1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
|
/* Instruction scheduling pass.
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001 Free Software Foundation, Inc.
Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
and currently maintained by, Jim Wilson (wilson@cygnus.com)
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
/* Instruction scheduling pass. This file, along with sched-deps.c,
contains the generic parts. The actual entry point is found for
the normal instruction scheduling pass is found in sched-rgn.c.
We compute insn priorities based on data dependencies. Flow
analysis only creates a fraction of the data-dependencies we must
observe: namely, only those dependencies which the combiner can be
expected to use. For this pass, we must therefore create the
remaining dependencies we need to observe: register dependencies,
memory dependencies, dependencies to keep function calls in order,
and the dependence between a conditional branch and the setting of
condition codes are all dealt with here.
The scheduler first traverses the data flow graph, starting with
the last instruction, and proceeding to the first, assigning values
to insn_priority as it goes. This sorts the instructions
topologically by data dependence.
Once priorities have been established, we order the insns using
list scheduling. This works as follows: starting with a list of
all the ready insns, and sorted according to priority number, we
schedule the insn from the end of the list by placing its
predecessors in the list according to their priority order. We
consider this insn scheduled by setting the pointer to the "end" of
the list to point to the previous insn. When an insn has no
predecessors, we either queue it until sufficient time has elapsed
or add it to the ready list. As the instructions are scheduled or
when stalls are introduced, the queue advances and dumps insns into
the ready list. When all insns down to the lowest priority have
been scheduled, the critical path of the basic block has been made
as short as possible. The remaining insns are then scheduled in
remaining slots.
Function unit conflicts are resolved during forward list scheduling
by tracking the time when each insn is committed to the schedule
and from that, the time the function units it uses must be free.
As insns on the ready list are considered for scheduling, those
that would result in a blockage of the already committed insns are
queued until no blockage will result.
The following list shows the order in which we want to break ties
among insns in the ready list:
1. choose insn with the longest path to end of bb, ties
broken by
2. choose insn with least contribution to register pressure,
ties broken by
3. prefer in-block upon interblock motion, ties broken by
4. prefer useful upon speculative motion, ties broken by
5. choose insn with largest control flow probability, ties
broken by
6. choose insn with the least dependences upon the previously
scheduled insn, or finally
7 choose the insn which has the most insns dependent on it.
8. choose insn with lowest UID.
Memory references complicate matters. Only if we can be certain
that memory references are not part of the data dependency graph
(via true, anti, or output dependence), can we move operations past
memory references. To first approximation, reads can be done
independently, while writes introduce dependencies. Better
approximations will yield fewer dependencies.
Before reload, an extended analysis of interblock data dependences
is required for interblock scheduling. This is performed in
compute_block_backward_dependences ().
Dependencies set up by memory references are treated in exactly the
same way as other dependencies, by using LOG_LINKS backward
dependences. LOG_LINKS are translated into INSN_DEPEND forward
dependences for the purpose of forward list scheduling.
Having optimized the critical path, we may have also unduly
extended the lifetimes of some registers. If an operation requires
that constants be loaded into registers, it is certainly desirable
to load those constants as early as necessary, but no earlier.
I.e., it will not do to load up a bunch of registers at the
beginning of a basic block only to use them at the end, if they
could be loaded later, since this may result in excessive register
utilization.
Note that since branches are never in basic blocks, but only end
basic blocks, this pass will not move branches. But that is ok,
since we can use GNU's delayed branch scheduling pass to take care
of this case.
Also note that no further optimizations based on algebraic
identities are performed, so this pass would be a good one to
perform instruction splitting, such as breaking up a multiply
instruction into shifts and adds where that is profitable.
Given the memory aliasing analysis that this pass should perform,
it should be possible to remove redundant stores to memory, and to
load values from registers instead of hitting memory.
Before reload, speculative insns are moved only if a 'proof' exists
that no exception will be caused by this, and if no live registers
exist that inhibit the motion (live registers constraints are not
represented by data dependence edges).
This pass must update information that subsequent passes expect to
be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
reg_n_calls_crossed, and reg_live_length. Also, BLOCK_HEAD,
BLOCK_END.
The information in the line number notes is carefully retained by
this pass. Notes that refer to the starting and ending of
exception regions are also carefully retained by this pass. All
other NOTE insns are grouped in their same relative order at the
beginning of basic blocks and regions that have been scheduled. */
#include "config.h"
#include "system.h"
#include "toplev.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "regs.h"
#include "function.h"
#include "flags.h"
#include "insn-config.h"
#include "insn-attr.h"
#include "except.h"
#include "toplev.h"
#include "recog.h"
#include "sched-int.h"
#include "target.h"
#ifdef INSN_SCHEDULING
/* issue_rate is the number of insns that can be scheduled in the same
machine cycle. It can be defined in the config/mach/mach.h file,
otherwise we set it to 1. */
static int issue_rate;
/* sched-verbose controls the amount of debugging output the
scheduler prints. It is controlled by -fsched-verbose=N:
N>0 and no -DSR : the output is directed to stderr.
N>=10 will direct the printouts to stderr (regardless of -dSR).
N=1: same as -dSR.
N=2: bb's probabilities, detailed ready list info, unit/insn info.
N=3: rtl at abort point, control-flow, regions info.
N=5: dependences info. */
static int sched_verbose_param = 0;
int sched_verbose = 0;
/* Debugging file. All printouts are sent to dump, which is always set,
either to stderr, or to the dump listing file (-dRS). */
FILE *sched_dump = 0;
/* Highest uid before scheduling. */
static int old_max_uid;
/* fix_sched_param() is called from toplev.c upon detection
of the -fsched-verbose=N option. */
void
fix_sched_param (param, val)
const char *param, *val;
{
if (!strcmp (param, "verbose"))
sched_verbose_param = atoi (val);
else
warning ("fix_sched_param: unknown param: %s", param);
}
struct haifa_insn_data *h_i_d;
#define DONE_PRIORITY -1
#define MAX_PRIORITY 0x7fffffff
#define TAIL_PRIORITY 0x7ffffffe
#define LAUNCH_PRIORITY 0x7f000001
#define DONE_PRIORITY_P(INSN) (INSN_PRIORITY (INSN) < 0)
#define LOW_PRIORITY_P(INSN) ((INSN_PRIORITY (INSN) & 0x7f000000) == 0)
#define LINE_NOTE(INSN) (h_i_d[INSN_UID (INSN)].line_note)
#define INSN_TICK(INSN) (h_i_d[INSN_UID (INSN)].tick)
/* Vector indexed by basic block number giving the starting line-number
for each basic block. */
static rtx *line_note_head;
/* List of important notes we must keep around. This is a pointer to the
last element in the list. */
static rtx note_list;
/* Queues, etc. */
/* An instruction is ready to be scheduled when all insns preceding it
have already been scheduled. It is important to ensure that all
insns which use its result will not be executed until its result
has been computed. An insn is maintained in one of four structures:
(P) the "Pending" set of insns which cannot be scheduled until
their dependencies have been satisfied.
(Q) the "Queued" set of insns that can be scheduled when sufficient
time has passed.
(R) the "Ready" list of unscheduled, uncommitted insns.
(S) the "Scheduled" list of insns.
Initially, all insns are either "Pending" or "Ready" depending on
whether their dependencies are satisfied.
Insns move from the "Ready" list to the "Scheduled" list as they
are committed to the schedule. As this occurs, the insns in the
"Pending" list have their dependencies satisfied and move to either
the "Ready" list or the "Queued" set depending on whether
sufficient time has passed to make them ready. As time passes,
insns move from the "Queued" set to the "Ready" list. Insns may
move from the "Ready" list to the "Queued" set if they are blocked
due to a function unit conflict.
The "Pending" list (P) are the insns in the INSN_DEPEND of the unscheduled
insns, i.e., those that are ready, queued, and pending.
The "Queued" set (Q) is implemented by the variable `insn_queue'.
The "Ready" list (R) is implemented by the variables `ready' and
`n_ready'.
The "Scheduled" list (S) is the new insn chain built by this pass.
The transition (R->S) is implemented in the scheduling loop in
`schedule_block' when the best insn to schedule is chosen.
The transition (R->Q) is implemented in `queue_insn' when an
insn is found to have a function unit conflict with the already
committed insns.
The transitions (P->R and P->Q) are implemented in `schedule_insn' as
insns move from the ready list to the scheduled list.
The transition (Q->R) is implemented in 'queue_to_insn' as time
passes or stalls are introduced. */
/* Implement a circular buffer to delay instructions until sufficient
time has passed. INSN_QUEUE_SIZE is a power of two larger than
MAX_BLOCKAGE and MAX_READY_COST computed by genattr.c. This is the
longest time an isnsn may be queued. */
static rtx insn_queue[INSN_QUEUE_SIZE];
static int q_ptr = 0;
static int q_size = 0;
#define NEXT_Q(X) (((X)+1) & (INSN_QUEUE_SIZE-1))
#define NEXT_Q_AFTER(X, C) (((X)+C) & (INSN_QUEUE_SIZE-1))
/* Describe the ready list of the scheduler.
VEC holds space enough for all insns in the current region. VECLEN
says how many exactly.
FIRST is the index of the element with the highest priority; i.e. the
last one in the ready list, since elements are ordered by ascending
priority.
N_READY determines how many insns are on the ready list. */
struct ready_list
{
rtx *vec;
int veclen;
int first;
int n_ready;
};
/* Forward declarations. */
static unsigned int blockage_range PARAMS ((int, rtx));
static void clear_units PARAMS ((void));
static void schedule_unit PARAMS ((int, rtx, int));
static int actual_hazard PARAMS ((int, rtx, int, int));
static int potential_hazard PARAMS ((int, rtx, int));
static int priority PARAMS ((rtx));
static int rank_for_schedule PARAMS ((const PTR, const PTR));
static void swap_sort PARAMS ((rtx *, int));
static void queue_insn PARAMS ((rtx, int));
static void schedule_insn PARAMS ((rtx, struct ready_list *, int));
static void find_insn_reg_weight PARAMS ((int));
static void adjust_priority PARAMS ((rtx));
/* Notes handling mechanism:
=========================
Generally, NOTES are saved before scheduling and restored after scheduling.
The scheduler distinguishes between three types of notes:
(1) LINE_NUMBER notes, generated and used for debugging. Here,
before scheduling a region, a pointer to the LINE_NUMBER note is
added to the insn following it (in save_line_notes()), and the note
is removed (in rm_line_notes() and unlink_line_notes()). After
scheduling the region, this pointer is used for regeneration of
the LINE_NUMBER note (in restore_line_notes()).
(2) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
Before scheduling a region, a pointer to the note is added to the insn
that follows or precedes it. (This happens as part of the data dependence
computation). After scheduling an insn, the pointer contained in it is
used for regenerating the corresponding note (in reemit_notes).
(3) All other notes (e.g. INSN_DELETED): Before scheduling a block,
these notes are put in a list (in rm_other_notes() and
unlink_other_notes ()). After scheduling the block, these notes are
inserted at the beginning of the block (in schedule_block()). */
static rtx unlink_other_notes PARAMS ((rtx, rtx));
static rtx unlink_line_notes PARAMS ((rtx, rtx));
static rtx reemit_notes PARAMS ((rtx, rtx));
static rtx *ready_lastpos PARAMS ((struct ready_list *));
static void ready_sort PARAMS ((struct ready_list *));
static rtx ready_remove_first PARAMS ((struct ready_list *));
static void queue_to_ready PARAMS ((struct ready_list *));
static void debug_ready_list PARAMS ((struct ready_list *));
static rtx move_insn1 PARAMS ((rtx, rtx));
static rtx move_insn PARAMS ((rtx, rtx));
#endif /* INSN_SCHEDULING */
/* Point to state used for the current scheduling pass. */
struct sched_info *current_sched_info;
#ifndef INSN_SCHEDULING
void
schedule_insns (dump_file)
FILE *dump_file ATTRIBUTE_UNUSED;
{
}
#else
/* Pointer to the last instruction scheduled. Used by rank_for_schedule,
so that insns independent of the last scheduled insn will be preferred
over dependent instructions. */
static rtx last_scheduled_insn;
/* Compute the function units used by INSN. This caches the value
returned by function_units_used. A function unit is encoded as the
unit number if the value is non-negative and the compliment of a
mask if the value is negative. A function unit index is the
non-negative encoding. */
HAIFA_INLINE int
insn_unit (insn)
rtx insn;
{
register int unit = INSN_UNIT (insn);
if (unit == 0)
{
recog_memoized (insn);
/* A USE insn, or something else we don't need to understand.
We can't pass these directly to function_units_used because it will
trigger a fatal error for unrecognizable insns. */
if (INSN_CODE (insn) < 0)
unit = -1;
else
{
unit = function_units_used (insn);
/* Increment non-negative values so we can cache zero. */
if (unit >= 0)
unit++;
}
/* We only cache 16 bits of the result, so if the value is out of
range, don't cache it. */
if (FUNCTION_UNITS_SIZE < HOST_BITS_PER_SHORT
|| unit >= 0
|| (unit & ~((1 << (HOST_BITS_PER_SHORT - 1)) - 1)) == 0)
INSN_UNIT (insn) = unit;
}
return (unit > 0 ? unit - 1 : unit);
}
/* Compute the blockage range for executing INSN on UNIT. This caches
the value returned by the blockage_range_function for the unit.
These values are encoded in an int where the upper half gives the
minimum value and the lower half gives the maximum value. */
HAIFA_INLINE static unsigned int
blockage_range (unit, insn)
int unit;
rtx insn;
{
unsigned int blockage = INSN_BLOCKAGE (insn);
unsigned int range;
if ((int) UNIT_BLOCKED (blockage) != unit + 1)
{
range = function_units[unit].blockage_range_function (insn);
/* We only cache the blockage range for one unit and then only if
the values fit. */
if (HOST_BITS_PER_INT >= UNIT_BITS + 2 * BLOCKAGE_BITS)
INSN_BLOCKAGE (insn) = ENCODE_BLOCKAGE (unit + 1, range);
}
else
range = BLOCKAGE_RANGE (blockage);
return range;
}
/* A vector indexed by function unit instance giving the last insn to use
the unit. The value of the function unit instance index for unit U
instance I is (U + I * FUNCTION_UNITS_SIZE). */
static rtx unit_last_insn[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];
/* A vector indexed by function unit instance giving the minimum time when
the unit will unblock based on the maximum blockage cost. */
static int unit_tick[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];
/* A vector indexed by function unit number giving the number of insns
that remain to use the unit. */
static int unit_n_insns[FUNCTION_UNITS_SIZE];
/* Access the unit_last_insn array. Used by the visualization code. */
rtx
get_unit_last_insn (instance)
int instance;
{
return unit_last_insn[instance];
}
/* Reset the function unit state to the null state. */
static void
clear_units ()
{
memset ((char *) unit_last_insn, 0, sizeof (unit_last_insn));
memset ((char *) unit_tick, 0, sizeof (unit_tick));
memset ((char *) unit_n_insns, 0, sizeof (unit_n_insns));
}
/* Return the issue-delay of an insn. */
HAIFA_INLINE int
insn_issue_delay (insn)
rtx insn;
{
int i, delay = 0;
int unit = insn_unit (insn);
/* Efficiency note: in fact, we are working 'hard' to compute a
value that was available in md file, and is not available in
function_units[] structure. It would be nice to have this
value there, too. */
if (unit >= 0)
{
if (function_units[unit].blockage_range_function &&
function_units[unit].blockage_function)
delay = function_units[unit].blockage_function (insn, insn);
}
else
for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
if ((unit & 1) != 0 && function_units[i].blockage_range_function
&& function_units[i].blockage_function)
delay = MAX (delay, function_units[i].blockage_function (insn, insn));
return delay;
}
/* Return the actual hazard cost of executing INSN on the unit UNIT,
instance INSTANCE at time CLOCK if the previous actual hazard cost
was COST. */
HAIFA_INLINE int
actual_hazard_this_instance (unit, instance, insn, clock, cost)
int unit, instance, clock, cost;
rtx insn;
{
int tick = unit_tick[instance]; /* Issue time of the last issued insn. */
if (tick - clock > cost)
{
/* The scheduler is operating forward, so unit's last insn is the
executing insn and INSN is the candidate insn. We want a
more exact measure of the blockage if we execute INSN at CLOCK
given when we committed the execution of the unit's last insn.
The blockage value is given by either the unit's max blockage
constant, blockage range function, or blockage function. Use
the most exact form for the given unit. */
if (function_units[unit].blockage_range_function)
{
if (function_units[unit].blockage_function)
tick += (function_units[unit].blockage_function
(unit_last_insn[instance], insn)
- function_units[unit].max_blockage);
else
tick += ((int) MAX_BLOCKAGE_COST (blockage_range (unit, insn))
- function_units[unit].max_blockage);
}
if (tick - clock > cost)
cost = tick - clock;
}
return cost;
}
/* Record INSN as having begun execution on the units encoded by UNIT at
time CLOCK. */
HAIFA_INLINE static void
schedule_unit (unit, insn, clock)
int unit, clock;
rtx insn;
{
int i;
if (unit >= 0)
{
int instance = unit;
#if MAX_MULTIPLICITY > 1
/* Find the first free instance of the function unit and use that
one. We assume that one is free. */
for (i = function_units[unit].multiplicity - 1; i > 0; i--)
{
if (!actual_hazard_this_instance (unit, instance, insn, clock, 0))
break;
instance += FUNCTION_UNITS_SIZE;
}
#endif
unit_last_insn[instance] = insn;
unit_tick[instance] = (clock + function_units[unit].max_blockage);
}
else
for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
if ((unit & 1) != 0)
schedule_unit (i, insn, clock);
}
/* Return the actual hazard cost of executing INSN on the units encoded by
UNIT at time CLOCK if the previous actual hazard cost was COST. */
HAIFA_INLINE static int
actual_hazard (unit, insn, clock, cost)
int unit, clock, cost;
rtx insn;
{
int i;
if (unit >= 0)
{
/* Find the instance of the function unit with the minimum hazard. */
int instance = unit;
int best_cost = actual_hazard_this_instance (unit, instance, insn,
clock, cost);
#if MAX_MULTIPLICITY > 1
int this_cost;
if (best_cost > cost)
{
for (i = function_units[unit].multiplicity - 1; i > 0; i--)
{
instance += FUNCTION_UNITS_SIZE;
this_cost = actual_hazard_this_instance (unit, instance, insn,
clock, cost);
if (this_cost < best_cost)
{
best_cost = this_cost;
if (this_cost <= cost)
break;
}
}
}
#endif
cost = MAX (cost, best_cost);
}
else
for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
if ((unit & 1) != 0)
cost = actual_hazard (i, insn, clock, cost);
return cost;
}
/* Return the potential hazard cost of executing an instruction on the
units encoded by UNIT if the previous potential hazard cost was COST.
An insn with a large blockage time is chosen in preference to one
with a smaller time; an insn that uses a unit that is more likely
to be used is chosen in preference to one with a unit that is less
used. We are trying to minimize a subsequent actual hazard. */
HAIFA_INLINE static int
potential_hazard (unit, insn, cost)
int unit, cost;
rtx insn;
{
int i, ncost;
unsigned int minb, maxb;
if (unit >= 0)
{
minb = maxb = function_units[unit].max_blockage;
if (maxb > 1)
{
if (function_units[unit].blockage_range_function)
{
maxb = minb = blockage_range (unit, insn);
maxb = MAX_BLOCKAGE_COST (maxb);
minb = MIN_BLOCKAGE_COST (minb);
}
if (maxb > 1)
{
/* Make the number of instructions left dominate. Make the
minimum delay dominate the maximum delay. If all these
are the same, use the unit number to add an arbitrary
ordering. Other terms can be added. */
ncost = minb * 0x40 + maxb;
ncost *= (unit_n_insns[unit] - 1) * 0x1000 + unit;
if (ncost > cost)
cost = ncost;
}
}
}
else
for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
if ((unit & 1) != 0)
cost = potential_hazard (i, insn, cost);
return cost;
}
/* Compute cost of executing INSN given the dependence LINK on the insn USED.
This is the number of cycles between instruction issue and
instruction results. */
HAIFA_INLINE int
insn_cost (insn, link, used)
rtx insn, link, used;
{
register int cost = INSN_COST (insn);
if (cost == 0)
{
recog_memoized (insn);
/* A USE insn, or something else we don't need to understand.
We can't pass these directly to result_ready_cost because it will
trigger a fatal error for unrecognizable insns. */
if (INSN_CODE (insn) < 0)
{
INSN_COST (insn) = 1;
return 1;
}
else
{
cost = result_ready_cost (insn);
if (cost < 1)
cost = 1;
INSN_COST (insn) = cost;
}
}
/* In this case estimate cost without caring how insn is used. */
if (link == 0 && used == 0)
return cost;
/* A USE insn should never require the value used to be computed. This
allows the computation of a function's result and parameter values to
overlap the return and call. */
recog_memoized (used);
if (INSN_CODE (used) < 0)
LINK_COST_FREE (link) = 1;
/* If some dependencies vary the cost, compute the adjustment. Most
commonly, the adjustment is complete: either the cost is ignored
(in the case of an output- or anti-dependence), or the cost is
unchanged. These values are cached in the link as LINK_COST_FREE
and LINK_COST_ZERO. */
if (LINK_COST_FREE (link))
cost = 0;
else if (!LINK_COST_ZERO (link) && targetm.sched.adjust_cost)
{
int ncost = (*targetm.sched.adjust_cost) (used, link, insn, cost);
if (ncost < 1)
{
LINK_COST_FREE (link) = 1;
ncost = 0;
}
if (cost == ncost)
LINK_COST_ZERO (link) = 1;
cost = ncost;
}
return cost;
}
/* Compute the priority number for INSN. */
static int
priority (insn)
rtx insn;
{
rtx link;
if (! INSN_P (insn))
return 0;
if (! INSN_PRIORITY_KNOWN (insn))
{
int this_priority = 0;
if (INSN_DEPEND (insn) == 0)
this_priority = insn_cost (insn, 0, 0);
else
{
for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
{
rtx next;
int next_priority;
if (RTX_INTEGRATED_P (link))
continue;
next = XEXP (link, 0);
/* Critical path is meaningful in block boundaries only. */
if (! (*current_sched_info->contributes_to_priority) (next, insn))
continue;
next_priority = insn_cost (insn, link, next) + priority (next);
if (next_priority > this_priority)
this_priority = next_priority;
}
}
INSN_PRIORITY (insn) = this_priority;
INSN_PRIORITY_KNOWN (insn) = 1;
}
return INSN_PRIORITY (insn);
}
/* Macros and functions for keeping the priority queue sorted, and
dealing with queueing and dequeueing of instructions. */
#define SCHED_SORT(READY, N_READY) \
do { if ((N_READY) == 2) \
swap_sort (READY, N_READY); \
else if ((N_READY) > 2) \
qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); } \
while (0)
/* Returns a positive value if x is preferred; returns a negative value if
y is preferred. Should never return 0, since that will make the sort
unstable. */
static int
rank_for_schedule (x, y)
const PTR x;
const PTR y;
{
rtx tmp = *(const rtx *) y;
rtx tmp2 = *(const rtx *) x;
rtx link;
int tmp_class, tmp2_class, depend_count1, depend_count2;
int val, priority_val, weight_val, info_val;
/* Prefer insn with higher priority. */
priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
if (priority_val)
return priority_val;
/* Prefer an insn with smaller contribution to registers-pressure. */
if (!reload_completed &&
(weight_val = INSN_REG_WEIGHT (tmp) - INSN_REG_WEIGHT (tmp2)))
return (weight_val);
info_val = (*current_sched_info->rank) (tmp, tmp2);
if (info_val)
return info_val;
/* Compare insns based on their relation to the last-scheduled-insn. */
if (last_scheduled_insn)
{
/* Classify the instructions into three classes:
1) Data dependent on last schedule insn.
2) Anti/Output dependent on last scheduled insn.
3) Independent of last scheduled insn, or has latency of one.
Choose the insn from the highest numbered class if different. */
link = find_insn_list (tmp, INSN_DEPEND (last_scheduled_insn));
if (link == 0 || insn_cost (last_scheduled_insn, link, tmp) == 1)
tmp_class = 3;
else if (REG_NOTE_KIND (link) == 0) /* Data dependence. */
tmp_class = 1;
else
tmp_class = 2;
link = find_insn_list (tmp2, INSN_DEPEND (last_scheduled_insn));
if (link == 0 || insn_cost (last_scheduled_insn, link, tmp2) == 1)
tmp2_class = 3;
else if (REG_NOTE_KIND (link) == 0) /* Data dependence. */
tmp2_class = 1;
else
tmp2_class = 2;
if ((val = tmp2_class - tmp_class))
return val;
}
/* Prefer the insn which has more later insns that depend on it.
This gives the scheduler more freedom when scheduling later
instructions at the expense of added register pressure. */
depend_count1 = 0;
for (link = INSN_DEPEND (tmp); link; link = XEXP (link, 1))
depend_count1++;
depend_count2 = 0;
for (link = INSN_DEPEND (tmp2); link; link = XEXP (link, 1))
depend_count2++;
val = depend_count2 - depend_count1;
if (val)
return val;
/* If insns are equally good, sort by INSN_LUID (original insn order),
so that we make the sort stable. This minimizes instruction movement,
thus minimizing sched's effect on debugging and cross-jumping. */
return INSN_LUID (tmp) - INSN_LUID (tmp2);
}
/* Resort the array A in which only element at index N may be out of order. */
HAIFA_INLINE static void
swap_sort (a, n)
rtx *a;
int n;
{
rtx insn = a[n - 1];
int i = n - 2;
while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
{
a[i + 1] = a[i];
i -= 1;
}
a[i + 1] = insn;
}
/* Add INSN to the insn queue so that it can be executed at least
N_CYCLES after the currently executing insn. Preserve insns
chain for debugging purposes. */
HAIFA_INLINE static void
queue_insn (insn, n_cycles)
rtx insn;
int n_cycles;
{
int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);
insn_queue[next_q] = link;
q_size += 1;
if (sched_verbose >= 2)
{
fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
(*current_sched_info->print_insn) (insn, 0));
fprintf (sched_dump, "queued for %d cycles.\n", n_cycles);
}
}
/* Return a pointer to the bottom of the ready list, i.e. the insn
with the lowest priority. */
HAIFA_INLINE static rtx *
ready_lastpos (ready)
struct ready_list *ready;
{
if (ready->n_ready == 0)
abort ();
return ready->vec + ready->first - ready->n_ready + 1;
}
/* Add an element INSN to the ready list so that it ends up with the lowest
priority. */
HAIFA_INLINE void
ready_add (ready, insn)
struct ready_list *ready;
rtx insn;
{
if (ready->first == ready->n_ready)
{
memmove (ready->vec + ready->veclen - ready->n_ready,
ready_lastpos (ready),
ready->n_ready * sizeof (rtx));
ready->first = ready->veclen - 1;
}
ready->vec[ready->first - ready->n_ready] = insn;
ready->n_ready++;
}
/* Remove the element with the highest priority from the ready list and
return it. */
HAIFA_INLINE static rtx
ready_remove_first (ready)
struct ready_list *ready;
{
rtx t;
if (ready->n_ready == 0)
abort ();
t = ready->vec[ready->first--];
ready->n_ready--;
/* If the queue becomes empty, reset it. */
if (ready->n_ready == 0)
ready->first = ready->veclen - 1;
return t;
}
/* Sort the ready list READY by ascending priority, using the SCHED_SORT
macro. */
HAIFA_INLINE static void
ready_sort (ready)
struct ready_list *ready;
{
rtx *first = ready_lastpos (ready);
SCHED_SORT (first, ready->n_ready);
}
/* PREV is an insn that is ready to execute. Adjust its priority if that
will help shorten or lengthen register lifetimes as appropriate. Also
provide a hook for the target to tweek itself. */
HAIFA_INLINE static void
adjust_priority (prev)
rtx prev;
{
/* ??? There used to be code here to try and estimate how an insn
affected register lifetimes, but it did it by looking at REG_DEAD
notes, which we removed in schedule_region. Nor did it try to
take into account register pressure or anything useful like that.
Revisit when we have a machine model to work with and not before. */
if (targetm.sched.adjust_priority)
INSN_PRIORITY (prev) =
(*targetm.sched.adjust_priority) (prev, INSN_PRIORITY (prev));
}
/* Clock at which the previous instruction was issued. */
static int last_clock_var;
/* INSN is the "currently executing insn". Launch each insn which was
waiting on INSN. READY is the ready list which contains the insns
that are ready to fire. CLOCK is the current cycle.
*/
static void
schedule_insn (insn, ready, clock)
rtx insn;
struct ready_list *ready;
int clock;
{
rtx link;
int unit;
unit = insn_unit (insn);
if (sched_verbose >= 2)
{
fprintf (sched_dump, ";;\t\t--> scheduling insn <<<%d>>> on unit ",
INSN_UID (insn));
insn_print_units (insn);
fprintf (sched_dump, "\n");
}
if (sched_verbose && unit == -1)
visualize_no_unit (insn);
if (MAX_BLOCKAGE > 1 || issue_rate > 1 || sched_verbose)
schedule_unit (unit, insn, clock);
if (INSN_DEPEND (insn) == 0)
return;
for (link = INSN_DEPEND (insn); link != 0; link = XEXP (link, 1))
{
rtx next = XEXP (link, 0);
int cost = insn_cost (insn, link, next);
INSN_TICK (next) = MAX (INSN_TICK (next), clock + cost);
if ((INSN_DEP_COUNT (next) -= 1) == 0)
{
int effective_cost = INSN_TICK (next) - clock;
if (! (*current_sched_info->new_ready) (next))
continue;
if (sched_verbose >= 2)
{
fprintf (sched_dump, ";;\t\tdependences resolved: insn %s ",
(*current_sched_info->print_insn) (next, 0));
if (effective_cost < 1)
fprintf (sched_dump, "into ready\n");
else
fprintf (sched_dump, "into queue with cost=%d\n", effective_cost);
}
/* Adjust the priority of NEXT and either put it on the ready
list or queue it. */
adjust_priority (next);
if (effective_cost < 1)
ready_add (ready, next);
else
queue_insn (next, effective_cost);
}
}
/* Annotate the instruction with issue information -- TImode
indicates that the instruction is expected not to be able
to issue on the same cycle as the previous insn. A machine
may use this information to decide how the instruction should
be aligned. */
if (reload_completed && issue_rate > 1)
{
PUT_MODE (insn, clock > last_clock_var ? TImode : VOIDmode);
last_clock_var = clock;
}
}
/* Functions for handling of notes. */
/* Delete notes beginning with INSN and put them in the chain
of notes ended by NOTE_LIST.
Returns the insn following the notes. */
static rtx
unlink_other_notes (insn, tail)
rtx insn, tail;
{
rtx prev = PREV_INSN (insn);
while (insn != tail && GET_CODE (insn) == NOTE)
{
rtx next = NEXT_INSN (insn);
/* Delete the note from its current position. */
if (prev)
NEXT_INSN (prev) = next;
if (next)
PREV_INSN (next) = prev;
/* See sched_analyze to see how these are handled. */
if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG
&& NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_END
&& NOTE_LINE_NUMBER (insn) != NOTE_INSN_RANGE_BEG
&& NOTE_LINE_NUMBER (insn) != NOTE_INSN_RANGE_END
&& NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
&& NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_END)
{
/* Insert the note at the end of the notes list. */
PREV_INSN (insn) = note_list;
if (note_list)
NEXT_INSN (note_list) = insn;
note_list = insn;
}
insn = next;
}
return insn;
}
/* Delete line notes beginning with INSN. Record line-number notes so
they can be reused. Returns the insn following the notes. */
static rtx
unlink_line_notes (insn, tail)
rtx insn, tail;
{
rtx prev = PREV_INSN (insn);
while (insn != tail && GET_CODE (insn) == NOTE)
{
rtx next = NEXT_INSN (insn);
if (write_symbols != NO_DEBUG && NOTE_LINE_NUMBER (insn) > 0)
{
/* Delete the note from its current position. */
if (prev)
NEXT_INSN (prev) = next;
if (next)
PREV_INSN (next) = prev;
/* Record line-number notes so they can be reused. */
LINE_NOTE (insn) = insn;
}
else
prev = insn;
insn = next;
}
return insn;
}
/* Return the head and tail pointers of BB. */
void
get_block_head_tail (b, headp, tailp)
int b;
rtx *headp;
rtx *tailp;
{
/* HEAD and TAIL delimit the basic block being scheduled. */
rtx head = BLOCK_HEAD (b);
rtx tail = BLOCK_END (b);
/* Don't include any notes or labels at the beginning of the
basic block, or notes at the ends of basic blocks. */
while (head != tail)
{
if (GET_CODE (head) == NOTE)
head = NEXT_INSN (head);
else if (GET_CODE (tail) == NOTE)
tail = PREV_INSN (tail);
else if (GET_CODE (head) == CODE_LABEL)
head = NEXT_INSN (head);
else
break;
}
*headp = head;
*tailp = tail;
}
/* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
int
no_real_insns_p (head, tail)
rtx head, tail;
{
while (head != NEXT_INSN (tail))
{
if (GET_CODE (head) != NOTE && GET_CODE (head) != CODE_LABEL)
return 0;
head = NEXT_INSN (head);
}
return 1;
}
/* Delete line notes from one block. Save them so they can be later restored
(in restore_line_notes). HEAD and TAIL are the boundaries of the
block in which notes should be processed. */
void
rm_line_notes (head, tail)
rtx head, tail;
{
rtx next_tail;
rtx insn;
next_tail = NEXT_INSN (tail);
for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
{
rtx prev;
/* Farm out notes, and maybe save them in NOTE_LIST.
This is needed to keep the debugger from
getting completely deranged. */
if (GET_CODE (insn) == NOTE)
{
prev = insn;
insn = unlink_line_notes (insn, next_tail);
if (prev == tail)
abort ();
if (prev == head)
abort ();
if (insn == next_tail)
abort ();
}
}
}
/* Save line number notes for each insn in block B. HEAD and TAIL are
the boundaries of the block in which notes should be processed.*/
void
save_line_notes (b, head, tail)
int b;
rtx head, tail;
{
rtx next_tail;
/* We must use the true line number for the first insn in the block
that was computed and saved at the start of this pass. We can't
use the current line number, because scheduling of the previous
block may have changed the current line number. */
rtx line = line_note_head[b];
rtx insn;
next_tail = NEXT_INSN (tail);
for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
line = insn;
else
LINE_NOTE (insn) = line;
}
/* After a block was scheduled, insert line notes into the insns list.
HEAD and TAIL are the boundaries of the block in which notes should
be processed.*/
void
restore_line_notes (head, tail)
rtx head, tail;
{
rtx line, note, prev, new;
int added_notes = 0;
rtx next_tail, insn;
head = head;
next_tail = NEXT_INSN (tail);
/* Determine the current line-number. We want to know the current
line number of the first insn of the block here, in case it is
different from the true line number that was saved earlier. If
different, then we need a line number note before the first insn
of this block. If it happens to be the same, then we don't want to
emit another line number note here. */
for (line = head; line; line = PREV_INSN (line))
if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
break;
/* Walk the insns keeping track of the current line-number and inserting
the line-number notes as needed. */
for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
line = insn;
/* This used to emit line number notes before every non-deleted note.
However, this confuses a debugger, because line notes not separated
by real instructions all end up at the same address. I can find no
use for line number notes before other notes, so none are emitted. */
else if (GET_CODE (insn) != NOTE
&& INSN_UID (insn) < old_max_uid
&& (note = LINE_NOTE (insn)) != 0
&& note != line
&& (line == 0
|| NOTE_LINE_NUMBER (note) != NOTE_LINE_NUMBER (line)
|| NOTE_SOURCE_FILE (note) != NOTE_SOURCE_FILE (line)))
{
line = note;
prev = PREV_INSN (insn);
if (LINE_NOTE (note))
{
/* Re-use the original line-number note. */
LINE_NOTE (note) = 0;
PREV_INSN (note) = prev;
NEXT_INSN (prev) = note;
PREV_INSN (insn) = note;
NEXT_INSN (note) = insn;
}
else
{
added_notes++;
new = emit_note_after (NOTE_LINE_NUMBER (note), prev);
NOTE_SOURCE_FILE (new) = NOTE_SOURCE_FILE (note);
RTX_INTEGRATED_P (new) = RTX_INTEGRATED_P (note);
}
}
if (sched_verbose && added_notes)
fprintf (sched_dump, ";; added %d line-number notes\n", added_notes);
}
/* After scheduling the function, delete redundant line notes from the
insns list. */
void
rm_redundant_line_notes ()
{
rtx line = 0;
rtx insn = get_insns ();
int active_insn = 0;
int notes = 0;
/* Walk the insns deleting redundant line-number notes. Many of these
are already present. The remainder tend to occur at basic
block boundaries. */
for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
{
/* If there are no active insns following, INSN is redundant. */
if (active_insn == 0)
{
notes++;
NOTE_SOURCE_FILE (insn) = 0;
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
}
/* If the line number is unchanged, LINE is redundant. */
else if (line
&& NOTE_LINE_NUMBER (line) == NOTE_LINE_NUMBER (insn)
&& NOTE_SOURCE_FILE (line) == NOTE_SOURCE_FILE (insn))
{
notes++;
NOTE_SOURCE_FILE (line) = 0;
NOTE_LINE_NUMBER (line) = NOTE_INSN_DELETED;
line = insn;
}
else
line = insn;
active_insn = 0;
}
else if (!((GET_CODE (insn) == NOTE
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
|| (GET_CODE (insn) == INSN
&& (GET_CODE (PATTERN (insn)) == USE
|| GET_CODE (PATTERN (insn)) == CLOBBER))))
active_insn++;
if (sched_verbose && notes)
fprintf (sched_dump, ";; deleted %d line-number notes\n", notes);
}
/* Delete notes between HEAD and TAIL and put them in the chain
of notes ended by NOTE_LIST. */
void
rm_other_notes (head, tail)
rtx head;
rtx tail;
{
rtx next_tail;
rtx insn;
note_list = 0;
if (head == tail && (! INSN_P (head)))
return;
next_tail = NEXT_INSN (tail);
for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
{
rtx prev;
/* Farm out notes, and maybe save them in NOTE_LIST.
This is needed to keep the debugger from
getting completely deranged. */
if (GET_CODE (insn) == NOTE)
{
prev = insn;
insn = unlink_other_notes (insn, next_tail);
if (prev == tail)
abort ();
if (prev == head)
abort ();
if (insn == next_tail)
abort ();
}
}
}
/* Functions for computation of registers live/usage info. */
/* Calculate INSN_REG_WEIGHT for all insns of a block. */
static void
find_insn_reg_weight (b)
int b;
{
rtx insn, next_tail, head, tail;
get_block_head_tail (b, &head, &tail);
next_tail = NEXT_INSN (tail);
for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
{
int reg_weight = 0;
rtx x;
/* Handle register life information. */
if (! INSN_P (insn))
continue;
/* Increment weight for each register born here. */
x = PATTERN (insn);
if ((GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
&& register_operand (SET_DEST (x), VOIDmode))
reg_weight++;
else if (GET_CODE (x) == PARALLEL)
{
int j;
for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
{
x = XVECEXP (PATTERN (insn), 0, j);
if ((GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
&& register_operand (SET_DEST (x), VOIDmode))
reg_weight++;
}
}
/* Decrement weight for each register that dies here. */
for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
{
if (REG_NOTE_KIND (x) == REG_DEAD
|| REG_NOTE_KIND (x) == REG_UNUSED)
reg_weight--;
}
INSN_REG_WEIGHT (insn) = reg_weight;
}
}
/* Scheduling clock, modified in schedule_block() and queue_to_ready (). */
static int clock_var;
/* Move insns that became ready to fire from queue to ready list. */
static void
queue_to_ready (ready)
struct ready_list *ready;
{
rtx insn;
rtx link;
q_ptr = NEXT_Q (q_ptr);
/* Add all pending insns that can be scheduled without stalls to the
ready list. */
for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
{
insn = XEXP (link, 0);
q_size -= 1;
if (sched_verbose >= 2)
fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
(*current_sched_info->print_insn) (insn, 0));
ready_add (ready, insn);
if (sched_verbose >= 2)
fprintf (sched_dump, "moving to ready without stalls\n");
}
insn_queue[q_ptr] = 0;
/* If there are no ready insns, stall until one is ready and add all
of the pending insns at that point to the ready list. */
if (ready->n_ready == 0)
{
register int stalls;
for (stalls = 1; stalls < INSN_QUEUE_SIZE; stalls++)
{
if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
{
for (; link; link = XEXP (link, 1))
{
insn = XEXP (link, 0);
q_size -= 1;
if (sched_verbose >= 2)
fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
(*current_sched_info->print_insn) (insn, 0));
ready_add (ready, insn);
if (sched_verbose >= 2)
fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
}
insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = 0;
if (ready->n_ready)
break;
}
}
if (sched_verbose && stalls)
visualize_stall_cycles (stalls);
q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
clock_var += stalls;
}
}
/* Print the ready list for debugging purposes. Callable from debugger. */
static void
debug_ready_list (ready)
struct ready_list *ready;
{
rtx *p;
int i;
if (ready->n_ready == 0)
return;
p = ready_lastpos (ready);
for (i = 0; i < ready->n_ready; i++)
fprintf (sched_dump, " %s", (*current_sched_info->print_insn) (p[i], 0));
fprintf (sched_dump, "\n");
}
/* move_insn1: Remove INSN from insn chain, and link it after LAST insn. */
static rtx
move_insn1 (insn, last)
rtx insn, last;
{
NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
NEXT_INSN (insn) = NEXT_INSN (last);
PREV_INSN (NEXT_INSN (last)) = insn;
NEXT_INSN (last) = insn;
PREV_INSN (insn) = last;
return insn;
}
/* Search INSN for REG_SAVE_NOTE note pairs for
NOTE_INSN_{LOOP,EHREGION}_{BEG,END}; and convert them back into
NOTEs. The REG_SAVE_NOTE note following first one is contains the
saved value for NOTE_BLOCK_NUMBER which is useful for
NOTE_INSN_EH_REGION_{BEG,END} NOTEs. LAST is the last instruction
output by the instruction scheduler. Return the new value of LAST. */
static rtx
reemit_notes (insn, last)
rtx insn;
rtx last;
{
rtx note, retval;
retval = last;
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
{
if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
{
enum insn_note note_type = INTVAL (XEXP (note, 0));
if (note_type == NOTE_INSN_RANGE_BEG
|| note_type == NOTE_INSN_RANGE_END)
{
last = emit_note_before (note_type, last);
remove_note (insn, note);
note = XEXP (note, 1);
NOTE_RANGE_INFO (last) = XEXP (note, 0);
}
else
{
last = emit_note_before (note_type, last);
remove_note (insn, note);
note = XEXP (note, 1);
if (note_type == NOTE_INSN_EH_REGION_BEG
|| note_type == NOTE_INSN_EH_REGION_END)
NOTE_EH_HANDLER (last) = INTVAL (XEXP (note, 0));
}
remove_note (insn, note);
}
}
return retval;
}
/* Move INSN, and all insns which should be issued before it,
due to SCHED_GROUP_P flag. Reemit notes if needed.
Return the last insn emitted by the scheduler, which is the
return value from the first call to reemit_notes. */
static rtx
move_insn (insn, last)
rtx insn, last;
{
rtx retval = NULL;
/* If INSN has SCHED_GROUP_P set, then issue it and any other
insns with SCHED_GROUP_P set first. */
while (SCHED_GROUP_P (insn))
{
rtx prev = PREV_INSN (insn);
/* Move a SCHED_GROUP_P insn. */
move_insn1 (insn, last);
/* If this is the first call to reemit_notes, then record
its return value. */
if (retval == NULL_RTX)
retval = reemit_notes (insn, insn);
else
reemit_notes (insn, insn);
insn = prev;
}
/* Now move the first non SCHED_GROUP_P insn. */
move_insn1 (insn, last);
/* If this is the first call to reemit_notes, then record
its return value. */
if (retval == NULL_RTX)
retval = reemit_notes (insn, insn);
else
reemit_notes (insn, insn);
return retval;
}
/* Use forward list scheduling to rearrange insns of block B in region RGN,
possibly bringing insns from subsequent blocks in the same region. */
void
schedule_block (b, rgn_n_insns)
int b;
int rgn_n_insns;
{
rtx last;
struct ready_list ready;
int can_issue_more;
/* Head/tail info for this block. */
rtx prev_head = current_sched_info->prev_head;
rtx next_tail = current_sched_info->next_tail;
rtx head = NEXT_INSN (prev_head);
rtx tail = PREV_INSN (next_tail);
/* We used to have code to avoid getting parameters moved from hard
argument registers into pseudos.
However, it was removed when it proved to be of marginal benefit
and caused problems because schedule_block and compute_forward_dependences
had different notions of what the "head" insn was. */
if (head == tail && (! INSN_P (head)))
abort ();
/* Debug info. */
if (sched_verbose)
{
fprintf (sched_dump, ";; ======================================================\n");
fprintf (sched_dump,
";; -- basic block %d from %d to %d -- %s reload\n",
b, INSN_UID (head), INSN_UID (tail),
(reload_completed ? "after" : "before"));
fprintf (sched_dump, ";; ======================================================\n");
fprintf (sched_dump, "\n");
visualize_alloc ();
init_block_visualization ();
}
clear_units ();
/* Allocate the ready list. */
ready.veclen = rgn_n_insns + 1 + issue_rate;
ready.first = ready.veclen - 1;
ready.vec = (rtx *) xmalloc (ready.veclen * sizeof (rtx));
ready.n_ready = 0;
(*current_sched_info->init_ready_list) (&ready);
if (targetm.sched.md_init)
(*targetm.sched.md_init) (sched_dump, sched_verbose, ready.veclen);
/* No insns scheduled in this block yet. */
last_scheduled_insn = 0;
/* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
queue. */
q_ptr = 0;
q_size = 0;
last_clock_var = 0;
memset ((char *) insn_queue, 0, sizeof (insn_queue));
/* Start just before the beginning of time. */
clock_var = -1;
/* We start inserting insns after PREV_HEAD. */
last = prev_head;
/* Loop until all the insns in BB are scheduled. */
while ((*current_sched_info->schedule_more_p) ())
{
clock_var++;
/* Add to the ready list all pending insns that can be issued now.
If there are no ready insns, increment clock until one
is ready and add all pending insns at that point to the ready
list. */
queue_to_ready (&ready);
if (sched_verbose && targetm.sched.cycle_display)
last = (*targetm.sched.cycle_display) (clock_var, last);
if (ready.n_ready == 0)
abort ();
if (sched_verbose >= 2)
{
fprintf (sched_dump, ";;\t\tReady list after queue_to_ready: ");
debug_ready_list (&ready);
}
/* Sort the ready list based on priority. */
ready_sort (&ready);
/* Allow the target to reorder the list, typically for
better instruction bundling. */
if (targetm.sched.reorder)
can_issue_more =
(*targetm.sched.reorder) (sched_dump, sched_verbose,
ready_lastpos (&ready),
&ready.n_ready, clock_var);
else
can_issue_more = issue_rate;
if (sched_verbose)
{
fprintf (sched_dump, "\n;;\tReady list (t =%3d): ", clock_var);
debug_ready_list (&ready);
}
/* Issue insns from ready list. */
while (ready.n_ready != 0
&& can_issue_more
&& (*current_sched_info->schedule_more_p) ())
{
/* Select and remove the insn from the ready list. */
rtx insn = ready_remove_first (&ready);
int cost = actual_hazard (insn_unit (insn), insn, clock_var, 0);
if (cost >= 1)
{
queue_insn (insn, cost);
continue;
}
if (! (*current_sched_info->can_schedule_ready_p) (insn))
goto next;
last_scheduled_insn = insn;
last = move_insn (insn, last);
if (targetm.sched.variable_issue)
can_issue_more =
(*targetm.sched.variable_issue) (sched_dump, sched_verbose,
insn, can_issue_more);
else
can_issue_more--;
schedule_insn (insn, &ready, clock_var);
next:
if (targetm.sched.reorder2)
{
/* Sort the ready list based on priority. */
if (ready.n_ready > 0)
ready_sort (&ready);
can_issue_more =
(*targetm.sched.reorder2) (sched_dump,sched_verbose,
ready.n_ready
? ready_lastpos (&ready) : NULL,
&ready.n_ready, clock_var);
}
}
/* Debug info. */
if (sched_verbose)
visualize_scheduled_insns (clock_var);
}
if (targetm.sched.md_finish)
(*targetm.sched.md_finish) (sched_dump, sched_verbose);
/* Debug info. */
if (sched_verbose)
{
fprintf (sched_dump, ";;\tReady list (final): ");
debug_ready_list (&ready);
print_block_visualization ("");
}
/* Sanity check -- queue must be empty now. Meaningless if region has
multiple bbs. */
if (current_sched_info->queue_must_finish_empty && q_size != 0)
abort ();
/* Update head/tail boundaries. */
head = NEXT_INSN (prev_head);
tail = last;
/* Restore-other-notes: NOTE_LIST is the end of a chain of notes
previously found among the insns. Insert them at the beginning
of the insns. */
if (note_list != 0)
{
rtx note_head = note_list;
while (PREV_INSN (note_head))
{
note_head = PREV_INSN (note_head);
}
PREV_INSN (note_head) = PREV_INSN (head);
NEXT_INSN (PREV_INSN (head)) = note_head;
PREV_INSN (head) = note_list;
NEXT_INSN (note_list) = head;
head = note_head;
}
/* Debugging. */
if (sched_verbose)
{
fprintf (sched_dump, ";; total time = %d\n;; new head = %d\n",
clock_var, INSN_UID (head));
fprintf (sched_dump, ";; new tail = %d\n\n",
INSN_UID (tail));
visualize_free ();
}
current_sched_info->head = head;
current_sched_info->tail = tail;
free (ready.vec);
}
/* Set_priorities: compute priority of each insn in the block. */
int
set_priorities (head, tail)
rtx head, tail;
{
rtx insn;
int n_insn;
rtx prev_head;
prev_head = PREV_INSN (head);
if (head == tail && (! INSN_P (head)))
return 0;
n_insn = 0;
for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
{
if (GET_CODE (insn) == NOTE)
continue;
if (!(SCHED_GROUP_P (insn)))
n_insn++;
(void) priority (insn);
}
return n_insn;
}
/* Initialize some global state for the scheduler. DUMP_FILE is to be used
for debugging output. */
void
sched_init (dump_file)
FILE *dump_file;
{
int luid, b;
rtx insn;
/* Disable speculative loads in their presence if cc0 defined. */
#ifdef HAVE_cc0
flag_schedule_speculative_load = 0;
#endif
/* Set dump and sched_verbose for the desired debugging output. If no
dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
For -fsched-verbose=N, N>=10, print everything to stderr. */
sched_verbose = sched_verbose_param;
if (sched_verbose_param == 0 && dump_file)
sched_verbose = 1;
sched_dump = ((sched_verbose_param >= 10 || !dump_file)
? stderr : dump_file);
/* Initialize issue_rate. */
if (targetm.sched.issue_rate)
issue_rate = (*targetm.sched.issue_rate) ();
else
issue_rate = 1;
/* We use LUID 0 for the fake insn (UID 0) which holds dependencies for
pseudos which do not cross calls. */
old_max_uid = get_max_uid () + 1;
h_i_d = (struct haifa_insn_data *) xcalloc (old_max_uid, sizeof (*h_i_d));
h_i_d[0].luid = 0;
luid = 1;
for (b = 0; b < n_basic_blocks; b++)
for (insn = BLOCK_HEAD (b);; insn = NEXT_INSN (insn))
{
INSN_LUID (insn) = luid;
/* Increment the next luid, unless this is a note. We don't
really need separate IDs for notes and we don't want to
schedule differently depending on whether or not there are
line-number notes, i.e., depending on whether or not we're
generating debugging information. */
if (GET_CODE (insn) != NOTE)
++luid;
if (insn == BLOCK_END (b))
break;
}
init_dependency_caches (luid);
compute_bb_for_insn (old_max_uid);
init_alias_analysis ();
if (write_symbols != NO_DEBUG)
{
rtx line;
line_note_head = (rtx *) xcalloc (n_basic_blocks, sizeof (rtx));
/* Save-line-note-head:
Determine the line-number at the start of each basic block.
This must be computed and saved now, because after a basic block's
predecessor has been scheduled, it is impossible to accurately
determine the correct line number for the first insn of the block. */
for (b = 0; b < n_basic_blocks; b++)
{
for (line = BLOCK_HEAD (b); line; line = PREV_INSN (line))
if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
{
line_note_head[b] = line;
break;
}
/* Do a forward search as well, since we won't get to see the first
notes in a basic block. */
for (line = BLOCK_HEAD (b); line; line = NEXT_INSN (line))
{
if (INSN_P (line))
break;
if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
line_note_head[b] = line;
}
}
}
/* Find units used in this fuction, for visualization. */
if (sched_verbose)
init_target_units ();
/* ??? Add a NOTE after the last insn of the last basic block. It is not
known why this is done. */
insn = BLOCK_END (n_basic_blocks - 1);
if (NEXT_INSN (insn) == 0
|| (GET_CODE (insn) != NOTE
&& GET_CODE (insn) != CODE_LABEL
/* Don't emit a NOTE if it would end up before a BARRIER. */
&& GET_CODE (NEXT_INSN (insn)) != BARRIER))
emit_note_after (NOTE_INSN_DELETED, BLOCK_END (n_basic_blocks - 1));
/* Compute INSN_REG_WEIGHT for all blocks. We must do this before
removing death notes. */
for (b = n_basic_blocks - 1; b >= 0; b--)
find_insn_reg_weight (b);
}
/* Free global data used during insn scheduling. */
void
sched_finish ()
{
free (h_i_d);
free_dependency_caches ();
end_alias_analysis ();
if (write_symbols != NO_DEBUG)
free (line_note_head);
}
#endif /* INSN_SCHEDULING */
|