Use can_reverse_comparison_p to be sure. */
enum rtx_code
reverse_condition (code)
enum rtx_code code;
{
switch (code)
{
case EQ:
return NE;
case NE:
return EQ;
case GT:
return LE;
case GE:
return LT;
case LT:
return GE;
case LE:
return GT;
case GTU:
return LEU;
case GEU:
return LTU;
case LTU:
return GEU;
case LEU:
return GTU;
default:
abort ();
return UNKNOWN;
}
}
/* Similar, but return the code when two operands of a comparison are swapped.
This IS safe for IEEE floating-point. */
enum rtx_code
swap_condition (code)
enum rtx_code code;
{
switch (code)
{
case EQ:
case NE:
return code;
case GT:
return LT;
case GE:
return LE;
case LT:
return GT;
case LE:
return GE;
case GTU:
return LTU;
case GEU:
return LEU;
case LTU:
return GTU;
case LEU:
return GEU;
default:
abort ();
return UNKNOWN;
}
}
/* Given a comparison CODE, return the corresponding unsigned comparison.
If CODE is an equality comparison or already an unsigned comparison,
CODE is returned. */
enum rtx_code
unsigned_condition (code)
enum rtx_code code;
{
switch (code)
{
case EQ:
case NE:
case GTU:
case GEU:
case LTU:
case LEU:
return code;
case GT:
return GTU;
case GE:
return GEU;
case LT:
return LTU;
case LE:
return LEU;
default:
abort ();
}
}
/* Similarly, return the signed version of a comparison. */
enum rtx_code
signed_condition (code)
enum rtx_code code;
{
switch (code)
{
case EQ:
case NE:
case GT:
case GE:
case LT:
case LE:
return code;
case GTU:
return GT;
case GEU:
return GE;
case LTU:
return LT;
case LEU:
return LE;
default:
abort ();
}
}
/* Return non-zero if CODE1 is more strict than CODE2, i.e., if the
truth of CODE1 implies the truth of CODE2. */
int
comparison_dominates_p (code1, code2)
enum rtx_code code1, code2;
{
if (code1 == code2)
return 1;
switch (code1)
{
case EQ:
if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU)
return 1;
break;
case LT:
if (code2 == LE || code2 == NE)
return 1;
break;
case GT:
if (code2 == GE || code2 == NE)
return 1;
break;
case LTU:
if (code2 == LEU || code2 == NE)
return 1;
break;
case GTU:
if (code2 == GEU || code2 == NE)
return 1;
break;
default:
break;
}
return 0;
}
/* Return 1 if INSN is an unconditional jump and nothing else. */
int
simplejump_p (insn)
rtx insn;
{
return (GET_CODE (insn) == JUMP_INSN
&& GET_CODE (PATTERN (insn)) == SET
&& GET_CODE (SET_DEST (PATTERN (insn))) == PC
&& GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
}
/* Return nonzero if INSN is a (possibly) conditional jump
and nothing more. */
int
condjump_p (insn)
rtx insn;
{
register rtx x = PATTERN (insn);
if (GET_CODE (x) != SET
|| GET_CODE (SET_DEST (x)) != PC)
return 0;
x = SET_SRC (x);
if (GET_CODE (x) == LABEL_REF)
return 1;
else return (GET_CODE (x) == IF_THEN_ELSE
&& ((GET_CODE (XEXP (x, 2)) == PC
&& (GET_CODE (XEXP (x, 1)) == LABEL_REF
|| GET_CODE (XEXP (x, 1)) == RETURN))
|| (GET_CODE (XEXP (x, 1)) == PC
&& (GET_CODE (XEXP (x, 2)) == LABEL_REF
|| GET_CODE (XEXP (x, 2)) == RETURN))));
return 0;
}
/* Return nonzero if INSN is a (possibly) conditional jump inside a
PARALLEL. */
int
condjump_in_parallel_p (insn)
rtx insn;
{
register rtx x = PATTERN (insn);
if (GET_CODE (x) != PARALLEL)
return 0;
else
x = XVECEXP (x, 0, 0);
if (GET_CODE (x) != SET)
return 0;
if (GET_CODE (SET_DEST (x)) != PC)
return 0;
if (GET_CODE (SET_SRC (x)) == LABEL_REF)
return 1;
if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
return 0;
if (XEXP (SET_SRC (x), 2) == pc_rtx
&& (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
|| GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
return 1;
if (XEXP (SET_SRC (x), 1) == pc_rtx
&& (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
|| GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
return 1;
return 0;
}
/* Return the label of a conditional jump. */
rtx
condjump_label (insn)
rtx insn;
{
register rtx x = PATTERN (insn);
if (GET_CODE (x) == PARALLEL)
x = XVECEXP (x, 0, 0);
if (GET_CODE (x) != SET)
return NULL_RTX;
if (GET_CODE (SET_DEST (x)) != PC)
return NULL_RTX;
x = SET_SRC (x);
if (GET_CODE (x) == LABEL_REF)
return x;
if (GET_CODE (x) != IF_THEN_ELSE)
return NULL_RTX;
if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
return XEXP (x, 1);
if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
return XEXP (x, 2);
return NULL_RTX;
}
/* Return true if INSN is a (possibly conditional) return insn. */
static int
returnjump_p_1 (loc, data)
rtx *loc;
void *data ATTRIBUTE_UNUSED;
{
rtx x = *loc;
return x && GET_CODE (x) == RETURN;
}
int
returnjump_p (insn)
rtx insn;
{
return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
}
/* Return true if INSN is a jump that only transfers control and
nothing more. */
int
onlyjump_p (insn)
rtx insn;
{
rtx set;
if (GET_CODE (insn) != JUMP_INSN)
return 0;
set = single_set (insn);
if (set == NULL)
return 0;
if (GET_CODE (SET_DEST (set)) != PC)
return 0;
if (side_effects_p (SET_SRC (set)))
return 0;
return 1;
}
#ifdef HAVE_cc0
/* Return 1 if X is an RTX that does nothing but set the condition codes
and CLOBBER or USE registers.
Return -1 if X does explicitly set the condition codes,
but also does other things. */
int
sets_cc0_p (x)
rtx x ATTRIBUTE_UNUSED;
{
if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
return 1;
if (GET_CODE (x) == PARALLEL)
{
int i;
int sets_cc0 = 0;
int other_things = 0;
for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
{
if (GET_CODE (XVECEXP (x, 0, i)) == SET
&& SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
sets_cc0 = 1;
else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
other_things = 1;
}
return ! sets_cc0 ? 0 : other_things ? -1 : 1;
}
return 0;
}
#endif
/* Follow any unconditional jump at LABEL;
return the ultimate label reached by any such chain of jumps.
If LABEL is not followed by a jump, return LABEL.
If the chain loops or we can't find end, return LABEL,
since that tells caller to avoid changing the insn.
If RELOAD_COMPLETED is 0, we do not chain across a NOTE_INSN_LOOP_BEG or
a USE or CLOBBER. */
rtx
follow_jumps (label)
rtx label;
{
register rtx insn;
register rtx next;
register rtx value = label;
register int depth;
for (depth = 0;
(depth < 10
&& (insn = next_active_insn (value)) != 0
&& GET_CODE (insn) == JUMP_INSN
&& ((JUMP_LABEL (insn) != 0 && simplejump_p (insn))
|| GET_CODE (PATTERN (insn)) == RETURN)
&& (next = NEXT_INSN (insn))
&& GET_CODE (next) == BARRIER);
depth++)
{
/* Don't chain through the insn that jumps into a loop
from outside the loop,
since that would create multiple loop entry jumps
and prevent loop optimization. */
rtx tem;
if (!reload_completed)
for (tem = value; tem != insn; tem = NEXT_INSN (tem))
if (GET_CODE (tem) == NOTE
&& (NOTE_LINE_NUMBER (tem) == NOTE_INSN_LOOP_BEG
/* ??? Optional. Disables some optimizations, but makes
gcov output more accurate with -O. */
|| (flag_test_coverage && NOTE_LINE_NUMBER (tem) > 0)))
return value;
/* If we have found a cycle, make the insn jump to itself. */
if (JUMP_LABEL (insn) == label)
return label;
tem = next_active_insn (JUMP_LABEL (insn));
if (tem && (GET_CODE (PATTERN (tem)) == ADDR_VEC
|| GET_CODE (PATTERN (tem)) == ADDR_DIFF_VEC))
break;
value = JUMP_LABEL (insn);
}
if (depth == 10)
return label;
return value;
}
/* Assuming that field IDX of X is a vector of label_refs,
replace each of them by the ultimate label reached by it.
Return nonzero if a change is made.
If IGNORE_LOOPS is 0, we do not chain across a NOTE_INSN_LOOP_BEG. */
static int
tension_vector_labels (x, idx)
register rtx x;
register int idx;
{
int changed = 0;
register int i;
for (i = XVECLEN (x, idx) - 1; i >= 0; i--)
{
register rtx olabel = XEXP (XVECEXP (x, idx, i), 0);
register rtx nlabel = follow_jumps (olabel);
if (nlabel && nlabel != olabel)
{
XEXP (XVECEXP (x, idx, i), 0) = nlabel;
++LABEL_NUSES (nlabel);
if (--LABEL_NUSES (olabel) == 0)
delete_insn (olabel);
changed = 1;
}
}
return changed;
}
/* Find all CODE_LABELs referred to in X, and increment their use counts.
If INSN is a JUMP_INSN and there is at least one CODE_LABEL referenced
in INSN, then store one of them in JUMP_LABEL (INSN).
If INSN is an INSN or a CALL_INSN and there is at least one CODE_LABEL
referenced in INSN, add a REG_LABEL note containing that label to INSN.
Also, when there are consecutive labels, canonicalize on the last of them.
Note that two labels separated by a loop-beginning note
must be kept distinct if we have not yet done loop-optimization,
because the gap between them is where loop-optimize
will want to move invariant code to. CROSS_JUMP tells us
that loop-optimization is done with.
Once reload has completed (CROSS_JUMP non-zero), we need not consider
two labels distinct if they are separated by only USE or CLOBBER insns. */
static void
mark_jump_label (x, insn, cross_jump)
register rtx x;
rtx insn;
int cross_jump;
{
register RTX_CODE code = GET_CODE (x);
register int i;
register const char *fmt;
switch (code)
{
case PC:
case CC0:
case REG:
case SUBREG:
case CONST_INT:
case SYMBOL_REF:
case CONST_DOUBLE:
case CLOBBER:
case CALL:
return;
case MEM:
/* If this is a constant-pool reference, see if it is a label. */
if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
mark_jump_label (get_pool_constant (XEXP (x, 0)), insn, cross_jump);
break;
case LABEL_REF:
{
rtx label = XEXP (x, 0);
rtx olabel = label;
rtx note;
rtx next;
if (GET_CODE (label) != CODE_LABEL)
abort ();
/* Ignore references to labels of containing functions. */
if (LABEL_REF_NONLOCAL_P (x))
break;
/* If there are other labels following this one,
replace it with the last of the consecutive labels. */
for (next = NEXT_INSN (label); next; next = NEXT_INSN (next))
{
if (GET_CODE (next) == CODE_LABEL)
label = next;
else if (cross_jump && GET_CODE (next) == INSN
&& (GET_CODE (PATTERN (next)) == USE
|| GET_CODE (PATTERN (next)) == CLOBBER))
continue;
else if (GET_CODE (next) != NOTE)
break;
else if (! cross_jump
&& (NOTE_LINE_NUMBER (next) == NOTE_INSN_LOOP_BEG
|| NOTE_LINE_NUMBER (next) == NOTE_INSN_FUNCTION_END
/* ??? Optional. Disables some optimizations, but
makes gcov output more accurate with -O. */
|| (flag_test_coverage && NOTE_LINE_NUMBER (next) > 0)))
break;
}
XEXP (x, 0) = label;
if (! insn || ! INSN_DELETED_P (insn))
++LABEL_NUSES (label);
if (insn)
{
if (GET_CODE (insn) == JUMP_INSN)
JUMP_LABEL (insn) = label;
/* If we've changed OLABEL and we had a REG_LABEL note
for it, update it as well. */
else if (label != olabel
&& (note = find_reg_note (insn, REG_LABEL, olabel)) != 0)
XEXP (note, 0) = label;
/* Otherwise, add a REG_LABEL note for LABEL unless there already
is one. */
else if (! find_reg_note (insn, REG_LABEL, label))
{
/* This code used to ignore labels which refered to dispatch
tables to avoid flow.c generating worse code.
However, in the presense of global optimizations like
gcse which call find_basic_blocks without calling
life_analysis, not recording such labels will lead
to compiler aborts because of inconsistencies in the
flow graph. So we go ahead and record the label.
It may also be the case that the optimization argument
is no longer valid because of the more accurate cfg
we build in find_basic_blocks -- it no longer pessimizes
code when it finds a REG_LABEL note. */
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL, label,
REG_NOTES (insn));
}
}
return;
}
/* Do walk the labels in a vector, but not the first operand of an
ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
case ADDR_VEC:
case ADDR_DIFF_VEC:
if (! INSN_DELETED_P (insn))
{
int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
for (i = 0; i < XVECLEN (x, eltnum); i++)
mark_jump_label (XVECEXP (x, eltnum, i), NULL_RTX, cross_jump);
}
return;
default:
break;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
mark_jump_label (XEXP (x, i), insn, cross_jump);
else if (fmt[i] == 'E')
{
register int j;
for (j = 0; j < XVECLEN (x, i); j++)
mark_jump_label (XVECEXP (x, i, j), insn, cross_jump);
}
}
}
/* If all INSN does is set the pc, delete it,
and delete the insn that set the condition codes for it
if that's what the previous thing was. */
void
delete_jump (insn)
rtx insn;
{
register rtx set = single_set (insn);
if (set && GET_CODE (SET_DEST (set)) == PC)
delete_computation (insn);
}
/* Verify INSN is a BARRIER and delete it. */
void
delete_barrier (insn)
rtx insn;
{
if (GET_CODE (insn) != BARRIER)
abort ();
delete_insn (insn);
}
/* Recursively delete prior insns that compute the value (used only by INSN
which the caller is deleting) stored in the register mentioned by NOTE
which is a REG_DEAD note associated with INSN. */
static void
delete_prior_computation (note, insn)
rtx note;
rtx insn;
{
rtx our_prev;
rtx reg = XEXP (note, 0);
for (our_prev = prev_nonnote_insn (insn);
our_prev && (GET_CODE (our_prev) == INSN
|| GET_CODE (our_prev) == CALL_INSN);
our_prev = prev_nonnote_insn (our_prev))
{
rtx pat = PATTERN (our_prev);
/* If we reach a CALL which is not calling a const function
or the callee pops the arguments, then give up. */
if (GET_CODE (our_prev) == CALL_INSN
&& (! CONST_CALL_P (our_prev)
|| GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
break;
/* If we reach a SEQUENCE, it is too complex to try to
do anything with it, so give up. */
if (GET_CODE (pat) == SEQUENCE)
break;
if (GET_CODE (pat) == USE
&& GET_CODE (XEXP (pat, 0)) == INSN)
/* reorg creates USEs that look like this. We leave them
alone because reorg needs them for its own purposes. */
break;
if (reg_set_p (reg, pat))
{
if (side_effects_p (pat) && GET_CODE (our_prev) != CALL_INSN)
break;
if (GET_CODE (pat) == PARALLEL)
{
/* If we find a SET of something else, we can't
delete the insn. */
int i;
for (i = 0; i < XVECLEN (pat, 0); i++)
{
rtx part = XVECEXP (pat, 0, i);
if (GET_CODE (part) == SET
&& SET_DEST (part) != reg)
break;
}
if (i == XVECLEN (pat, 0))
delete_computation (our_prev);
}
else if (GET_CODE (pat) == SET
&& GET_CODE (SET_DEST (pat)) == REG)
{
int dest_regno = REGNO (SET_DEST (pat));
int dest_endregno
= dest_regno + (dest_regno < FIRST_PSEUDO_REGISTER
? HARD_REGNO_NREGS (dest_regno,
GET_MODE (SET_DEST (pat))) : 1);
int regno = REGNO (reg);
int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
if (dest_regno >= regno
&& dest_endregno <= endregno)
delete_computation (our_prev);
/* We may have a multi-word hard register and some, but not
all, of the words of the register are needed in subsequent
insns. Write REG_UNUSED notes for those parts that were not
needed. */
else if (dest_regno <= regno
&& dest_endregno >= endregno)
{
int i;
REG_NOTES (our_prev)
= gen_rtx_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (our_prev));
for (i = dest_regno; i < dest_endregno; i++)
if (! find_regno_note (our_prev, REG_UNUSED, i))
break;
if (i == dest_endregno)
delete_computation (our_prev);
}
}
break;
}
/* If PAT references the register that dies here, it is an
additional use. Hence any prior SET isn't dead. However, this
insn becomes the new place for the REG_DEAD note. */
if (reg_overlap_mentioned_p (reg, pat))
{
XEXP (note, 1) = REG_NOTES (our_prev);
REG_NOTES (our_prev) = note;
break;
}
}
}
/* Delete INSN and recursively delete insns that compute values used only
by INSN. This uses the REG_DEAD notes computed during flow analysis.
If we are running before flow.c, we need do nothing since flow.c will
delete dead code. We also can't know if the registers being used are
dead or not at this point.
Otherwise, look at all our REG_DEAD notes. If a previous insn does
nothing other than set a register that dies in this insn, we can delete
that insn as well.
On machines with CC0, if CC0 is used in this insn, we may be able to
delete the insn that set it. */
static void
delete_computation (insn)
rtx insn;
{
rtx note, next;
rtx set;
#ifdef HAVE_cc0
if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
{
rtx prev = prev_nonnote_insn (insn);
/* We assume that at this stage
CC's are always set explicitly
and always immediately before the jump that
will use them. So if the previous insn
exists to set the CC's, delete it
(unless it performs auto-increments, etc.). */
if (prev && GET_CODE (prev) == INSN
&& sets_cc0_p (PATTERN (prev)))
{
if (sets_cc0_p (PATTERN (prev)) > 0
&& ! side_effects_p (PATTERN (prev)))
delete_computation (prev);
else
/* Otherwise, show that cc0 won't be used. */
REG_NOTES (prev) = gen_rtx_EXPR_LIST (REG_UNUSED,
cc0_rtx, REG_NOTES (prev));
}
}
#endif
#ifdef INSN_SCHEDULING
/* ?!? The schedulers do not keep REG_DEAD notes accurate after
reload has completed. The schedulers need to be fixed. Until
they are, we must not rely on the death notes here. */
if (reload_completed && flag_schedule_insns_after_reload)
{
delete_insn (insn);
return;
}
#endif
/* The REG_DEAD note may have been omitted for a register
which is both set and used by the insn. */
set = single_set (insn);
if (set && GET_CODE (SET_DEST (set)) == REG)
{
int dest_regno = REGNO (SET_DEST (set));
int dest_endregno
= dest_regno + (dest_regno < FIRST_PSEUDO_REGISTER
? HARD_REGNO_NREGS (dest_regno,
GET_MODE (SET_DEST (set))) : 1);
int i;
for (i = dest_regno; i < dest_endregno; i++)
{
if (! refers_to_regno_p (i, i + 1, SET_SRC (set), NULL_PTR)
|| find_regno_note (insn, REG_DEAD, i))
continue;
note = gen_rtx_EXPR_LIST (REG_DEAD, (i < FIRST_PSEUDO_REGISTER
? gen_rtx_REG (reg_raw_mode[i], i)
: SET_DEST (set)), NULL_RTX);
delete_prior_computation (note, insn);
}
}
for (note = REG_NOTES (insn); note; note = next)
{
next = XEXP (note, 1);
if (REG_NOTE_KIND (note) != REG_DEAD
/* Verify that the REG_NOTE is legitimate. */
|| GET_CODE (XEXP (note, 0)) != REG)
continue;
delete_prior_computation (note, insn);
}
delete_insn (insn);
}
/* Delete insn INSN from the chain of insns and update label ref counts.
May delete some following insns as a consequence; may even delete
a label elsewhere and insns that follow it.
Returns the first insn after INSN that was not deleted. */
rtx
delete_insn (insn)
register rtx insn;
{
register rtx next = NEXT_INSN (insn);
register rtx prev = PREV_INSN (insn);
register int was_code_label = (GET_CODE (insn) == CODE_LABEL);
register int dont_really_delete = 0;
while (next && INSN_DELETED_P (next))
next = NEXT_INSN (next);
/* This insn is already deleted => return first following nondeleted. */
if (INSN_DELETED_P (insn))
return next;
if (was_code_label)
remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
/* Don't delete user-declared labels. Convert them to special NOTEs
instead. */
if (was_code_label && LABEL_NAME (insn) != 0
&& optimize && ! dont_really_delete)
{
PUT_CODE (insn, NOTE);
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED_LABEL;
NOTE_SOURCE_FILE (insn) = 0;
dont_really_delete = 1;
}
else
/* Mark this insn as deleted. */
INSN_DELETED_P (insn) = 1;
/* If this is an unconditional jump, delete it from the jump chain. */
if (simplejump_p (insn))
delete_from_jump_chain (insn);
/* If instruction is followed by a barrier,
delete the barrier too. */
if (next != 0 && GET_CODE (next) == BARRIER)
{
INSN_DELETED_P (next) = 1;
next = NEXT_INSN (next);
}
/* Patch out INSN (and the barrier if any) */
if (optimize && ! dont_really_delete)
{
if (prev)
{
NEXT_INSN (prev) = next;
if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
NEXT_INSN (XVECEXP (PATTERN (prev), 0,
XVECLEN (PATTERN (prev), 0) - 1)) = next;
}
if (next)
{
PREV_INSN (next) = prev;
if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
}
if (prev && NEXT_INSN (prev) == 0)
set_last_insn (prev);
}
/* If deleting a jump, decrement the count of the label,
and delete the label if it is now unused. */
if (GET_CODE (insn) == JUMP_INSN && JUMP_LABEL (insn))
{
rtx lab = JUMP_LABEL (insn), lab_next;
if (--LABEL_NUSES (lab) == 0)
{
/* This can delete NEXT or PREV,
either directly if NEXT is JUMP_LABEL (INSN),
or indirectly through more levels of jumps. */
delete_insn (lab);
/* I feel a little doubtful about this loop,
but I see no clean and sure alternative way
to find the first insn after INSN that is not now deleted.
I hope this works. */
while (next && INSN_DELETED_P (next))
next = NEXT_INSN (next);
return next;
}
else if ((lab_next = next_nonnote_insn (lab)) != NULL
&& GET_CODE (lab_next) == JUMP_INSN
&& (GET_CODE (PATTERN (lab_next)) == ADDR_VEC
|| GET_CODE (PATTERN (lab_next)) == ADDR_DIFF_VEC))
{
/* If we're deleting the tablejump, delete the dispatch table.
We may not be able to kill the label immediately preceeding
just yet, as it might be referenced in code leading up to
the tablejump. */
delete_insn (lab_next);
}
}
/* Likewise if we're deleting a dispatch table. */
if (GET_CODE (insn) == JUMP_INSN
&& (GET_CODE (PATTERN (insn)) == ADDR_VEC
|| GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
{
rtx pat = PATTERN (insn);
int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
int len = XVECLEN (pat, diff_vec_p);
for (i = 0; i < len; i++)
if (--LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
delete_insn (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
while (next && INSN_DELETED_P (next))
next = NEXT_INSN (next);
return next;
}
while (prev && (INSN_DELETED_P (prev) || GET_CODE (prev) == NOTE))
prev = PREV_INSN (prev);
/* If INSN was a label and a dispatch table follows it,
delete the dispatch table. The tablejump must have gone already.
It isn't useful to fall through into a table. */
if (was_code_label
&& NEXT_INSN (insn) != 0
&& GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
&& (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
|| GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
next = delete_insn (NEXT_INSN (insn));
/* If INSN was a label, delete insns following it if now unreachable. */
if (was_code_label && prev && GET_CODE (prev) == BARRIER)
{
register RTX_CODE code;
while (next != 0
&& (GET_RTX_CLASS (code = GET_CODE (next)) == 'i'
|| code == NOTE || code == BARRIER
|| (code == CODE_LABEL && INSN_DELETED_P (next))))
{
if (code == NOTE
&& NOTE_LINE_NUMBER (next) != NOTE_INSN_FUNCTION_END)
next = NEXT_INSN (next);
/* Keep going past other deleted labels to delete what follows. */
else if (code == CODE_LABEL && INSN_DELETED_P (next))
next = NEXT_INSN (next);
else
/* Note: if this deletes a jump, it can cause more
deletion of unreachable code, after a different label.
As long as the value from this recursive call is correct,
this invocation functions correctly. */
next = delete_insn (next);
}
}
return next;
}
/* Advance from INSN till reaching something not deleted
then return that. May return INSN itself. */
rtx
next_nondeleted_insn (insn)
rtx insn;
{
while (INSN_DELETED_P (insn))
insn = NEXT_INSN (insn);
return insn;
}
/* Delete a range of insns from FROM to TO, inclusive.
This is for the sake of peephole optimization, so assume
that whatever these insns do will still be done by a new
peephole insn that will replace them. */
void
delete_for_peephole (from, to)
register rtx from, to;
{
register rtx insn = from;
while (1)
{
register rtx next = NEXT_INSN (insn);
register rtx prev = PREV_INSN (insn);
if (GET_CODE (insn) != NOTE)
{
INSN_DELETED_P (insn) = 1;
/* Patch this insn out of the chain. */
/* We don't do this all at once, because we
must preserve all NOTEs. */
if (prev)
NEXT_INSN (prev) = next;
if (next)
PREV_INSN (next) = prev;
}
if (insn == to)
break;
insn = next;
}
/* Note that if TO is an unconditional jump
we *do not* delete the BARRIER that follows,
since the peephole that replaces this sequence
is also an unconditional jump in that case. */
}
/* We have determined that INSN is never reached, and are about to
delete it. Print a warning if the user asked for one.
To try to make this warning more useful, this should only be called
once per basic block not reached, and it only warns when the basic
block contains more than one line from the current function, and
contains at least one operation. CSE and inlining can duplicate insns,
so it's possible to get spurious warnings from this. */
void
never_reached_warning (avoided_insn)
rtx avoided_insn;
{
rtx insn;
rtx a_line_note = NULL;
int two_avoided_lines = 0;
int contains_insn = 0;
if (! warn_notreached)
return;
/* Scan forwards, looking at LINE_NUMBER notes, until
we hit a LABEL or we run out of insns. */
for (insn = avoided_insn; insn != NULL; insn = NEXT_INSN (insn))
{
if (GET_CODE (insn) == CODE_LABEL)
break;
else if (GET_CODE (insn) == NOTE /* A line number note? */
&& NOTE_LINE_NUMBER (insn) >= 0)
{
if (a_line_note == NULL)
a_line_note = insn;
else
two_avoided_lines |= (NOTE_LINE_NUMBER (a_line_note)
!= NOTE_LINE_NUMBER (insn));
}
else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
contains_insn = 1;
}
if (two_avoided_lines && contains_insn)
warning_with_file_and_line (NOTE_SOURCE_FILE (a_line_note),
NOTE_LINE_NUMBER (a_line_note),
"will never be executed");
}
/* Invert the condition of the jump JUMP, and make it jump
to label NLABEL instead of where it jumps now. */
int
invert_jump (jump, nlabel)
rtx jump, nlabel;
{
/* We have to either invert the condition and change the label or
do neither. Either operation could fail. We first try to invert
the jump. If that succeeds, we try changing the label. If that fails,
we invert the jump back to what it was. */
if (! invert_exp (PATTERN (jump), jump))
return 0;
if (redirect_jump (jump, nlabel))
{
if (flag_branch_probabilities)
{
rtx note = find_reg_note (jump, REG_BR_PROB, 0);
/* An inverted jump means that a probability taken becomes a
probability not taken. Subtract the branch probability from the
probability base to convert it back to a taken probability.
(We don't flip the probability on a branch that's never taken. */
if (note && XINT (XEXP (note, 0), 0) >= 0)
XINT (XEXP (note, 0), 0) = REG_BR_PROB_BASE - XINT (XEXP (note, 0), 0);
}
return 1;
}
if (! invert_exp (PATTERN (jump), jump))
/* This should just be putting it back the way it was. */
abort ();
return 0;
}
/* Invert the jump condition of rtx X contained in jump insn, INSN.
Return 1 if we can do so, 0 if we cannot find a way to do so that
matches a pattern. */
int
invert_exp (x, insn)
rtx x;
rtx insn;
{
register RTX_CODE code;
register int i;
register const char *fmt;
code = GET_CODE (x);
if (code == IF_THEN_ELSE)
{
register rtx comp = XEXP (x, 0);
register rtx tem;
/* We can do this in two ways: The preferable way, which can only
be done if this is not an integer comparison, is to reverse
the comparison code. Otherwise, swap the THEN-part and ELSE-part
of the IF_THEN_ELSE. If we can't do either, fail. */
if (can_reverse_comparison_p (comp, insn)
&& validate_change (insn, &XEXP (x, 0),
gen_rtx_fmt_ee (reverse_condition (GET_CODE (comp)),
GET_MODE (comp), XEXP (comp, 0),
XEXP (comp, 1)), 0))
return 1;
tem = XEXP (x, 1);
validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
validate_change (insn, &XEXP (x, 2), tem, 1);
return apply_change_group ();
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if (! invert_exp (XEXP (x, i), insn))
return 0;
}
else if (fmt[i] == 'E')
{
register int j;
for (j = 0; j < XVECLEN (x, i); j++)
if (!invert_exp (XVECEXP (x, i, j), insn))
return 0;
}
}
return 1;
}
/* Make jump JUMP jump to label NLABEL instead of where it jumps now.
If the old jump target label is unused as a result,
it and the code following it may be deleted.
If NLABEL is zero, we are to turn the jump into a (possibly conditional)
RETURN insn.
The return value will be 1 if the change was made, 0 if it wasn't (this
can only occur for NLABEL == 0). */
int
redirect_jump (jump, nlabel)
rtx jump, nlabel;
{
register rtx olabel = JUMP_LABEL (jump);
if (nlabel == olabel)
return 1;
if (! redirect_exp (&PATTERN (jump), olabel, nlabel, jump))
return 0;
/* If this is an unconditional branch, delete it from the jump_chain of
OLABEL and add it to the jump_chain of NLABEL (assuming both labels
have UID's in range and JUMP_CHAIN is valid). */
if (jump_chain && (simplejump_p (jump)
|| GET_CODE (PATTERN (jump)) == RETURN))
{
int label_index = nlabel ? INSN_UID (nlabel) : 0;
delete_from_jump_chain (jump);
if (label_index < max_jump_chain
&& INSN_UID (jump) < max_jump_chain)
{
jump_chain[INSN_UID (jump)] = jump_chain[label_index];
jump_chain[label_index] = jump;
}
}
JUMP_LABEL (jump) = nlabel;
if (nlabel)
++LABEL_NUSES (nlabel);
if (olabel && --LABEL_NUSES (olabel) == 0)
delete_insn (olabel);
return 1;
}
/* Delete the instruction JUMP from any jump chain it might be on. */
static void
delete_from_jump_chain (jump)
rtx jump;
{
int index;
rtx olabel = JUMP_LABEL (jump);
/* Handle unconditional jumps. */
if (jump_chain && olabel != 0
&& INSN_UID (olabel) < max_jump_chain
&& simplejump_p (jump))
index = INSN_UID (olabel);
/* Handle return insns. */
else if (jump_chain && GET_CODE (PATTERN (jump)) == RETURN)
index = 0;
else return;
if (jump_chain[index] == jump)
jump_chain[index] = jump_chain[INSN_UID (jump)];
else
{
rtx insn;
for (insn = jump_chain[index];
insn != 0;
insn = jump_chain[INSN_UID (insn)])
if (jump_chain[INSN_UID (insn)] == jump)
{
jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (jump)];
break;
}
}
}
/* If NLABEL is nonzero, throughout the rtx at LOC,
alter (LABEL_REF OLABEL) to (LABEL_REF NLABEL). If OLABEL is
zero, alter (RETURN) to (LABEL_REF NLABEL).
If NLABEL is zero, alter (LABEL_REF OLABEL) to (RETURN) and check
validity with validate_change. Convert (set (pc) (label_ref olabel))
to (return).
Return 0 if we found a change we would like to make but it is invalid.
Otherwise, return 1. */
int
redirect_exp (loc, olabel, nlabel, insn)
rtx *loc;
rtx olabel, nlabel;
rtx insn;
{
register rtx x = *loc;
register RTX_CODE code = GET_CODE (x);
register int i;
register const char *fmt;
if (code == LABEL_REF)
{
if (XEXP (x, 0) == olabel)
{
if (nlabel)
XEXP (x, 0) = nlabel;
else
return validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 0);
return 1;
}
}
else if (code == RETURN && olabel == 0)
{
x = gen_rtx_LABEL_REF (VOIDmode, nlabel);
if (loc == &PATTERN (insn))
x = gen_rtx_SET (VOIDmode, pc_rtx, x);
return validate_change (insn, loc, x, 0);
}
if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
&& GET_CODE (SET_SRC (x)) == LABEL_REF
&& XEXP (SET_SRC (x), 0) == olabel)
return validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 0);
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if (! redirect_exp (&XEXP (x, i), olabel, nlabel, insn))
return 0;
}
else if (fmt[i] == 'E')
{
register int j;
for (j = 0; j < XVECLEN (x, i); j++)
if (! redirect_exp (&XVECEXP (x, i, j), olabel, nlabel, insn))
return 0;
}
}
return 1;
}
/* Make jump JUMP jump to label NLABEL, assuming it used to be a tablejump.
If the old jump target label (before the dispatch table) becomes unused,
it and the dispatch table may be deleted. In that case, find the insn
before the jump references that label and delete it and logical successors
too. */
static void
redirect_tablejump (jump, nlabel)
rtx jump, nlabel;
{
register rtx olabel = JUMP_LABEL (jump);
/* Add this jump to the jump_chain of NLABEL. */
if (jump_chain && INSN_UID (nlabel) < max_jump_chain
&& INSN_UID (jump) < max_jump_chain)
{
jump_chain[INSN_UID (jump)] = jump_chain[INSN_UID (nlabel)];
jump_chain[INSN_UID (nlabel)] = jump;
}
PATTERN (jump) = gen_jump (nlabel);
JUMP_LABEL (jump) = nlabel;
++LABEL_NUSES (nlabel);
INSN_CODE (jump) = -1;
if (--LABEL_NUSES (olabel) == 0)
{
delete_labelref_insn (jump, olabel, 0);
delete_insn (olabel);
}
}
/* Find the insn referencing LABEL that is a logical predecessor of INSN.
If we found one, delete it and then delete this insn if DELETE_THIS is
non-zero. Return non-zero if INSN or a predecessor references LABEL. */
static int
delete_labelref_insn (insn, label, delete_this)
rtx insn, label;
int delete_this;
{
int deleted = 0;
rtx link;
if (GET_CODE (insn) != NOTE
&& reg_mentioned_p (label, PATTERN (insn)))
{
if (delete_this)
{
delete_insn (insn);
deleted = 1;
}
else
return 1;
}
for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
if (delete_labelref_insn (XEXP (link, 0), label, 1))
{
if (delete_this)
{
delete_insn (insn);
deleted = 1;
}
else
return 1;
}
return deleted;
}
/* Like rtx_equal_p except that it considers two REGs as equal
if they renumber to the same value and considers two commutative
operations to be the same if the order of the operands has been
reversed.
??? Addition is not commutative on the PA due to the weird implicit
space register selection rules for memory addresses. Therefore, we
don't consider a + b == b + a.
We could/should make this test a little tighter. Possibly only
disabling it on the PA via some backend macro or only disabling this
case when the PLUS is inside a MEM. */
int
rtx_renumbered_equal_p (x, y)
rtx x, y;
{
register int i;
register RTX_CODE code = GET_CODE (x);
register const char *fmt;
if (x == y)
return 1;
if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
&& (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
&& GET_CODE (SUBREG_REG (y)) == REG)))
{
int reg_x = -1, reg_y = -1;
int word_x = 0, word_y = 0;
if (GET_MODE (x) != GET_MODE (y))
return 0;
/* If we haven't done any renumbering, don't
make any assumptions. */
if (reg_renumber == 0)
return rtx_equal_p (x, y);
if (code == SUBREG)
{
reg_x = REGNO (SUBREG_REG (x));
word_x = SUBREG_WORD (x);
if (reg_renumber[reg_x] >= 0)
{
reg_x = reg_renumber[reg_x] + word_x;
word_x = 0;
}
}
else
{
reg_x = REGNO (x);
if (reg_renumber[reg_x] >= 0)
reg_x = reg_renumber[reg_x];
}
if (GET_CODE (y) == SUBREG)
{
reg_y = REGNO (SUBREG_REG (y));
word_y = SUBREG_WORD (y);
if (reg_renumber[reg_y] >= 0)
{
reg_y = reg_renumber[reg_y];
word_y = 0;
}
}
else
{
reg_y = REGNO (y);
if (reg_renumber[reg_y] >= 0)
reg_y = reg_renumber[reg_y];
}
return reg_x >= 0 && reg_x == reg_y && word_x == word_y;
}
/* Now we have disposed of all the cases
in which different rtx codes can match. */
if (code != GET_CODE (y))
return 0;
switch (code)
{
case PC:
case CC0:
case ADDR_VEC:
case ADDR_DIFF_VEC:
return 0;
case CONST_INT:
return INTVAL (x) == INTVAL (y);
case LABEL_REF:
/* We can't assume nonlocal labels have their following insns yet. */
if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
return XEXP (x, 0) == XEXP (y, 0);
/* Two label-refs are equivalent if they point at labels
in the same position in the instruction stream. */
return (next_real_insn (XEXP (x, 0))
== next_real_insn (XEXP (y, 0)));
case SYMBOL_REF:
return XSTR (x, 0) == XSTR (y, 0);
case CODE_LABEL:
/* If we didn't match EQ equality above, they aren't the same. */
return 0;
default:
break;
}
/* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
if (GET_MODE (x) != GET_MODE (y))
return 0;
/* For commutative operations, the RTX match if the operand match in any
order. Also handle the simple binary and unary cases without a loop.
??? Don't consider PLUS a commutative operator; see comments above. */
if ((code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
&& code != PLUS)
return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
&& rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
|| (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
&& rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
&& rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
else if (GET_RTX_CLASS (code) == '1')
return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
/* Compare the elements. If any pair of corresponding elements
fail to match, return 0 for the whole things. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
register int j;
switch (fmt[i])
{
case 'w':
if (XWINT (x, i) != XWINT (y, i))
return 0;
break;
case 'i':
if (XINT (x, i) != XINT (y, i))
return 0;
break;
case 's':
if (strcmp (XSTR (x, i), XSTR (y, i)))
return 0;
break;
case 'e':
if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
return 0;
break;
case 'u':
if (XEXP (x, i) != XEXP (y, i))
return 0;
/* fall through. */
case '0':
break;
case 'E':
if (XVECLEN (x, i) != XVECLEN (y, i))
return 0;
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
return 0;
break;
default:
abort ();
}
}
return 1;
}
/* If X is a hard register or equivalent to one or a subregister of one,
return the hard register number. If X is a pseudo register that was not
assigned a hard register, return the pseudo register number. Otherwise,
return -1. Any rtx is valid for X. */
int
true_regnum (x)
rtx x;
{
if (GET_CODE (x) == REG)
{
if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
return reg_renumber[REGNO (x)];
return REGNO (x);
}
if (GET_CODE (x) == SUBREG)
{
int base = true_regnum (SUBREG_REG (x));
if (base >= 0 && base < FIRST_PSEUDO_REGISTER)
return SUBREG_WORD (x) + base;
}
return -1;
}
/* Optimize code of the form:
for (x = a[i]; x; ...)
...
for (x = a[i]; x; ...)
...
foo:
Loop optimize will change the above code into
if (x = a[i])
for (;;)
{ ...; if (! (x = ...)) break; }
if (x = a[i])
for (;;)
{ ...; if (! (x = ...)) break; }
foo:
In general, if the first test fails, the program can branch
directly to `foo' and skip the second try which is doomed to fail.
We run this after loop optimization and before flow analysis. */
/* When comparing the insn patterns, we track the fact that different
pseudo-register numbers may have been used in each computation.
The following array stores an equivalence -- same_regs[I] == J means
that pseudo register I was used in the first set of tests in a context
where J was used in the second set. We also count the number of such
pending equivalences. If nonzero, the expressions really aren't the
same. */
static int *same_regs;
static int num_same_regs;
/* Track any registers modified between the target of the first jump and
the second jump. They never compare equal. */
static char *modified_regs;
/* Record if memory was modified. */
static int modified_mem;
/* Called via note_stores on each insn between the target of the first
branch and the second branch. It marks any changed registers. */
static void
mark_modified_reg (dest, x, data)
rtx dest;
rtx x ATTRIBUTE_UNUSED;
void *data ATTRIBUTE_UNUSED;
{
int regno, i;
if (GET_CODE (dest) == SUBREG)
dest = SUBREG_REG (dest);
if (GET_CODE (dest) == MEM)
modified_mem = 1;
if (GET_CODE (dest) != REG)
return;
regno = REGNO (dest);
if (regno >= FIRST_PSEUDO_REGISTER)
modified_regs[regno] = 1;
else
for (i = 0; i < HARD_REGNO_NREGS (regno, GET_MODE (dest)); i++)
modified_regs[regno + i] = 1;
}
/* F is the first insn in the chain of insns. */
void
thread_jumps (f, max_reg, flag_before_loop)
rtx f;
int max_reg;
int flag_before_loop;
{
/* Basic algorithm is to find a conditional branch,
the label it may branch to, and the branch after
that label. If the two branches test the same condition,
walk back from both branch paths until the insn patterns
differ, or code labels are hit. If we make it back to
the target of the first branch, then we know that the first branch
will either always succeed or always fail depending on the relative
senses of the two branches. So adjust the first branch accordingly
in this case. */
rtx label, b1, b2, t1, t2;
enum rtx_code code1, code2;
rtx b1op0, b1op1, b2op0, b2op1;
int changed = 1;
int i;
int *all_reset;
/* Allocate register tables and quick-reset table. */
modified_regs = (char *) xmalloc (max_reg * sizeof (char));
same_regs = (int *) xmalloc (max_reg * sizeof (int));
all_reset = (int *) xmalloc (max_reg * sizeof (int));
for (i = 0; i < max_reg; i++)
all_reset[i] = -1;
while (changed)
{
changed = 0;
for (b1 = f; b1; b1 = NEXT_INSN (b1))
{
/* Get to a candidate branch insn. */
if (GET_CODE (b1) != JUMP_INSN
|| ! condjump_p (b1) || simplejump_p (b1)
|| JUMP_LABEL (b1) == 0)
continue;
bzero (modified_regs, max_reg * sizeof (char));
modified_mem = 0;
bcopy ((char *) all_reset, (char *) same_regs,
max_reg * sizeof (int));
num_same_regs = 0;
label = JUMP_LABEL (b1);
/* Look for a branch after the target. Record any registers and
memory modified between the target and the branch. Stop when we
get to a label since we can't know what was changed there. */
for (b2 = NEXT_INSN (label); b2; b2 = NEXT_INSN (b2))
{
if (GET_CODE (b2) == CODE_LABEL)
break;
else if (GET_CODE (b2) == JUMP_INSN)
{
/* If this is an unconditional jump and is the only use of
its target label, we can follow it. */
if (simplejump_p (b2)
&& JUMP_LABEL (b2) != 0
&& LABEL_NUSES (JUMP_LABEL (b2)) == 1)
{
b2 = JUMP_LABEL (b2);
continue;
}
else
break;
}
if (GET_CODE (b2) != CALL_INSN && GET_CODE (b2) != INSN)
continue;
if (GET_CODE (b2) == CALL_INSN)
{
modified_mem = 1;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (call_used_regs[i] && ! fixed_regs[i]
&& i != STACK_POINTER_REGNUM
&& i != FRAME_POINTER_REGNUM
&& i != HARD_FRAME_POINTER_REGNUM
&& i != ARG_POINTER_REGNUM)
modified_regs[i] = 1;
}
note_stores (PATTERN (b2), mark_modified_reg, NULL);
}
/* Check the next candidate branch insn from the label
of the first. */
if (b2 == 0
|| GET_CODE (b2) != JUMP_INSN
|| b2 == b1
|| ! condjump_p (b2)
|| simplejump_p (b2))
continue;
/* Get the comparison codes and operands, reversing the
codes if appropriate. If we don't have comparison codes,
we can't do anything. */
b1op0 = XEXP (XEXP (SET_SRC (PATTERN (b1)), 0), 0);
b1op1 = XEXP (XEXP (SET_SRC (PATTERN (b1)), 0), 1);
code1 = GET_CODE (XEXP (SET_SRC (PATTERN (b1)), 0));
if (XEXP (SET_SRC (PATTERN (b1)), 1) == pc_rtx)
code1 = reverse_condition (code1);
b2op0 = XEXP (XEXP (SET_SRC (PATTERN (b2)), 0), 0);
b2op1 = XEXP (XEXP (SET_SRC (PATTERN (b2)), 0), 1);
code2 = GET_CODE (XEXP (SET_SRC (PATTERN (b2)), 0));
if (XEXP (SET_SRC (PATTERN (b2)), 1) == pc_rtx)
code2 = reverse_condition (code2);
/* If they test the same things and knowing that B1 branches
tells us whether or not B2 branches, check if we
can thread the branch. */
if (rtx_equal_for_thread_p (b1op0, b2op0, b2)
&& rtx_equal_for_thread_p (b1op1, b2op1, b2)
&& (comparison_dominates_p (code1, code2)
|| (comparison_dominates_p (code1, reverse_condition (code2))
&& can_reverse_comparison_p (XEXP (SET_SRC (PATTERN (b1)),
0),
b1))))
{
t1 = prev_nonnote_insn (b1);
t2 = prev_nonnote_insn (b2);
while (t1 != 0 && t2 != 0)
{
if (t2 == label)
{
/* We have reached the target of the first branch.
If there are no pending register equivalents,
we know that this branch will either always
succeed (if the senses of the two branches are
the same) or always fail (if not). */
rtx new_label;
if (num_same_regs != 0)
break;
if (comparison_dominates_p (code1, code2))
new_label = JUMP_LABEL (b2);
else
new_label = get_label_after (b2);
if (JUMP_LABEL (b1) != new_label)
{
rtx prev = PREV_INSN (new_label);
if (flag_before_loop
&& GET_CODE (prev) == NOTE
&& NOTE_LINE_NUMBER (prev) == NOTE_INSN_LOOP_BEG)
{
/* Don't thread to the loop label. If a loop
label is reused, loop optimization will
be disabled for that loop. */
new_label = gen_label_rtx ();
emit_label_after (new_label, PREV_INSN (prev));
}
changed |= redirect_jump (b1, new_label);
}
break;
}
/* If either of these is not a normal insn (it might be
a JUMP_INSN, CALL_INSN, or CODE_LABEL) we fail. (NOTEs
have already been skipped above.) Similarly, fail
if the insns are different. */
if (GET_CODE (t1) != INSN || GET_CODE (t2) != INSN
|| recog_memoized (t1) != recog_memoized (t2)
|| ! rtx_equal_for_thread_p (PATTERN (t1),
PATTERN (t2), t2))
break;
t1 = prev_nonnote_insn (t1);
t2 = prev_nonnote_insn (t2);
}
}
}
}
/* Clean up. */
free (modified_regs);
free (same_regs);
free (all_reset);
}
/* This is like RTX_EQUAL_P except that it knows about our handling of
possibly equivalent registers and knows to consider volatile and
modified objects as not equal.
YINSN is the insn containing Y. */
int
rtx_equal_for_thread_p (x, y, yinsn)
rtx x, y;
rtx yinsn;
{
register int i;
register int j;
register enum rtx_code code;
register const char *fmt;
code = GET_CODE (x);
/* Rtx's of different codes cannot be equal. */
if (code != GET_CODE (y))
return 0;
/* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
(REG:SI x) and (REG:HI x) are NOT equivalent. */
if (GET_MODE (x) != GET_MODE (y))
return 0;
/* For floating-point, consider everything unequal. This is a bit
pessimistic, but this pass would only rarely do anything for FP
anyway. */
if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
&& FLOAT_MODE_P (GET_MODE (x)) && ! flag_fast_math)
return 0;
/* For commutative operations, the RTX match if the operand match in any
order. Also handle the simple binary and unary cases without a loop. */
if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
return ((rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn)
&& rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 1), yinsn))
|| (rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 1), yinsn)
&& rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 0), yinsn)));
else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
return (rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn)
&& rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 1), yinsn));
else if (GET_RTX_CLASS (code) == '1')
return rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn);
/* Handle special-cases first. */
switch (code)
{
case REG:
if (REGNO (x) == REGNO (y) && ! modified_regs[REGNO (x)])
return 1;
/* If neither is user variable or hard register, check for possible
equivalence. */
if (REG_USERVAR_P (x) || REG_USERVAR_P (y)
|| REGNO (x) < FIRST_PSEUDO_REGISTER
|| REGNO (y) < FIRST_PSEUDO_REGISTER)
return 0;
if (same_regs[REGNO (x)] == -1)
{
same_regs[REGNO (x)] = REGNO (y);
num_same_regs++;
/* If this is the first time we are seeing a register on the `Y'
side, see if it is the last use. If not, we can't thread the
jump, so mark it as not equivalent. */
if (REGNO_LAST_UID (REGNO (y)) != INSN_UID (yinsn))
return 0;
return 1;
}
else
return (same_regs[REGNO (x)] == REGNO (y));
break;
case MEM:
/* If memory modified or either volatile, not equivalent.
Else, check address. */
if (modified_mem || MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
return 0;
return rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn);
case ASM_INPUT:
if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
return 0;
break;
case SET:
/* Cancel a pending `same_regs' if setting equivalenced registers.
Then process source. */
if (GET_CODE (SET_DEST (x)) == REG
&& GET_CODE (SET_DEST (y)) == REG)
{
if (same_regs[REGNO (SET_DEST (x))] == REGNO (SET_DEST (y)))
{
same_regs[REGNO (SET_DEST (x))] = -1;
num_same_regs--;
}
else if (REGNO (SET_DEST (x)) != REGNO (SET_DEST (y)))
return 0;
}
else
if (rtx_equal_for_thread_p (SET_DEST (x), SET_DEST (y), yinsn) == 0)
return 0;
return rtx_equal_for_thread_p (SET_SRC (x), SET_SRC (y), yinsn);
case LABEL_REF:
return XEXP (x, 0) == XEXP (y, 0);
case SYMBOL_REF:
return XSTR (x, 0) == XSTR (y, 0);
default:
break;
}
if (x == y)
return 1;
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
switch (fmt[i])
{
case 'w':
if (XWINT (x, i) != XWINT (y, i))
return 0;
break;
case 'n':
case 'i':
if (XINT (x, i) != XINT (y, i))
return 0;
break;
case 'V':
case 'E':
/* Two vectors must have the same length. */
if (XVECLEN (x, i) != XVECLEN (y, i))
return 0;
/* And the corresponding elements must match. */
for (j = 0; j < XVECLEN (x, i); j++)
if (rtx_equal_for_thread_p (XVECEXP (x, i, j),
XVECEXP (y, i, j), yinsn) == 0)
return 0;
break;
case 'e':
if (rtx_equal_for_thread_p (XEXP (x, i), XEXP (y, i), yinsn) == 0)
return 0;
break;
case 'S':
case 's':
if (strcmp (XSTR (x, i), XSTR (y, i)))
return 0;
break;
case 'u':
/* These are just backpointers, so they don't matter. */
break;
case '0':
case 't':
break;
/* It is believed that rtx's at this level will never
contain anything but integers and other rtx's,
except for within LABEL_REFs and SYMBOL_REFs. */
default:
abort ();
}
}
return 1;
}
#if !defined(HAVE_cc0) && !defined(HAVE_conditional_arithmetic)
/* Return the insn that NEW can be safely inserted in front of starting at
the jump insn INSN. Return 0 if it is not safe to do this jump
optimization. Note that NEW must contain a single set. */
static rtx
find_insert_position (insn, new)
rtx insn;
rtx new;
{
int i;
rtx prev;
/* If NEW does not clobber, it is safe to insert NEW before INSN. */
if (GET_CODE (PATTERN (new)) != PARALLEL)
return insn;
for (i = XVECLEN (PATTERN (new), 0) - 1; i >= 0; i--)
if (GET_CODE (XVECEXP (PATTERN (new), 0, i)) == CLOBBER
&& reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (new), 0, i), 0),
insn))
break;
if (i < 0)
return insn;
/* There is a good chance that the previous insn PREV sets the thing
being clobbered (often the CC in a hard reg). If PREV does not
use what NEW sets, we can insert NEW before PREV. */
prev = prev_active_insn (insn);
for (i = XVECLEN (PATTERN (new), 0) - 1; i >= 0; i--)
if (GET_CODE (XVECEXP (PATTERN (new), 0, i)) == CLOBBER
&& reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (new), 0, i), 0),
insn)
&& ! modified_in_p (XEXP (XVECEXP (PATTERN (new), 0, i), 0),
prev))
return 0;
return reg_mentioned_p (SET_DEST (single_set (new)), prev) ? 0 : prev;
}
#endif /* !HAVE_cc0 */
|