1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
|
.. Copyright (C) 2014-2020 Free Software Foundation, Inc.
Originally contributed by David Malcolm <dmalcolm@redhat.com>
This is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see
<http://www.gnu.org/licenses/>.
Tutorial part 4: Adding JIT-compilation to a toy interpreter
------------------------------------------------------------
In this example we construct a "toy" interpreter, and add JIT-compilation
to it.
Our toy interpreter
*******************
It's a stack-based interpreter, and is intended as a (very simple) example
of the kind of bytecode interpreter seen in dynamic languages such as
Python, Ruby etc.
For the sake of simplicity, our toy virtual machine is very limited:
* The only data type is `int`
* It can only work on one function at a time (so that the only
function call that can be made is to recurse).
* Functions can only take one parameter.
* Functions have a stack of `int` values.
* We'll implement function call within the interpreter by calling a
function in our implementation, rather than implementing our own
frame stack.
* The parser is only good enough to get the examples to work.
Naturally, a real interpreter would be much more complicated that this.
The following operations are supported:
====================== ======================== =============== ==============
Operation Meaning Old Stack New Stack
====================== ======================== =============== ==============
DUP Duplicate top of stack. ``[..., x]`` ``[..., x, x]``
ROT Swap top two elements ``[..., x, y]`` ``[..., y, x]``
of stack.
BINARY_ADD Add the top two elements ``[..., x, y]`` ``[..., (x+y)]``
on the stack.
BINARY_SUBTRACT Likewise, but subtract. ``[..., x, y]`` ``[..., (x-y)]``
BINARY_MULT Likewise, but multiply. ``[..., x, y]`` ``[..., (x*y)]``
BINARY_COMPARE_LT Compare the top two ``[..., x, y]`` ``[..., (x<y)]``
elements on the stack
and push a nonzero/zero
if (x<y).
RECURSE Recurse, passing the top ``[..., x]`` ``[..., fn(x)]``
of the stack, and
popping the result.
RETURN Return the top of the ``[x]`` ``[]``
stack.
PUSH_CONST `arg` Push an int const. ``[...]`` ``[..., arg]``
JUMP_ABS_IF_TRUE `arg` Pop; if top of stack was ``[..., x]`` ``[...]``
nonzero, jump to
``arg``.
====================== ======================== =============== ==============
Programs can be interpreted, disassembled, and compiled to machine code.
The interpreter reads ``.toy`` scripts. Here's what a simple recursive
factorial program looks like, the script ``factorial.toy``.
The parser ignores lines beginning with a `#`.
.. literalinclude:: ../examples/tut04-toyvm/factorial.toy
:lines: 1-
:language: c
The interpreter is a simple infinite loop with a big ``switch`` statement
based on what the next opcode is:
.. literalinclude:: ../examples/tut04-toyvm/toyvm.c
:start-after: /* Execute the given function. */
:end-before: /* JIT compilation. */
:language: c
Compiling to machine code
*************************
We want to generate machine code that can be cast to this type and
then directly executed in-process:
.. literalinclude:: ../examples/tut04-toyvm/toyvm.c
:start-after: /* Functions are compiled to this function ptr type. */
:end-before: enum opcode
:language: c
The lifetime of the code is tied to that of a :c:type:`gcc_jit_result *`.
We'll handle this by bundling them up in a structure, so that we can
clean them up together by calling :c:func:`gcc_jit_result_release`:
.. literalinclude:: ../examples/tut04-toyvm/toyvm.c
:start-after: /* A struct to hold the compilation results. */
:end-before: /* The main compilation hook. */
:language: c
Our compiler isn't very sophisticated; it takes the implementation of
each opcode above, and maps it directly to the operations supported by
the libgccjit API.
How should we handle the stack? In theory we could calculate what the
stack depth will be at each opcode, and optimize away the stack
manipulation "by hand". We'll see below that libgccjit is able to do
this for us, so we'll implement stack manipulation
in a direct way, by creating a ``stack`` array and ``stack_depth``
variables, local within the generated function, equivalent to this C code:
.. code-block:: c
int stack_depth;
int stack[MAX_STACK_DEPTH];
We'll also have local variables ``x`` and ``y`` for use when implementing
the opcodes, equivalent to this:
.. code-block:: c
int x;
int y;
This means our compiler has the following state:
.. literalinclude:: ../examples/tut04-toyvm/toyvm.c
:start-after: /* JIT compilation. */
:end-before: /* Stack manipulation. */
:language: c
Setting things up
*****************
First we create our types:
.. literalinclude:: ../examples/tut04-toyvm/toyvm.c
:start-after: /* Create types. */
:end-before: /* The constant value 1. */
:language: c
along with extracting a useful `int` constant:
.. literalinclude:: ../examples/tut04-toyvm/toyvm.c
:start-after: /* The constant value 1. */
:end-before: /* Create locations. */
:language: c
We'll implement push and pop in terms of the ``stack`` array and
``stack_depth``. Here are helper functions for adding statements to
a block, implementing pushing and popping values:
.. literalinclude:: ../examples/tut04-toyvm/toyvm.c
:start-after: /* Stack manipulation. */
:end-before: /* A struct to hold the compilation results. */
:language: c
We will support single-stepping through the generated code in the
debugger, so we need to create :c:type:`gcc_jit_location` instances, one
per operation in the source code. These will reference the lines of
e.g. ``factorial.toy``.
.. literalinclude:: ../examples/tut04-toyvm/toyvm.c
:start-after: /* Create locations. */
:end-before: /* Creating the function. */
:language: c
Let's create the function itself. As usual, we create its parameter
first, then use the parameter to create the function:
.. literalinclude:: ../examples/tut04-toyvm/toyvm.c
:start-after: /* Creating the function. */
:end-before: /* Create stack lvalues. */
:language: c
We create the locals within the function.
.. literalinclude:: ../examples/tut04-toyvm/toyvm.c
:start-after: /* Create stack lvalues. */
:end-before: /* 1st pass: create blocks, one per opcode.
:language: c
Populating the function
***********************
There's some one-time initialization, and the API treats the first block
you create as the entrypoint of the function, so we need to create that
block first:
.. literalinclude:: ../examples/tut04-toyvm/toyvm.c
:start-after: first. */
:end-before: /* Create a block per operation. */
:language: c
We can now create blocks for each of the operations. Most of these will
be consolidated into larger blocks when the optimizer runs.
.. literalinclude:: ../examples/tut04-toyvm/toyvm.c
:start-after: /* Create a block per operation. */
:end-before: /* Populate the initial block. */
:language: c
Now that we have a block it can jump to when it's done, we can populate
the initial block:
.. literalinclude:: ../examples/tut04-toyvm/toyvm.c
:start-after: /* Populate the initial block. */
:end-before: /* 2nd pass: fill in instructions. */
:language: c
We can now populate the blocks for the individual operations. We loop
through them, adding instructions to their blocks:
.. literalinclude:: ../examples/tut04-toyvm/toyvm.c
:start-after: /* 2nd pass: fill in instructions. */
:end-before: /* Helper macros. */
:language: c
We're going to have another big ``switch`` statement for implementing
the opcodes, this time for compiling them, rather than interpreting
them. It's helpful to have macros for implementing push and pop, so that
we can make the ``switch`` statement that's coming up look as much as
possible like the one above within the interpreter:
.. literalinclude:: ../examples/tut04-toyvm/toyvm.c
:start-after: /* Helper macros. */
:end-before: gcc_jit_block_add_comment
:language: c
.. note::
A particularly clever implementation would have an *identical*
``switch`` statement shared by the interpreter and the compiler, with
some preprocessor "magic". We're not doing that here, for the sake
of simplicity.
When I first implemented this compiler, I accidentally missed an edit
when copying and pasting the ``Y_EQUALS_POP`` macro, so that popping the
stack into ``y`` instead erroneously assigned it to ``x``, leaving ``y``
uninitialized.
To track this kind of thing down, we can use
:c:func:`gcc_jit_block_add_comment` to add descriptive comments
to the internal representation. This is invaluable when looking through
the generated IR for, say ``factorial``:
.. literalinclude:: ../examples/tut04-toyvm/toyvm.c
:start-after: PUSH_RVALUE (gcc_jit_lvalue_as_rvalue (state.y))
:end-before: /* Handle the individual opcodes. */
:language: c
We can now write the big ``switch`` statement that implements the
individual opcodes, populating the relevant block with statements:
.. literalinclude:: ../examples/tut04-toyvm/toyvm.c
:start-after: /* Handle the individual opcodes. */
:end-before: /* Go to the next block. */
:language: c
Every block must be terminated, via a call to one of the
``gcc_jit_block_end_with_`` entrypoints. This has been done for two
of the opcodes, but we need to do it for the other ones, by jumping
to the next block.
.. literalinclude:: ../examples/tut04-toyvm/toyvm.c
:start-after: /* Go to the next block. */
:end-before: /* end of loop on PC locations. */
:language: c
This is analogous to simply incrementing the program counter.
Verifying the control flow graph
********************************
Having finished looping over the blocks, the context is complete.
As before, we can verify that the control flow and statements are sane by
using :c:func:`gcc_jit_function_dump_to_dot`:
.. code-block:: c
gcc_jit_function_dump_to_dot (state.fn, "/tmp/factorial.dot");
and viewing the result. Note how the label names, comments, and
variable names show up in the dump, to make it easier to spot
errors in our compiler.
.. figure:: factorial.png
:alt: image of a control flow graph
Compiling the context
*********************
Having finished looping over the blocks and populating them with
statements, the context is complete.
We can now compile it, and extract machine code from the result:
.. literalinclude:: ../examples/tut04-toyvm/toyvm.c
:start-after: /* We've now finished populating the context. Compile it. */
:end-before: /* (this leaks "result" and "funcname") */
:language: c
We can now run the result:
.. literalinclude:: ../examples/tut04-toyvm/toyvm.c
:start-after: /* JIT-compilation. */
:end-before: return 0;
:language: c
Single-stepping through the generated code
******************************************
It's possible to debug the generated code. To do this we need to both:
* Set up source code locations for our statements, so that we can
meaningfully step through the code. We did this above by
calling :c:func:`gcc_jit_context_new_location` and using the
results.
* Enable the generation of debugging information, by setting
:c:macro:`GCC_JIT_BOOL_OPTION_DEBUGINFO` on the
:c:type:`gcc_jit_context` via
:c:func:`gcc_jit_context_set_bool_option`:
.. code-block:: c
gcc_jit_context_set_bool_option (
ctxt,
GCC_JIT_BOOL_OPTION_DEBUGINFO,
1);
Having done this, we can put a breakpoint on the generated function:
.. code-block:: console
$ gdb --args ./toyvm factorial.toy 10
(gdb) break factorial
Function "factorial" not defined.
Make breakpoint pending on future shared library load? (y or [n]) y
Breakpoint 1 (factorial) pending.
(gdb) run
Breakpoint 1, factorial (arg=10) at factorial.toy:14
14 DUP
We've set up location information, which references ``factorial.toy``.
This allows us to use e.g. ``list`` to see where we are in the script:
.. code-block:: console
(gdb) list
9
10 # Initial state:
11 # stack: [arg]
12
13 # 0:
14 DUP
15 # stack: [arg, arg]
16
17 # 1:
18 PUSH_CONST 2
and to step through the function, examining the data:
.. code-block:: console
(gdb) n
18 PUSH_CONST 2
(gdb) n
22 BINARY_COMPARE_LT
(gdb) print stack
$5 = {10, 10, 2, 0, -7152, 32767, 0, 0}
(gdb) print stack_depth
$6 = 3
You'll see that the parts of the ``stack`` array that haven't been
touched yet are uninitialized.
.. note::
Turning on optimizations may lead to unpredictable results when
stepping through the generated code: the execution may appear to
"jump around" the source code. This is analogous to turning up the
optimization level in a regular compiler.
Examining the generated code
****************************
How good is the optimized code?
We can turn up optimizations, by calling
:c:func:`gcc_jit_context_set_int_option` with
:c:macro:`GCC_JIT_INT_OPTION_OPTIMIZATION_LEVEL`:
.. code-block:: c
gcc_jit_context_set_int_option (
ctxt,
GCC_JIT_INT_OPTION_OPTIMIZATION_LEVEL,
3);
One of GCC's internal representations is called "gimple". A dump of the
initial gimple representation of the code can be seen by setting:
.. code-block:: c
gcc_jit_context_set_bool_option (ctxt,
GCC_JIT_BOOL_OPTION_DUMP_INITIAL_GIMPLE,
1);
With optimization on and source locations displayed, this gives:
.. We'll use "c" for gimple dumps
.. code-block:: c
factorial (signed int arg)
{
<unnamed type> D.80;
signed int D.81;
signed int D.82;
signed int D.83;
signed int D.84;
signed int D.85;
signed int y;
signed int x;
signed int stack_depth;
signed int stack[8];
try
{
initial:
stack_depth = 0;
stack[stack_depth] = arg;
stack_depth = stack_depth + 1;
goto instr0;
instr0:
/* DUP */:
stack_depth = stack_depth + -1;
x = stack[stack_depth];
stack[stack_depth] = x;
stack_depth = stack_depth + 1;
stack[stack_depth] = x;
stack_depth = stack_depth + 1;
goto instr1;
instr1:
/* PUSH_CONST */:
stack[stack_depth] = 2;
stack_depth = stack_depth + 1;
goto instr2;
/* etc */
You can see the generated machine code in assembly form via:
.. code-block:: c
gcc_jit_context_set_bool_option (
ctxt,
GCC_JIT_BOOL_OPTION_DUMP_GENERATED_CODE,
1);
result = gcc_jit_context_compile (ctxt);
which shows that (on this x86_64 box) the compiler has unrolled the loop
and is using MMX instructions to perform several multiplications
simultaneously:
.. code-block:: gas
.file "fake.c"
.text
.Ltext0:
.p2align 4,,15
.globl factorial
.type factorial, @function
factorial:
.LFB0:
.file 1 "factorial.toy"
.loc 1 14 0
.cfi_startproc
.LVL0:
.L2:
.loc 1 26 0
cmpl $1, %edi
jle .L13
leal -1(%rdi), %edx
movl %edx, %ecx
shrl $2, %ecx
leal 0(,%rcx,4), %esi
testl %esi, %esi
je .L14
cmpl $9, %edx
jbe .L14
leal -2(%rdi), %eax
movl %eax, -16(%rsp)
leal -3(%rdi), %eax
movd -16(%rsp), %xmm0
movl %edi, -16(%rsp)
movl %eax, -12(%rsp)
movd -16(%rsp), %xmm1
xorl %eax, %eax
movl %edx, -16(%rsp)
movd -12(%rsp), %xmm4
movd -16(%rsp), %xmm6
punpckldq %xmm4, %xmm0
movdqa .LC1(%rip), %xmm4
punpckldq %xmm6, %xmm1
punpcklqdq %xmm0, %xmm1
movdqa .LC0(%rip), %xmm0
jmp .L5
# etc - edited for brevity
This is clearly overkill for a function that will likely overflow the
``int`` type before the vectorization is worthwhile - but then again, this
is a toy example.
Turning down the optimization level to 2:
.. code-block:: c
gcc_jit_context_set_int_option (
ctxt,
GCC_JIT_INT_OPTION_OPTIMIZATION_LEVEL,
3);
yields this code, which is simple enough to quote in its entirety:
.. code-block:: gas
.file "fake.c"
.text
.p2align 4,,15
.globl factorial
.type factorial, @function
factorial:
.LFB0:
.cfi_startproc
.L2:
cmpl $1, %edi
jle .L8
movl $1, %edx
jmp .L4
.p2align 4,,10
.p2align 3
.L6:
movl %eax, %edi
.L4:
.L5:
leal -1(%rdi), %eax
imull %edi, %edx
cmpl $1, %eax
jne .L6
.L3:
.L7:
imull %edx, %eax
ret
.L8:
movl %edi, %eax
movl $1, %edx
jmp .L7
.cfi_endproc
.LFE0:
.size factorial, .-factorial
.ident "GCC: (GNU) 4.9.0 20131023 (Red Hat 0.2-%{gcc_release})"
.section .note.GNU-stack,"",@progbits
Note that the stack pushing and popping have been eliminated, as has the
recursive call (in favor of an iteration).
Putting it all together
***********************
The complete example can be seen in the source tree at
``gcc/jit/docs/examples/tut04-toyvm/toyvm.c``
along with a Makefile and a couple of sample .toy scripts:
.. code-block:: console
$ ls -al
drwxrwxr-x. 2 david david 4096 Sep 19 17:46 .
drwxrwxr-x. 3 david david 4096 Sep 19 15:26 ..
-rw-rw-r--. 1 david david 615 Sep 19 12:43 factorial.toy
-rw-rw-r--. 1 david david 834 Sep 19 13:08 fibonacci.toy
-rw-rw-r--. 1 david david 238 Sep 19 14:22 Makefile
-rw-rw-r--. 1 david david 16457 Sep 19 17:07 toyvm.c
$ make toyvm
g++ -Wall -g -o toyvm toyvm.c -lgccjit
$ ./toyvm factorial.toy 10
interpreter result: 3628800
compiler result: 3628800
$ ./toyvm fibonacci.toy 10
interpreter result: 55
compiler result: 55
Behind the curtain: How does our code get optimized?
****************************************************
Our example is done, but you may be wondering about exactly how the
compiler turned what we gave it into the machine code seen above.
We can examine what the compiler is doing in detail by setting:
.. code-block:: c
gcc_jit_context_set_bool_option (state.ctxt,
GCC_JIT_BOOL_OPTION_DUMP_EVERYTHING,
1);
gcc_jit_context_set_bool_option (state.ctxt,
GCC_JIT_BOOL_OPTION_KEEP_INTERMEDIATES,
1);
This will dump detailed information about the compiler's state to a
directory under ``/tmp``, and keep it from being cleaned up.
The precise names and their formats of these files is subject to change.
Higher optimization levels lead to more files.
Here's what I saw (edited for brevity; there were almost 200 files):
.. code-block:: console
intermediate files written to /tmp/libgccjit-KPQbGw
$ ls /tmp/libgccjit-KPQbGw/
fake.c.000i.cgraph
fake.c.000i.type-inheritance
fake.c.004t.gimple
fake.c.007t.omplower
fake.c.008t.lower
fake.c.011t.eh
fake.c.012t.cfg
fake.c.014i.visibility
fake.c.015i.early_local_cleanups
fake.c.016t.ssa
# etc
The gimple code is converted into Static Single Assignment form,
with annotations for use when generating the debuginfo:
.. code-block:: console
$ less /tmp/libgccjit-KPQbGw/fake.c.016t.ssa
.. code-block:: c
;; Function factorial (factorial, funcdef_no=0, decl_uid=53, symbol_order=0)
factorial (signed int arg)
{
signed int stack[8];
signed int stack_depth;
signed int x;
signed int y;
<unnamed type> _20;
signed int _21;
signed int _38;
signed int _44;
signed int _51;
signed int _56;
initial:
stack_depth_3 = 0;
# DEBUG stack_depth => stack_depth_3
stack[stack_depth_3] = arg_5(D);
stack_depth_7 = stack_depth_3 + 1;
# DEBUG stack_depth => stack_depth_7
# DEBUG instr0 => NULL
# DEBUG /* DUP */ => NULL
stack_depth_8 = stack_depth_7 + -1;
# DEBUG stack_depth => stack_depth_8
x_9 = stack[stack_depth_8];
# DEBUG x => x_9
stack[stack_depth_8] = x_9;
stack_depth_11 = stack_depth_8 + 1;
# DEBUG stack_depth => stack_depth_11
stack[stack_depth_11] = x_9;
stack_depth_13 = stack_depth_11 + 1;
# DEBUG stack_depth => stack_depth_13
# DEBUG instr1 => NULL
# DEBUG /* PUSH_CONST */ => NULL
stack[stack_depth_13] = 2;
/* etc; edited for brevity */
We can perhaps better see the code by turning off
:c:macro:`GCC_JIT_BOOL_OPTION_DEBUGINFO` to suppress all those ``DEBUG``
statements, giving:
.. code-block:: console
$ less /tmp/libgccjit-1Hywc0/fake.c.016t.ssa
.. code-block:: c
;; Function factorial (factorial, funcdef_no=0, decl_uid=53, symbol_order=0)
factorial (signed int arg)
{
signed int stack[8];
signed int stack_depth;
signed int x;
signed int y;
<unnamed type> _20;
signed int _21;
signed int _38;
signed int _44;
signed int _51;
signed int _56;
initial:
stack_depth_3 = 0;
stack[stack_depth_3] = arg_5(D);
stack_depth_7 = stack_depth_3 + 1;
stack_depth_8 = stack_depth_7 + -1;
x_9 = stack[stack_depth_8];
stack[stack_depth_8] = x_9;
stack_depth_11 = stack_depth_8 + 1;
stack[stack_depth_11] = x_9;
stack_depth_13 = stack_depth_11 + 1;
stack[stack_depth_13] = 2;
stack_depth_15 = stack_depth_13 + 1;
stack_depth_16 = stack_depth_15 + -1;
y_17 = stack[stack_depth_16];
stack_depth_18 = stack_depth_16 + -1;
x_19 = stack[stack_depth_18];
_20 = x_19 < y_17;
_21 = (signed int) _20;
stack[stack_depth_18] = _21;
stack_depth_23 = stack_depth_18 + 1;
stack_depth_24 = stack_depth_23 + -1;
x_25 = stack[stack_depth_24];
if (x_25 != 0)
goto <bb 4> (instr9);
else
goto <bb 3> (instr4);
instr4:
/* DUP */:
stack_depth_26 = stack_depth_24 + -1;
x_27 = stack[stack_depth_26];
stack[stack_depth_26] = x_27;
stack_depth_29 = stack_depth_26 + 1;
stack[stack_depth_29] = x_27;
stack_depth_31 = stack_depth_29 + 1;
stack[stack_depth_31] = 1;
stack_depth_33 = stack_depth_31 + 1;
stack_depth_34 = stack_depth_33 + -1;
y_35 = stack[stack_depth_34];
stack_depth_36 = stack_depth_34 + -1;
x_37 = stack[stack_depth_36];
_38 = x_37 - y_35;
stack[stack_depth_36] = _38;
stack_depth_40 = stack_depth_36 + 1;
stack_depth_41 = stack_depth_40 + -1;
x_42 = stack[stack_depth_41];
_44 = factorial (x_42);
stack[stack_depth_41] = _44;
stack_depth_46 = stack_depth_41 + 1;
stack_depth_47 = stack_depth_46 + -1;
y_48 = stack[stack_depth_47];
stack_depth_49 = stack_depth_47 + -1;
x_50 = stack[stack_depth_49];
_51 = x_50 * y_48;
stack[stack_depth_49] = _51;
stack_depth_53 = stack_depth_49 + 1;
# stack_depth_1 = PHI <stack_depth_24(2), stack_depth_53(3)>
instr9:
/* RETURN */:
stack_depth_54 = stack_depth_1 + -1;
x_55 = stack[stack_depth_54];
_56 = x_55;
stack ={v} {CLOBBER};
return _56;
}
Note in the above how all the :c:type:`gcc_jit_block` instances we
created have been consolidated into just 3 blocks in GCC's internal
representation: ``initial``, ``instr4`` and ``instr9``.
Optimizing away stack manipulation
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Recall our simple implementation of stack operations. Let's examine
how the stack operations are optimized away.
After a pass of constant-propagation, the depth of the stack at each
opcode can be determined at compile-time:
.. code-block:: console
$ less /tmp/libgccjit-1Hywc0/fake.c.021t.ccp1
.. code-block:: c
;; Function factorial (factorial, funcdef_no=0, decl_uid=53, symbol_order=0)
factorial (signed int arg)
{
signed int stack[8];
signed int stack_depth;
signed int x;
signed int y;
<unnamed type> _20;
signed int _21;
signed int _38;
signed int _44;
signed int _51;
initial:
stack[0] = arg_5(D);
x_9 = stack[0];
stack[0] = x_9;
stack[1] = x_9;
stack[2] = 2;
y_17 = stack[2];
x_19 = stack[1];
_20 = x_19 < y_17;
_21 = (signed int) _20;
stack[1] = _21;
x_25 = stack[1];
if (x_25 != 0)
goto <bb 4> (instr9);
else
goto <bb 3> (instr4);
instr4:
/* DUP */:
x_27 = stack[0];
stack[0] = x_27;
stack[1] = x_27;
stack[2] = 1;
y_35 = stack[2];
x_37 = stack[1];
_38 = x_37 - y_35;
stack[1] = _38;
x_42 = stack[1];
_44 = factorial (x_42);
stack[1] = _44;
y_48 = stack[1];
x_50 = stack[0];
_51 = x_50 * y_48;
stack[0] = _51;
instr9:
/* RETURN */:
x_55 = stack[0];
x_56 = x_55;
stack ={v} {CLOBBER};
return x_56;
}
Note how, in the above, all those ``stack_depth`` values are now just
constants: we're accessing specific stack locations at each opcode.
The "esra" pass ("Early Scalar Replacement of Aggregates") breaks
out our "stack" array into individual elements:
.. code-block:: console
$ less /tmp/libgccjit-1Hywc0/fake.c.024t.esra
.. code-block:: c
;; Function factorial (factorial, funcdef_no=0, decl_uid=53, symbol_order=0)
Created a replacement for stack offset: 0, size: 32: stack$0
Created a replacement for stack offset: 32, size: 32: stack$1
Created a replacement for stack offset: 64, size: 32: stack$2
Symbols to be put in SSA form
{ D.89 D.90 D.91 }
Incremental SSA update started at block: 0
Number of blocks in CFG: 5
Number of blocks to update: 4 ( 80%)
factorial (signed int arg)
{
signed int stack$2;
signed int stack$1;
signed int stack$0;
signed int stack[8];
signed int stack_depth;
signed int x;
signed int y;
<unnamed type> _20;
signed int _21;
signed int _38;
signed int _44;
signed int _51;
initial:
stack$0_45 = arg_5(D);
x_9 = stack$0_45;
stack$0_39 = x_9;
stack$1_32 = x_9;
stack$2_30 = 2;
y_17 = stack$2_30;
x_19 = stack$1_32;
_20 = x_19 < y_17;
_21 = (signed int) _20;
stack$1_28 = _21;
x_25 = stack$1_28;
if (x_25 != 0)
goto <bb 4> (instr9);
else
goto <bb 3> (instr4);
instr4:
/* DUP */:
x_27 = stack$0_39;
stack$0_22 = x_27;
stack$1_14 = x_27;
stack$2_12 = 1;
y_35 = stack$2_12;
x_37 = stack$1_14;
_38 = x_37 - y_35;
stack$1_10 = _38;
x_42 = stack$1_10;
_44 = factorial (x_42);
stack$1_6 = _44;
y_48 = stack$1_6;
x_50 = stack$0_22;
_51 = x_50 * y_48;
stack$0_1 = _51;
# stack$0_52 = PHI <stack$0_39(2), stack$0_1(3)>
instr9:
/* RETURN */:
x_55 = stack$0_52;
x_56 = x_55;
stack ={v} {CLOBBER};
return x_56;
}
Hence at this point, all those pushes and pops of the stack are now
simply assignments to specific temporary variables.
After some copy propagation, the stack manipulation has been completely
optimized away:
.. code-block:: console
$ less /tmp/libgccjit-1Hywc0/fake.c.026t.copyprop1
.. code-block:: c
;; Function factorial (factorial, funcdef_no=0, decl_uid=53, symbol_order=0)
factorial (signed int arg)
{
signed int stack$2;
signed int stack$1;
signed int stack$0;
signed int stack[8];
signed int stack_depth;
signed int x;
signed int y;
<unnamed type> _20;
signed int _21;
signed int _38;
signed int _44;
signed int _51;
initial:
stack$0_39 = arg_5(D);
_20 = arg_5(D) <= 1;
_21 = (signed int) _20;
if (_21 != 0)
goto <bb 4> (instr9);
else
goto <bb 3> (instr4);
instr4:
/* DUP */:
_38 = arg_5(D) + -1;
_44 = factorial (_38);
_51 = arg_5(D) * _44;
stack$0_1 = _51;
# stack$0_52 = PHI <arg_5(D)(2), _51(3)>
instr9:
/* RETURN */:
stack ={v} {CLOBBER};
return stack$0_52;
}
Later on, another pass finally eliminated ``stack_depth`` local and the
unused parts of the `stack`` array altogether:
.. code-block:: console
$ less /tmp/libgccjit-1Hywc0/fake.c.036t.release_ssa
.. code-block:: c
;; Function factorial (factorial, funcdef_no=0, decl_uid=53, symbol_order=0)
Released 44 names, 314.29%, removed 44 holes
factorial (signed int arg)
{
signed int stack$0;
signed int mult_acc_1;
<unnamed type> _5;
signed int _6;
signed int _7;
signed int mul_tmp_10;
signed int mult_acc_11;
signed int mult_acc_13;
# arg_9 = PHI <arg_8(D)(0)>
# mult_acc_13 = PHI <1(0)>
initial:
<bb 5>:
# arg_4 = PHI <arg_9(2), _7(3)>
# mult_acc_1 = PHI <mult_acc_13(2), mult_acc_11(3)>
_5 = arg_4 <= 1;
_6 = (signed int) _5;
if (_6 != 0)
goto <bb 4> (instr9);
else
goto <bb 3> (instr4);
instr4:
/* DUP */:
_7 = arg_4 + -1;
mult_acc_11 = mult_acc_1 * arg_4;
goto <bb 5>;
# stack$0_12 = PHI <arg_4(5)>
instr9:
/* RETURN */:
mul_tmp_10 = mult_acc_1 * stack$0_12;
return mul_tmp_10;
}
Elimination of tail recursion
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Another significant optimization is the detection that the call to
``factorial`` is tail recursion, which can be eliminated in favor of
an iteration:
.. code-block:: console
$ less /tmp/libgccjit-1Hywc0/fake.c.030t.tailr1
.. code-block:: c
;; Function factorial (factorial, funcdef_no=0, decl_uid=53, symbol_order=0)
Symbols to be put in SSA form
{ D.88 }
Incremental SSA update started at block: 0
Number of blocks in CFG: 5
Number of blocks to update: 4 ( 80%)
factorial (signed int arg)
{
signed int stack$2;
signed int stack$1;
signed int stack$0;
signed int stack[8];
signed int stack_depth;
signed int x;
signed int y;
signed int mult_acc_1;
<unnamed type> _20;
signed int _21;
signed int _38;
signed int mul_tmp_44;
signed int mult_acc_51;
# arg_5 = PHI <arg_39(D)(0), _38(3)>
# mult_acc_1 = PHI <1(0), mult_acc_51(3)>
initial:
_20 = arg_5 <= 1;
_21 = (signed int) _20;
if (_21 != 0)
goto <bb 4> (instr9);
else
goto <bb 3> (instr4);
instr4:
/* DUP */:
_38 = arg_5 + -1;
mult_acc_51 = mult_acc_1 * arg_5;
goto <bb 2> (initial);
# stack$0_52 = PHI <arg_5(2)>
instr9:
/* RETURN */:
stack ={v} {CLOBBER};
mul_tmp_44 = mult_acc_1 * stack$0_52;
return mul_tmp_44;
}
|