1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
|
/* Gimple Represented as Polyhedra.
Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
Contributed by Sebastian Pop <sebastian.pop@inria.fr>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* This pass converts GIMPLE to GRAPHITE, performs some loop
transformations and then converts the resulting representation back
to GIMPLE.
An early description of this pass can be found in the GCC Summit'06
paper "GRAPHITE: Polyhedral Analyses and Optimizations for GCC".
The wiki page http://gcc.gnu.org/wiki/Graphite contains pointers to
the related work.
One important document to read is CLooG's internal manual:
http://repo.or.cz/w/cloog-ppl.git?a=blob_plain;f=doc/cloog.texi;hb=HEAD
that describes the data structure of loops used in this file, and
the functions that are used for transforming the code. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "rtl.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "timevar.h"
#include "cfgloop.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "tree-pass.h"
#include "value-prof.h"
#include "pointer-set.h"
#include "gimple.h"
#include "sese.h"
#include "predict.h"
#include "dbgcnt.h"
#ifdef HAVE_cloog
#include "cloog/cloog.h"
#include "ppl_c.h"
#include "graphite-cloog-compat.h"
#include "graphite-ppl.h"
#include "graphite.h"
#include "graphite-poly.h"
#include "graphite-scop-detection.h"
#include "graphite-clast-to-gimple.h"
#include "graphite-sese-to-poly.h"
/* Print global statistics to FILE. */
static void
print_global_statistics (FILE* file)
{
long n_bbs = 0;
long n_loops = 0;
long n_stmts = 0;
long n_conditions = 0;
long n_p_bbs = 0;
long n_p_loops = 0;
long n_p_stmts = 0;
long n_p_conditions = 0;
basic_block bb;
FOR_ALL_BB (bb)
{
gimple_stmt_iterator psi;
n_bbs++;
n_p_bbs += bb->count;
/* Ignore artificial surrounding loop. */
if (bb == bb->loop_father->header
&& bb->index != 0)
{
n_loops++;
n_p_loops += bb->count;
}
if (VEC_length (edge, bb->succs) > 1)
{
n_conditions++;
n_p_conditions += bb->count;
}
for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
{
n_stmts++;
n_p_stmts += bb->count;
}
}
fprintf (file, "\nGlobal statistics (");
fprintf (file, "BBS:%ld, ", n_bbs);
fprintf (file, "LOOPS:%ld, ", n_loops);
fprintf (file, "CONDITIONS:%ld, ", n_conditions);
fprintf (file, "STMTS:%ld)\n", n_stmts);
fprintf (file, "\nGlobal profiling statistics (");
fprintf (file, "BBS:%ld, ", n_p_bbs);
fprintf (file, "LOOPS:%ld, ", n_p_loops);
fprintf (file, "CONDITIONS:%ld, ", n_p_conditions);
fprintf (file, "STMTS:%ld)\n", n_p_stmts);
}
/* Print statistics for SCOP to FILE. */
static void
print_graphite_scop_statistics (FILE* file, scop_p scop)
{
long n_bbs = 0;
long n_loops = 0;
long n_stmts = 0;
long n_conditions = 0;
long n_p_bbs = 0;
long n_p_loops = 0;
long n_p_stmts = 0;
long n_p_conditions = 0;
basic_block bb;
FOR_ALL_BB (bb)
{
gimple_stmt_iterator psi;
loop_p loop = bb->loop_father;
if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
continue;
n_bbs++;
n_p_bbs += bb->count;
if (VEC_length (edge, bb->succs) > 1)
{
n_conditions++;
n_p_conditions += bb->count;
}
for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
{
n_stmts++;
n_p_stmts += bb->count;
}
if (loop->header == bb && loop_in_sese_p (loop, SCOP_REGION (scop)))
{
n_loops++;
n_p_loops += bb->count;
}
}
fprintf (file, "\nSCoP statistics (");
fprintf (file, "BBS:%ld, ", n_bbs);
fprintf (file, "LOOPS:%ld, ", n_loops);
fprintf (file, "CONDITIONS:%ld, ", n_conditions);
fprintf (file, "STMTS:%ld)\n", n_stmts);
fprintf (file, "\nSCoP profiling statistics (");
fprintf (file, "BBS:%ld, ", n_p_bbs);
fprintf (file, "LOOPS:%ld, ", n_p_loops);
fprintf (file, "CONDITIONS:%ld, ", n_p_conditions);
fprintf (file, "STMTS:%ld)\n", n_p_stmts);
}
/* Print statistics for SCOPS to FILE. */
static void
print_graphite_statistics (FILE* file, VEC (scop_p, heap) *scops)
{
int i;
scop_p scop;
FOR_EACH_VEC_ELT (scop_p, scops, i, scop)
print_graphite_scop_statistics (file, scop);
}
/* Initialize graphite: when there are no loops returns false. */
static bool
graphite_initialize (void)
{
int ppl_initialized;
if (number_of_loops () <= 1
/* FIXME: This limit on the number of basic blocks of a function
should be removed when the SCOP detection is faster. */
|| n_basic_blocks > PARAM_VALUE (PARAM_GRAPHITE_MAX_BBS_PER_FUNCTION))
{
if (dump_file && (dump_flags & TDF_DETAILS))
print_global_statistics (dump_file);
return false;
}
scev_reset ();
recompute_all_dominators ();
initialize_original_copy_tables ();
ppl_initialized = ppl_initialize ();
gcc_assert (ppl_initialized == 0);
cloog_initialize ();
if (dump_file && dump_flags)
dump_function_to_file (current_function_decl, dump_file, dump_flags);
return true;
}
/* Finalize graphite: perform CFG cleanup when NEED_CFG_CLEANUP_P is
true. */
static void
graphite_finalize (bool need_cfg_cleanup_p)
{
if (need_cfg_cleanup_p)
{
scev_reset ();
cleanup_tree_cfg ();
profile_status = PROFILE_ABSENT;
release_recorded_exits ();
tree_estimate_probability ();
}
cloog_finalize ();
ppl_finalize ();
free_original_copy_tables ();
if (dump_file && dump_flags)
print_loops (dump_file, 3);
}
/* Perform a set of linear transforms on the loops of the current
function. */
void
graphite_transform_loops (void)
{
int i;
scop_p scop;
bool need_cfg_cleanup_p = false;
VEC (scop_p, heap) *scops = NULL;
htab_t bb_pbb_mapping;
if (!graphite_initialize ())
return;
build_scops (&scops);
if (dump_file && (dump_flags & TDF_DETAILS))
{
print_graphite_statistics (dump_file, scops);
print_global_statistics (dump_file);
}
bb_pbb_mapping = htab_create (10, bb_pbb_map_hash, eq_bb_pbb_map, free);
FOR_EACH_VEC_ELT (scop_p, scops, i, scop)
if (dbg_cnt (graphite_scop))
{
build_poly_scop (scop);
if (POLY_SCOP_P (scop)
&& apply_poly_transforms (scop)
&& gloog (scop, bb_pbb_mapping))
need_cfg_cleanup_p = true;
}
htab_delete (bb_pbb_mapping);
free_scops (scops);
graphite_finalize (need_cfg_cleanup_p);
}
#else /* If Cloog is not available: #ifndef HAVE_cloog. */
void
graphite_transform_loops (void)
{
sorry ("Graphite loop optimizations cannot be used");
}
#endif
|