1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
|
/* Gimple Represented as Polyhedra.
Copyright (C) 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
Contributed by Sebastian Pop <sebastian.pop@inria.fr>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_GRAPHITE_H
#define GCC_GRAPHITE_H
#include "tree-data-ref.h"
int ref_nb_loops (data_reference_p);
typedef struct graphite_bb *graphite_bb_p;
DEF_VEC_P(graphite_bb_p);
DEF_VEC_ALLOC_P (graphite_bb_p, heap);
DEF_VEC_P(scop_p);
DEF_VEC_ALLOC_P (scop_p, heap);
static inline int scop_nb_loops (scop_p scop);
static inline unsigned scop_nb_params (scop_p scop);
static inline bool scop_contains_loop (scop_p scop, struct loop *loop);
typedef struct graphite_bb
{
basic_block bb;
scop_p scop;
/* The static schedule contains the textual order for every loop layer.
Example:
S0
for (i ...)
{
S1
for (j ...)
{
S2
S3
}
S4
}
S5
for (k ...)
{
S6
S7
for (l ...)
{
S8
}
S9
}
S10
Schedules:
| Depth
BB | 0 1 2
------------
S0 | 0
S1 | 1, 0
S2 | 1, 1, 0
S3 | 1, 1, 1
S4 | 1, 2
S5 | 2
S6 | 3, 0
S7 | 3, 1
S8 | 3, 2, 0
S9 | 3, 3
S10| 4
Normalization rules:
- One SCoP can never contain two bbs with the same schedule timestamp.
- All bbs at the same loop depth have a consecutive ordering (no gaps). */
lambda_vector static_schedule;
/* The iteration domain of this bb. It contains this columns:
- In/Eq: If this line is a equation or inequation.
- For every loop iterator one column.
- One column for every parameter in this SCoP.
- The constant column to add integers to the (in)equations.
Example:
for (i = a - 7*b + 8; i <= 3*a + 13*b + 20; i++)
for (j = 2; j <= 2*i + 5; j++)
for (k = 0; k <= 5; k++)
S (i,j,k)
Loop iterators: i, j, k
Parameters: a, b
(I)eq i j k a b 1
1 1 0 0 -1 7 -8 # i >= a - 7b + 8
1 -1 0 0 3 13 20 # i <= 3a + 13b + 20
1 0 1 0 0 0 -2 # j >= 2
1 2 -1 0 0 0 5 # j <= 2i + 5
1 0 0 1 0 0 0 # k >= 0
1 0 0 -1 0 0 5 # k <= 5
The number of loop iterators may change and is not connected to the
number of loops, that surrounded this bb in the gimple code. */
CloogMatrix *domain;
/* Lists containing the restrictions of the conditional statements
dominating this bb. This bb can only be executed, if all conditions
are true.
Example:
for (i = 0; i <= 20; i++)
{
A
if (2i <= 8)
B
}
So for B there is an additional condition (2i <= 8).
TODO: Add these restrictions to the domain matrix.
List of COND_EXPR and SWITCH_EXPR. A COND_EXPR is true only if the
corresponding element in CONDITION_CASES is not NULL_TREE. For a
SWITCH_EXPR the corresponding element in CONDITION_CASES is a
CASE_LABEL_EXPR. */
VEC (gimple, heap) *conditions;
VEC (gimple, heap) *condition_cases;
/* LOOPS contains for every column in the graphite domain the corresponding
gimple loop. If there exists no corresponding gimple loop LOOPS contains
NULL.
Example:
Original code:
for (i = 0; i <= 20; i++)
for (j = 5; j <= 10; j++)
A
Original domain:
(I)eq i j 1
1 1 0 0 # i >= 0
1 -1 0 20 # i <= 20
1 0 1 0 # j >= 0
1 0 -1 10 # j <= 10
Original loops vector:
0 1
Loop i Loop j
After some changes (Exchange i and j, strip-mine i):
Domain:
(I)eq j ii i k 1
1 0 0 1 0 0 # i >= 0
1 0 0 -1 0 20 # i <= 20
1 1 0 0 0 0 # j >= 0
1 -1 0 0 0 10 # j <= 10
1 0 -1 1 0 0 # ii <= i
1 0 1 -1 0 1 # ii + 1 >= i
1 0 -1 0 2 0 # ii <= 2k
1 0 1 0 -2 0 # ii >= 2k
Iterator vector:
0 1 2 3
Loop j NULL Loop i NULL
Means the original loop i is now at column two of the domain and
loop j in the original loop nest is now at column 0. Column 1 and
3 are emtpy. */
VEC (loop_p, heap) *loops;
lambda_vector compressed_alpha_matrix;
CloogMatrix *dynamic_schedule;
VEC (data_reference_p, heap) *data_refs;
htab_t cloog_iv_types;
} *gbb_p;
#define GBB_BB(GBB) GBB->bb
#define GBB_SCOP(GBB) GBB->scop
#define GBB_STATIC_SCHEDULE(GBB) GBB->static_schedule
#define GBB_DATA_REFS(GBB) GBB->data_refs
#define GBB_ALPHA(GBB) GBB->compressed_alpha_matrix
#define GBB_DYNAMIC_SCHEDULE(GBB) GBB->dynamic_schedule
#define GBB_DOMAIN(GBB) GBB->domain
#define GBB_CONDITIONS(GBB) GBB->conditions
#define GBB_CONDITION_CASES(GBB) GBB->condition_cases
#define GBB_LOOPS(GBB) GBB->loops
#define GBB_CLOOG_IV_TYPES(GBB) GBB->cloog_iv_types
/* Return the loop that contains the basic block GBB. */
static inline struct loop *
gbb_loop (struct graphite_bb *gbb)
{
return GBB_BB (gbb)->loop_father;
}
int nb_loops_around_gb (graphite_bb_p);
/* Calculate the number of loops around GB in the current SCOP. Only
works if GBB_DOMAIN is built. */
static inline int
gbb_nb_loops (const struct graphite_bb *gb)
{
scop_p scop = GBB_SCOP (gb);
if (GBB_DOMAIN (gb) == NULL)
return 0;
return GBB_DOMAIN (gb)->NbColumns - scop_nb_params (scop) - 2;
}
/* Returns the gimple loop, that corresponds to the loop_iterator_INDEX.
If there is no corresponding gimple loop, we return NULL. */
static inline loop_p
gbb_loop_at_index (graphite_bb_p gb, int index)
{
return VEC_index (loop_p, GBB_LOOPS (gb), index);
}
/* Returns the index of LOOP in the loop nest around GB. */
static inline int
gbb_loop_index (graphite_bb_p gb, loop_p loop)
{
int i;
loop_p l;
for (i = 0; VEC_iterate (loop_p, GBB_LOOPS (gb), i, l); i++)
if (loop == l)
return i;
gcc_unreachable();
}
struct loop_to_cloog_loop_str
{
unsigned int loop_num;
unsigned int loop_position; /* The column that represents this loop. */
CloogLoop *cloog_loop;
};
typedef struct name_tree
{
tree t;
const char *name;
struct loop *loop;
} *name_tree;
DEF_VEC_P(name_tree);
DEF_VEC_ALLOC_P (name_tree, heap);
/* A Single Entry, Single Exit region is a part of the CFG delimited
by two edges. */
typedef struct sese
{
/* Single ENTRY and single EXIT from the SESE region. */
edge entry, exit;
/* REGION_BASIC_BLOCKS contains the set of all the basic blocks
belonging to the SESE region. */
struct pointer_set_t *region_basic_blocks;
/* An SSA_NAME version is flagged in the LIVEOUT bitmap if the
SSA_NAME is defined inside and used outside the SESE region. */
bitmap liveout;
/* The overall number of SSA_NAME versions used to index LIVEIN. */
int num_ver;
/* For each SSA_NAME version VER in LIVEOUT, LIVEIN[VER] contains
the set of basic blocks indices that contain a use of VER. */
bitmap *livein;
} *sese;
#define SESE_ENTRY(S) (S->entry)
#define SESE_EXIT(S) (S->exit)
#define SESE_REGION_BBS(S) (S->region_basic_blocks)
#define SESE_LIVEOUT(S) (S->liveout)
#define SESE_LIVEIN(S) (S->livein)
#define SESE_LIVEIN_VER(S, I) (S->livein[I])
#define SESE_NUM_VER(S) (S->num_ver)
extern sese new_sese (edge, edge);
extern void free_sese (sese);
extern void sese_build_livein_liveouts (sese);
/* A SCOP is a Static Control Part of the program, simple enough to be
represented in polyhedral form. */
struct scop
{
/* A SCOP is defined as a SESE region. */
sese region;
/* All the basic blocks in this scop that contain memory references
and that will be represented as statements in the polyhedral
representation. */
VEC (graphite_bb_p, heap) *bbs;
lambda_vector static_schedule;
/* Parameters used within the SCOP. */
VEC (name_tree, heap) *params;
/* A collection of old induction variables*/
VEC (name_tree, heap) *old_ivs;
/* Loops completely contained in the SCOP. */
bitmap loops;
VEC (loop_p, heap) *loop_nest;
/* ??? It looks like a global mapping loop_id -> cloog_loop would work. */
htab_t loop2cloog_loop;
/* Cloog representation of this scop. */
CloogProgram *program;
/* Are we allowed to add more params? This is for debugging purpose. We
can only add new params before generating the bb domains, otherwise they
become invalid. */
bool add_params;
/* LIVEOUT_RENAMES registers the rename mapping that has to be
applied after code generation. */
htab_t liveout_renames;
};
#define SCOP_BBS(S) S->bbs
#define SCOP_REGION(S) S->region
/* SCOP_ENTRY bb dominates all the bbs of the scop. SCOP_EXIT bb
post-dominates all the bbs of the scop. SCOP_EXIT potentially
contains non affine data accesses, side effect statements or
difficult constructs, and thus is not considered part of the scop,
but just a boundary. SCOP_ENTRY is considered part of the scop. */
#define SCOP_ENTRY(S) (SESE_ENTRY (SCOP_REGION (S))->dest)
#define SCOP_EXIT(S) (SESE_EXIT (SCOP_REGION (S))->dest)
#define SCOP_REGION_BBS(S) (SESE_REGION_BBS (SCOP_REGION (S)))
#define SCOP_STATIC_SCHEDULE(S) S->static_schedule
#define SCOP_LOOPS(S) S->loops
#define SCOP_LOOP_NEST(S) S->loop_nest
#define SCOP_ADD_PARAMS(S) S->add_params
#define SCOP_PARAMS(S) S->params
#define SCOP_OLDIVS(S) S->old_ivs
#define SCOP_PROG(S) S->program
#define SCOP_LOOP2CLOOG_LOOP(S) S->loop2cloog_loop
#define SCOP_LOOPS_MAPPING(S) S->loops_mapping
#define SCOP_LIVEOUT_RENAMES(S) S->liveout_renames
extern void debug_scop (scop_p, int);
extern void debug_scops (int);
extern void print_graphite_bb (FILE *, graphite_bb_p, int, int);
extern void debug_gbb (graphite_bb_p, int);
extern void dot_scop (scop_p);
extern void dot_all_scops (void);
extern void debug_clast_stmt (struct clast_stmt *);
extern void debug_rename_map (htab_t);
extern void debug_ivtype_map (htab_t);
extern void debug_loop_vec (graphite_bb_p);
extern void debug_oldivs (scop_p);
/* Describes the type of an iv stack entry. */
typedef enum {
iv_stack_entry_unknown = 0,
iv_stack_entry_iv,
iv_stack_entry_const
} iv_stack_entry_kind;
/* Data contained in an iv stack entry. */
typedef union iv_stack_entry_data_union
{
name_tree iv;
tree constant;
} iv_stack_entry_data;
/* Datatype for loop iv stack entry. */
typedef struct iv_stack_entry_struct
{
iv_stack_entry_kind kind;
iv_stack_entry_data data;
} iv_stack_entry;
typedef iv_stack_entry *iv_stack_entry_p;
DEF_VEC_P(iv_stack_entry_p);
DEF_VEC_ALLOC_P(iv_stack_entry_p,heap);
typedef VEC(iv_stack_entry_p, heap) **loop_iv_stack;
extern void debug_loop_iv_stack (loop_iv_stack);
/* Return the old induction variable of the LOOP that is in normal
form in SCOP. */
static inline tree
oldiv_for_loop (scop_p scop, loop_p loop)
{
int i;
name_tree iv;
if (!loop)
return NULL_TREE;
for (i = 0; VEC_iterate (name_tree, SCOP_OLDIVS (scop), i, iv); i++)
if (iv->loop == loop)
return iv->t;
return NULL_TREE;
}
/* Return the number of gimple loops contained in SCOP. */
static inline int
scop_nb_loops (scop_p scop)
{
return VEC_length (loop_p, SCOP_LOOP_NEST (scop));
}
/* Returns the number of parameters for SCOP. */
static inline unsigned
scop_nb_params (scop_p scop)
{
return VEC_length (name_tree, SCOP_PARAMS (scop));
}
/* Return the dimension of the domains for SCOP. */
static inline int
scop_dim_domain (scop_p scop)
{
return scop_nb_loops (scop) + scop_nb_params (scop) + 1;
}
/* Return the dimension of the domains for GB. */
static inline int
gbb_dim_domain (graphite_bb_p gb)
{
return scop_dim_domain (GBB_SCOP (gb));
}
/* Returns the dimensionality of a loop iteration domain for a given
loop, identified by LOOP_NUM, with respect to SCOP. */
static inline int
loop_domain_dim (unsigned int loop_num, scop_p scop)
{
struct loop_to_cloog_loop_str tmp, *slot;
htab_t tab = SCOP_LOOP2CLOOG_LOOP (scop);
tmp.loop_num = loop_num;
slot = (struct loop_to_cloog_loop_str *) htab_find (tab, &tmp);
/* The loop containing the entry of the scop is not always part of
the SCoP, and it is not registered in SCOP_LOOP2CLOOG_LOOP. */
if (!slot)
return scop_nb_params (scop) + 2;
return cloog_domain_dim (cloog_loop_domain (slot->cloog_loop)) + 2;
}
/* Returns the dimensionality of a loop iteration vector in a loop
iteration domain for a given loop (identified by LOOP_NUM) with
respect to SCOP. */
static inline int
loop_iteration_vector_dim (unsigned int loop_num, scop_p scop)
{
return loop_domain_dim (loop_num, scop) - 2 - scop_nb_params (scop);
}
/* Checks, if SCOP contains LOOP. */
static inline bool
scop_contains_loop (scop_p scop, struct loop *loop)
{
return bitmap_bit_p (SCOP_LOOPS (scop), loop->num);
}
/* Returns the index of LOOP in the domain matrix for the SCOP. */
static inline int
scop_loop_index (scop_p scop, struct loop *loop)
{
unsigned i;
struct loop *l;
gcc_assert (scop_contains_loop (scop, loop));
for (i = 0; VEC_iterate (loop_p, SCOP_LOOP_NEST (scop), i, l); i++)
if (l == loop)
return i;
gcc_unreachable();
}
/* Return the index of innermost loop that contains the basic block
GBB. */
static inline int
gbb_inner_most_loop_index (scop_p scop, graphite_bb_p gb)
{
return scop_loop_index(scop, gbb_loop (gb));
}
/* Return the outermost loop that contains the loop LOOP. The outer
loops are searched until a sibling for the outer loop is found. */
static struct loop *
outer_most_loop_1 (scop_p scop, struct loop* loop, struct loop* current_outer)
{
return (!scop_contains_loop (scop, loop)) ? current_outer :
(loop->next != NULL) ? loop :
outer_most_loop_1 (scop, loop_outer (loop), loop);
}
/* Return the outermost loop that contains the loop LOOP. */
static struct loop *
outer_most_loop (scop_p scop, struct loop *loop)
{
return outer_most_loop_1 (scop, loop, NULL);
}
/* Return the index of the outermost loop that contains the basic
block BB. */
static inline int
gbb_outer_most_loop_index (scop_p scop, graphite_bb_p gb)
{
return scop_loop_index (scop, outer_most_loop (scop, gbb_loop (gb)));
}
/* Return the loop depth of LOOP in SCOP. */
static inline unsigned int
scop_gimple_loop_depth (scop_p scop, loop_p loop)
{
unsigned int depth = 0;
loop = loop_outer (loop);
while (scop_contains_loop (scop, loop))
{
depth++;
loop = loop_outer (loop);
}
return depth;
}
#endif /* GCC_GRAPHITE_H */
|