1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
|
/* IRA processing allocno lives to build allocno live ranges.
Copyright (C) 2006, 2007, 2008
Free Software Foundation, Inc.
Contributed by Vladimir Makarov <vmakarov@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "regs.h"
#include "rtl.h"
#include "tm_p.h"
#include "target.h"
#include "flags.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "insn-config.h"
#include "recog.h"
#include "toplev.h"
#include "params.h"
#include "df.h"
#include "sparseset.h"
#include "ira-int.h"
/* The code in this file is similar to one in global but the code
works on the allocno basis and creates live ranges instead of
pseudo-register conflicts. */
/* Program points are enumerated by numbers from range
0..IRA_MAX_POINT-1. There are approximately two times more program
points than insns. Program points are places in the program where
liveness info can be changed. In most general case (there are more
complicated cases too) some program points correspond to places
where input operand dies and other ones correspond to places where
output operands are born. */
int ira_max_point;
/* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
live ranges with given start/finish point. */
allocno_live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
/* Number of the current program point. */
static int curr_point;
/* Point where register pressure excess started or -1 if there is no
register pressure excess. Excess pressure for a register class at
some point means that there are more allocnos of given register
class living at the point than number of hard-registers of the
class available for the allocation. It is defined only for cover
classes. */
static int high_pressure_start_point[N_REG_CLASSES];
/* Allocnos live at current point in the scan. */
static sparseset allocnos_live;
/* Set of hard regs (except eliminable ones) currently live. */
static HARD_REG_SET hard_regs_live;
/* The loop tree node corresponding to the current basic block. */
static ira_loop_tree_node_t curr_bb_node;
/* The number of the last processed call. */
static int last_call_num;
/* The number of last call at which given allocno was saved. */
static int *allocno_saved_at_call;
/* The function processing birth of register REGNO. It updates living
hard regs and conflict hard regs for living allocnos or starts a
new live range for the allocno corresponding to REGNO if it is
necessary. */
static void
make_regno_born (int regno)
{
unsigned int i;
ira_allocno_t a;
allocno_live_range_t p;
if (regno < FIRST_PSEUDO_REGISTER)
{
SET_HARD_REG_BIT (hard_regs_live, regno);
EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, i)
{
SET_HARD_REG_BIT (ALLOCNO_CONFLICT_HARD_REGS (ira_allocnos[i]),
regno);
SET_HARD_REG_BIT (ALLOCNO_TOTAL_CONFLICT_HARD_REGS (ira_allocnos[i]),
regno);
}
return;
}
a = ira_curr_regno_allocno_map[regno];
if (a == NULL)
return;
if ((p = ALLOCNO_LIVE_RANGES (a)) == NULL
|| (p->finish != curr_point && p->finish + 1 != curr_point))
ALLOCNO_LIVE_RANGES (a)
= ira_create_allocno_live_range (a, curr_point, -1,
ALLOCNO_LIVE_RANGES (a));
}
/* Update ALLOCNO_EXCESS_PRESSURE_POINTS_NUM for allocno A. */
static void
update_allocno_pressure_excess_length (ira_allocno_t a)
{
int start, i;
enum reg_class cover_class, cl;
allocno_live_range_t p;
cover_class = ALLOCNO_COVER_CLASS (a);
for (i = 0;
(cl = ira_reg_class_super_classes[cover_class][i]) != LIM_REG_CLASSES;
i++)
{
if (high_pressure_start_point[cl] < 0)
continue;
p = ALLOCNO_LIVE_RANGES (a);
ira_assert (p != NULL);
start = (high_pressure_start_point[cl] > p->start
? high_pressure_start_point[cl] : p->start);
ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) += curr_point - start + 1;
}
}
/* Process the death of register REGNO. This updates hard_regs_live
or finishes the current live range for the allocno corresponding to
REGNO. */
static void
make_regno_dead (int regno)
{
ira_allocno_t a;
allocno_live_range_t p;
if (regno < FIRST_PSEUDO_REGISTER)
{
CLEAR_HARD_REG_BIT (hard_regs_live, regno);
return;
}
a = ira_curr_regno_allocno_map[regno];
if (a == NULL)
return;
p = ALLOCNO_LIVE_RANGES (a);
ira_assert (p != NULL);
p->finish = curr_point;
update_allocno_pressure_excess_length (a);
}
/* The current register pressures for each cover class for the current
basic block. */
static int curr_reg_pressure[N_REG_CLASSES];
/* Mark allocno A as currently living and update current register
pressure, maximal register pressure for the current BB, start point
of the register pressure excess, and conflicting hard registers of
A. */
static void
set_allocno_live (ira_allocno_t a)
{
int i;
enum reg_class cover_class, cl;
/* Invalidate because it is referenced. */
allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
if (sparseset_bit_p (allocnos_live, ALLOCNO_NUM (a)))
return;
sparseset_set_bit (allocnos_live, ALLOCNO_NUM (a));
IOR_HARD_REG_SET (ALLOCNO_CONFLICT_HARD_REGS (a), hard_regs_live);
IOR_HARD_REG_SET (ALLOCNO_TOTAL_CONFLICT_HARD_REGS (a), hard_regs_live);
cover_class = ALLOCNO_COVER_CLASS (a);
for (i = 0;
(cl = ira_reg_class_super_classes[cover_class][i]) != LIM_REG_CLASSES;
i++)
{
curr_reg_pressure[cl] += ira_reg_class_nregs[cl][ALLOCNO_MODE (a)];
if (high_pressure_start_point[cl] < 0
&& (curr_reg_pressure[cl] > ira_available_class_regs[cl]))
high_pressure_start_point[cl] = curr_point;
if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
}
}
/* Mark allocno A as currently not living and update current register
pressure, start point of the register pressure excess, and register
pressure excess length for living allocnos. */
static void
clear_allocno_live (ira_allocno_t a)
{
int i;
unsigned int j;
enum reg_class cover_class, cl;
bool set_p;
/* Invalidate because it is referenced. */
allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
if (sparseset_bit_p (allocnos_live, ALLOCNO_NUM (a)))
{
cover_class = ALLOCNO_COVER_CLASS (a);
set_p = false;
for (i = 0;
(cl = ira_reg_class_super_classes[cover_class][i])
!= LIM_REG_CLASSES;
i++)
{
curr_reg_pressure[cl] -= ira_reg_class_nregs[cl][ALLOCNO_MODE (a)];
ira_assert (curr_reg_pressure[cl] >= 0);
if (high_pressure_start_point[cl] >= 0
&& curr_reg_pressure[cl] <= ira_available_class_regs[cl])
set_p = true;
}
if (set_p)
{
EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, j)
update_allocno_pressure_excess_length (ira_allocnos[j]);
for (i = 0;
(cl = ira_reg_class_super_classes[cover_class][i])
!= LIM_REG_CLASSES;
i++)
if (high_pressure_start_point[cl] >= 0
&& curr_reg_pressure[cl] <= ira_available_class_regs[cl])
high_pressure_start_point[cl] = -1;
}
}
sparseset_clear_bit (allocnos_live, ALLOCNO_NUM (a));
}
/* Mark the register REG as live. Store a 1 in hard_regs_live or
allocnos_live for this register or the corresponding allocno,
record how many consecutive hardware registers it actually
needs. */
static void
mark_reg_live (rtx reg)
{
int i, regno;
gcc_assert (REG_P (reg));
regno = REGNO (reg);
if (regno >= FIRST_PSEUDO_REGISTER)
{
ira_allocno_t a = ira_curr_regno_allocno_map[regno];
if (a != NULL)
{
if (sparseset_bit_p (allocnos_live, ALLOCNO_NUM (a)))
{
/* Invalidate because it is referenced. */
allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
return;
}
set_allocno_live (a);
}
make_regno_born (regno);
}
else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
{
int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
enum reg_class cover_class, cl;
while (regno < last)
{
if (! TEST_HARD_REG_BIT (hard_regs_live, regno)
&& ! TEST_HARD_REG_BIT (eliminable_regset, regno))
{
cover_class = ira_hard_regno_cover_class[regno];
for (i = 0;
(cl = ira_reg_class_super_classes[cover_class][i])
!= LIM_REG_CLASSES;
i++)
{
curr_reg_pressure[cl]++;
if (high_pressure_start_point[cl] < 0
&& (curr_reg_pressure[cl]
> ira_available_class_regs[cl]))
high_pressure_start_point[cl] = curr_point;
}
make_regno_born (regno);
for (i = 0;
(cl = ira_reg_class_super_classes[cover_class][i])
!= LIM_REG_CLASSES;
i++)
{
if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
}
}
regno++;
}
}
}
/* Mark the register referenced by use or def REF as live. */
static void
mark_ref_live (df_ref ref)
{
rtx reg;
reg = DF_REF_REG (ref);
if (GET_CODE (reg) == SUBREG)
reg = SUBREG_REG (reg);
mark_reg_live (reg);
}
/* Mark the register REG as dead. Store a 0 in hard_regs_live or
allocnos_live for the register. */
static void
mark_reg_dead (rtx reg)
{
int regno;
gcc_assert (REG_P (reg));
regno = REGNO (reg);
if (regno >= FIRST_PSEUDO_REGISTER)
{
ira_allocno_t a = ira_curr_regno_allocno_map[regno];
if (a != NULL)
{
if (! sparseset_bit_p (allocnos_live, ALLOCNO_NUM (a)))
{
/* Invalidate because it is referenced. */
allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
return;
}
clear_allocno_live (a);
}
make_regno_dead (regno);
}
else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
{
int i;
unsigned int j;
int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
enum reg_class cover_class, cl;
bool set_p;
while (regno < last)
{
if (TEST_HARD_REG_BIT (hard_regs_live, regno))
{
set_p = false;
cover_class = ira_hard_regno_cover_class[regno];
for (i = 0;
(cl = ira_reg_class_super_classes[cover_class][i])
!= LIM_REG_CLASSES;
i++)
{
curr_reg_pressure[cl]--;
if (high_pressure_start_point[cl] >= 0
&& curr_reg_pressure[cl] <= ira_available_class_regs[cl])
set_p = true;
ira_assert (curr_reg_pressure[cl] >= 0);
}
if (set_p)
{
EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, j)
update_allocno_pressure_excess_length (ira_allocnos[j]);
for (i = 0;
(cl = ira_reg_class_super_classes[cover_class][i])
!= LIM_REG_CLASSES;
i++)
if (high_pressure_start_point[cl] >= 0
&& (curr_reg_pressure[cl]
<= ira_available_class_regs[cl]))
high_pressure_start_point[cl] = -1;
}
make_regno_dead (regno);
}
regno++;
}
}
}
/* Mark the register referenced by definition DEF as dead, if the
definition is a total one. */
static void
mark_ref_dead (df_ref def)
{
rtx reg;
if (DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL)
|| DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL))
return;
reg = DF_REF_REG (def);
if (GET_CODE (reg) == SUBREG)
reg = SUBREG_REG (reg);
mark_reg_dead (reg);
}
/* Make pseudo REG conflicting with pseudo DREG, if the 1st pseudo
class is intersected with class CL. Advance the current program
point before making the conflict if ADVANCE_P. Return TRUE if we
will need to advance the current program point. */
static bool
make_pseudo_conflict (rtx reg, enum reg_class cl, rtx dreg, bool advance_p)
{
ira_allocno_t a;
if (GET_CODE (reg) == SUBREG)
reg = SUBREG_REG (reg);
if (! REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
return advance_p;
a = ira_curr_regno_allocno_map[REGNO (reg)];
if (! reg_classes_intersect_p (cl, ALLOCNO_COVER_CLASS (a)))
return advance_p;
if (advance_p)
curr_point++;
mark_reg_live (reg);
mark_reg_live (dreg);
mark_reg_dead (reg);
mark_reg_dead (dreg);
return false;
}
/* Check and make if necessary conflicts for pseudo DREG of class
DEF_CL of the current insn with input operand USE of class USE_CL.
Advance the current program point before making the conflict if
ADVANCE_P. Return TRUE if we will need to advance the current
program point. */
static bool
check_and_make_def_use_conflict (rtx dreg, enum reg_class def_cl,
int use, enum reg_class use_cl,
bool advance_p)
{
if (! reg_classes_intersect_p (def_cl, use_cl))
return advance_p;
advance_p = make_pseudo_conflict (recog_data.operand[use],
use_cl, dreg, advance_p);
/* Reload may end up swapping commutative operands, so you
have to take both orderings into account. The
constraints for the two operands can be completely
different. (Indeed, if the constraints for the two
operands are the same for all alternatives, there's no
point marking them as commutative.) */
if (use < recog_data.n_operands + 1
&& recog_data.constraints[use][0] == '%')
advance_p
= make_pseudo_conflict (recog_data.operand[use + 1],
use_cl, dreg, advance_p);
if (use >= 1
&& recog_data.constraints[use - 1][0] == '%')
advance_p
= make_pseudo_conflict (recog_data.operand[use - 1],
use_cl, dreg, advance_p);
return advance_p;
}
/* Check and make if necessary conflicts for definition DEF of class
DEF_CL of the current insn with input operands. Process only
constraints of alternative ALT. */
static void
check_and_make_def_conflict (int alt, int def, enum reg_class def_cl)
{
int use, use_match;
ira_allocno_t a;
enum reg_class use_cl, acl;
bool advance_p;
rtx dreg = recog_data.operand[def];
if (def_cl == NO_REGS)
return;
if (GET_CODE (dreg) == SUBREG)
dreg = SUBREG_REG (dreg);
if (! REG_P (dreg) || REGNO (dreg) < FIRST_PSEUDO_REGISTER)
return;
a = ira_curr_regno_allocno_map[REGNO (dreg)];
acl = ALLOCNO_COVER_CLASS (a);
if (! reg_classes_intersect_p (acl, def_cl))
return;
advance_p = true;
for (use = 0; use < recog_data.n_operands; use++)
{
if (use == def || recog_data.operand_type[use] == OP_OUT)
return;
if (recog_op_alt[use][alt].anything_ok)
use_cl = ALL_REGS;
else
use_cl = recog_op_alt[use][alt].cl;
advance_p = check_and_make_def_use_conflict (dreg, def_cl, use,
use_cl, advance_p);
if ((use_match = recog_op_alt[use][alt].matches) >= 0)
{
if (use_match == def)
return;
if (recog_op_alt[use_match][alt].anything_ok)
use_cl = ALL_REGS;
else
use_cl = recog_op_alt[use_match][alt].cl;
advance_p = check_and_make_def_use_conflict (dreg, def_cl, use,
use_cl, advance_p);
}
}
}
/* Make conflicts of early clobber pseudo registers of the current
insn with its inputs. Avoid introducing unnecessary conflicts by
checking classes of the constraints and pseudos because otherwise
significant code degradation is possible for some targets. */
static void
make_early_clobber_and_input_conflicts (void)
{
int alt;
int def, def_match;
enum reg_class def_cl;
for (alt = 0; alt < recog_data.n_alternatives; alt++)
for (def = 0; def < recog_data.n_operands; def++)
{
def_cl = NO_REGS;
if (recog_op_alt[def][alt].earlyclobber)
{
if (recog_op_alt[def][alt].anything_ok)
def_cl = ALL_REGS;
else
def_cl = recog_op_alt[def][alt].cl;
check_and_make_def_conflict (alt, def, def_cl);
}
if ((def_match = recog_op_alt[def][alt].matches) >= 0
&& (recog_op_alt[def_match][alt].earlyclobber
|| recog_op_alt[def][alt].earlyclobber))
{
if (recog_op_alt[def_match][alt].anything_ok)
def_cl = ALL_REGS;
else
def_cl = recog_op_alt[def_match][alt].cl;
check_and_make_def_conflict (alt, def, def_cl);
}
}
}
/* Mark early clobber hard registers of the current INSN as live (if
LIVE_P) or dead. Return true if there are such registers. */
static bool
mark_hard_reg_early_clobbers (rtx insn, bool live_p)
{
df_ref *def_rec;
bool set_p = false;
for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
if (DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MUST_CLOBBER))
{
rtx dreg = DF_REF_REG (*def_rec);
if (GET_CODE (dreg) == SUBREG)
dreg = SUBREG_REG (dreg);
if (! REG_P (dreg) || REGNO (dreg) >= FIRST_PSEUDO_REGISTER)
continue;
/* Hard register clobbers are believed to be early clobber
because there is no way to say that non-operand hard
register clobbers are not early ones. */
if (live_p)
mark_ref_live (*def_rec);
else
mark_ref_dead (*def_rec);
set_p = true;
}
return set_p;
}
/* Checks that CONSTRAINTS permits to use only one hard register. If
it is so, the function returns the class of the hard register.
Otherwise it returns NO_REGS. */
static enum reg_class
single_reg_class (const char *constraints, rtx op, rtx equiv_const)
{
int ignore_p;
enum reg_class cl, next_cl;
int c;
cl = NO_REGS;
for (ignore_p = false;
(c = *constraints);
constraints += CONSTRAINT_LEN (c, constraints))
if (c == '#')
ignore_p = true;
else if (c == ',')
ignore_p = false;
else if (! ignore_p)
switch (c)
{
case ' ':
case '\t':
case '=':
case '+':
case '*':
case '&':
case '%':
case '!':
case '?':
break;
case 'i':
if (CONSTANT_P (op)
|| (equiv_const != NULL_RTX && CONSTANT_P (equiv_const)))
return NO_REGS;
break;
case 'n':
if (GET_CODE (op) == CONST_INT
|| (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == VOIDmode)
|| (equiv_const != NULL_RTX
&& (GET_CODE (equiv_const) == CONST_INT
|| (GET_CODE (equiv_const) == CONST_DOUBLE
&& GET_MODE (equiv_const) == VOIDmode))))
return NO_REGS;
break;
case 's':
if ((CONSTANT_P (op) && GET_CODE (op) != CONST_INT
&& (GET_CODE (op) != CONST_DOUBLE || GET_MODE (op) != VOIDmode))
|| (equiv_const != NULL_RTX
&& CONSTANT_P (equiv_const)
&& GET_CODE (equiv_const) != CONST_INT
&& (GET_CODE (equiv_const) != CONST_DOUBLE
|| GET_MODE (equiv_const) != VOIDmode)))
return NO_REGS;
break;
case 'I':
case 'J':
case 'K':
case 'L':
case 'M':
case 'N':
case 'O':
case 'P':
if ((GET_CODE (op) == CONST_INT
&& CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, constraints))
|| (equiv_const != NULL_RTX
&& GET_CODE (equiv_const) == CONST_INT
&& CONST_OK_FOR_CONSTRAINT_P (INTVAL (equiv_const),
c, constraints)))
return NO_REGS;
break;
case 'E':
case 'F':
if (GET_CODE (op) == CONST_DOUBLE
|| (GET_CODE (op) == CONST_VECTOR
&& GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT)
|| (equiv_const != NULL_RTX
&& (GET_CODE (equiv_const) == CONST_DOUBLE
|| (GET_CODE (equiv_const) == CONST_VECTOR
&& (GET_MODE_CLASS (GET_MODE (equiv_const))
== MODE_VECTOR_FLOAT)))))
return NO_REGS;
break;
case 'G':
case 'H':
if ((GET_CODE (op) == CONST_DOUBLE
&& CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, constraints))
|| (equiv_const != NULL_RTX
&& GET_CODE (equiv_const) == CONST_DOUBLE
&& CONST_DOUBLE_OK_FOR_CONSTRAINT_P (equiv_const,
c, constraints)))
return NO_REGS;
/* ??? what about memory */
case 'r':
case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
case 'h': case 'j': case 'k': case 'l':
case 'q': case 't': case 'u':
case 'v': case 'w': case 'x': case 'y': case 'z':
case 'A': case 'B': case 'C': case 'D':
case 'Q': case 'R': case 'S': case 'T': case 'U':
case 'W': case 'Y': case 'Z':
next_cl = (c == 'r'
? GENERAL_REGS
: REG_CLASS_FROM_CONSTRAINT (c, constraints));
if ((cl != NO_REGS && next_cl != cl)
|| ira_available_class_regs[next_cl] > 1)
return NO_REGS;
cl = next_cl;
break;
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
next_cl
= single_reg_class (recog_data.constraints[c - '0'],
recog_data.operand[c - '0'], NULL_RTX);
if ((cl != NO_REGS && next_cl != cl) || next_cl == NO_REGS
|| ira_available_class_regs[next_cl] > 1)
return NO_REGS;
cl = next_cl;
break;
default:
return NO_REGS;
}
return cl;
}
/* The function checks that operand OP_NUM of the current insn can use
only one hard register. If it is so, the function returns the
class of the hard register. Otherwise it returns NO_REGS. */
static enum reg_class
single_reg_operand_class (int op_num)
{
if (op_num < 0 || recog_data.n_alternatives == 0)
return NO_REGS;
return single_reg_class (recog_data.constraints[op_num],
recog_data.operand[op_num], NULL_RTX);
}
/* Processes input operands, if IN_P, or output operands otherwise of
the current insn with FREQ to find allocno which can use only one
hard register and makes other currently living allocnos conflicting
with the hard register. */
static void
process_single_reg_class_operands (bool in_p, int freq)
{
int i, regno, cost;
unsigned int px;
enum reg_class cl, cover_class;
rtx operand;
ira_allocno_t operand_a, a;
for (i = 0; i < recog_data.n_operands; i++)
{
operand = recog_data.operand[i];
if (in_p && recog_data.operand_type[i] != OP_IN
&& recog_data.operand_type[i] != OP_INOUT)
continue;
if (! in_p && recog_data.operand_type[i] != OP_OUT
&& recog_data.operand_type[i] != OP_INOUT)
continue;
cl = single_reg_operand_class (i);
if (cl == NO_REGS)
continue;
operand_a = NULL;
if (GET_CODE (operand) == SUBREG)
operand = SUBREG_REG (operand);
if (REG_P (operand)
&& (regno = REGNO (operand)) >= FIRST_PSEUDO_REGISTER)
{
enum machine_mode mode;
enum reg_class cover_class;
operand_a = ira_curr_regno_allocno_map[regno];
mode = ALLOCNO_MODE (operand_a);
cover_class = ALLOCNO_COVER_CLASS (operand_a);
if (ira_class_subset_p[cl][cover_class]
&& ira_class_hard_regs_num[cl] != 0
&& (ira_class_hard_reg_index[cover_class]
[ira_class_hard_regs[cl][0]]) >= 0
&& reg_class_size[cl] <= (unsigned) CLASS_MAX_NREGS (cl, mode))
{
/* ??? FREQ */
cost = freq * (in_p
? ira_register_move_cost[mode][cover_class][cl]
: ira_register_move_cost[mode][cl][cover_class]);
ira_allocate_and_set_costs
(&ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a), cover_class, 0);
ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a)
[ira_class_hard_reg_index
[cover_class][ira_class_hard_regs[cl][0]]]
-= cost;
}
}
EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, px)
{
a = ira_allocnos[px];
cover_class = ALLOCNO_COVER_CLASS (a);
if (a != operand_a)
{
/* We could increase costs of A instead of making it
conflicting with the hard register. But it works worse
because it will be spilled in reload in anyway. */
IOR_HARD_REG_SET (ALLOCNO_CONFLICT_HARD_REGS (a),
reg_class_contents[cl]);
IOR_HARD_REG_SET (ALLOCNO_TOTAL_CONFLICT_HARD_REGS (a),
reg_class_contents[cl]);
}
}
}
}
/* Process insns of the basic block given by its LOOP_TREE_NODE to
update allocno live ranges, allocno hard register conflicts,
intersected calls, and register pressure info for allocnos for the
basic block for and regions containing the basic block. */
static void
process_bb_node_lives (ira_loop_tree_node_t loop_tree_node)
{
int i, freq;
unsigned int j;
basic_block bb;
rtx insn;
bitmap_iterator bi;
bitmap reg_live_out;
unsigned int px;
bool set_p;
bb = loop_tree_node->bb;
if (bb != NULL)
{
for (i = 0; i < ira_reg_class_cover_size; i++)
{
curr_reg_pressure[ira_reg_class_cover[i]] = 0;
high_pressure_start_point[ira_reg_class_cover[i]] = -1;
}
curr_bb_node = loop_tree_node;
reg_live_out = DF_LR_OUT (bb);
sparseset_clear (allocnos_live);
REG_SET_TO_HARD_REG_SET (hard_regs_live, reg_live_out);
AND_COMPL_HARD_REG_SET (hard_regs_live, eliminable_regset);
AND_COMPL_HARD_REG_SET (hard_regs_live, ira_no_alloc_regs);
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (TEST_HARD_REG_BIT (hard_regs_live, i))
{
enum reg_class cover_class, cl;
cover_class = ira_class_translate[REGNO_REG_CLASS (i)];
for (j = 0;
(cl = ira_reg_class_super_classes[cover_class][j])
!= LIM_REG_CLASSES;
j++)
{
curr_reg_pressure[cl]++;
if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
ira_assert (curr_reg_pressure[cl]
<= ira_available_class_regs[cl]);
}
}
EXECUTE_IF_SET_IN_BITMAP (reg_live_out, FIRST_PSEUDO_REGISTER, j, bi)
{
ira_allocno_t a = ira_curr_regno_allocno_map[j];
if (a == NULL)
continue;
ira_assert (! sparseset_bit_p (allocnos_live, ALLOCNO_NUM (a)));
set_allocno_live (a);
make_regno_born (j);
}
freq = REG_FREQ_FROM_BB (bb);
if (freq == 0)
freq = 1;
/* Invalidate all allocno_saved_at_call entries. */
last_call_num++;
/* Scan the code of this basic block, noting which allocnos and
hard regs are born or die.
Note that this loop treats uninitialized values as live until
the beginning of the block. For example, if an instruction
uses (reg:DI foo), and only (subreg:SI (reg:DI foo) 0) is ever
set, FOO will remain live until the beginning of the block.
Likewise if FOO is not set at all. This is unnecessarily
pessimistic, but it probably doesn't matter much in practice. */
FOR_BB_INSNS_REVERSE (bb, insn)
{
df_ref *def_rec, *use_rec;
bool call_p;
if (! INSN_P (insn))
continue;
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
fprintf (ira_dump_file, " Insn %u(l%d): point = %d\n",
INSN_UID (insn), loop_tree_node->parent->loop->num,
curr_point);
/* Mark each defined value as live. We need to do this for
unused values because they still conflict with quantities
that are live at the time of the definition.
Ignore DF_REF_MAY_CLOBBERs on a call instruction. Such
references represent the effect of the called function
on a call-clobbered register. Marking the register as
live would stop us from allocating it to a call-crossing
allocno. */
call_p = CALL_P (insn);
for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
if (!call_p || !DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MAY_CLOBBER))
mark_ref_live (*def_rec);
/* If INSN has multiple outputs, then any value used in one
of the outputs conflicts with the other outputs. Model this
by making the used value live during the output phase.
It is unsafe to use !single_set here since it will ignore
an unused output. Just because an output is unused does
not mean the compiler can assume the side effect will not
occur. Consider if ALLOCNO appears in the address of an
output and we reload the output. If we allocate ALLOCNO
to the same hard register as an unused output we could
set the hard register before the output reload insn. */
if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
{
int i;
rtx reg;
reg = DF_REF_REG (*use_rec);
for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
{
rtx set;
set = XVECEXP (PATTERN (insn), 0, i);
if (GET_CODE (set) == SET
&& reg_overlap_mentioned_p (reg, SET_DEST (set)))
{
/* After the previous loop, this is a no-op if
REG is contained within SET_DEST (SET). */
mark_ref_live (*use_rec);
break;
}
}
}
extract_insn (insn);
preprocess_constraints ();
process_single_reg_class_operands (false, freq);
/* See which defined values die here. */
for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
if (!call_p || !DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MAY_CLOBBER))
mark_ref_dead (*def_rec);
if (call_p)
{
last_call_num++;
/* The current set of live allocnos are live across the call. */
EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, i)
{
ira_allocno_t a = ira_allocnos[i];
if (allocno_saved_at_call[i] != last_call_num)
/* Here we are mimicking caller-save.c behaviour
which does not save hard register at a call if
it was saved on previous call in the same basic
block and the hard register was not mentioned
between the two calls. */
ALLOCNO_CALL_FREQ (a) += freq;
/* Mark it as saved at the next call. */
allocno_saved_at_call[i] = last_call_num + 1;
ALLOCNO_CALLS_CROSSED_NUM (a)++;
/* Don't allocate allocnos that cross setjmps or any
call, if this function receives a nonlocal
goto. */
if (cfun->has_nonlocal_label
|| find_reg_note (insn, REG_SETJMP,
NULL_RTX) != NULL_RTX)
{
SET_HARD_REG_SET (ALLOCNO_CONFLICT_HARD_REGS (a));
SET_HARD_REG_SET (ALLOCNO_TOTAL_CONFLICT_HARD_REGS (a));
}
}
}
make_early_clobber_and_input_conflicts ();
curr_point++;
/* Mark each used value as live. */
for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
mark_ref_live (*use_rec);
process_single_reg_class_operands (true, freq);
set_p = mark_hard_reg_early_clobbers (insn, true);
if (set_p)
{
mark_hard_reg_early_clobbers (insn, false);
/* Mark each hard reg as live again. For example, a
hard register can be in clobber and in an insn
input. */
for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
{
rtx ureg = DF_REF_REG (*use_rec);
if (GET_CODE (ureg) == SUBREG)
ureg = SUBREG_REG (ureg);
if (! REG_P (ureg) || REGNO (ureg) >= FIRST_PSEUDO_REGISTER)
continue;
mark_ref_live (*use_rec);
}
}
curr_point++;
}
#ifdef EH_RETURN_DATA_REGNO
if (bb_has_eh_pred (bb))
for (j = 0; ; ++j)
{
unsigned int regno = EH_RETURN_DATA_REGNO (j);
if (regno == INVALID_REGNUM)
break;
make_regno_born (regno);
}
#endif
/* Allocnos can't go in stack regs at the start of a basic block
that is reached by an abnormal edge. Likewise for call
clobbered regs, because caller-save, fixup_abnormal_edges and
possibly the table driven EH machinery are not quite ready to
handle such allocnos live across such edges. */
if (bb_has_abnormal_pred (bb))
{
#ifdef STACK_REGS
EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, px)
{
ALLOCNO_NO_STACK_REG_P (ira_allocnos[px]) = true;
ALLOCNO_TOTAL_NO_STACK_REG_P (ira_allocnos[px]) = true;
}
for (px = FIRST_STACK_REG; px <= LAST_STACK_REG; px++)
make_regno_born (px);
#endif
/* No need to record conflicts for call clobbered regs if we
have nonlocal labels around, as we don't ever try to
allocate such regs in this case. */
if (!cfun->has_nonlocal_label)
for (px = 0; px < FIRST_PSEUDO_REGISTER; px++)
if (call_used_regs[px])
make_regno_born (px);
}
EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, i)
{
make_regno_dead (ALLOCNO_REGNO (ira_allocnos[i]));
}
curr_point++;
}
/* Propagate register pressure to upper loop tree nodes: */
if (loop_tree_node != ira_loop_tree_root)
for (i = 0; i < ira_reg_class_cover_size; i++)
{
enum reg_class cover_class;
cover_class = ira_reg_class_cover[i];
if (loop_tree_node->reg_pressure[cover_class]
> loop_tree_node->parent->reg_pressure[cover_class])
loop_tree_node->parent->reg_pressure[cover_class]
= loop_tree_node->reg_pressure[cover_class];
}
}
/* Create and set up IRA_START_POINT_RANGES and
IRA_FINISH_POINT_RANGES. */
static void
create_start_finish_chains (void)
{
ira_allocno_t a;
ira_allocno_iterator ai;
allocno_live_range_t r;
ira_start_point_ranges
= (allocno_live_range_t *) ira_allocate (ira_max_point
* sizeof (allocno_live_range_t));
memset (ira_start_point_ranges, 0,
ira_max_point * sizeof (allocno_live_range_t));
ira_finish_point_ranges
= (allocno_live_range_t *) ira_allocate (ira_max_point
* sizeof (allocno_live_range_t));
memset (ira_finish_point_ranges, 0,
ira_max_point * sizeof (allocno_live_range_t));
FOR_EACH_ALLOCNO (a, ai)
{
for (r = ALLOCNO_LIVE_RANGES (a); r != NULL; r = r->next)
{
r->start_next = ira_start_point_ranges[r->start];
ira_start_point_ranges[r->start] = r;
r->finish_next = ira_finish_point_ranges[r->finish];
ira_finish_point_ranges[r->finish] = r;
}
}
}
/* Rebuild IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES after
new live ranges and program points were added as a result if new
insn generation. */
void
ira_rebuild_start_finish_chains (void)
{
ira_free (ira_finish_point_ranges);
ira_free (ira_start_point_ranges);
create_start_finish_chains ();
}
/* Compress allocno live ranges by removing program points where
nothing happens. */
static void
remove_some_program_points_and_update_live_ranges (void)
{
unsigned i;
int n;
int *map;
ira_allocno_t a;
ira_allocno_iterator ai;
allocno_live_range_t r;
bitmap born_or_died;
bitmap_iterator bi;
born_or_died = ira_allocate_bitmap ();
FOR_EACH_ALLOCNO (a, ai)
{
for (r = ALLOCNO_LIVE_RANGES (a); r != NULL; r = r->next)
{
ira_assert (r->start <= r->finish);
bitmap_set_bit (born_or_died, r->start);
bitmap_set_bit (born_or_died, r->finish);
}
}
map = (int *) ira_allocate (sizeof (int) * ira_max_point);
n = 0;
EXECUTE_IF_SET_IN_BITMAP(born_or_died, 0, i, bi)
{
map[i] = n++;
}
ira_free_bitmap (born_or_died);
if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
fprintf (ira_dump_file, "Compressing live ranges: from %d to %d - %d%%\n",
ira_max_point, n, 100 * n / ira_max_point);
ira_max_point = n;
FOR_EACH_ALLOCNO (a, ai)
{
for (r = ALLOCNO_LIVE_RANGES (a); r != NULL; r = r->next)
{
r->start = map[r->start];
r->finish = map[r->finish];
}
}
ira_free (map);
}
/* Print live ranges R to file F. */
void
ira_print_live_range_list (FILE *f, allocno_live_range_t r)
{
for (; r != NULL; r = r->next)
fprintf (f, " [%d..%d]", r->start, r->finish);
fprintf (f, "\n");
}
/* Print live ranges R to stderr. */
void
ira_debug_live_range_list (allocno_live_range_t r)
{
ira_print_live_range_list (stderr, r);
}
/* Print live ranges of allocno A to file F. */
static void
print_allocno_live_ranges (FILE *f, ira_allocno_t a)
{
fprintf (f, " a%d(r%d):", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
ira_print_live_range_list (f, ALLOCNO_LIVE_RANGES (a));
}
/* Print live ranges of allocno A to stderr. */
void
ira_debug_allocno_live_ranges (ira_allocno_t a)
{
print_allocno_live_ranges (stderr, a);
}
/* Print live ranges of all allocnos to file F. */
static void
print_live_ranges (FILE *f)
{
ira_allocno_t a;
ira_allocno_iterator ai;
FOR_EACH_ALLOCNO (a, ai)
print_allocno_live_ranges (f, a);
}
/* Print live ranges of all allocnos to stderr. */
void
ira_debug_live_ranges (void)
{
print_live_ranges (stderr);
}
/* The main entry function creates live ranges, set up
CONFLICT_HARD_REGS and TOTAL_CONFLICT_HARD_REGS for allocnos, and
calculate register pressure info. */
void
ira_create_allocno_live_ranges (void)
{
allocnos_live = sparseset_alloc (ira_allocnos_num);
curr_point = 0;
last_call_num = 0;
allocno_saved_at_call
= (int *) ira_allocate (ira_allocnos_num * sizeof (int));
memset (allocno_saved_at_call, 0, ira_allocnos_num * sizeof (int));
ira_traverse_loop_tree (true, ira_loop_tree_root, NULL,
process_bb_node_lives);
ira_max_point = curr_point;
create_start_finish_chains ();
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
print_live_ranges (ira_dump_file);
/* Clean up. */
ira_free (allocno_saved_at_call);
sparseset_free (allocnos_live);
}
/* Compress allocno live ranges. */
void
ira_compress_allocno_live_ranges (void)
{
remove_some_program_points_and_update_live_ranges ();
ira_rebuild_start_finish_chains ();
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
{
fprintf (ira_dump_file, "Ranges after the compression:\n");
print_live_ranges (ira_dump_file);
}
}
/* Free arrays IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES. */
void
ira_finish_allocno_live_ranges (void)
{
ira_free (ira_finish_point_ranges);
ira_free (ira_start_point_ranges);
}
|