1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
|
/* Interprocedural analyses.
Copyright (C) 2005-2013 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tree.h"
#include "langhooks.h"
#include "ggc.h"
#include "target.h"
#include "cgraph.h"
#include "ipa-prop.h"
#include "tree-flow.h"
#include "tree-pass.h"
#include "tree-inline.h"
#include "ipa-inline.h"
#include "gimple.h"
#include "flags.h"
#include "diagnostic.h"
#include "gimple-pretty-print.h"
#include "lto-streamer.h"
#include "data-streamer.h"
#include "tree-streamer.h"
#include "params.h"
/* Intermediate information about a parameter that is only useful during the
run of ipa_analyze_node and is not kept afterwards. */
struct param_analysis_info
{
bool parm_modified, ref_modified, pt_modified;
bitmap parm_visited_statements, pt_visited_statements;
};
/* Vector where the parameter infos are actually stored. */
vec<ipa_node_params_t> ipa_node_params_vector;
/* Vector of known aggregate values in cloned nodes. */
vec<ipa_agg_replacement_value_p, va_gc> *ipa_node_agg_replacements;
/* Vector where the parameter infos are actually stored. */
vec<ipa_edge_args_t, va_gc> *ipa_edge_args_vector;
/* Holders of ipa cgraph hooks: */
static struct cgraph_edge_hook_list *edge_removal_hook_holder;
static struct cgraph_node_hook_list *node_removal_hook_holder;
static struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
static struct cgraph_2node_hook_list *node_duplication_hook_holder;
static struct cgraph_node_hook_list *function_insertion_hook_holder;
/* Description of a reference to an IPA constant. */
struct ipa_cst_ref_desc
{
/* Edge that corresponds to the statement which took the reference. */
struct cgraph_edge *cs;
/* Linked list of duplicates created when call graph edges are cloned. */
struct ipa_cst_ref_desc *next_duplicate;
/* Number of references in IPA structures, IPA_UNDESCRIBED_USE if the value
if out of control. */
int refcount;
};
/* Allocation pool for reference descriptions. */
static alloc_pool ipa_refdesc_pool;
/* Return true if DECL_FUNCTION_SPECIFIC_OPTIMIZATION of the decl associated
with NODE should prevent us from analyzing it for the purposes of IPA-CP. */
static bool
ipa_func_spec_opts_forbid_analysis_p (struct cgraph_node *node)
{
tree fs_opts = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (node->symbol.decl);
struct cl_optimization *os;
if (!fs_opts)
return false;
os = TREE_OPTIMIZATION (fs_opts);
return !os->x_optimize || !os->x_flag_ipa_cp;
}
/* Return index of the formal whose tree is PTREE in function which corresponds
to INFO. */
static int
ipa_get_param_decl_index_1 (vec<ipa_param_descriptor_t> descriptors, tree ptree)
{
int i, count;
count = descriptors.length ();
for (i = 0; i < count; i++)
if (descriptors[i].decl == ptree)
return i;
return -1;
}
/* Return index of the formal whose tree is PTREE in function which corresponds
to INFO. */
int
ipa_get_param_decl_index (struct ipa_node_params *info, tree ptree)
{
return ipa_get_param_decl_index_1 (info->descriptors, ptree);
}
/* Populate the param_decl field in parameter DESCRIPTORS that correspond to
NODE. */
static void
ipa_populate_param_decls (struct cgraph_node *node,
vec<ipa_param_descriptor_t> &descriptors)
{
tree fndecl;
tree fnargs;
tree parm;
int param_num;
fndecl = node->symbol.decl;
gcc_assert (gimple_has_body_p (fndecl));
fnargs = DECL_ARGUMENTS (fndecl);
param_num = 0;
for (parm = fnargs; parm; parm = DECL_CHAIN (parm))
{
descriptors[param_num].decl = parm;
descriptors[param_num].move_cost = estimate_move_cost (TREE_TYPE (parm));
param_num++;
}
}
/* Return how many formal parameters FNDECL has. */
static inline int
count_formal_params (tree fndecl)
{
tree parm;
int count = 0;
gcc_assert (gimple_has_body_p (fndecl));
for (parm = DECL_ARGUMENTS (fndecl); parm; parm = DECL_CHAIN (parm))
count++;
return count;
}
/* Return the declaration of Ith formal parameter of the function corresponding
to INFO. Note there is no setter function as this array is built just once
using ipa_initialize_node_params. */
void
ipa_dump_param (FILE *file, struct ipa_node_params *info, int i)
{
fprintf (file, "param #%i", i);
if (info->descriptors[i].decl)
{
fprintf (file, " ");
print_generic_expr (file, info->descriptors[i].decl, 0);
}
}
/* Initialize the ipa_node_params structure associated with NODE
to hold PARAM_COUNT parameters. */
void
ipa_alloc_node_params (struct cgraph_node *node, int param_count)
{
struct ipa_node_params *info = IPA_NODE_REF (node);
if (!info->descriptors.exists () && param_count)
info->descriptors.safe_grow_cleared (param_count);
}
/* Initialize the ipa_node_params structure associated with NODE by counting
the function parameters, creating the descriptors and populating their
param_decls. */
void
ipa_initialize_node_params (struct cgraph_node *node)
{
struct ipa_node_params *info = IPA_NODE_REF (node);
if (!info->descriptors.exists ())
{
ipa_alloc_node_params (node, count_formal_params (node->symbol.decl));
ipa_populate_param_decls (node, info->descriptors);
}
}
/* Print the jump functions associated with call graph edge CS to file F. */
static void
ipa_print_node_jump_functions_for_edge (FILE *f, struct cgraph_edge *cs)
{
int i, count;
count = ipa_get_cs_argument_count (IPA_EDGE_REF (cs));
for (i = 0; i < count; i++)
{
struct ipa_jump_func *jump_func;
enum jump_func_type type;
jump_func = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), i);
type = jump_func->type;
fprintf (f, " param %d: ", i);
if (type == IPA_JF_UNKNOWN)
fprintf (f, "UNKNOWN\n");
else if (type == IPA_JF_KNOWN_TYPE)
{
fprintf (f, "KNOWN TYPE: base ");
print_generic_expr (f, jump_func->value.known_type.base_type, 0);
fprintf (f, ", offset "HOST_WIDE_INT_PRINT_DEC", component ",
jump_func->value.known_type.offset);
print_generic_expr (f, jump_func->value.known_type.component_type, 0);
fprintf (f, "\n");
}
else if (type == IPA_JF_CONST)
{
tree val = jump_func->value.constant.value;
fprintf (f, "CONST: ");
print_generic_expr (f, val, 0);
if (TREE_CODE (val) == ADDR_EXPR
&& TREE_CODE (TREE_OPERAND (val, 0)) == CONST_DECL)
{
fprintf (f, " -> ");
print_generic_expr (f, DECL_INITIAL (TREE_OPERAND (val, 0)),
0);
}
fprintf (f, "\n");
}
else if (type == IPA_JF_PASS_THROUGH)
{
fprintf (f, "PASS THROUGH: ");
fprintf (f, "%d, op %s",
jump_func->value.pass_through.formal_id,
tree_code_name[(int)
jump_func->value.pass_through.operation]);
if (jump_func->value.pass_through.operation != NOP_EXPR)
{
fprintf (f, " ");
print_generic_expr (f,
jump_func->value.pass_through.operand, 0);
}
if (jump_func->value.pass_through.agg_preserved)
fprintf (f, ", agg_preserved");
if (jump_func->value.pass_through.type_preserved)
fprintf (f, ", type_preserved");
fprintf (f, "\n");
}
else if (type == IPA_JF_ANCESTOR)
{
fprintf (f, "ANCESTOR: ");
fprintf (f, "%d, offset "HOST_WIDE_INT_PRINT_DEC", ",
jump_func->value.ancestor.formal_id,
jump_func->value.ancestor.offset);
print_generic_expr (f, jump_func->value.ancestor.type, 0);
if (jump_func->value.ancestor.agg_preserved)
fprintf (f, ", agg_preserved");
if (jump_func->value.ancestor.type_preserved)
fprintf (f, ", type_preserved");
fprintf (f, "\n");
}
if (jump_func->agg.items)
{
struct ipa_agg_jf_item *item;
int j;
fprintf (f, " Aggregate passed by %s:\n",
jump_func->agg.by_ref ? "reference" : "value");
FOR_EACH_VEC_SAFE_ELT (jump_func->agg.items, j, item)
{
fprintf (f, " offset: " HOST_WIDE_INT_PRINT_DEC ", ",
item->offset);
if (TYPE_P (item->value))
fprintf (f, "clobber of " HOST_WIDE_INT_PRINT_DEC " bits",
tree_to_uhwi (TYPE_SIZE (item->value)));
else
{
fprintf (f, "cst: ");
print_generic_expr (f, item->value, 0);
}
fprintf (f, "\n");
}
}
}
}
/* Print the jump functions of all arguments on all call graph edges going from
NODE to file F. */
void
ipa_print_node_jump_functions (FILE *f, struct cgraph_node *node)
{
struct cgraph_edge *cs;
fprintf (f, " Jump functions of caller %s/%i:\n", cgraph_node_name (node),
node->symbol.order);
for (cs = node->callees; cs; cs = cs->next_callee)
{
if (!ipa_edge_args_info_available_for_edge_p (cs))
continue;
fprintf (f, " callsite %s/%i -> %s/%i : \n",
xstrdup (cgraph_node_name (node)), node->symbol.order,
xstrdup (cgraph_node_name (cs->callee)),
cs->callee->symbol.order);
ipa_print_node_jump_functions_for_edge (f, cs);
}
for (cs = node->indirect_calls; cs; cs = cs->next_callee)
{
struct cgraph_indirect_call_info *ii;
if (!ipa_edge_args_info_available_for_edge_p (cs))
continue;
ii = cs->indirect_info;
if (ii->agg_contents)
fprintf (f, " indirect %s callsite, calling param %i, "
"offset " HOST_WIDE_INT_PRINT_DEC ", %s",
ii->member_ptr ? "member ptr" : "aggregate",
ii->param_index, ii->offset,
ii->by_ref ? "by reference" : "by_value");
else
fprintf (f, " indirect %s callsite, calling param %i",
ii->polymorphic ? "polymorphic" : "simple", ii->param_index);
if (cs->call_stmt)
{
fprintf (f, ", for stmt ");
print_gimple_stmt (f, cs->call_stmt, 0, TDF_SLIM);
}
else
fprintf (f, "\n");
ipa_print_node_jump_functions_for_edge (f, cs);
}
}
/* Print ipa_jump_func data structures of all nodes in the call graph to F. */
void
ipa_print_all_jump_functions (FILE *f)
{
struct cgraph_node *node;
fprintf (f, "\nJump functions:\n");
FOR_EACH_FUNCTION (node)
{
ipa_print_node_jump_functions (f, node);
}
}
/* Set JFUNC to be a known type jump function. */
static void
ipa_set_jf_known_type (struct ipa_jump_func *jfunc, HOST_WIDE_INT offset,
tree base_type, tree component_type)
{
gcc_assert (TREE_CODE (component_type) == RECORD_TYPE
&& TYPE_BINFO (component_type));
jfunc->type = IPA_JF_KNOWN_TYPE;
jfunc->value.known_type.offset = offset,
jfunc->value.known_type.base_type = base_type;
jfunc->value.known_type.component_type = component_type;
}
/* Set JFUNC to be a copy of another jmp (to be used by jump function
combination code). The two functions will share their rdesc. */
static void
ipa_set_jf_cst_copy (struct ipa_jump_func *dst,
struct ipa_jump_func *src)
{
gcc_checking_assert (src->type == IPA_JF_CONST);
dst->type = IPA_JF_CONST;
dst->value.constant = src->value.constant;
}
/* Set JFUNC to be a constant jmp function. */
static void
ipa_set_jf_constant (struct ipa_jump_func *jfunc, tree constant,
struct cgraph_edge *cs)
{
constant = unshare_expr (constant);
if (constant && EXPR_P (constant))
SET_EXPR_LOCATION (constant, UNKNOWN_LOCATION);
jfunc->type = IPA_JF_CONST;
jfunc->value.constant.value = unshare_expr_without_location (constant);
if (TREE_CODE (constant) == ADDR_EXPR
&& TREE_CODE (TREE_OPERAND (constant, 0)) == FUNCTION_DECL)
{
struct ipa_cst_ref_desc *rdesc;
if (!ipa_refdesc_pool)
ipa_refdesc_pool = create_alloc_pool ("IPA-PROP ref descriptions",
sizeof (struct ipa_cst_ref_desc), 32);
rdesc = (struct ipa_cst_ref_desc *) pool_alloc (ipa_refdesc_pool);
rdesc->cs = cs;
rdesc->next_duplicate = NULL;
rdesc->refcount = 1;
jfunc->value.constant.rdesc = rdesc;
}
else
jfunc->value.constant.rdesc = NULL;
}
/* Set JFUNC to be a simple pass-through jump function. */
static void
ipa_set_jf_simple_pass_through (struct ipa_jump_func *jfunc, int formal_id,
bool agg_preserved, bool type_preserved)
{
jfunc->type = IPA_JF_PASS_THROUGH;
jfunc->value.pass_through.operand = NULL_TREE;
jfunc->value.pass_through.formal_id = formal_id;
jfunc->value.pass_through.operation = NOP_EXPR;
jfunc->value.pass_through.agg_preserved = agg_preserved;
jfunc->value.pass_through.type_preserved = type_preserved;
}
/* Set JFUNC to be an arithmetic pass through jump function. */
static void
ipa_set_jf_arith_pass_through (struct ipa_jump_func *jfunc, int formal_id,
tree operand, enum tree_code operation)
{
jfunc->type = IPA_JF_PASS_THROUGH;
jfunc->value.pass_through.operand = unshare_expr_without_location (operand);
jfunc->value.pass_through.formal_id = formal_id;
jfunc->value.pass_through.operation = operation;
jfunc->value.pass_through.agg_preserved = false;
jfunc->value.pass_through.type_preserved = false;
}
/* Set JFUNC to be an ancestor jump function. */
static void
ipa_set_ancestor_jf (struct ipa_jump_func *jfunc, HOST_WIDE_INT offset,
tree type, int formal_id, bool agg_preserved,
bool type_preserved)
{
jfunc->type = IPA_JF_ANCESTOR;
jfunc->value.ancestor.formal_id = formal_id;
jfunc->value.ancestor.offset = offset;
jfunc->value.ancestor.type = type;
jfunc->value.ancestor.agg_preserved = agg_preserved;
jfunc->value.ancestor.type_preserved = type_preserved;
}
/* Extract the acual BINFO being described by JFUNC which must be a known type
jump function. */
tree
ipa_binfo_from_known_type_jfunc (struct ipa_jump_func *jfunc)
{
tree base_binfo = TYPE_BINFO (jfunc->value.known_type.base_type);
if (!base_binfo)
return NULL_TREE;
return get_binfo_at_offset (base_binfo,
jfunc->value.known_type.offset,
jfunc->value.known_type.component_type);
}
/* Structure to be passed in between detect_type_change and
check_stmt_for_type_change. */
struct type_change_info
{
/* Offset into the object where there is the virtual method pointer we are
looking for. */
HOST_WIDE_INT offset;
/* The declaration or SSA_NAME pointer of the base that we are checking for
type change. */
tree object;
/* If we actually can tell the type that the object has changed to, it is
stored in this field. Otherwise it remains NULL_TREE. */
tree known_current_type;
/* Set to true if dynamic type change has been detected. */
bool type_maybe_changed;
/* Set to true if multiple types have been encountered. known_current_type
must be disregarded in that case. */
bool multiple_types_encountered;
};
/* Return true if STMT can modify a virtual method table pointer.
This function makes special assumptions about both constructors and
destructors which are all the functions that are allowed to alter the VMT
pointers. It assumes that destructors begin with assignment into all VMT
pointers and that constructors essentially look in the following way:
1) The very first thing they do is that they call constructors of ancestor
sub-objects that have them.
2) Then VMT pointers of this and all its ancestors is set to new values
corresponding to the type corresponding to the constructor.
3) Only afterwards, other stuff such as constructor of member sub-objects
and the code written by the user is run. Only this may include calling
virtual functions, directly or indirectly.
There is no way to call a constructor of an ancestor sub-object in any
other way.
This means that we do not have to care whether constructors get the correct
type information because they will always change it (in fact, if we define
the type to be given by the VMT pointer, it is undefined).
The most important fact to derive from the above is that if, for some
statement in the section 3, we try to detect whether the dynamic type has
changed, we can safely ignore all calls as we examine the function body
backwards until we reach statements in section 2 because these calls cannot
be ancestor constructors or destructors (if the input is not bogus) and so
do not change the dynamic type (this holds true only for automatically
allocated objects but at the moment we devirtualize only these). We then
must detect that statements in section 2 change the dynamic type and can try
to derive the new type. That is enough and we can stop, we will never see
the calls into constructors of sub-objects in this code. Therefore we can
safely ignore all call statements that we traverse.
*/
static bool
stmt_may_be_vtbl_ptr_store (gimple stmt)
{
if (is_gimple_call (stmt))
return false;
else if (is_gimple_assign (stmt))
{
tree lhs = gimple_assign_lhs (stmt);
if (!AGGREGATE_TYPE_P (TREE_TYPE (lhs)))
{
if (flag_strict_aliasing
&& !POINTER_TYPE_P (TREE_TYPE (lhs)))
return false;
if (TREE_CODE (lhs) == COMPONENT_REF
&& !DECL_VIRTUAL_P (TREE_OPERAND (lhs, 1)))
return false;
/* In the future we might want to use get_base_ref_and_offset to find
if there is a field corresponding to the offset and if so, proceed
almost like if it was a component ref. */
}
}
return true;
}
/* If STMT can be proved to be an assignment to the virtual method table
pointer of ANALYZED_OBJ and the type associated with the new table
identified, return the type. Otherwise return NULL_TREE. */
static tree
extr_type_from_vtbl_ptr_store (gimple stmt, struct type_change_info *tci)
{
HOST_WIDE_INT offset, size, max_size;
tree lhs, rhs, base;
if (!gimple_assign_single_p (stmt))
return NULL_TREE;
lhs = gimple_assign_lhs (stmt);
rhs = gimple_assign_rhs1 (stmt);
if (TREE_CODE (lhs) != COMPONENT_REF
|| !DECL_VIRTUAL_P (TREE_OPERAND (lhs, 1))
|| TREE_CODE (rhs) != ADDR_EXPR)
return NULL_TREE;
rhs = get_base_address (TREE_OPERAND (rhs, 0));
if (!rhs
|| TREE_CODE (rhs) != VAR_DECL
|| !DECL_VIRTUAL_P (rhs))
return NULL_TREE;
base = get_ref_base_and_extent (lhs, &offset, &size, &max_size);
if (offset != tci->offset
|| size != POINTER_SIZE
|| max_size != POINTER_SIZE)
return NULL_TREE;
if (TREE_CODE (base) == MEM_REF)
{
if (TREE_CODE (tci->object) != MEM_REF
|| TREE_OPERAND (tci->object, 0) != TREE_OPERAND (base, 0)
|| !tree_int_cst_equal (TREE_OPERAND (tci->object, 1),
TREE_OPERAND (base, 1)))
return NULL_TREE;
}
else if (tci->object != base)
return NULL_TREE;
return DECL_CONTEXT (rhs);
}
/* Callback of walk_aliased_vdefs and a helper function for
detect_type_change to check whether a particular statement may modify
the virtual table pointer, and if possible also determine the new type of
the (sub-)object. It stores its result into DATA, which points to a
type_change_info structure. */
static bool
check_stmt_for_type_change (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef, void *data)
{
gimple stmt = SSA_NAME_DEF_STMT (vdef);
struct type_change_info *tci = (struct type_change_info *) data;
if (stmt_may_be_vtbl_ptr_store (stmt))
{
tree type;
type = extr_type_from_vtbl_ptr_store (stmt, tci);
if (tci->type_maybe_changed
&& type != tci->known_current_type)
tci->multiple_types_encountered = true;
tci->known_current_type = type;
tci->type_maybe_changed = true;
return true;
}
else
return false;
}
/* Detect whether the dynamic type of ARG of COMP_TYPE has changed (before
callsite CALL) by looking for assignments to its virtual table pointer. If
it is, return true and fill in the jump function JFUNC with relevant type
information or set it to unknown. ARG is the object itself (not a pointer
to it, unless dereferenced). BASE is the base of the memory access as
returned by get_ref_base_and_extent, as is the offset. */
static bool
detect_type_change (tree arg, tree base, tree comp_type, gimple call,
struct ipa_jump_func *jfunc, HOST_WIDE_INT offset)
{
struct type_change_info tci;
ao_ref ao;
gcc_checking_assert (DECL_P (arg)
|| TREE_CODE (arg) == MEM_REF
|| handled_component_p (arg));
/* Const calls cannot call virtual methods through VMT and so type changes do
not matter. */
if (!flag_devirtualize || !gimple_vuse (call)
/* Be sure expected_type is polymorphic. */
|| !comp_type
|| TREE_CODE (comp_type) != RECORD_TYPE
|| !TYPE_BINFO (comp_type)
|| !BINFO_VTABLE (TYPE_BINFO (comp_type)))
return false;
ao_ref_init (&ao, arg);
ao.base = base;
ao.offset = offset;
ao.size = POINTER_SIZE;
ao.max_size = ao.size;
tci.offset = offset;
tci.object = get_base_address (arg);
tci.known_current_type = NULL_TREE;
tci.type_maybe_changed = false;
tci.multiple_types_encountered = false;
walk_aliased_vdefs (&ao, gimple_vuse (call), check_stmt_for_type_change,
&tci, NULL);
if (!tci.type_maybe_changed)
return false;
if (!tci.known_current_type
|| tci.multiple_types_encountered
|| offset != 0)
jfunc->type = IPA_JF_UNKNOWN;
else
ipa_set_jf_known_type (jfunc, 0, tci.known_current_type, comp_type);
return true;
}
/* Like detect_type_change but ARG is supposed to be a non-dereferenced pointer
SSA name (its dereference will become the base and the offset is assumed to
be zero). */
static bool
detect_type_change_ssa (tree arg, tree comp_type,
gimple call, struct ipa_jump_func *jfunc)
{
gcc_checking_assert (TREE_CODE (arg) == SSA_NAME);
if (!flag_devirtualize
|| !POINTER_TYPE_P (TREE_TYPE (arg)))
return false;
arg = build2 (MEM_REF, ptr_type_node, arg,
build_int_cst (ptr_type_node, 0));
return detect_type_change (arg, arg, comp_type, call, jfunc, 0);
}
/* Callback of walk_aliased_vdefs. Flags that it has been invoked to the
boolean variable pointed to by DATA. */
static bool
mark_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
void *data)
{
bool *b = (bool *) data;
*b = true;
return true;
}
/* Return true if a load from a formal parameter PARM_LOAD is known to retrieve
a value known not to be modified in this function before reaching the
statement STMT. PARM_AINFO is a pointer to a structure containing temporary
information about the parameter. */
static bool
parm_preserved_before_stmt_p (struct param_analysis_info *parm_ainfo,
gimple stmt, tree parm_load)
{
bool modified = false;
bitmap *visited_stmts;
ao_ref refd;
if (parm_ainfo && parm_ainfo->parm_modified)
return false;
gcc_checking_assert (gimple_vuse (stmt) != NULL_TREE);
ao_ref_init (&refd, parm_load);
/* We can cache visited statements only when parm_ainfo is available and when
we are looking at a naked load of the whole parameter. */
if (!parm_ainfo || TREE_CODE (parm_load) != PARM_DECL)
visited_stmts = NULL;
else
visited_stmts = &parm_ainfo->parm_visited_statements;
walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified, &modified,
visited_stmts);
if (parm_ainfo && modified)
parm_ainfo->parm_modified = true;
return !modified;
}
/* If STMT is an assignment that loads a value from an parameter declaration,
return the index of the parameter in ipa_node_params which has not been
modified. Otherwise return -1. */
static int
load_from_unmodified_param (vec<ipa_param_descriptor_t> descriptors,
struct param_analysis_info *parms_ainfo,
gimple stmt)
{
int index;
tree op1;
if (!gimple_assign_single_p (stmt))
return -1;
op1 = gimple_assign_rhs1 (stmt);
if (TREE_CODE (op1) != PARM_DECL)
return -1;
index = ipa_get_param_decl_index_1 (descriptors, op1);
if (index < 0
|| !parm_preserved_before_stmt_p (parms_ainfo ? &parms_ainfo[index]
: NULL, stmt, op1))
return -1;
return index;
}
/* Return true if memory reference REF loads data that are known to be
unmodified in this function before reaching statement STMT. PARM_AINFO, if
non-NULL, is a pointer to a structure containing temporary information about
PARM. */
static bool
parm_ref_data_preserved_p (struct param_analysis_info *parm_ainfo,
gimple stmt, tree ref)
{
bool modified = false;
ao_ref refd;
gcc_checking_assert (gimple_vuse (stmt));
if (parm_ainfo && parm_ainfo->ref_modified)
return false;
ao_ref_init (&refd, ref);
walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified, &modified,
NULL);
if (parm_ainfo && modified)
parm_ainfo->ref_modified = true;
return !modified;
}
/* Return true if the data pointed to by PARM is known to be unmodified in this
function before reaching call statement CALL into which it is passed.
PARM_AINFO is a pointer to a structure containing temporary information
about PARM. */
static bool
parm_ref_data_pass_through_p (struct param_analysis_info *parm_ainfo,
gimple call, tree parm)
{
bool modified = false;
ao_ref refd;
/* It's unnecessary to calculate anything about memory contnets for a const
function because it is not goin to use it. But do not cache the result
either. Also, no such calculations for non-pointers. */
if (!gimple_vuse (call)
|| !POINTER_TYPE_P (TREE_TYPE (parm)))
return false;
if (parm_ainfo->pt_modified)
return false;
ao_ref_init_from_ptr_and_size (&refd, parm, NULL_TREE);
walk_aliased_vdefs (&refd, gimple_vuse (call), mark_modified, &modified,
parm_ainfo ? &parm_ainfo->pt_visited_statements : NULL);
if (modified)
parm_ainfo->pt_modified = true;
return !modified;
}
/* Return true if we can prove that OP is a memory reference loading unmodified
data from an aggregate passed as a parameter and if the aggregate is passed
by reference, that the alias type of the load corresponds to the type of the
formal parameter (so that we can rely on this type for TBAA in callers).
INFO and PARMS_AINFO describe parameters of the current function (but the
latter can be NULL), STMT is the load statement. If function returns true,
*INDEX_P, *OFFSET_P and *BY_REF is filled with the parameter index, offset
within the aggregate and whether it is a load from a value passed by
reference respectively. */
static bool
ipa_load_from_parm_agg_1 (vec<ipa_param_descriptor_t> descriptors,
struct param_analysis_info *parms_ainfo, gimple stmt,
tree op, int *index_p, HOST_WIDE_INT *offset_p,
bool *by_ref_p)
{
int index;
HOST_WIDE_INT size, max_size;
tree base = get_ref_base_and_extent (op, offset_p, &size, &max_size);
if (max_size == -1 || max_size != size || *offset_p < 0)
return false;
if (DECL_P (base))
{
int index = ipa_get_param_decl_index_1 (descriptors, base);
if (index >= 0
&& parm_preserved_before_stmt_p (parms_ainfo ? &parms_ainfo[index]
: NULL, stmt, op))
{
*index_p = index;
*by_ref_p = false;
return true;
}
return false;
}
if (TREE_CODE (base) != MEM_REF
|| TREE_CODE (TREE_OPERAND (base, 0)) != SSA_NAME
|| !integer_zerop (TREE_OPERAND (base, 1)))
return false;
if (SSA_NAME_IS_DEFAULT_DEF (TREE_OPERAND (base, 0)))
{
tree parm = SSA_NAME_VAR (TREE_OPERAND (base, 0));
index = ipa_get_param_decl_index_1 (descriptors, parm);
}
else
{
/* This branch catches situations where a pointer parameter is not a
gimple register, for example:
void hip7(S*) (struct S * p)
{
void (*<T2e4>) (struct S *) D.1867;
struct S * p.1;
<bb 2>:
p.1_1 = p;
D.1867_2 = p.1_1->f;
D.1867_2 ();
gdp = &p;
*/
gimple def = SSA_NAME_DEF_STMT (TREE_OPERAND (base, 0));
index = load_from_unmodified_param (descriptors, parms_ainfo, def);
}
if (index >= 0
&& parm_ref_data_preserved_p (parms_ainfo ? &parms_ainfo[index] : NULL,
stmt, op))
{
*index_p = index;
*by_ref_p = true;
return true;
}
return false;
}
/* Just like the previous function, just without the param_analysis_info
pointer, for users outside of this file. */
bool
ipa_load_from_parm_agg (struct ipa_node_params *info, gimple stmt,
tree op, int *index_p, HOST_WIDE_INT *offset_p,
bool *by_ref_p)
{
return ipa_load_from_parm_agg_1 (info->descriptors, NULL, stmt, op, index_p,
offset_p, by_ref_p);
}
/* Given that an actual argument is an SSA_NAME (given in NAME) and is a result
of an assignment statement STMT, try to determine whether we are actually
handling any of the following cases and construct an appropriate jump
function into JFUNC if so:
1) The passed value is loaded from a formal parameter which is not a gimple
register (most probably because it is addressable, the value has to be
scalar) and we can guarantee the value has not changed. This case can
therefore be described by a simple pass-through jump function. For example:
foo (int a)
{
int a.0;
a.0_2 = a;
bar (a.0_2);
2) The passed value can be described by a simple arithmetic pass-through
jump function. E.g.
foo (int a)
{
int D.2064;
D.2064_4 = a.1(D) + 4;
bar (D.2064_4);
This case can also occur in combination of the previous one, e.g.:
foo (int a, int z)
{
int a.0;
int D.2064;
a.0_3 = a;
D.2064_4 = a.0_3 + 4;
foo (D.2064_4);
3) The passed value is an address of an object within another one (which
also passed by reference). Such situations are described by an ancestor
jump function and describe situations such as:
B::foo() (struct B * const this)
{
struct A * D.1845;
D.1845_2 = &this_1(D)->D.1748;
A::bar (D.1845_2);
INFO is the structure describing individual parameters access different
stages of IPA optimizations. PARMS_AINFO contains the information that is
only needed for intraprocedural analysis. */
static void
compute_complex_assign_jump_func (struct ipa_node_params *info,
struct param_analysis_info *parms_ainfo,
struct ipa_jump_func *jfunc,
gimple call, gimple stmt, tree name,
tree param_type)
{
HOST_WIDE_INT offset, size, max_size;
tree op1, tc_ssa, base, ssa;
int index;
op1 = gimple_assign_rhs1 (stmt);
if (TREE_CODE (op1) == SSA_NAME)
{
if (SSA_NAME_IS_DEFAULT_DEF (op1))
index = ipa_get_param_decl_index (info, SSA_NAME_VAR (op1));
else
index = load_from_unmodified_param (info->descriptors, parms_ainfo,
SSA_NAME_DEF_STMT (op1));
tc_ssa = op1;
}
else
{
index = load_from_unmodified_param (info->descriptors, parms_ainfo, stmt);
tc_ssa = gimple_assign_lhs (stmt);
}
if (index >= 0)
{
tree op2 = gimple_assign_rhs2 (stmt);
if (op2)
{
if (!is_gimple_ip_invariant (op2)
|| (TREE_CODE_CLASS (gimple_expr_code (stmt)) != tcc_comparison
&& !useless_type_conversion_p (TREE_TYPE (name),
TREE_TYPE (op1))))
return;
ipa_set_jf_arith_pass_through (jfunc, index, op2,
gimple_assign_rhs_code (stmt));
}
else if (gimple_assign_single_p (stmt))
{
bool agg_p = parm_ref_data_pass_through_p (&parms_ainfo[index],
call, tc_ssa);
bool type_p = false;
if (param_type && POINTER_TYPE_P (param_type))
type_p = !detect_type_change_ssa (tc_ssa, TREE_TYPE (param_type),
call, jfunc);
if (type_p || jfunc->type == IPA_JF_UNKNOWN)
ipa_set_jf_simple_pass_through (jfunc, index, agg_p, type_p);
}
return;
}
if (TREE_CODE (op1) != ADDR_EXPR)
return;
op1 = TREE_OPERAND (op1, 0);
if (TREE_CODE (TREE_TYPE (op1)) != RECORD_TYPE)
return;
base = get_ref_base_and_extent (op1, &offset, &size, &max_size);
if (TREE_CODE (base) != MEM_REF
/* If this is a varying address, punt. */
|| max_size == -1
|| max_size != size)
return;
offset += mem_ref_offset (base).to_short_addr () * BITS_PER_UNIT;
ssa = TREE_OPERAND (base, 0);
if (TREE_CODE (ssa) != SSA_NAME
|| !SSA_NAME_IS_DEFAULT_DEF (ssa)
|| offset < 0)
return;
/* Dynamic types are changed in constructors and destructors. */
index = ipa_get_param_decl_index (info, SSA_NAME_VAR (ssa));
if (index >= 0 && param_type && POINTER_TYPE_P (param_type))
{
bool type_p = !detect_type_change (op1, base, TREE_TYPE (param_type),
call, jfunc, offset);
if (type_p || jfunc->type == IPA_JF_UNKNOWN)
ipa_set_ancestor_jf (jfunc, offset, TREE_TYPE (op1), index,
parm_ref_data_pass_through_p (&parms_ainfo[index],
call, ssa), type_p);
}
}
/* Extract the base, offset and MEM_REF expression from a statement ASSIGN if
it looks like:
iftmp.1_3 = &obj_2(D)->D.1762;
The base of the MEM_REF must be a default definition SSA NAME of a
parameter. Return NULL_TREE if it looks otherwise. If case of success, the
whole MEM_REF expression is returned and the offset calculated from any
handled components and the MEM_REF itself is stored into *OFFSET. The whole
RHS stripped off the ADDR_EXPR is stored into *OBJ_P. */
static tree
get_ancestor_addr_info (gimple assign, tree *obj_p, HOST_WIDE_INT *offset)
{
HOST_WIDE_INT size, max_size;
tree expr, parm, obj;
if (!gimple_assign_single_p (assign))
return NULL_TREE;
expr = gimple_assign_rhs1 (assign);
if (TREE_CODE (expr) != ADDR_EXPR)
return NULL_TREE;
expr = TREE_OPERAND (expr, 0);
obj = expr;
expr = get_ref_base_and_extent (expr, offset, &size, &max_size);
if (TREE_CODE (expr) != MEM_REF
/* If this is a varying address, punt. */
|| max_size == -1
|| max_size != size
|| *offset < 0)
return NULL_TREE;
parm = TREE_OPERAND (expr, 0);
if (TREE_CODE (parm) != SSA_NAME
|| !SSA_NAME_IS_DEFAULT_DEF (parm)
|| TREE_CODE (SSA_NAME_VAR (parm)) != PARM_DECL)
return NULL_TREE;
*offset += mem_ref_offset (expr).to_short_addr () * BITS_PER_UNIT;
*obj_p = obj;
return expr;
}
/* Given that an actual argument is an SSA_NAME that is a result of a phi
statement PHI, try to find out whether NAME is in fact a
multiple-inheritance typecast from a descendant into an ancestor of a formal
parameter and thus can be described by an ancestor jump function and if so,
write the appropriate function into JFUNC.
Essentially we want to match the following pattern:
if (obj_2(D) != 0B)
goto <bb 3>;
else
goto <bb 4>;
<bb 3>:
iftmp.1_3 = &obj_2(D)->D.1762;
<bb 4>:
# iftmp.1_1 = PHI <iftmp.1_3(3), 0B(2)>
D.1879_6 = middleman_1 (iftmp.1_1, i_5(D));
return D.1879_6; */
static void
compute_complex_ancestor_jump_func (struct ipa_node_params *info,
struct param_analysis_info *parms_ainfo,
struct ipa_jump_func *jfunc,
gimple call, gimple phi, tree param_type)
{
HOST_WIDE_INT offset;
gimple assign, cond;
basic_block phi_bb, assign_bb, cond_bb;
tree tmp, parm, expr, obj;
int index, i;
if (gimple_phi_num_args (phi) != 2)
return;
if (integer_zerop (PHI_ARG_DEF (phi, 1)))
tmp = PHI_ARG_DEF (phi, 0);
else if (integer_zerop (PHI_ARG_DEF (phi, 0)))
tmp = PHI_ARG_DEF (phi, 1);
else
return;
if (TREE_CODE (tmp) != SSA_NAME
|| SSA_NAME_IS_DEFAULT_DEF (tmp)
|| !POINTER_TYPE_P (TREE_TYPE (tmp))
|| TREE_CODE (TREE_TYPE (TREE_TYPE (tmp))) != RECORD_TYPE)
return;
assign = SSA_NAME_DEF_STMT (tmp);
assign_bb = gimple_bb (assign);
if (!single_pred_p (assign_bb))
return;
expr = get_ancestor_addr_info (assign, &obj, &offset);
if (!expr)
return;
parm = TREE_OPERAND (expr, 0);
index = ipa_get_param_decl_index (info, SSA_NAME_VAR (parm));
gcc_assert (index >= 0);
cond_bb = single_pred (assign_bb);
cond = last_stmt (cond_bb);
if (!cond
|| gimple_code (cond) != GIMPLE_COND
|| gimple_cond_code (cond) != NE_EXPR
|| gimple_cond_lhs (cond) != parm
|| !integer_zerop (gimple_cond_rhs (cond)))
return;
phi_bb = gimple_bb (phi);
for (i = 0; i < 2; i++)
{
basic_block pred = EDGE_PRED (phi_bb, i)->src;
if (pred != assign_bb && pred != cond_bb)
return;
}
bool type_p = false;
if (param_type && POINTER_TYPE_P (param_type))
type_p = !detect_type_change (obj, expr, TREE_TYPE (param_type),
call, jfunc, offset);
if (type_p || jfunc->type == IPA_JF_UNKNOWN)
ipa_set_ancestor_jf (jfunc, offset, TREE_TYPE (obj), index,
parm_ref_data_pass_through_p (&parms_ainfo[index],
call, parm), type_p);
}
/* Given OP which is passed as an actual argument to a called function,
determine if it is possible to construct a KNOWN_TYPE jump function for it
and if so, create one and store it to JFUNC.
EXPECTED_TYPE represents a type the argument should be in */
static void
compute_known_type_jump_func (tree op, struct ipa_jump_func *jfunc,
gimple call, tree expected_type)
{
HOST_WIDE_INT offset, size, max_size;
tree base;
if (!flag_devirtualize
|| TREE_CODE (op) != ADDR_EXPR
|| TREE_CODE (TREE_TYPE (TREE_TYPE (op))) != RECORD_TYPE
/* Be sure expected_type is polymorphic. */
|| !expected_type
|| TREE_CODE (expected_type) != RECORD_TYPE
|| !TYPE_BINFO (expected_type)
|| !BINFO_VTABLE (TYPE_BINFO (expected_type)))
return;
op = TREE_OPERAND (op, 0);
base = get_ref_base_and_extent (op, &offset, &size, &max_size);
if (!DECL_P (base)
|| max_size == -1
|| max_size != size
|| TREE_CODE (TREE_TYPE (base)) != RECORD_TYPE
|| is_global_var (base))
return;
if (detect_type_change (op, base, expected_type, call, jfunc, offset))
return;
ipa_set_jf_known_type (jfunc, offset, TREE_TYPE (base),
expected_type);
}
/* Inspect the given TYPE and return true iff it has the same structure (the
same number of fields of the same types) as a C++ member pointer. If
METHOD_PTR and DELTA are non-NULL, store the trees representing the
corresponding fields there. */
static bool
type_like_member_ptr_p (tree type, tree *method_ptr, tree *delta)
{
tree fld;
if (TREE_CODE (type) != RECORD_TYPE)
return false;
fld = TYPE_FIELDS (type);
if (!fld || !POINTER_TYPE_P (TREE_TYPE (fld))
|| TREE_CODE (TREE_TYPE (TREE_TYPE (fld))) != METHOD_TYPE
|| !tree_fits_uhwi_p (DECL_FIELD_OFFSET (fld)))
return false;
if (method_ptr)
*method_ptr = fld;
fld = DECL_CHAIN (fld);
if (!fld || INTEGRAL_TYPE_P (fld)
|| !tree_fits_uhwi_p (DECL_FIELD_OFFSET (fld)))
return false;
if (delta)
*delta = fld;
if (DECL_CHAIN (fld))
return false;
return true;
}
/* If RHS is an SSA_NAME and it is defined by a simple copy assign statement,
return the rhs of its defining statement. Otherwise return RHS as it
is. */
static inline tree
get_ssa_def_if_simple_copy (tree rhs)
{
while (TREE_CODE (rhs) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (rhs))
{
gimple def_stmt = SSA_NAME_DEF_STMT (rhs);
if (gimple_assign_single_p (def_stmt))
rhs = gimple_assign_rhs1 (def_stmt);
else
break;
}
return rhs;
}
/* Simple linked list, describing known contents of an aggregate beforere
call. */
struct ipa_known_agg_contents_list
{
/* Offset and size of the described part of the aggregate. */
HOST_WIDE_INT offset, size;
/* Known constant value or NULL if the contents is known to be unknown. */
tree constant;
/* Pointer to the next structure in the list. */
struct ipa_known_agg_contents_list *next;
};
/* Traverse statements from CALL backwards, scanning whether an aggregate given
in ARG is filled in with constant values. ARG can either be an aggregate
expression or a pointer to an aggregate. JFUNC is the jump function into
which the constants are subsequently stored. */
static void
determine_known_aggregate_parts (gimple call, tree arg,
struct ipa_jump_func *jfunc)
{
struct ipa_known_agg_contents_list *list = NULL;
int item_count = 0, const_count = 0;
HOST_WIDE_INT arg_offset, arg_size;
gimple_stmt_iterator gsi;
tree arg_base;
bool check_ref, by_ref;
ao_ref r;
/* The function operates in three stages. First, we prepare check_ref, r,
arg_base and arg_offset based on what is actually passed as an actual
argument. */
if (POINTER_TYPE_P (TREE_TYPE (arg)))
{
by_ref = true;
if (TREE_CODE (arg) == SSA_NAME)
{
tree type_size;
if (!tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (TREE_TYPE (arg)))))
return;
check_ref = true;
arg_base = arg;
arg_offset = 0;
type_size = TYPE_SIZE (TREE_TYPE (TREE_TYPE (arg)));
arg_size = tree_to_uhwi (type_size);
ao_ref_init_from_ptr_and_size (&r, arg_base, NULL_TREE);
}
else if (TREE_CODE (arg) == ADDR_EXPR)
{
HOST_WIDE_INT arg_max_size;
arg = TREE_OPERAND (arg, 0);
arg_base = get_ref_base_and_extent (arg, &arg_offset, &arg_size,
&arg_max_size);
if (arg_max_size == -1
|| arg_max_size != arg_size
|| arg_offset < 0)
return;
if (DECL_P (arg_base))
{
tree size;
check_ref = false;
size = build_int_cst (integer_type_node, arg_size);
ao_ref_init_from_ptr_and_size (&r, arg_base, size);
}
else
return;
}
else
return;
}
else
{
HOST_WIDE_INT arg_max_size;
gcc_checking_assert (AGGREGATE_TYPE_P (TREE_TYPE (arg)));
by_ref = false;
check_ref = false;
arg_base = get_ref_base_and_extent (arg, &arg_offset, &arg_size,
&arg_max_size);
if (arg_max_size == -1
|| arg_max_size != arg_size
|| arg_offset < 0)
return;
ao_ref_init (&r, arg);
}
/* Second stage walks back the BB, looks at individual statements and as long
as it is confident of how the statements affect contents of the
aggregates, it builds a sorted linked list of ipa_agg_jf_list structures
describing it. */
gsi = gsi_for_stmt (call);
gsi_prev (&gsi);
for (; !gsi_end_p (gsi); gsi_prev (&gsi))
{
struct ipa_known_agg_contents_list *n, **p;
gimple stmt = gsi_stmt (gsi);
HOST_WIDE_INT lhs_offset, lhs_size, lhs_max_size;
tree lhs, rhs, lhs_base;
bool partial_overlap;
if (!stmt_may_clobber_ref_p_1 (stmt, &r))
continue;
if (!gimple_assign_single_p (stmt))
break;
lhs = gimple_assign_lhs (stmt);
rhs = gimple_assign_rhs1 (stmt);
if (!is_gimple_reg_type (rhs)
|| TREE_CODE (lhs) == BIT_FIELD_REF
|| contains_bitfld_component_ref_p (lhs))
break;
lhs_base = get_ref_base_and_extent (lhs, &lhs_offset, &lhs_size,
&lhs_max_size);
if (lhs_max_size == -1
|| lhs_max_size != lhs_size
|| (lhs_offset < arg_offset
&& lhs_offset + lhs_size > arg_offset)
|| (lhs_offset < arg_offset + arg_size
&& lhs_offset + lhs_size > arg_offset + arg_size))
break;
if (check_ref)
{
if (TREE_CODE (lhs_base) != MEM_REF
|| TREE_OPERAND (lhs_base, 0) != arg_base
|| !integer_zerop (TREE_OPERAND (lhs_base, 1)))
break;
}
else if (lhs_base != arg_base)
{
if (DECL_P (lhs_base))
continue;
else
break;
}
if (lhs_offset + lhs_size < arg_offset
|| lhs_offset >= (arg_offset + arg_size))
continue;
partial_overlap = false;
p = &list;
while (*p && (*p)->offset < lhs_offset)
{
if ((*p)->offset + (*p)->size > lhs_offset)
{
partial_overlap = true;
break;
}
p = &(*p)->next;
}
if (partial_overlap)
break;
if (*p && (*p)->offset < lhs_offset + lhs_size)
{
if ((*p)->offset == lhs_offset && (*p)->size == lhs_size)
/* We already know this value is subsequently overwritten with
something else. */
continue;
else
/* Otherwise this is a partial overlap which we cannot
represent. */
break;
}
rhs = get_ssa_def_if_simple_copy (rhs);
n = XALLOCA (struct ipa_known_agg_contents_list);
n->size = lhs_size;
n->offset = lhs_offset;
if (is_gimple_ip_invariant (rhs))
{
n->constant = rhs;
const_count++;
}
else
n->constant = NULL_TREE;
n->next = *p;
*p = n;
item_count++;
if (const_count == PARAM_VALUE (PARAM_IPA_MAX_AGG_ITEMS)
|| item_count == 2 * PARAM_VALUE (PARAM_IPA_MAX_AGG_ITEMS))
break;
}
/* Third stage just goes over the list and creates an appropriate vector of
ipa_agg_jf_item structures out of it, of sourse only if there are
any known constants to begin with. */
if (const_count)
{
jfunc->agg.by_ref = by_ref;
vec_alloc (jfunc->agg.items, const_count);
while (list)
{
if (list->constant)
{
struct ipa_agg_jf_item item;
item.offset = list->offset - arg_offset;
gcc_assert ((item.offset % BITS_PER_UNIT) == 0);
item.value = unshare_expr_without_location (list->constant);
jfunc->agg.items->quick_push (item);
}
list = list->next;
}
}
}
static tree
ipa_get_callee_param_type (struct cgraph_edge *e, int i)
{
int n;
tree type = (e->callee
? TREE_TYPE (e->callee->symbol.decl)
: gimple_call_fntype (e->call_stmt));
tree t = TYPE_ARG_TYPES (type);
for (n = 0; n < i; n++)
{
if (!t)
break;
t = TREE_CHAIN (t);
}
if (t)
return TREE_VALUE (t);
if (!e->callee)
return NULL;
t = DECL_ARGUMENTS (e->callee->symbol.decl);
for (n = 0; n < i; n++)
{
if (!t)
return NULL;
t = TREE_CHAIN (t);
}
if (t)
return TREE_TYPE (t);
return NULL;
}
/* Compute jump function for all arguments of callsite CS and insert the
information in the jump_functions array in the ipa_edge_args corresponding
to this callsite. */
static void
ipa_compute_jump_functions_for_edge (struct param_analysis_info *parms_ainfo,
struct cgraph_edge *cs)
{
struct ipa_node_params *info = IPA_NODE_REF (cs->caller);
struct ipa_edge_args *args = IPA_EDGE_REF (cs);
gimple call = cs->call_stmt;
int n, arg_num = gimple_call_num_args (call);
if (arg_num == 0 || args->jump_functions)
return;
vec_safe_grow_cleared (args->jump_functions, arg_num);
if (ipa_func_spec_opts_forbid_analysis_p (cs->caller))
return;
for (n = 0; n < arg_num; n++)
{
struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, n);
tree arg = gimple_call_arg (call, n);
tree param_type = ipa_get_callee_param_type (cs, n);
if (is_gimple_ip_invariant (arg))
ipa_set_jf_constant (jfunc, arg, cs);
else if (!is_gimple_reg_type (TREE_TYPE (arg))
&& TREE_CODE (arg) == PARM_DECL)
{
int index = ipa_get_param_decl_index (info, arg);
gcc_assert (index >=0);
/* Aggregate passed by value, check for pass-through, otherwise we
will attempt to fill in aggregate contents later in this
for cycle. */
if (parm_preserved_before_stmt_p (&parms_ainfo[index], call, arg))
{
ipa_set_jf_simple_pass_through (jfunc, index, false, false);
continue;
}
}
else if (TREE_CODE (arg) == SSA_NAME)
{
if (SSA_NAME_IS_DEFAULT_DEF (arg))
{
int index = ipa_get_param_decl_index (info, SSA_NAME_VAR (arg));
if (index >= 0)
{
bool agg_p, type_p;
agg_p = parm_ref_data_pass_through_p (&parms_ainfo[index],
call, arg);
if (param_type && POINTER_TYPE_P (param_type))
type_p = !detect_type_change_ssa (arg, TREE_TYPE (param_type),
call, jfunc);
else
type_p = false;
if (type_p || jfunc->type == IPA_JF_UNKNOWN)
ipa_set_jf_simple_pass_through (jfunc, index, agg_p,
type_p);
}
}
else
{
gimple stmt = SSA_NAME_DEF_STMT (arg);
if (is_gimple_assign (stmt))
compute_complex_assign_jump_func (info, parms_ainfo, jfunc,
call, stmt, arg, param_type);
else if (gimple_code (stmt) == GIMPLE_PHI)
compute_complex_ancestor_jump_func (info, parms_ainfo, jfunc,
call, stmt, param_type);
}
}
else
compute_known_type_jump_func (arg, jfunc, call,
param_type
&& POINTER_TYPE_P (param_type)
? TREE_TYPE (param_type)
: NULL);
if ((jfunc->type != IPA_JF_PASS_THROUGH
|| !ipa_get_jf_pass_through_agg_preserved (jfunc))
&& (jfunc->type != IPA_JF_ANCESTOR
|| !ipa_get_jf_ancestor_agg_preserved (jfunc))
&& (AGGREGATE_TYPE_P (TREE_TYPE (arg))
|| (POINTER_TYPE_P (TREE_TYPE (arg)))))
determine_known_aggregate_parts (call, arg, jfunc);
}
}
/* Compute jump functions for all edges - both direct and indirect - outgoing
from NODE. Also count the actual arguments in the process. */
static void
ipa_compute_jump_functions (struct cgraph_node *node,
struct param_analysis_info *parms_ainfo)
{
struct cgraph_edge *cs;
for (cs = node->callees; cs; cs = cs->next_callee)
{
struct cgraph_node *callee = cgraph_function_or_thunk_node (cs->callee,
NULL);
/* We do not need to bother analyzing calls to unknown
functions unless they may become known during lto/whopr. */
if (!callee->symbol.definition && !flag_lto)
continue;
ipa_compute_jump_functions_for_edge (parms_ainfo, cs);
}
for (cs = node->indirect_calls; cs; cs = cs->next_callee)
ipa_compute_jump_functions_for_edge (parms_ainfo, cs);
}
/* If STMT looks like a statement loading a value from a member pointer formal
parameter, return that parameter and store the offset of the field to
*OFFSET_P, if it is non-NULL. Otherwise return NULL (but *OFFSET_P still
might be clobbered). If USE_DELTA, then we look for a use of the delta
field rather than the pfn. */
static tree
ipa_get_stmt_member_ptr_load_param (gimple stmt, bool use_delta,
HOST_WIDE_INT *offset_p)
{
tree rhs, rec, ref_field, ref_offset, fld, ptr_field, delta_field;
if (!gimple_assign_single_p (stmt))
return NULL_TREE;
rhs = gimple_assign_rhs1 (stmt);
if (TREE_CODE (rhs) == COMPONENT_REF)
{
ref_field = TREE_OPERAND (rhs, 1);
rhs = TREE_OPERAND (rhs, 0);
}
else
ref_field = NULL_TREE;
if (TREE_CODE (rhs) != MEM_REF)
return NULL_TREE;
rec = TREE_OPERAND (rhs, 0);
if (TREE_CODE (rec) != ADDR_EXPR)
return NULL_TREE;
rec = TREE_OPERAND (rec, 0);
if (TREE_CODE (rec) != PARM_DECL
|| !type_like_member_ptr_p (TREE_TYPE (rec), &ptr_field, &delta_field))
return NULL_TREE;
ref_offset = TREE_OPERAND (rhs, 1);
if (use_delta)
fld = delta_field;
else
fld = ptr_field;
if (offset_p)
*offset_p = int_bit_position (fld);
if (ref_field)
{
if (integer_nonzerop (ref_offset))
return NULL_TREE;
return ref_field == fld ? rec : NULL_TREE;
}
else
return tree_int_cst_equal (byte_position (fld), ref_offset) ? rec
: NULL_TREE;
}
/* Returns true iff T is an SSA_NAME defined by a statement. */
static bool
ipa_is_ssa_with_stmt_def (tree t)
{
if (TREE_CODE (t) == SSA_NAME
&& !SSA_NAME_IS_DEFAULT_DEF (t))
return true;
else
return false;
}
/* Find the indirect call graph edge corresponding to STMT and mark it as a
call to a parameter number PARAM_INDEX. NODE is the caller. Return the
indirect call graph edge. */
static struct cgraph_edge *
ipa_note_param_call (struct cgraph_node *node, int param_index, gimple stmt)
{
struct cgraph_edge *cs;
cs = cgraph_edge (node, stmt);
cs->indirect_info->param_index = param_index;
cs->indirect_info->offset = 0;
cs->indirect_info->polymorphic = 0;
cs->indirect_info->agg_contents = 0;
cs->indirect_info->member_ptr = 0;
return cs;
}
/* Analyze the CALL and examine uses of formal parameters of the caller NODE
(described by INFO). PARMS_AINFO is a pointer to a vector containing
intermediate information about each formal parameter. Currently it checks
whether the call calls a pointer that is a formal parameter and if so, the
parameter is marked with the called flag and an indirect call graph edge
describing the call is created. This is very simple for ordinary pointers
represented in SSA but not-so-nice when it comes to member pointers. The
ugly part of this function does nothing more than trying to match the
pattern of such a call. An example of such a pattern is the gimple dump
below, the call is on the last line:
<bb 2>:
f$__delta_5 = f.__delta;
f$__pfn_24 = f.__pfn;
or
<bb 2>:
f$__delta_5 = MEM[(struct *)&f];
f$__pfn_24 = MEM[(struct *)&f + 4B];
and a few lines below:
<bb 5>
D.2496_3 = (int) f$__pfn_24;
D.2497_4 = D.2496_3 & 1;
if (D.2497_4 != 0)
goto <bb 3>;
else
goto <bb 4>;
<bb 6>:
D.2500_7 = (unsigned int) f$__delta_5;
D.2501_8 = &S + D.2500_7;
D.2502_9 = (int (*__vtbl_ptr_type) (void) * *) D.2501_8;
D.2503_10 = *D.2502_9;
D.2504_12 = f$__pfn_24 + -1;
D.2505_13 = (unsigned int) D.2504_12;
D.2506_14 = D.2503_10 + D.2505_13;
D.2507_15 = *D.2506_14;
iftmp.11_16 = (String:: *) D.2507_15;
<bb 7>:
# iftmp.11_1 = PHI <iftmp.11_16(3), f$__pfn_24(2)>
D.2500_19 = (unsigned int) f$__delta_5;
D.2508_20 = &S + D.2500_19;
D.2493_21 = iftmp.11_1 (D.2508_20, 4);
Such patterns are results of simple calls to a member pointer:
int doprinting (int (MyString::* f)(int) const)
{
MyString S ("somestring");
return (S.*f)(4);
}
Moreover, the function also looks for called pointers loaded from aggregates
passed by value or reference. */
static void
ipa_analyze_indirect_call_uses (struct cgraph_node *node,
struct ipa_node_params *info,
struct param_analysis_info *parms_ainfo,
gimple call, tree target)
{
gimple def;
tree n1, n2;
gimple d1, d2;
tree rec, rec2, cond;
gimple branch;
int index;
basic_block bb, virt_bb, join;
HOST_WIDE_INT offset;
bool by_ref;
if (SSA_NAME_IS_DEFAULT_DEF (target))
{
tree var = SSA_NAME_VAR (target);
index = ipa_get_param_decl_index (info, var);
if (index >= 0)
ipa_note_param_call (node, index, call);
return;
}
def = SSA_NAME_DEF_STMT (target);
if (gimple_assign_single_p (def)
&& ipa_load_from_parm_agg_1 (info->descriptors, parms_ainfo, def,
gimple_assign_rhs1 (def), &index, &offset,
&by_ref))
{
struct cgraph_edge *cs = ipa_note_param_call (node, index, call);
cs->indirect_info->offset = offset;
cs->indirect_info->agg_contents = 1;
cs->indirect_info->by_ref = by_ref;
return;
}
/* Now we need to try to match the complex pattern of calling a member
pointer. */
if (gimple_code (def) != GIMPLE_PHI
|| gimple_phi_num_args (def) != 2
|| !POINTER_TYPE_P (TREE_TYPE (target))
|| TREE_CODE (TREE_TYPE (TREE_TYPE (target))) != METHOD_TYPE)
return;
/* First, we need to check whether one of these is a load from a member
pointer that is a parameter to this function. */
n1 = PHI_ARG_DEF (def, 0);
n2 = PHI_ARG_DEF (def, 1);
if (!ipa_is_ssa_with_stmt_def (n1) || !ipa_is_ssa_with_stmt_def (n2))
return;
d1 = SSA_NAME_DEF_STMT (n1);
d2 = SSA_NAME_DEF_STMT (n2);
join = gimple_bb (def);
if ((rec = ipa_get_stmt_member_ptr_load_param (d1, false, &offset)))
{
if (ipa_get_stmt_member_ptr_load_param (d2, false, NULL))
return;
bb = EDGE_PRED (join, 0)->src;
virt_bb = gimple_bb (d2);
}
else if ((rec = ipa_get_stmt_member_ptr_load_param (d2, false, &offset)))
{
bb = EDGE_PRED (join, 1)->src;
virt_bb = gimple_bb (d1);
}
else
return;
/* Second, we need to check that the basic blocks are laid out in the way
corresponding to the pattern. */
if (!single_pred_p (virt_bb) || !single_succ_p (virt_bb)
|| single_pred (virt_bb) != bb
|| single_succ (virt_bb) != join)
return;
/* Third, let's see that the branching is done depending on the least
significant bit of the pfn. */
branch = last_stmt (bb);
if (!branch || gimple_code (branch) != GIMPLE_COND)
return;
if ((gimple_cond_code (branch) != NE_EXPR
&& gimple_cond_code (branch) != EQ_EXPR)
|| !integer_zerop (gimple_cond_rhs (branch)))
return;
cond = gimple_cond_lhs (branch);
if (!ipa_is_ssa_with_stmt_def (cond))
return;
def = SSA_NAME_DEF_STMT (cond);
if (!is_gimple_assign (def)
|| gimple_assign_rhs_code (def) != BIT_AND_EXPR
|| !integer_onep (gimple_assign_rhs2 (def)))
return;
cond = gimple_assign_rhs1 (def);
if (!ipa_is_ssa_with_stmt_def (cond))
return;
def = SSA_NAME_DEF_STMT (cond);
if (is_gimple_assign (def)
&& CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def)))
{
cond = gimple_assign_rhs1 (def);
if (!ipa_is_ssa_with_stmt_def (cond))
return;
def = SSA_NAME_DEF_STMT (cond);
}
rec2 = ipa_get_stmt_member_ptr_load_param (def,
(TARGET_PTRMEMFUNC_VBIT_LOCATION
== ptrmemfunc_vbit_in_delta),
NULL);
if (rec != rec2)
return;
index = ipa_get_param_decl_index (info, rec);
if (index >= 0
&& parm_preserved_before_stmt_p (&parms_ainfo[index], call, rec))
{
struct cgraph_edge *cs = ipa_note_param_call (node, index, call);
cs->indirect_info->offset = offset;
cs->indirect_info->agg_contents = 1;
cs->indirect_info->member_ptr = 1;
}
return;
}
/* Analyze a CALL to an OBJ_TYPE_REF which is passed in TARGET and if the
object referenced in the expression is a formal parameter of the caller
(described by INFO), create a call note for the statement. */
static void
ipa_analyze_virtual_call_uses (struct cgraph_node *node,
struct ipa_node_params *info, gimple call,
tree target)
{
struct cgraph_edge *cs;
struct cgraph_indirect_call_info *ii;
struct ipa_jump_func jfunc;
tree obj = OBJ_TYPE_REF_OBJECT (target);
int index;
HOST_WIDE_INT anc_offset;
if (!flag_devirtualize)
return;
if (TREE_CODE (obj) != SSA_NAME)
return;
if (SSA_NAME_IS_DEFAULT_DEF (obj))
{
if (TREE_CODE (SSA_NAME_VAR (obj)) != PARM_DECL)
return;
anc_offset = 0;
index = ipa_get_param_decl_index (info, SSA_NAME_VAR (obj));
gcc_assert (index >= 0);
if (detect_type_change_ssa (obj, obj_type_ref_class (target),
call, &jfunc))
return;
}
else
{
gimple stmt = SSA_NAME_DEF_STMT (obj);
tree expr;
expr = get_ancestor_addr_info (stmt, &obj, &anc_offset);
if (!expr)
return;
index = ipa_get_param_decl_index (info,
SSA_NAME_VAR (TREE_OPERAND (expr, 0)));
gcc_assert (index >= 0);
if (detect_type_change (obj, expr, obj_type_ref_class (target),
call, &jfunc, anc_offset))
return;
}
cs = ipa_note_param_call (node, index, call);
ii = cs->indirect_info;
ii->offset = anc_offset;
ii->otr_token = tree_to_uhwi (OBJ_TYPE_REF_TOKEN (target));
ii->otr_type = obj_type_ref_class (target);
ii->polymorphic = 1;
}
/* Analyze a call statement CALL whether and how it utilizes formal parameters
of the caller (described by INFO). PARMS_AINFO is a pointer to a vector
containing intermediate information about each formal parameter. */
static void
ipa_analyze_call_uses (struct cgraph_node *node,
struct ipa_node_params *info,
struct param_analysis_info *parms_ainfo, gimple call)
{
tree target = gimple_call_fn (call);
if (!target)
return;
if (TREE_CODE (target) == SSA_NAME)
ipa_analyze_indirect_call_uses (node, info, parms_ainfo, call, target);
else if (virtual_method_call_p (target))
ipa_analyze_virtual_call_uses (node, info, call, target);
}
/* Analyze the call statement STMT with respect to formal parameters (described
in INFO) of caller given by NODE. Currently it only checks whether formal
parameters are called. PARMS_AINFO is a pointer to a vector containing
intermediate information about each formal parameter. */
static void
ipa_analyze_stmt_uses (struct cgraph_node *node, struct ipa_node_params *info,
struct param_analysis_info *parms_ainfo, gimple stmt)
{
if (is_gimple_call (stmt))
ipa_analyze_call_uses (node, info, parms_ainfo, stmt);
}
/* Callback of walk_stmt_load_store_addr_ops for the visit_load.
If OP is a parameter declaration, mark it as used in the info structure
passed in DATA. */
static bool
visit_ref_for_mod_analysis (gimple stmt ATTRIBUTE_UNUSED,
tree op, void *data)
{
struct ipa_node_params *info = (struct ipa_node_params *) data;
op = get_base_address (op);
if (op
&& TREE_CODE (op) == PARM_DECL)
{
int index = ipa_get_param_decl_index (info, op);
gcc_assert (index >= 0);
ipa_set_param_used (info, index, true);
}
return false;
}
/* Scan the function body of NODE and inspect the uses of formal parameters.
Store the findings in various structures of the associated ipa_node_params
structure, such as parameter flags, notes etc. PARMS_AINFO is a pointer to a
vector containing intermediate information about each formal parameter. */
static void
ipa_analyze_params_uses (struct cgraph_node *node,
struct param_analysis_info *parms_ainfo)
{
tree decl = node->symbol.decl;
basic_block bb;
struct function *func;
gimple_stmt_iterator gsi;
struct ipa_node_params *info = IPA_NODE_REF (node);
int i;
if (ipa_get_param_count (info) == 0 || info->uses_analysis_done)
return;
info->uses_analysis_done = 1;
if (ipa_func_spec_opts_forbid_analysis_p (node))
{
for (i = 0; i < ipa_get_param_count (info); i++)
{
ipa_set_param_used (info, i, true);
ipa_set_controlled_uses (info, i, IPA_UNDESCRIBED_USE);
}
return;
}
for (i = 0; i < ipa_get_param_count (info); i++)
{
tree parm = ipa_get_param (info, i);
int controlled_uses = 0;
/* For SSA regs see if parameter is used. For non-SSA we compute
the flag during modification analysis. */
if (is_gimple_reg (parm))
{
tree ddef = ssa_default_def (DECL_STRUCT_FUNCTION (node->symbol.decl),
parm);
if (ddef && !has_zero_uses (ddef))
{
imm_use_iterator imm_iter;
use_operand_p use_p;
ipa_set_param_used (info, i, true);
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, ddef)
if (!is_gimple_call (USE_STMT (use_p)))
{
controlled_uses = IPA_UNDESCRIBED_USE;
break;
}
else
controlled_uses++;
}
else
controlled_uses = 0;
}
else
controlled_uses = IPA_UNDESCRIBED_USE;
ipa_set_controlled_uses (info, i, controlled_uses);
}
func = DECL_STRUCT_FUNCTION (decl);
FOR_EACH_BB_FN (bb, func)
{
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple stmt = gsi_stmt (gsi);
if (is_gimple_debug (stmt))
continue;
ipa_analyze_stmt_uses (node, info, parms_ainfo, stmt);
walk_stmt_load_store_addr_ops (stmt, info,
visit_ref_for_mod_analysis,
visit_ref_for_mod_analysis,
visit_ref_for_mod_analysis);
}
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
walk_stmt_load_store_addr_ops (gsi_stmt (gsi), info,
visit_ref_for_mod_analysis,
visit_ref_for_mod_analysis,
visit_ref_for_mod_analysis);
}
}
/* Free stuff in PARMS_AINFO, assume there are PARAM_COUNT parameters. */
static void
free_parms_ainfo (struct param_analysis_info *parms_ainfo, int param_count)
{
int i;
for (i = 0; i < param_count; i++)
{
if (parms_ainfo[i].parm_visited_statements)
BITMAP_FREE (parms_ainfo[i].parm_visited_statements);
if (parms_ainfo[i].pt_visited_statements)
BITMAP_FREE (parms_ainfo[i].pt_visited_statements);
}
}
/* Initialize the array describing properties of of formal parameters
of NODE, analyze their uses and compute jump functions associated
with actual arguments of calls from within NODE. */
void
ipa_analyze_node (struct cgraph_node *node)
{
struct ipa_node_params *info;
struct param_analysis_info *parms_ainfo;
int param_count;
ipa_check_create_node_params ();
ipa_check_create_edge_args ();
info = IPA_NODE_REF (node);
push_cfun (DECL_STRUCT_FUNCTION (node->symbol.decl));
ipa_initialize_node_params (node);
param_count = ipa_get_param_count (info);
parms_ainfo = XALLOCAVEC (struct param_analysis_info, param_count);
memset (parms_ainfo, 0, sizeof (struct param_analysis_info) * param_count);
ipa_analyze_params_uses (node, parms_ainfo);
ipa_compute_jump_functions (node, parms_ainfo);
free_parms_ainfo (parms_ainfo, param_count);
pop_cfun ();
}
/* Given a statement CALL which must be a GIMPLE_CALL calling an OBJ_TYPE_REF
attempt a type-based devirtualization. If successful, return the
target function declaration, otherwise return NULL. */
tree
ipa_intraprocedural_devirtualization (gimple call)
{
tree binfo, token, fndecl;
struct ipa_jump_func jfunc;
tree otr = gimple_call_fn (call);
jfunc.type = IPA_JF_UNKNOWN;
compute_known_type_jump_func (OBJ_TYPE_REF_OBJECT (otr), &jfunc,
call, obj_type_ref_class (otr));
if (jfunc.type != IPA_JF_KNOWN_TYPE)
return NULL_TREE;
binfo = ipa_binfo_from_known_type_jfunc (&jfunc);
if (!binfo)
return NULL_TREE;
token = OBJ_TYPE_REF_TOKEN (otr);
fndecl = gimple_get_virt_method_for_binfo (tree_to_uhwi (token),
binfo);
return fndecl;
}
/* Update the jump function DST when the call graph edge corresponding to SRC is
is being inlined, knowing that DST is of type ancestor and src of known
type. */
static void
combine_known_type_and_ancestor_jfs (struct ipa_jump_func *src,
struct ipa_jump_func *dst)
{
HOST_WIDE_INT combined_offset;
tree combined_type;
if (!ipa_get_jf_ancestor_type_preserved (dst))
{
dst->type = IPA_JF_UNKNOWN;
return;
}
combined_offset = ipa_get_jf_known_type_offset (src)
+ ipa_get_jf_ancestor_offset (dst);
combined_type = ipa_get_jf_ancestor_type (dst);
ipa_set_jf_known_type (dst, combined_offset,
ipa_get_jf_known_type_base_type (src),
combined_type);
}
/* Update the jump functions associated with call graph edge E when the call
graph edge CS is being inlined, assuming that E->caller is already (possibly
indirectly) inlined into CS->callee and that E has not been inlined. */
static void
update_jump_functions_after_inlining (struct cgraph_edge *cs,
struct cgraph_edge *e)
{
struct ipa_edge_args *top = IPA_EDGE_REF (cs);
struct ipa_edge_args *args = IPA_EDGE_REF (e);
int count = ipa_get_cs_argument_count (args);
int i;
for (i = 0; i < count; i++)
{
struct ipa_jump_func *dst = ipa_get_ith_jump_func (args, i);
if (dst->type == IPA_JF_ANCESTOR)
{
struct ipa_jump_func *src;
int dst_fid = dst->value.ancestor.formal_id;
/* Variable number of arguments can cause havoc if we try to access
one that does not exist in the inlined edge. So make sure we
don't. */
if (dst_fid >= ipa_get_cs_argument_count (top))
{
dst->type = IPA_JF_UNKNOWN;
continue;
}
src = ipa_get_ith_jump_func (top, dst_fid);
if (src->agg.items
&& (dst->value.ancestor.agg_preserved || !src->agg.by_ref))
{
struct ipa_agg_jf_item *item;
int j;
/* Currently we do not produce clobber aggregate jump functions,
replace with merging when we do. */
gcc_assert (!dst->agg.items);
dst->agg.items = vec_safe_copy (src->agg.items);
dst->agg.by_ref = src->agg.by_ref;
FOR_EACH_VEC_SAFE_ELT (dst->agg.items, j, item)
item->offset -= dst->value.ancestor.offset;
}
if (src->type == IPA_JF_KNOWN_TYPE)
combine_known_type_and_ancestor_jfs (src, dst);
else if (src->type == IPA_JF_PASS_THROUGH
&& src->value.pass_through.operation == NOP_EXPR)
{
dst->value.ancestor.formal_id = src->value.pass_through.formal_id;
dst->value.ancestor.agg_preserved &=
src->value.pass_through.agg_preserved;
dst->value.ancestor.type_preserved &=
src->value.pass_through.type_preserved;
}
else if (src->type == IPA_JF_ANCESTOR)
{
dst->value.ancestor.formal_id = src->value.ancestor.formal_id;
dst->value.ancestor.offset += src->value.ancestor.offset;
dst->value.ancestor.agg_preserved &=
src->value.ancestor.agg_preserved;
dst->value.ancestor.type_preserved &=
src->value.ancestor.type_preserved;
}
else
dst->type = IPA_JF_UNKNOWN;
}
else if (dst->type == IPA_JF_PASS_THROUGH)
{
struct ipa_jump_func *src;
/* We must check range due to calls with variable number of arguments
and we cannot combine jump functions with operations. */
if (dst->value.pass_through.operation == NOP_EXPR
&& (dst->value.pass_through.formal_id
< ipa_get_cs_argument_count (top)))
{
int dst_fid = dst->value.pass_through.formal_id;
src = ipa_get_ith_jump_func (top, dst_fid);
bool dst_agg_p = ipa_get_jf_pass_through_agg_preserved (dst);
switch (src->type)
{
case IPA_JF_UNKNOWN:
dst->type = IPA_JF_UNKNOWN;
break;
case IPA_JF_KNOWN_TYPE:
ipa_set_jf_known_type (dst,
ipa_get_jf_known_type_offset (src),
ipa_get_jf_known_type_base_type (src),
ipa_get_jf_known_type_base_type (src));
break;
case IPA_JF_CONST:
ipa_set_jf_cst_copy (dst, src);
break;
case IPA_JF_PASS_THROUGH:
{
int formal_id = ipa_get_jf_pass_through_formal_id (src);
enum tree_code operation;
operation = ipa_get_jf_pass_through_operation (src);
if (operation == NOP_EXPR)
{
bool agg_p, type_p;
agg_p = dst_agg_p
&& ipa_get_jf_pass_through_agg_preserved (src);
type_p = ipa_get_jf_pass_through_type_preserved (src)
&& ipa_get_jf_pass_through_type_preserved (dst);
ipa_set_jf_simple_pass_through (dst, formal_id,
agg_p, type_p);
}
else
{
tree operand = ipa_get_jf_pass_through_operand (src);
ipa_set_jf_arith_pass_through (dst, formal_id, operand,
operation);
}
break;
}
case IPA_JF_ANCESTOR:
{
bool agg_p, type_p;
agg_p = dst_agg_p
&& ipa_get_jf_ancestor_agg_preserved (src);
type_p = ipa_get_jf_ancestor_type_preserved (src)
&& ipa_get_jf_pass_through_type_preserved (dst);
ipa_set_ancestor_jf (dst,
ipa_get_jf_ancestor_offset (src),
ipa_get_jf_ancestor_type (src),
ipa_get_jf_ancestor_formal_id (src),
agg_p, type_p);
break;
}
default:
gcc_unreachable ();
}
if (src->agg.items
&& (dst_agg_p || !src->agg.by_ref))
{
/* Currently we do not produce clobber aggregate jump
functions, replace with merging when we do. */
gcc_assert (!dst->agg.items);
dst->agg.by_ref = src->agg.by_ref;
dst->agg.items = vec_safe_copy (src->agg.items);
}
}
else
dst->type = IPA_JF_UNKNOWN;
}
}
}
/* If TARGET is an addr_expr of a function declaration, make it the destination
of an indirect edge IE and return the edge. Otherwise, return NULL. */
struct cgraph_edge *
ipa_make_edge_direct_to_target (struct cgraph_edge *ie, tree target)
{
struct cgraph_node *callee;
struct inline_edge_summary *es = inline_edge_summary (ie);
bool unreachable = false;
if (TREE_CODE (target) == ADDR_EXPR)
target = TREE_OPERAND (target, 0);
if (TREE_CODE (target) != FUNCTION_DECL)
{
target = canonicalize_constructor_val (target, NULL);
if (!target || TREE_CODE (target) != FUNCTION_DECL)
{
if (ie->indirect_info->member_ptr)
/* Member pointer call that goes through a VMT lookup. */
return NULL;
if (dump_file)
fprintf (dump_file, "ipa-prop: Discovered direct call to non-function"
" in %s/%i, making it unreachable.\n",
cgraph_node_name (ie->caller), ie->caller->symbol.order);
target = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
callee = cgraph_get_create_node (target);
unreachable = true;
}
else
callee = cgraph_get_node (target);
}
else
callee = cgraph_get_node (target);
/* Because may-edges are not explicitely represented and vtable may be external,
we may create the first reference to the object in the unit. */
if (!callee || callee->global.inlined_to)
{
/* We are better to ensure we can refer to it.
In the case of static functions we are out of luck, since we already
removed its body. In the case of public functions we may or may
not introduce the reference. */
if (!canonicalize_constructor_val (target, NULL)
|| !TREE_PUBLIC (target))
{
if (dump_file)
fprintf (dump_file, "ipa-prop: Discovered call to a known target "
"(%s/%i -> %s/%i) but can not refer to it. Giving up.\n",
xstrdup (cgraph_node_name (ie->caller)),
ie->caller->symbol.order,
xstrdup (cgraph_node_name (ie->callee)),
ie->callee->symbol.order);
return NULL;
}
callee = cgraph_get_create_real_symbol_node (target);
}
ipa_check_create_node_params ();
/* We can not make edges to inline clones. It is bug that someone removed
the cgraph node too early. */
gcc_assert (!callee->global.inlined_to);
if (dump_file && !unreachable)
{
fprintf (dump_file, "ipa-prop: Discovered %s call to a known target "
"(%s/%i -> %s/%i), for stmt ",
ie->indirect_info->polymorphic ? "a virtual" : "an indirect",
xstrdup (cgraph_node_name (ie->caller)),
ie->caller->symbol.order,
xstrdup (cgraph_node_name (callee)),
callee->symbol.order);
if (ie->call_stmt)
print_gimple_stmt (dump_file, ie->call_stmt, 2, TDF_SLIM);
else
fprintf (dump_file, "with uid %i\n", ie->lto_stmt_uid);
}
ie = cgraph_make_edge_direct (ie, callee);
es = inline_edge_summary (ie);
es->call_stmt_size -= (eni_size_weights.indirect_call_cost
- eni_size_weights.call_cost);
es->call_stmt_time -= (eni_time_weights.indirect_call_cost
- eni_time_weights.call_cost);
return ie;
}
/* Retrieve value from aggregate jump function AGG for the given OFFSET or
return NULL if there is not any. BY_REF specifies whether the value has to
be passed by reference or by value. */
tree
ipa_find_agg_cst_for_param (struct ipa_agg_jump_function *agg,
HOST_WIDE_INT offset, bool by_ref)
{
struct ipa_agg_jf_item *item;
int i;
if (by_ref != agg->by_ref)
return NULL;
FOR_EACH_VEC_SAFE_ELT (agg->items, i, item)
if (item->offset == offset)
{
/* Currently we do not have clobber values, return NULL for them once
we do. */
gcc_checking_assert (is_gimple_ip_invariant (item->value));
return item->value;
}
return NULL;
}
/* Remove a reference to SYMBOL from the list of references of a node given by
reference description RDESC. */
static void
remove_described_reference (symtab_node symbol, struct ipa_cst_ref_desc *rdesc)
{
struct ipa_ref *to_del;
struct cgraph_edge *origin;
origin = rdesc->cs;
to_del = ipa_find_reference ((symtab_node) origin->caller, symbol,
origin->call_stmt, origin->lto_stmt_uid);
gcc_assert (to_del);
ipa_remove_reference (to_del);
if (dump_file)
fprintf (dump_file, "ipa-prop: Removed a reference from %s/%i to %s.\n",
xstrdup (cgraph_node_name (origin->caller)),
origin->caller->symbol.order, xstrdup (symtab_node_name (symbol)));
}
/* If JFUNC has a reference description with refcount different from
IPA_UNDESCRIBED_USE, return the reference description, otherwise return
NULL. JFUNC must be a constant jump function. */
static struct ipa_cst_ref_desc *
jfunc_rdesc_usable (struct ipa_jump_func *jfunc)
{
struct ipa_cst_ref_desc *rdesc = ipa_get_jf_constant_rdesc (jfunc);
if (rdesc && rdesc->refcount != IPA_UNDESCRIBED_USE)
return rdesc;
else
return NULL;
}
/* Try to find a destination for indirect edge IE that corresponds to a simple
call or a call of a member function pointer and where the destination is a
pointer formal parameter described by jump function JFUNC. If it can be
determined, return the newly direct edge, otherwise return NULL.
NEW_ROOT_INFO is the node info that JFUNC lattices are relative to. */
static struct cgraph_edge *
try_make_edge_direct_simple_call (struct cgraph_edge *ie,
struct ipa_jump_func *jfunc,
struct ipa_node_params *new_root_info)
{
struct cgraph_edge *cs;
tree target;
bool agg_contents = ie->indirect_info->agg_contents;
bool speculative = ie->speculative;
struct ipa_cst_ref_desc *rdesc;
if (ie->indirect_info->agg_contents)
target = ipa_find_agg_cst_for_param (&jfunc->agg,
ie->indirect_info->offset,
ie->indirect_info->by_ref);
else
target = ipa_value_from_jfunc (new_root_info, jfunc);
if (!target)
return NULL;
cs = ipa_make_edge_direct_to_target (ie, target);
/* FIXME: speculative edges can be handled. */
if (cs && !agg_contents && !speculative
&& jfunc->type == IPA_JF_CONST
&& (rdesc = jfunc_rdesc_usable (jfunc))
&& --rdesc->refcount == 0)
remove_described_reference ((symtab_node) cs->callee, rdesc);
return cs;
}
/* Try to find a destination for indirect edge IE that corresponds to a virtual
call based on a formal parameter which is described by jump function JFUNC
and if it can be determined, make it direct and return the direct edge.
Otherwise, return NULL. NEW_ROOT_INFO is the node info that JFUNC lattices
are relative to. */
static struct cgraph_edge *
try_make_edge_direct_virtual_call (struct cgraph_edge *ie,
struct ipa_jump_func *jfunc,
struct ipa_node_params *new_root_info)
{
tree binfo, target;
binfo = ipa_value_from_jfunc (new_root_info, jfunc);
if (!binfo)
return NULL;
if (TREE_CODE (binfo) != TREE_BINFO)
{
binfo = gimple_extract_devirt_binfo_from_cst
(binfo, ie->indirect_info->otr_type);
if (!binfo)
return NULL;
}
binfo = get_binfo_at_offset (binfo, ie->indirect_info->offset,
ie->indirect_info->otr_type);
if (binfo)
target = gimple_get_virt_method_for_binfo (ie->indirect_info->otr_token,
binfo);
else
return NULL;
if (target)
return ipa_make_edge_direct_to_target (ie, target);
else
return NULL;
}
/* Update the param called notes associated with NODE when CS is being inlined,
assuming NODE is (potentially indirectly) inlined into CS->callee.
Moreover, if the callee is discovered to be constant, create a new cgraph
edge for it. Newly discovered indirect edges will be added to *NEW_EDGES,
unless NEW_EDGES is NULL. Return true iff a new edge(s) were created. */
static bool
update_indirect_edges_after_inlining (struct cgraph_edge *cs,
struct cgraph_node *node,
vec<cgraph_edge_p> *new_edges)
{
struct ipa_edge_args *top;
struct cgraph_edge *ie, *next_ie, *new_direct_edge;
struct ipa_node_params *new_root_info;
bool res = false;
ipa_check_create_edge_args ();
top = IPA_EDGE_REF (cs);
new_root_info = IPA_NODE_REF (cs->caller->global.inlined_to
? cs->caller->global.inlined_to
: cs->caller);
for (ie = node->indirect_calls; ie; ie = next_ie)
{
struct cgraph_indirect_call_info *ici = ie->indirect_info;
struct ipa_jump_func *jfunc;
int param_index;
next_ie = ie->next_callee;
if (ici->param_index == -1)
continue;
/* We must check range due to calls with variable number of arguments: */
if (ici->param_index >= ipa_get_cs_argument_count (top))
{
ici->param_index = -1;
continue;
}
param_index = ici->param_index;
jfunc = ipa_get_ith_jump_func (top, param_index);
if (!flag_indirect_inlining)
new_direct_edge = NULL;
else if (ici->polymorphic)
new_direct_edge = try_make_edge_direct_virtual_call (ie, jfunc,
new_root_info);
else
new_direct_edge = try_make_edge_direct_simple_call (ie, jfunc,
new_root_info);
/* If speculation was removed, then we need to do nothing. */
if (new_direct_edge && new_direct_edge != ie)
{
new_direct_edge->indirect_inlining_edge = 1;
top = IPA_EDGE_REF (cs);
res = true;
}
else if (new_direct_edge)
{
new_direct_edge->indirect_inlining_edge = 1;
if (new_direct_edge->call_stmt)
new_direct_edge->call_stmt_cannot_inline_p
= !gimple_check_call_matching_types (
new_direct_edge->call_stmt,
new_direct_edge->callee->symbol.decl, false);
if (new_edges)
{
new_edges->safe_push (new_direct_edge);
res = true;
}
top = IPA_EDGE_REF (cs);
}
else if (jfunc->type == IPA_JF_PASS_THROUGH
&& ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
{
if (ici->agg_contents
&& !ipa_get_jf_pass_through_agg_preserved (jfunc))
ici->param_index = -1;
else
ici->param_index = ipa_get_jf_pass_through_formal_id (jfunc);
}
else if (jfunc->type == IPA_JF_ANCESTOR)
{
if (ici->agg_contents
&& !ipa_get_jf_ancestor_agg_preserved (jfunc))
ici->param_index = -1;
else
{
ici->param_index = ipa_get_jf_ancestor_formal_id (jfunc);
ici->offset += ipa_get_jf_ancestor_offset (jfunc);
}
}
else
/* Either we can find a destination for this edge now or never. */
ici->param_index = -1;
}
return res;
}
/* Recursively traverse subtree of NODE (including node) made of inlined
cgraph_edges when CS has been inlined and invoke
update_indirect_edges_after_inlining on all nodes and
update_jump_functions_after_inlining on all non-inlined edges that lead out
of this subtree. Newly discovered indirect edges will be added to
*NEW_EDGES, unless NEW_EDGES is NULL. Return true iff a new edge(s) were
created. */
static bool
propagate_info_to_inlined_callees (struct cgraph_edge *cs,
struct cgraph_node *node,
vec<cgraph_edge_p> *new_edges)
{
struct cgraph_edge *e;
bool res;
res = update_indirect_edges_after_inlining (cs, node, new_edges);
for (e = node->callees; e; e = e->next_callee)
if (!e->inline_failed)
res |= propagate_info_to_inlined_callees (cs, e->callee, new_edges);
else
update_jump_functions_after_inlining (cs, e);
for (e = node->indirect_calls; e; e = e->next_callee)
update_jump_functions_after_inlining (cs, e);
return res;
}
/* Combine two controlled uses counts as done during inlining. */
static int
combine_controlled_uses_counters (int c, int d)
{
if (c == IPA_UNDESCRIBED_USE || d == IPA_UNDESCRIBED_USE)
return IPA_UNDESCRIBED_USE;
else
return c + d - 1;
}
/* Propagate number of controlled users from CS->caleee to the new root of the
tree of inlined nodes. */
static void
propagate_controlled_uses (struct cgraph_edge *cs)
{
struct ipa_edge_args *args = IPA_EDGE_REF (cs);
struct cgraph_node *new_root = cs->caller->global.inlined_to
? cs->caller->global.inlined_to : cs->caller;
struct ipa_node_params *new_root_info = IPA_NODE_REF (new_root);
struct ipa_node_params *old_root_info = IPA_NODE_REF (cs->callee);
int count, i;
count = MIN (ipa_get_cs_argument_count (args),
ipa_get_param_count (old_root_info));
for (i = 0; i < count; i++)
{
struct ipa_jump_func *jf = ipa_get_ith_jump_func (args, i);
struct ipa_cst_ref_desc *rdesc;
if (jf->type == IPA_JF_PASS_THROUGH)
{
int src_idx, c, d;
src_idx = ipa_get_jf_pass_through_formal_id (jf);
c = ipa_get_controlled_uses (new_root_info, src_idx);
d = ipa_get_controlled_uses (old_root_info, i);
gcc_checking_assert (ipa_get_jf_pass_through_operation (jf)
== NOP_EXPR || c == IPA_UNDESCRIBED_USE);
c = combine_controlled_uses_counters (c, d);
ipa_set_controlled_uses (new_root_info, src_idx, c);
if (c == 0 && new_root_info->ipcp_orig_node)
{
struct cgraph_node *n;
struct ipa_ref *ref;
tree t = new_root_info->known_vals[src_idx];
if (t && TREE_CODE (t) == ADDR_EXPR
&& TREE_CODE (TREE_OPERAND (t, 0)) == FUNCTION_DECL
&& (n = cgraph_get_node (TREE_OPERAND (t, 0)))
&& (ref = ipa_find_reference ((symtab_node) new_root,
(symtab_node) n, NULL, 0)))
{
if (dump_file)
fprintf (dump_file, "ipa-prop: Removing cloning-created "
"reference from %s/%i to %s/%i.\n",
xstrdup (cgraph_node_name (new_root)),
new_root->symbol.order,
xstrdup (cgraph_node_name (n)), n->symbol.order);
ipa_remove_reference (ref);
}
}
}
else if (jf->type == IPA_JF_CONST
&& (rdesc = jfunc_rdesc_usable (jf)))
{
int d = ipa_get_controlled_uses (old_root_info, i);
int c = rdesc->refcount;
rdesc->refcount = combine_controlled_uses_counters (c, d);
if (rdesc->refcount == 0)
{
tree cst = ipa_get_jf_constant (jf);
struct cgraph_node *n;
gcc_checking_assert (TREE_CODE (cst) == ADDR_EXPR
&& TREE_CODE (TREE_OPERAND (cst, 0))
== FUNCTION_DECL);
n = cgraph_get_node (TREE_OPERAND (cst, 0));
if (n)
{
struct cgraph_node *clone;
remove_described_reference ((symtab_node) n, rdesc);
clone = cs->caller;
while (clone->global.inlined_to
&& clone != rdesc->cs->caller
&& IPA_NODE_REF (clone)->ipcp_orig_node)
{
struct ipa_ref *ref;
ref = ipa_find_reference ((symtab_node) clone,
(symtab_node) n, NULL, 0);
if (ref)
{
if (dump_file)
fprintf (dump_file, "ipa-prop: Removing "
"cloning-created reference "
"from %s/%i to %s/%i.\n",
xstrdup (cgraph_node_name (clone)),
clone->symbol.order,
xstrdup (cgraph_node_name (n)),
n->symbol.order);
ipa_remove_reference (ref);
}
clone = clone->callers->caller;
}
}
}
}
}
for (i = ipa_get_param_count (old_root_info);
i < ipa_get_cs_argument_count (args);
i++)
{
struct ipa_jump_func *jf = ipa_get_ith_jump_func (args, i);
if (jf->type == IPA_JF_CONST)
{
struct ipa_cst_ref_desc *rdesc = jfunc_rdesc_usable (jf);
if (rdesc)
rdesc->refcount = IPA_UNDESCRIBED_USE;
}
else if (jf->type == IPA_JF_PASS_THROUGH)
ipa_set_controlled_uses (new_root_info,
jf->value.pass_through.formal_id,
IPA_UNDESCRIBED_USE);
}
}
/* Update jump functions and call note functions on inlining the call site CS.
CS is expected to lead to a node already cloned by
cgraph_clone_inline_nodes. Newly discovered indirect edges will be added to
*NEW_EDGES, unless NEW_EDGES is NULL. Return true iff a new edge(s) were +
created. */
bool
ipa_propagate_indirect_call_infos (struct cgraph_edge *cs,
vec<cgraph_edge_p> *new_edges)
{
bool changed;
/* Do nothing if the preparation phase has not been carried out yet
(i.e. during early inlining). */
if (!ipa_node_params_vector.exists ())
return false;
gcc_assert (ipa_edge_args_vector);
propagate_controlled_uses (cs);
changed = propagate_info_to_inlined_callees (cs, cs->callee, new_edges);
return changed;
}
/* Frees all dynamically allocated structures that the argument info points
to. */
void
ipa_free_edge_args_substructures (struct ipa_edge_args *args)
{
vec_free (args->jump_functions);
memset (args, 0, sizeof (*args));
}
/* Free all ipa_edge structures. */
void
ipa_free_all_edge_args (void)
{
int i;
struct ipa_edge_args *args;
if (!ipa_edge_args_vector)
return;
FOR_EACH_VEC_ELT (*ipa_edge_args_vector, i, args)
ipa_free_edge_args_substructures (args);
vec_free (ipa_edge_args_vector);
}
/* Frees all dynamically allocated structures that the param info points
to. */
void
ipa_free_node_params_substructures (struct ipa_node_params *info)
{
info->descriptors.release ();
free (info->lattices);
/* Lattice values and their sources are deallocated with their alocation
pool. */
info->known_vals.release ();
memset (info, 0, sizeof (*info));
}
/* Free all ipa_node_params structures. */
void
ipa_free_all_node_params (void)
{
int i;
struct ipa_node_params *info;
FOR_EACH_VEC_ELT (ipa_node_params_vector, i, info)
ipa_free_node_params_substructures (info);
ipa_node_params_vector.release ();
}
/* Set the aggregate replacements of NODE to be AGGVALS. */
void
ipa_set_node_agg_value_chain (struct cgraph_node *node,
struct ipa_agg_replacement_value *aggvals)
{
if (vec_safe_length (ipa_node_agg_replacements) <= (unsigned) cgraph_max_uid)
vec_safe_grow_cleared (ipa_node_agg_replacements, cgraph_max_uid + 1);
(*ipa_node_agg_replacements)[node->uid] = aggvals;
}
/* Hook that is called by cgraph.c when an edge is removed. */
static void
ipa_edge_removal_hook (struct cgraph_edge *cs, void *data ATTRIBUTE_UNUSED)
{
/* During IPA-CP updating we can be called on not-yet analyze clones. */
if (vec_safe_length (ipa_edge_args_vector) <= (unsigned)cs->uid)
return;
ipa_free_edge_args_substructures (IPA_EDGE_REF (cs));
}
/* Hook that is called by cgraph.c when a node is removed. */
static void
ipa_node_removal_hook (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
{
/* During IPA-CP updating we can be called on not-yet analyze clones. */
if (ipa_node_params_vector.length () > (unsigned)node->uid)
ipa_free_node_params_substructures (IPA_NODE_REF (node));
if (vec_safe_length (ipa_node_agg_replacements) > (unsigned)node->uid)
(*ipa_node_agg_replacements)[(unsigned)node->uid] = NULL;
}
/* Hook that is called by cgraph.c when an edge is duplicated. */
static void
ipa_edge_duplication_hook (struct cgraph_edge *src, struct cgraph_edge *dst,
__attribute__((unused)) void *data)
{
struct ipa_edge_args *old_args, *new_args;
unsigned int i;
ipa_check_create_edge_args ();
old_args = IPA_EDGE_REF (src);
new_args = IPA_EDGE_REF (dst);
new_args->jump_functions = vec_safe_copy (old_args->jump_functions);
for (i = 0; i < vec_safe_length (old_args->jump_functions); i++)
{
struct ipa_jump_func *src_jf = ipa_get_ith_jump_func (old_args, i);
struct ipa_jump_func *dst_jf = ipa_get_ith_jump_func (new_args, i);
dst_jf->agg.items = vec_safe_copy (dst_jf->agg.items);
if (src_jf->type == IPA_JF_CONST)
{
struct ipa_cst_ref_desc *src_rdesc = jfunc_rdesc_usable (src_jf);
if (!src_rdesc)
dst_jf->value.constant.rdesc = NULL;
else if (src_rdesc->cs == src)
{
struct ipa_cst_ref_desc *dst_rdesc;
gcc_checking_assert (ipa_refdesc_pool);
dst_rdesc
= (struct ipa_cst_ref_desc *) pool_alloc (ipa_refdesc_pool);
dst_rdesc->cs = dst;
dst_rdesc->refcount = src_rdesc->refcount;
dst_rdesc->next_duplicate = src_rdesc->next_duplicate;
src_rdesc->next_duplicate = dst_rdesc;
dst_jf->value.constant.rdesc = dst_rdesc;
}
else
{
struct ipa_cst_ref_desc *dst_rdesc;
/* This can happen during inlining, when a JFUNC can refer to a
reference taken in a function up in the tree of inline clones.
We need to find the duplicate that refers to our tree of
inline clones. */
gcc_assert (dst->caller->global.inlined_to);
for (dst_rdesc = src_rdesc->next_duplicate;
dst_rdesc;
dst_rdesc = dst_rdesc->next_duplicate)
{
struct cgraph_node *top;
top = dst_rdesc->cs->caller->global.inlined_to
? dst_rdesc->cs->caller->global.inlined_to
: dst_rdesc->cs->caller;
if (dst->caller->global.inlined_to == top)
break;
}
gcc_assert (dst_rdesc);
dst_jf->value.constant.rdesc = dst_rdesc;
}
}
}
}
/* Hook that is called by cgraph.c when a node is duplicated. */
static void
ipa_node_duplication_hook (struct cgraph_node *src, struct cgraph_node *dst,
ATTRIBUTE_UNUSED void *data)
{
struct ipa_node_params *old_info, *new_info;
struct ipa_agg_replacement_value *old_av, *new_av;
ipa_check_create_node_params ();
old_info = IPA_NODE_REF (src);
new_info = IPA_NODE_REF (dst);
new_info->descriptors = old_info->descriptors.copy ();
new_info->lattices = NULL;
new_info->ipcp_orig_node = old_info->ipcp_orig_node;
new_info->uses_analysis_done = old_info->uses_analysis_done;
new_info->node_enqueued = old_info->node_enqueued;
old_av = ipa_get_agg_replacements_for_node (src);
if (!old_av)
return;
new_av = NULL;
while (old_av)
{
struct ipa_agg_replacement_value *v;
v = ggc_alloc_ipa_agg_replacement_value ();
memcpy (v, old_av, sizeof (*v));
v->next = new_av;
new_av = v;
old_av = old_av->next;
}
ipa_set_node_agg_value_chain (dst, new_av);
}
/* Analyze newly added function into callgraph. */
static void
ipa_add_new_function (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
{
ipa_analyze_node (node);
}
/* Register our cgraph hooks if they are not already there. */
void
ipa_register_cgraph_hooks (void)
{
if (!edge_removal_hook_holder)
edge_removal_hook_holder =
cgraph_add_edge_removal_hook (&ipa_edge_removal_hook, NULL);
if (!node_removal_hook_holder)
node_removal_hook_holder =
cgraph_add_node_removal_hook (&ipa_node_removal_hook, NULL);
if (!edge_duplication_hook_holder)
edge_duplication_hook_holder =
cgraph_add_edge_duplication_hook (&ipa_edge_duplication_hook, NULL);
if (!node_duplication_hook_holder)
node_duplication_hook_holder =
cgraph_add_node_duplication_hook (&ipa_node_duplication_hook, NULL);
function_insertion_hook_holder =
cgraph_add_function_insertion_hook (&ipa_add_new_function, NULL);
}
/* Unregister our cgraph hooks if they are not already there. */
static void
ipa_unregister_cgraph_hooks (void)
{
cgraph_remove_edge_removal_hook (edge_removal_hook_holder);
edge_removal_hook_holder = NULL;
cgraph_remove_node_removal_hook (node_removal_hook_holder);
node_removal_hook_holder = NULL;
cgraph_remove_edge_duplication_hook (edge_duplication_hook_holder);
edge_duplication_hook_holder = NULL;
cgraph_remove_node_duplication_hook (node_duplication_hook_holder);
node_duplication_hook_holder = NULL;
cgraph_remove_function_insertion_hook (function_insertion_hook_holder);
function_insertion_hook_holder = NULL;
}
/* Free all ipa_node_params and all ipa_edge_args structures if they are no
longer needed after ipa-cp. */
void
ipa_free_all_structures_after_ipa_cp (void)
{
if (!optimize)
{
ipa_free_all_edge_args ();
ipa_free_all_node_params ();
free_alloc_pool (ipcp_sources_pool);
free_alloc_pool (ipcp_values_pool);
free_alloc_pool (ipcp_agg_lattice_pool);
ipa_unregister_cgraph_hooks ();
if (ipa_refdesc_pool)
free_alloc_pool (ipa_refdesc_pool);
}
}
/* Free all ipa_node_params and all ipa_edge_args structures if they are no
longer needed after indirect inlining. */
void
ipa_free_all_structures_after_iinln (void)
{
ipa_free_all_edge_args ();
ipa_free_all_node_params ();
ipa_unregister_cgraph_hooks ();
if (ipcp_sources_pool)
free_alloc_pool (ipcp_sources_pool);
if (ipcp_values_pool)
free_alloc_pool (ipcp_values_pool);
if (ipcp_agg_lattice_pool)
free_alloc_pool (ipcp_agg_lattice_pool);
if (ipa_refdesc_pool)
free_alloc_pool (ipa_refdesc_pool);
}
/* Print ipa_tree_map data structures of all functions in the
callgraph to F. */
void
ipa_print_node_params (FILE *f, struct cgraph_node *node)
{
int i, count;
struct ipa_node_params *info;
if (!node->symbol.definition)
return;
info = IPA_NODE_REF (node);
fprintf (f, " function %s/%i parameter descriptors:\n",
cgraph_node_name (node), node->symbol.order);
count = ipa_get_param_count (info);
for (i = 0; i < count; i++)
{
int c;
ipa_dump_param (f, info, i);
if (ipa_is_param_used (info, i))
fprintf (f, " used");
c = ipa_get_controlled_uses (info, i);
if (c == IPA_UNDESCRIBED_USE)
fprintf (f, " undescribed_use");
else
fprintf (f, " controlled_uses=%i", c);
fprintf (f, "\n");
}
}
/* Print ipa_tree_map data structures of all functions in the
callgraph to F. */
void
ipa_print_all_params (FILE * f)
{
struct cgraph_node *node;
fprintf (f, "\nFunction parameters:\n");
FOR_EACH_FUNCTION (node)
ipa_print_node_params (f, node);
}
/* Return a heap allocated vector containing formal parameters of FNDECL. */
vec<tree>
ipa_get_vector_of_formal_parms (tree fndecl)
{
vec<tree> args;
int count;
tree parm;
gcc_assert (!flag_wpa);
count = count_formal_params (fndecl);
args.create (count);
for (parm = DECL_ARGUMENTS (fndecl); parm; parm = DECL_CHAIN (parm))
args.quick_push (parm);
return args;
}
/* Return a heap allocated vector containing types of formal parameters of
function type FNTYPE. */
static inline vec<tree>
get_vector_of_formal_parm_types (tree fntype)
{
vec<tree> types;
int count = 0;
tree t;
for (t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
count++;
types.create (count);
for (t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
types.quick_push (TREE_VALUE (t));
return types;
}
/* Modify the function declaration FNDECL and its type according to the plan in
ADJUSTMENTS. It also sets base fields of individual adjustments structures
to reflect the actual parameters being modified which are determined by the
base_index field. */
void
ipa_modify_formal_parameters (tree fndecl, ipa_parm_adjustment_vec adjustments,
const char *synth_parm_prefix)
{
vec<tree> oparms, otypes;
tree orig_type, new_type = NULL;
tree old_arg_types, t, new_arg_types = NULL;
tree parm, *link = &DECL_ARGUMENTS (fndecl);
int i, len = adjustments.length ();
tree new_reversed = NULL;
bool care_for_types, last_parm_void;
if (!synth_parm_prefix)
synth_parm_prefix = "SYNTH";
oparms = ipa_get_vector_of_formal_parms (fndecl);
orig_type = TREE_TYPE (fndecl);
old_arg_types = TYPE_ARG_TYPES (orig_type);
/* The following test is an ugly hack, some functions simply don't have any
arguments in their type. This is probably a bug but well... */
care_for_types = (old_arg_types != NULL_TREE);
if (care_for_types)
{
last_parm_void = (TREE_VALUE (tree_last (old_arg_types))
== void_type_node);
otypes = get_vector_of_formal_parm_types (orig_type);
if (last_parm_void)
gcc_assert (oparms.length () + 1 == otypes.length ());
else
gcc_assert (oparms.length () == otypes.length ());
}
else
{
last_parm_void = false;
otypes.create (0);
}
for (i = 0; i < len; i++)
{
struct ipa_parm_adjustment *adj;
gcc_assert (link);
adj = &adjustments[i];
parm = oparms[adj->base_index];
adj->base = parm;
if (adj->copy_param)
{
if (care_for_types)
new_arg_types = tree_cons (NULL_TREE, otypes[adj->base_index],
new_arg_types);
*link = parm;
link = &DECL_CHAIN (parm);
}
else if (!adj->remove_param)
{
tree new_parm;
tree ptype;
if (adj->by_ref)
ptype = build_pointer_type (adj->type);
else
ptype = adj->type;
if (care_for_types)
new_arg_types = tree_cons (NULL_TREE, ptype, new_arg_types);
new_parm = build_decl (UNKNOWN_LOCATION, PARM_DECL, NULL_TREE,
ptype);
DECL_NAME (new_parm) = create_tmp_var_name (synth_parm_prefix);
DECL_ARTIFICIAL (new_parm) = 1;
DECL_ARG_TYPE (new_parm) = ptype;
DECL_CONTEXT (new_parm) = fndecl;
TREE_USED (new_parm) = 1;
DECL_IGNORED_P (new_parm) = 1;
layout_decl (new_parm, 0);
adj->base = parm;
adj->reduction = new_parm;
*link = new_parm;
link = &DECL_CHAIN (new_parm);
}
}
*link = NULL_TREE;
if (care_for_types)
{
new_reversed = nreverse (new_arg_types);
if (last_parm_void)
{
if (new_reversed)
TREE_CHAIN (new_arg_types) = void_list_node;
else
new_reversed = void_list_node;
}
}
/* Use copy_node to preserve as much as possible from original type
(debug info, attribute lists etc.)
Exception is METHOD_TYPEs must have THIS argument.
When we are asked to remove it, we need to build new FUNCTION_TYPE
instead. */
if (TREE_CODE (orig_type) != METHOD_TYPE
|| (adjustments[0].copy_param
&& adjustments[0].base_index == 0))
{
new_type = build_distinct_type_copy (orig_type);
TYPE_ARG_TYPES (new_type) = new_reversed;
}
else
{
new_type
= build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
new_reversed));
TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
DECL_VINDEX (fndecl) = NULL_TREE;
}
/* When signature changes, we need to clear builtin info. */
if (DECL_BUILT_IN (fndecl))
{
DECL_BUILT_IN_CLASS (fndecl) = NOT_BUILT_IN;
DECL_FUNCTION_CODE (fndecl) = (enum built_in_function) 0;
}
/* This is a new type, not a copy of an old type. Need to reassociate
variants. We can handle everything except the main variant lazily. */
t = TYPE_MAIN_VARIANT (orig_type);
if (orig_type != t)
{
TYPE_MAIN_VARIANT (new_type) = t;
TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
TYPE_NEXT_VARIANT (t) = new_type;
}
else
{
TYPE_MAIN_VARIANT (new_type) = new_type;
TYPE_NEXT_VARIANT (new_type) = NULL;
}
TREE_TYPE (fndecl) = new_type;
DECL_VIRTUAL_P (fndecl) = 0;
otypes.release ();
oparms.release ();
}
/* Modify actual arguments of a function call CS as indicated in ADJUSTMENTS.
If this is a directly recursive call, CS must be NULL. Otherwise it must
contain the corresponding call graph edge. */
void
ipa_modify_call_arguments (struct cgraph_edge *cs, gimple stmt,
ipa_parm_adjustment_vec adjustments)
{
struct cgraph_node *current_node = cgraph_get_node (current_function_decl);
vec<tree> vargs;
vec<tree, va_gc> **debug_args = NULL;
gimple new_stmt;
gimple_stmt_iterator gsi, prev_gsi;
tree callee_decl;
int i, len;
len = adjustments.length ();
vargs.create (len);
callee_decl = !cs ? gimple_call_fndecl (stmt) : cs->callee->symbol.decl;
ipa_remove_stmt_references ((symtab_node) current_node, stmt);
gsi = gsi_for_stmt (stmt);
prev_gsi = gsi;
gsi_prev (&prev_gsi);
for (i = 0; i < len; i++)
{
struct ipa_parm_adjustment *adj;
adj = &adjustments[i];
if (adj->copy_param)
{
tree arg = gimple_call_arg (stmt, adj->base_index);
vargs.quick_push (arg);
}
else if (!adj->remove_param)
{
tree expr, base, off;
location_t loc;
unsigned int deref_align;
bool deref_base = false;
/* We create a new parameter out of the value of the old one, we can
do the following kind of transformations:
- A scalar passed by reference is converted to a scalar passed by
value. (adj->by_ref is false and the type of the original
actual argument is a pointer to a scalar).
- A part of an aggregate is passed instead of the whole aggregate.
The part can be passed either by value or by reference, this is
determined by value of adj->by_ref. Moreover, the code below
handles both situations when the original aggregate is passed by
value (its type is not a pointer) and when it is passed by
reference (it is a pointer to an aggregate).
When the new argument is passed by reference (adj->by_ref is true)
it must be a part of an aggregate and therefore we form it by
simply taking the address of a reference inside the original
aggregate. */
gcc_checking_assert (adj->offset % BITS_PER_UNIT == 0);
base = gimple_call_arg (stmt, adj->base_index);
loc = DECL_P (base) ? DECL_SOURCE_LOCATION (base)
: EXPR_LOCATION (base);
if (TREE_CODE (base) != ADDR_EXPR
&& POINTER_TYPE_P (TREE_TYPE (base)))
off = build_int_cst (adj->alias_ptr_type,
adj->offset / BITS_PER_UNIT);
else
{
HOST_WIDE_INT base_offset;
tree prev_base;
bool addrof;
if (TREE_CODE (base) == ADDR_EXPR)
{
base = TREE_OPERAND (base, 0);
addrof = true;
}
else
addrof = false;
prev_base = base;
base = get_addr_base_and_unit_offset (base, &base_offset);
/* Aggregate arguments can have non-invariant addresses. */
if (!base)
{
base = build_fold_addr_expr (prev_base);
off = build_int_cst (adj->alias_ptr_type,
adj->offset / BITS_PER_UNIT);
}
else if (TREE_CODE (base) == MEM_REF)
{
if (!addrof)
{
deref_base = true;
deref_align = TYPE_ALIGN (TREE_TYPE (base));
}
off = build_int_cst (adj->alias_ptr_type,
base_offset
+ adj->offset / BITS_PER_UNIT);
off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1),
off);
base = TREE_OPERAND (base, 0);
}
else
{
off = build_int_cst (adj->alias_ptr_type,
base_offset
+ adj->offset / BITS_PER_UNIT);
base = build_fold_addr_expr (base);
}
}
if (!adj->by_ref)
{
tree type = adj->type;
unsigned int align;
unsigned HOST_WIDE_INT misalign;
if (deref_base)
{
align = deref_align;
misalign = 0;
}
else
{
get_pointer_alignment_1 (base, &align, &misalign);
if (TYPE_ALIGN (type) > align)
align = TYPE_ALIGN (type);
}
misalign += (addr_wide_int (off).sext (TYPE_PRECISION (TREE_TYPE (off)))
* BITS_PER_UNIT).to_short_addr ();
misalign = misalign & (align - 1);
if (misalign != 0)
align = (misalign & -misalign);
if (align < TYPE_ALIGN (type))
type = build_aligned_type (type, align);
expr = fold_build2_loc (loc, MEM_REF, type, base, off);
}
else
{
expr = fold_build2_loc (loc, MEM_REF, adj->type, base, off);
expr = build_fold_addr_expr (expr);
}
expr = force_gimple_operand_gsi (&gsi, expr,
adj->by_ref
|| is_gimple_reg_type (adj->type),
NULL, true, GSI_SAME_STMT);
vargs.quick_push (expr);
}
if (!adj->copy_param && MAY_HAVE_DEBUG_STMTS)
{
unsigned int ix;
tree ddecl = NULL_TREE, origin = DECL_ORIGIN (adj->base), arg;
gimple def_temp;
arg = gimple_call_arg (stmt, adj->base_index);
if (!useless_type_conversion_p (TREE_TYPE (origin), TREE_TYPE (arg)))
{
if (!fold_convertible_p (TREE_TYPE (origin), arg))
continue;
arg = fold_convert_loc (gimple_location (stmt),
TREE_TYPE (origin), arg);
}
if (debug_args == NULL)
debug_args = decl_debug_args_insert (callee_decl);
for (ix = 0; vec_safe_iterate (*debug_args, ix, &ddecl); ix += 2)
if (ddecl == origin)
{
ddecl = (**debug_args)[ix + 1];
break;
}
if (ddecl == NULL)
{
ddecl = make_node (DEBUG_EXPR_DECL);
DECL_ARTIFICIAL (ddecl) = 1;
TREE_TYPE (ddecl) = TREE_TYPE (origin);
DECL_MODE (ddecl) = DECL_MODE (origin);
vec_safe_push (*debug_args, origin);
vec_safe_push (*debug_args, ddecl);
}
def_temp = gimple_build_debug_bind (ddecl, unshare_expr (arg), stmt);
gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT);
}
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "replacing stmt:");
print_gimple_stmt (dump_file, gsi_stmt (gsi), 0, 0);
}
new_stmt = gimple_build_call_vec (callee_decl, vargs);
vargs.release ();
if (gimple_call_lhs (stmt))
gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
gimple_set_block (new_stmt, gimple_block (stmt));
if (gimple_has_location (stmt))
gimple_set_location (new_stmt, gimple_location (stmt));
gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
gimple_call_copy_flags (new_stmt, stmt);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "with stmt:");
print_gimple_stmt (dump_file, new_stmt, 0, 0);
fprintf (dump_file, "\n");
}
gsi_replace (&gsi, new_stmt, true);
if (cs)
cgraph_set_call_stmt (cs, new_stmt);
do
{
ipa_record_stmt_references (current_node, gsi_stmt (gsi));
gsi_prev (&gsi);
}
while ((gsi_end_p (prev_gsi) && !gsi_end_p (gsi))
|| (!gsi_end_p (prev_gsi) && gsi_stmt (gsi) == gsi_stmt (prev_gsi)));
update_ssa (TODO_update_ssa);
free_dominance_info (CDI_DOMINATORS);
}
/* Return true iff BASE_INDEX is in ADJUSTMENTS more than once. */
static bool
index_in_adjustments_multiple_times_p (int base_index,
ipa_parm_adjustment_vec adjustments)
{
int i, len = adjustments.length ();
bool one = false;
for (i = 0; i < len; i++)
{
struct ipa_parm_adjustment *adj;
adj = &adjustments[i];
if (adj->base_index == base_index)
{
if (one)
return true;
else
one = true;
}
}
return false;
}
/* Return adjustments that should have the same effect on function parameters
and call arguments as if they were first changed according to adjustments in
INNER and then by adjustments in OUTER. */
ipa_parm_adjustment_vec
ipa_combine_adjustments (ipa_parm_adjustment_vec inner,
ipa_parm_adjustment_vec outer)
{
int i, outlen = outer.length ();
int inlen = inner.length ();
int removals = 0;
ipa_parm_adjustment_vec adjustments, tmp;
tmp.create (inlen);
for (i = 0; i < inlen; i++)
{
struct ipa_parm_adjustment *n;
n = &inner[i];
if (n->remove_param)
removals++;
else
tmp.quick_push (*n);
}
adjustments.create (outlen + removals);
for (i = 0; i < outlen; i++)
{
struct ipa_parm_adjustment r;
struct ipa_parm_adjustment *out = &outer[i];
struct ipa_parm_adjustment *in = &tmp[out->base_index];
memset (&r, 0, sizeof (r));
gcc_assert (!in->remove_param);
if (out->remove_param)
{
if (!index_in_adjustments_multiple_times_p (in->base_index, tmp))
{
r.remove_param = true;
adjustments.quick_push (r);
}
continue;
}
r.base_index = in->base_index;
r.type = out->type;
/* FIXME: Create nonlocal value too. */
if (in->copy_param && out->copy_param)
r.copy_param = true;
else if (in->copy_param)
r.offset = out->offset;
else if (out->copy_param)
r.offset = in->offset;
else
r.offset = in->offset + out->offset;
adjustments.quick_push (r);
}
for (i = 0; i < inlen; i++)
{
struct ipa_parm_adjustment *n = &inner[i];
if (n->remove_param)
adjustments.quick_push (*n);
}
tmp.release ();
return adjustments;
}
/* Dump the adjustments in the vector ADJUSTMENTS to dump_file in a human
friendly way, assuming they are meant to be applied to FNDECL. */
void
ipa_dump_param_adjustments (FILE *file, ipa_parm_adjustment_vec adjustments,
tree fndecl)
{
int i, len = adjustments.length ();
bool first = true;
vec<tree> parms = ipa_get_vector_of_formal_parms (fndecl);
fprintf (file, "IPA param adjustments: ");
for (i = 0; i < len; i++)
{
struct ipa_parm_adjustment *adj;
adj = &adjustments[i];
if (!first)
fprintf (file, " ");
else
first = false;
fprintf (file, "%i. base_index: %i - ", i, adj->base_index);
print_generic_expr (file, parms[adj->base_index], 0);
if (adj->base)
{
fprintf (file, ", base: ");
print_generic_expr (file, adj->base, 0);
}
if (adj->reduction)
{
fprintf (file, ", reduction: ");
print_generic_expr (file, adj->reduction, 0);
}
if (adj->new_ssa_base)
{
fprintf (file, ", new_ssa_base: ");
print_generic_expr (file, adj->new_ssa_base, 0);
}
if (adj->copy_param)
fprintf (file, ", copy_param");
else if (adj->remove_param)
fprintf (file, ", remove_param");
else
fprintf (file, ", offset %li", (long) adj->offset);
if (adj->by_ref)
fprintf (file, ", by_ref");
print_node_brief (file, ", type: ", adj->type, 0);
fprintf (file, "\n");
}
parms.release ();
}
/* Dump the AV linked list. */
void
ipa_dump_agg_replacement_values (FILE *f, struct ipa_agg_replacement_value *av)
{
bool comma = false;
fprintf (f, " Aggregate replacements:");
for (; av; av = av->next)
{
fprintf (f, "%s %i[" HOST_WIDE_INT_PRINT_DEC "]=", comma ? "," : "",
av->index, av->offset);
print_generic_expr (f, av->value, 0);
comma = true;
}
fprintf (f, "\n");
}
/* Stream out jump function JUMP_FUNC to OB. */
static void
ipa_write_jump_function (struct output_block *ob,
struct ipa_jump_func *jump_func)
{
struct ipa_agg_jf_item *item;
struct bitpack_d bp;
int i, count;
streamer_write_uhwi (ob, jump_func->type);
switch (jump_func->type)
{
case IPA_JF_UNKNOWN:
break;
case IPA_JF_KNOWN_TYPE:
streamer_write_uhwi (ob, jump_func->value.known_type.offset);
stream_write_tree (ob, jump_func->value.known_type.base_type, true);
stream_write_tree (ob, jump_func->value.known_type.component_type, true);
break;
case IPA_JF_CONST:
gcc_assert (
EXPR_LOCATION (jump_func->value.constant.value) == UNKNOWN_LOCATION);
stream_write_tree (ob, jump_func->value.constant.value, true);
break;
case IPA_JF_PASS_THROUGH:
streamer_write_uhwi (ob, jump_func->value.pass_through.operation);
if (jump_func->value.pass_through.operation == NOP_EXPR)
{
streamer_write_uhwi (ob, jump_func->value.pass_through.formal_id);
bp = bitpack_create (ob->main_stream);
bp_pack_value (&bp, jump_func->value.pass_through.agg_preserved, 1);
bp_pack_value (&bp, jump_func->value.pass_through.type_preserved, 1);
streamer_write_bitpack (&bp);
}
else
{
stream_write_tree (ob, jump_func->value.pass_through.operand, true);
streamer_write_uhwi (ob, jump_func->value.pass_through.formal_id);
}
break;
case IPA_JF_ANCESTOR:
streamer_write_uhwi (ob, jump_func->value.ancestor.offset);
stream_write_tree (ob, jump_func->value.ancestor.type, true);
streamer_write_uhwi (ob, jump_func->value.ancestor.formal_id);
bp = bitpack_create (ob->main_stream);
bp_pack_value (&bp, jump_func->value.ancestor.agg_preserved, 1);
bp_pack_value (&bp, jump_func->value.ancestor.type_preserved, 1);
streamer_write_bitpack (&bp);
break;
}
count = vec_safe_length (jump_func->agg.items);
streamer_write_uhwi (ob, count);
if (count)
{
bp = bitpack_create (ob->main_stream);
bp_pack_value (&bp, jump_func->agg.by_ref, 1);
streamer_write_bitpack (&bp);
}
FOR_EACH_VEC_SAFE_ELT (jump_func->agg.items, i, item)
{
streamer_write_uhwi (ob, item->offset);
stream_write_tree (ob, item->value, true);
}
}
/* Read in jump function JUMP_FUNC from IB. */
static void
ipa_read_jump_function (struct lto_input_block *ib,
struct ipa_jump_func *jump_func,
struct cgraph_edge *cs,
struct data_in *data_in)
{
enum jump_func_type jftype;
enum tree_code operation;
int i, count;
jftype = (enum jump_func_type) streamer_read_uhwi (ib);
switch (jftype)
{
case IPA_JF_UNKNOWN:
jump_func->type = IPA_JF_UNKNOWN;
break;
case IPA_JF_KNOWN_TYPE:
{
HOST_WIDE_INT offset = streamer_read_uhwi (ib);
tree base_type = stream_read_tree (ib, data_in);
tree component_type = stream_read_tree (ib, data_in);
ipa_set_jf_known_type (jump_func, offset, base_type, component_type);
break;
}
case IPA_JF_CONST:
ipa_set_jf_constant (jump_func, stream_read_tree (ib, data_in), cs);
break;
case IPA_JF_PASS_THROUGH:
operation = (enum tree_code) streamer_read_uhwi (ib);
if (operation == NOP_EXPR)
{
int formal_id = streamer_read_uhwi (ib);
struct bitpack_d bp = streamer_read_bitpack (ib);
bool agg_preserved = bp_unpack_value (&bp, 1);
bool type_preserved = bp_unpack_value (&bp, 1);
ipa_set_jf_simple_pass_through (jump_func, formal_id, agg_preserved,
type_preserved);
}
else
{
tree operand = stream_read_tree (ib, data_in);
int formal_id = streamer_read_uhwi (ib);
ipa_set_jf_arith_pass_through (jump_func, formal_id, operand,
operation);
}
break;
case IPA_JF_ANCESTOR:
{
HOST_WIDE_INT offset = streamer_read_uhwi (ib);
tree type = stream_read_tree (ib, data_in);
int formal_id = streamer_read_uhwi (ib);
struct bitpack_d bp = streamer_read_bitpack (ib);
bool agg_preserved = bp_unpack_value (&bp, 1);
bool type_preserved = bp_unpack_value (&bp, 1);
ipa_set_ancestor_jf (jump_func, offset, type, formal_id, agg_preserved,
type_preserved);
break;
}
}
count = streamer_read_uhwi (ib);
vec_alloc (jump_func->agg.items, count);
if (count)
{
struct bitpack_d bp = streamer_read_bitpack (ib);
jump_func->agg.by_ref = bp_unpack_value (&bp, 1);
}
for (i = 0; i < count; i++)
{
struct ipa_agg_jf_item item;
item.offset = streamer_read_uhwi (ib);
item.value = stream_read_tree (ib, data_in);
jump_func->agg.items->quick_push (item);
}
}
/* Stream out parts of cgraph_indirect_call_info corresponding to CS that are
relevant to indirect inlining to OB. */
static void
ipa_write_indirect_edge_info (struct output_block *ob,
struct cgraph_edge *cs)
{
struct cgraph_indirect_call_info *ii = cs->indirect_info;
struct bitpack_d bp;
streamer_write_hwi (ob, ii->param_index);
streamer_write_hwi (ob, ii->offset);
bp = bitpack_create (ob->main_stream);
bp_pack_value (&bp, ii->polymorphic, 1);
bp_pack_value (&bp, ii->agg_contents, 1);
bp_pack_value (&bp, ii->member_ptr, 1);
bp_pack_value (&bp, ii->by_ref, 1);
streamer_write_bitpack (&bp);
if (ii->polymorphic)
{
streamer_write_hwi (ob, ii->otr_token);
stream_write_tree (ob, ii->otr_type, true);
}
}
/* Read in parts of cgraph_indirect_call_info corresponding to CS that are
relevant to indirect inlining from IB. */
static void
ipa_read_indirect_edge_info (struct lto_input_block *ib,
struct data_in *data_in ATTRIBUTE_UNUSED,
struct cgraph_edge *cs)
{
struct cgraph_indirect_call_info *ii = cs->indirect_info;
struct bitpack_d bp;
ii->param_index = (int) streamer_read_hwi (ib);
ii->offset = (HOST_WIDE_INT) streamer_read_hwi (ib);
bp = streamer_read_bitpack (ib);
ii->polymorphic = bp_unpack_value (&bp, 1);
ii->agg_contents = bp_unpack_value (&bp, 1);
ii->member_ptr = bp_unpack_value (&bp, 1);
ii->by_ref = bp_unpack_value (&bp, 1);
if (ii->polymorphic)
{
ii->otr_token = (HOST_WIDE_INT) streamer_read_hwi (ib);
ii->otr_type = stream_read_tree (ib, data_in);
}
}
/* Stream out NODE info to OB. */
static void
ipa_write_node_info (struct output_block *ob, struct cgraph_node *node)
{
int node_ref;
lto_symtab_encoder_t encoder;
struct ipa_node_params *info = IPA_NODE_REF (node);
int j;
struct cgraph_edge *e;
struct bitpack_d bp;
encoder = ob->decl_state->symtab_node_encoder;
node_ref = lto_symtab_encoder_encode (encoder, (symtab_node) node);
streamer_write_uhwi (ob, node_ref);
streamer_write_uhwi (ob, ipa_get_param_count (info));
for (j = 0; j < ipa_get_param_count (info); j++)
streamer_write_uhwi (ob, ipa_get_param_move_cost (info, j));
bp = bitpack_create (ob->main_stream);
gcc_assert (info->uses_analysis_done
|| ipa_get_param_count (info) == 0);
gcc_assert (!info->node_enqueued);
gcc_assert (!info->ipcp_orig_node);
for (j = 0; j < ipa_get_param_count (info); j++)
bp_pack_value (&bp, ipa_is_param_used (info, j), 1);
streamer_write_bitpack (&bp);
for (j = 0; j < ipa_get_param_count (info); j++)
streamer_write_hwi (ob, ipa_get_controlled_uses (info, j));
for (e = node->callees; e; e = e->next_callee)
{
struct ipa_edge_args *args = IPA_EDGE_REF (e);
streamer_write_uhwi (ob, ipa_get_cs_argument_count (args));
for (j = 0; j < ipa_get_cs_argument_count (args); j++)
ipa_write_jump_function (ob, ipa_get_ith_jump_func (args, j));
}
for (e = node->indirect_calls; e; e = e->next_callee)
{
struct ipa_edge_args *args = IPA_EDGE_REF (e);
streamer_write_uhwi (ob, ipa_get_cs_argument_count (args));
for (j = 0; j < ipa_get_cs_argument_count (args); j++)
ipa_write_jump_function (ob, ipa_get_ith_jump_func (args, j));
ipa_write_indirect_edge_info (ob, e);
}
}
/* Stream in NODE info from IB. */
static void
ipa_read_node_info (struct lto_input_block *ib, struct cgraph_node *node,
struct data_in *data_in)
{
struct ipa_node_params *info = IPA_NODE_REF (node);
int k;
struct cgraph_edge *e;
struct bitpack_d bp;
ipa_alloc_node_params (node, streamer_read_uhwi (ib));
for (k = 0; k < ipa_get_param_count (info); k++)
info->descriptors[k].move_cost = streamer_read_uhwi (ib);
bp = streamer_read_bitpack (ib);
if (ipa_get_param_count (info) != 0)
info->uses_analysis_done = true;
info->node_enqueued = false;
for (k = 0; k < ipa_get_param_count (info); k++)
ipa_set_param_used (info, k, bp_unpack_value (&bp, 1));
for (k = 0; k < ipa_get_param_count (info); k++)
ipa_set_controlled_uses (info, k, streamer_read_hwi (ib));
for (e = node->callees; e; e = e->next_callee)
{
struct ipa_edge_args *args = IPA_EDGE_REF (e);
int count = streamer_read_uhwi (ib);
if (!count)
continue;
vec_safe_grow_cleared (args->jump_functions, count);
for (k = 0; k < ipa_get_cs_argument_count (args); k++)
ipa_read_jump_function (ib, ipa_get_ith_jump_func (args, k), e,
data_in);
}
for (e = node->indirect_calls; e; e = e->next_callee)
{
struct ipa_edge_args *args = IPA_EDGE_REF (e);
int count = streamer_read_uhwi (ib);
if (count)
{
vec_safe_grow_cleared (args->jump_functions, count);
for (k = 0; k < ipa_get_cs_argument_count (args); k++)
ipa_read_jump_function (ib, ipa_get_ith_jump_func (args, k), e,
data_in);
}
ipa_read_indirect_edge_info (ib, data_in, e);
}
}
/* Write jump functions for nodes in SET. */
void
ipa_prop_write_jump_functions (void)
{
struct cgraph_node *node;
struct output_block *ob;
unsigned int count = 0;
lto_symtab_encoder_iterator lsei;
lto_symtab_encoder_t encoder;
if (!ipa_node_params_vector.exists ())
return;
ob = create_output_block (LTO_section_jump_functions);
encoder = ob->decl_state->symtab_node_encoder;
ob->cgraph_node = NULL;
for (lsei = lsei_start_function_in_partition (encoder); !lsei_end_p (lsei);
lsei_next_function_in_partition (&lsei))
{
node = lsei_cgraph_node (lsei);
if (cgraph_function_with_gimple_body_p (node)
&& IPA_NODE_REF (node) != NULL)
count++;
}
streamer_write_uhwi (ob, count);
/* Process all of the functions. */
for (lsei = lsei_start_function_in_partition (encoder); !lsei_end_p (lsei);
lsei_next_function_in_partition (&lsei))
{
node = lsei_cgraph_node (lsei);
if (cgraph_function_with_gimple_body_p (node)
&& IPA_NODE_REF (node) != NULL)
ipa_write_node_info (ob, node);
}
streamer_write_char_stream (ob->main_stream, 0);
produce_asm (ob, NULL);
destroy_output_block (ob);
}
/* Read section in file FILE_DATA of length LEN with data DATA. */
static void
ipa_prop_read_section (struct lto_file_decl_data *file_data, const char *data,
size_t len)
{
const struct lto_function_header *header =
(const struct lto_function_header *) data;
const int cfg_offset = sizeof (struct lto_function_header);
const int main_offset = cfg_offset + header->cfg_size;
const int string_offset = main_offset + header->main_size;
struct data_in *data_in;
struct lto_input_block ib_main;
unsigned int i;
unsigned int count;
LTO_INIT_INPUT_BLOCK (ib_main, (const char *) data + main_offset, 0,
header->main_size);
data_in =
lto_data_in_create (file_data, (const char *) data + string_offset,
header->string_size, vNULL);
count = streamer_read_uhwi (&ib_main);
for (i = 0; i < count; i++)
{
unsigned int index;
struct cgraph_node *node;
lto_symtab_encoder_t encoder;
index = streamer_read_uhwi (&ib_main);
encoder = file_data->symtab_node_encoder;
node = cgraph (lto_symtab_encoder_deref (encoder, index));
gcc_assert (node->symbol.definition);
ipa_read_node_info (&ib_main, node, data_in);
}
lto_free_section_data (file_data, LTO_section_jump_functions, NULL, data,
len);
lto_data_in_delete (data_in);
}
/* Read ipcp jump functions. */
void
ipa_prop_read_jump_functions (void)
{
struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
struct lto_file_decl_data *file_data;
unsigned int j = 0;
ipa_check_create_node_params ();
ipa_check_create_edge_args ();
ipa_register_cgraph_hooks ();
while ((file_data = file_data_vec[j++]))
{
size_t len;
const char *data = lto_get_section_data (file_data, LTO_section_jump_functions, NULL, &len);
if (data)
ipa_prop_read_section (file_data, data, len);
}
}
/* After merging units, we can get mismatch in argument counts.
Also decl merging might've rendered parameter lists obsolete.
Also compute called_with_variable_arg info. */
void
ipa_update_after_lto_read (void)
{
ipa_check_create_node_params ();
ipa_check_create_edge_args ();
}
void
write_agg_replacement_chain (struct output_block *ob, struct cgraph_node *node)
{
int node_ref;
unsigned int count = 0;
lto_symtab_encoder_t encoder;
struct ipa_agg_replacement_value *aggvals, *av;
aggvals = ipa_get_agg_replacements_for_node (node);
encoder = ob->decl_state->symtab_node_encoder;
node_ref = lto_symtab_encoder_encode (encoder, (symtab_node) node);
streamer_write_uhwi (ob, node_ref);
for (av = aggvals; av; av = av->next)
count++;
streamer_write_uhwi (ob, count);
for (av = aggvals; av; av = av->next)
{
struct bitpack_d bp;
streamer_write_uhwi (ob, av->offset);
streamer_write_uhwi (ob, av->index);
stream_write_tree (ob, av->value, true);
bp = bitpack_create (ob->main_stream);
bp_pack_value (&bp, av->by_ref, 1);
streamer_write_bitpack (&bp);
}
}
/* Stream in the aggregate value replacement chain for NODE from IB. */
static void
read_agg_replacement_chain (struct lto_input_block *ib,
struct cgraph_node *node,
struct data_in *data_in)
{
struct ipa_agg_replacement_value *aggvals = NULL;
unsigned int count, i;
count = streamer_read_uhwi (ib);
for (i = 0; i <count; i++)
{
struct ipa_agg_replacement_value *av;
struct bitpack_d bp;
av = ggc_alloc_ipa_agg_replacement_value ();
av->offset = streamer_read_uhwi (ib);
av->index = streamer_read_uhwi (ib);
av->value = stream_read_tree (ib, data_in);
bp = streamer_read_bitpack (ib);
av->by_ref = bp_unpack_value (&bp, 1);
av->next = aggvals;
aggvals = av;
}
ipa_set_node_agg_value_chain (node, aggvals);
}
/* Write all aggregate replacement for nodes in set. */
void
ipa_prop_write_all_agg_replacement (void)
{
struct cgraph_node *node;
struct output_block *ob;
unsigned int count = 0;
lto_symtab_encoder_iterator lsei;
lto_symtab_encoder_t encoder;
if (!ipa_node_agg_replacements)
return;
ob = create_output_block (LTO_section_ipcp_transform);
encoder = ob->decl_state->symtab_node_encoder;
ob->cgraph_node = NULL;
for (lsei = lsei_start_function_in_partition (encoder); !lsei_end_p (lsei);
lsei_next_function_in_partition (&lsei))
{
node = lsei_cgraph_node (lsei);
if (cgraph_function_with_gimple_body_p (node)
&& ipa_get_agg_replacements_for_node (node) != NULL)
count++;
}
streamer_write_uhwi (ob, count);
for (lsei = lsei_start_function_in_partition (encoder); !lsei_end_p (lsei);
lsei_next_function_in_partition (&lsei))
{
node = lsei_cgraph_node (lsei);
if (cgraph_function_with_gimple_body_p (node)
&& ipa_get_agg_replacements_for_node (node) != NULL)
write_agg_replacement_chain (ob, node);
}
streamer_write_char_stream (ob->main_stream, 0);
produce_asm (ob, NULL);
destroy_output_block (ob);
}
/* Read replacements section in file FILE_DATA of length LEN with data
DATA. */
static void
read_replacements_section (struct lto_file_decl_data *file_data,
const char *data,
size_t len)
{
const struct lto_function_header *header =
(const struct lto_function_header *) data;
const int cfg_offset = sizeof (struct lto_function_header);
const int main_offset = cfg_offset + header->cfg_size;
const int string_offset = main_offset + header->main_size;
struct data_in *data_in;
struct lto_input_block ib_main;
unsigned int i;
unsigned int count;
LTO_INIT_INPUT_BLOCK (ib_main, (const char *) data + main_offset, 0,
header->main_size);
data_in = lto_data_in_create (file_data, (const char *) data + string_offset,
header->string_size, vNULL);
count = streamer_read_uhwi (&ib_main);
for (i = 0; i < count; i++)
{
unsigned int index;
struct cgraph_node *node;
lto_symtab_encoder_t encoder;
index = streamer_read_uhwi (&ib_main);
encoder = file_data->symtab_node_encoder;
node = cgraph (lto_symtab_encoder_deref (encoder, index));
gcc_assert (node->symbol.definition);
read_agg_replacement_chain (&ib_main, node, data_in);
}
lto_free_section_data (file_data, LTO_section_jump_functions, NULL, data,
len);
lto_data_in_delete (data_in);
}
/* Read IPA-CP aggregate replacements. */
void
ipa_prop_read_all_agg_replacement (void)
{
struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
struct lto_file_decl_data *file_data;
unsigned int j = 0;
while ((file_data = file_data_vec[j++]))
{
size_t len;
const char *data = lto_get_section_data (file_data,
LTO_section_ipcp_transform,
NULL, &len);
if (data)
read_replacements_section (file_data, data, len);
}
}
/* Adjust the aggregate replacements in AGGVAL to reflect parameters skipped in
NODE. */
static void
adjust_agg_replacement_values (struct cgraph_node *node,
struct ipa_agg_replacement_value *aggval)
{
struct ipa_agg_replacement_value *v;
int i, c = 0, d = 0, *adj;
if (!node->clone.combined_args_to_skip)
return;
for (v = aggval; v; v = v->next)
{
gcc_assert (v->index >= 0);
if (c < v->index)
c = v->index;
}
c++;
adj = XALLOCAVEC (int, c);
for (i = 0; i < c; i++)
if (bitmap_bit_p (node->clone.combined_args_to_skip, i))
{
adj[i] = -1;
d++;
}
else
adj[i] = i - d;
for (v = aggval; v; v = v->next)
v->index = adj[v->index];
}
/* Function body transformation phase. */
unsigned int
ipcp_transform_function (struct cgraph_node *node)
{
vec<ipa_param_descriptor_t> descriptors = vNULL;
struct param_analysis_info *parms_ainfo;
struct ipa_agg_replacement_value *aggval;
gimple_stmt_iterator gsi;
basic_block bb;
int param_count;
bool cfg_changed = false, something_changed = false;
gcc_checking_assert (cfun);
gcc_checking_assert (current_function_decl);
if (dump_file)
fprintf (dump_file, "Modification phase of node %s/%i\n",
cgraph_node_name (node), node->symbol.order);
aggval = ipa_get_agg_replacements_for_node (node);
if (!aggval)
return 0;
param_count = count_formal_params (node->symbol.decl);
if (param_count == 0)
return 0;
adjust_agg_replacement_values (node, aggval);
if (dump_file)
ipa_dump_agg_replacement_values (dump_file, aggval);
parms_ainfo = XALLOCAVEC (struct param_analysis_info, param_count);
memset (parms_ainfo, 0, sizeof (struct param_analysis_info) * param_count);
descriptors.safe_grow_cleared (param_count);
ipa_populate_param_decls (node, descriptors);
FOR_EACH_BB (bb)
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
struct ipa_agg_replacement_value *v;
gimple stmt = gsi_stmt (gsi);
tree rhs, val, t;
HOST_WIDE_INT offset;
int index;
bool by_ref, vce;
if (!gimple_assign_load_p (stmt))
continue;
rhs = gimple_assign_rhs1 (stmt);
if (!is_gimple_reg_type (TREE_TYPE (rhs)))
continue;
vce = false;
t = rhs;
while (handled_component_p (t))
{
/* V_C_E can do things like convert an array of integers to one
bigger integer and similar things we do not handle below. */
if (TREE_CODE (rhs) == VIEW_CONVERT_EXPR)
{
vce = true;
break;
}
t = TREE_OPERAND (t, 0);
}
if (vce)
continue;
if (!ipa_load_from_parm_agg_1 (descriptors, parms_ainfo, stmt,
rhs, &index, &offset, &by_ref))
continue;
for (v = aggval; v; v = v->next)
if (v->index == index
&& v->offset == offset)
break;
if (!v || v->by_ref != by_ref)
continue;
gcc_checking_assert (is_gimple_ip_invariant (v->value));
if (!useless_type_conversion_p (TREE_TYPE (rhs), TREE_TYPE (v->value)))
{
if (fold_convertible_p (TREE_TYPE (rhs), v->value))
val = fold_build1 (NOP_EXPR, TREE_TYPE (rhs), v->value);
else if (TYPE_SIZE (TREE_TYPE (rhs))
== TYPE_SIZE (TREE_TYPE (v->value)))
val = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (rhs), v->value);
else
{
if (dump_file)
{
fprintf (dump_file, " const ");
print_generic_expr (dump_file, v->value, 0);
fprintf (dump_file, " can't be converted to type of ");
print_generic_expr (dump_file, rhs, 0);
fprintf (dump_file, "\n");
}
continue;
}
}
else
val = v->value;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Modifying stmt:\n ");
print_gimple_stmt (dump_file, stmt, 0, 0);
}
gimple_assign_set_rhs_from_tree (&gsi, val);
update_stmt (stmt);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "into:\n ");
print_gimple_stmt (dump_file, stmt, 0, 0);
fprintf (dump_file, "\n");
}
something_changed = true;
if (maybe_clean_eh_stmt (stmt)
&& gimple_purge_dead_eh_edges (gimple_bb (stmt)))
cfg_changed = true;
}
(*ipa_node_agg_replacements)[node->uid] = NULL;
free_parms_ainfo (parms_ainfo, param_count);
descriptors.release ();
if (!something_changed)
return 0;
else if (cfg_changed)
return TODO_update_ssa_only_virtuals | TODO_cleanup_cfg;
else
return TODO_update_ssa_only_virtuals;
}
|