1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
|
/* Detection of Static Control Parts (SCoP) for Graphite.
Copyright (C) 2009, 2010 Free Software Foundation, Inc.
Contributed by Sebastian Pop <sebastian.pop@amd.com> and
Tobias Grosser <grosser@fim.uni-passau.de>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tree-flow.h"
#include "cfgloop.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "tree-pass.h"
#include "sese.h"
#ifdef HAVE_cloog
#include "ppl_c.h"
#include "graphite-ppl.h"
#include "graphite-poly.h"
#include "graphite-scop-detection.h"
/* The type of the analyzed basic block. */
typedef enum gbb_type {
GBB_UNKNOWN,
GBB_LOOP_SING_EXIT_HEADER,
GBB_LOOP_MULT_EXIT_HEADER,
GBB_LOOP_EXIT,
GBB_COND_HEADER,
GBB_SIMPLE,
GBB_LAST
} gbb_type;
/* Detect the type of BB. Loop headers are only marked, if they are
new. This means their loop_father is different to LAST_LOOP.
Otherwise they are treated like any other bb and their type can be
any other type. */
static gbb_type
get_bb_type (basic_block bb, struct loop *last_loop)
{
VEC (basic_block, heap) *dom;
int nb_dom, nb_suc;
struct loop *loop = bb->loop_father;
/* Check, if we entry into a new loop. */
if (loop != last_loop)
{
if (single_exit (loop) != NULL)
return GBB_LOOP_SING_EXIT_HEADER;
else if (loop->num != 0)
return GBB_LOOP_MULT_EXIT_HEADER;
else
return GBB_COND_HEADER;
}
dom = get_dominated_by (CDI_DOMINATORS, bb);
nb_dom = VEC_length (basic_block, dom);
VEC_free (basic_block, heap, dom);
if (nb_dom == 0)
return GBB_LAST;
nb_suc = VEC_length (edge, bb->succs);
if (nb_dom == 1 && nb_suc == 1)
return GBB_SIMPLE;
return GBB_COND_HEADER;
}
/* A SCoP detection region, defined using bbs as borders.
All control flow touching this region, comes in passing basic_block
ENTRY and leaves passing basic_block EXIT. By using bbs instead of
edges for the borders we are able to represent also regions that do
not have a single entry or exit edge.
But as they have a single entry basic_block and a single exit
basic_block, we are able to generate for every sd_region a single
entry and exit edge.
1 2
\ /
3 <- entry
|
4
/ \ This region contains: {3, 4, 5, 6, 7, 8}
5 6
| |
7 8
\ /
9 <- exit */
typedef struct sd_region_p
{
/* The entry bb dominates all bbs in the sd_region. It is part of
the region. */
basic_block entry;
/* The exit bb postdominates all bbs in the sd_region, but is not
part of the region. */
basic_block exit;
} sd_region;
DEF_VEC_O(sd_region);
DEF_VEC_ALLOC_O(sd_region, heap);
/* Moves the scops from SOURCE to TARGET and clean up SOURCE. */
static void
move_sd_regions (VEC (sd_region, heap) **source,
VEC (sd_region, heap) **target)
{
sd_region *s;
int i;
FOR_EACH_VEC_ELT (sd_region, *source, i, s)
VEC_safe_push (sd_region, heap, *target, s);
VEC_free (sd_region, heap, *source);
}
/* Something like "n * m" is not allowed. */
static bool
graphite_can_represent_init (tree e)
{
switch (TREE_CODE (e))
{
case POLYNOMIAL_CHREC:
return graphite_can_represent_init (CHREC_LEFT (e))
&& graphite_can_represent_init (CHREC_RIGHT (e));
case MULT_EXPR:
if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
return graphite_can_represent_init (TREE_OPERAND (e, 0))
&& host_integerp (TREE_OPERAND (e, 1), 0);
else
return graphite_can_represent_init (TREE_OPERAND (e, 1))
&& host_integerp (TREE_OPERAND (e, 0), 0);
case PLUS_EXPR:
case POINTER_PLUS_EXPR:
case MINUS_EXPR:
return graphite_can_represent_init (TREE_OPERAND (e, 0))
&& graphite_can_represent_init (TREE_OPERAND (e, 1));
case NEGATE_EXPR:
case BIT_NOT_EXPR:
CASE_CONVERT:
case NON_LVALUE_EXPR:
return graphite_can_represent_init (TREE_OPERAND (e, 0));
default:
break;
}
return true;
}
/* Return true when SCEV can be represented in the polyhedral model.
An expression can be represented, if it can be expressed as an
affine expression. For loops (i, j) and parameters (m, n) all
affine expressions are of the form:
x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
1 i + 20 j + (-2) m + 25
Something like "i * n" or "n * m" is not allowed. */
static bool
graphite_can_represent_scev (tree scev)
{
if (chrec_contains_undetermined (scev))
return false;
switch (TREE_CODE (scev))
{
case PLUS_EXPR:
case MINUS_EXPR:
return graphite_can_represent_scev (TREE_OPERAND (scev, 0))
&& graphite_can_represent_scev (TREE_OPERAND (scev, 1));
case MULT_EXPR:
return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 0)))
&& !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 1)))
&& !(chrec_contains_symbols (TREE_OPERAND (scev, 0))
&& chrec_contains_symbols (TREE_OPERAND (scev, 1)))
&& graphite_can_represent_init (scev)
&& graphite_can_represent_scev (TREE_OPERAND (scev, 0))
&& graphite_can_represent_scev (TREE_OPERAND (scev, 1));
case POLYNOMIAL_CHREC:
/* Check for constant strides. With a non constant stride of
'n' we would have a value of 'iv * n'. Also check that the
initial value can represented: for example 'n * m' cannot be
represented. */
if (!evolution_function_right_is_integer_cst (scev)
|| !graphite_can_represent_init (scev))
return false;
default:
break;
}
/* Only affine functions can be represented. */
if (!scev_is_linear_expression (scev))
return false;
return true;
}
/* Return true when EXPR can be represented in the polyhedral model.
This means an expression can be represented, if it is linear with
respect to the loops and the strides are non parametric.
LOOP is the place where the expr will be evaluated. SCOP_ENTRY defines the
entry of the region we analyse. */
static bool
graphite_can_represent_expr (basic_block scop_entry, loop_p loop,
tree expr)
{
tree scev = analyze_scalar_evolution (loop, expr);
scev = instantiate_scev (scop_entry, loop, scev);
return graphite_can_represent_scev (scev);
}
/* Return true if the data references of STMT can be represented by
Graphite. */
static bool
stmt_has_simple_data_refs_p (loop_p outermost_loop, gimple stmt)
{
data_reference_p dr;
unsigned i;
int j;
bool res = true;
VEC (data_reference_p, heap) *drs = VEC_alloc (data_reference_p, heap, 5);
graphite_find_data_references_in_stmt (outermost_loop, stmt, &drs);
FOR_EACH_VEC_ELT (data_reference_p, drs, j, dr)
for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
if (!graphite_can_represent_scev (DR_ACCESS_FN (dr, i)))
{
res = false;
goto done;
}
done:
free_data_refs (drs);
return res;
}
/* Return true only when STMT is simple enough for being handled by
Graphite. This depends on SCOP_ENTRY, as the parameters are
initialized relatively to this basic block, the linear functions
are initialized to OUTERMOST_LOOP and BB is the place where we try
to evaluate the STMT. */
static bool
stmt_simple_for_scop_p (basic_block scop_entry, loop_p outermost_loop,
gimple stmt, basic_block bb)
{
loop_p loop = bb->loop_father;
gcc_assert (scop_entry);
/* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
Calls have side-effects, except those to const or pure
functions. */
if (gimple_has_volatile_ops (stmt)
|| (gimple_code (stmt) == GIMPLE_CALL
&& !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
|| (gimple_code (stmt) == GIMPLE_ASM))
return false;
if (is_gimple_debug (stmt))
return true;
if (!stmt_has_simple_data_refs_p (outermost_loop, stmt))
return false;
switch (gimple_code (stmt))
{
case GIMPLE_RETURN:
case GIMPLE_LABEL:
return true;
case GIMPLE_COND:
{
tree op;
ssa_op_iter op_iter;
enum tree_code code = gimple_cond_code (stmt);
/* We can handle all binary comparisons. Inequalities are
also supported as they can be represented with union of
polyhedra. */
if (!(code == LT_EXPR
|| code == GT_EXPR
|| code == LE_EXPR
|| code == GE_EXPR
|| code == EQ_EXPR
|| code == NE_EXPR))
return false;
FOR_EACH_SSA_TREE_OPERAND (op, stmt, op_iter, SSA_OP_ALL_USES)
if (!graphite_can_represent_expr (scop_entry, loop, op)
/* We can not handle REAL_TYPE. Failed for pr39260. */
|| TREE_CODE (TREE_TYPE (op)) == REAL_TYPE)
return false;
return true;
}
case GIMPLE_ASSIGN:
case GIMPLE_CALL:
return true;
default:
/* These nodes cut a new scope. */
return false;
}
return false;
}
/* Returns the statement of BB that contains a harmful operation: that
can be a function call with side effects, the induction variables
are not linear with respect to SCOP_ENTRY, etc. The current open
scop should end before this statement. The evaluation is limited using
OUTERMOST_LOOP as outermost loop that may change. */
static gimple
harmful_stmt_in_bb (basic_block scop_entry, loop_p outer_loop, basic_block bb)
{
gimple_stmt_iterator gsi;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
if (!stmt_simple_for_scop_p (scop_entry, outer_loop, gsi_stmt (gsi), bb))
return gsi_stmt (gsi);
return NULL;
}
/* Return true if LOOP can be represented in the polyhedral
representation. This is evaluated taking SCOP_ENTRY and
OUTERMOST_LOOP in mind. */
static bool
graphite_can_represent_loop (basic_block scop_entry, loop_p loop)
{
tree niter = number_of_latch_executions (loop);
/* Number of iterations unknown. */
if (chrec_contains_undetermined (niter))
return false;
/* Number of iterations not affine. */
if (!graphite_can_represent_expr (scop_entry, loop, niter))
return false;
return true;
}
/* Store information needed by scopdet_* functions. */
struct scopdet_info
{
/* Exit of the open scop would stop if the current BB is harmful. */
basic_block exit;
/* Where the next scop would start if the current BB is harmful. */
basic_block next;
/* The bb or one of its children contains open loop exits. That means
loop exit nodes that are not surrounded by a loop dominated by bb. */
bool exits;
/* The bb or one of its children contains only structures we can handle. */
bool difficult;
};
static struct scopdet_info build_scops_1 (basic_block, loop_p,
VEC (sd_region, heap) **, loop_p);
/* Calculates BB infos. If bb is difficult we add valid SCoPs dominated by BB
to SCOPS. TYPE is the gbb_type of BB. */
static struct scopdet_info
scopdet_basic_block_info (basic_block bb, loop_p outermost_loop,
VEC (sd_region, heap) **scops, gbb_type type)
{
loop_p loop = bb->loop_father;
struct scopdet_info result;
gimple stmt;
/* XXX: ENTRY_BLOCK_PTR could be optimized in later steps. */
basic_block entry_block = ENTRY_BLOCK_PTR;
stmt = harmful_stmt_in_bb (entry_block, outermost_loop, bb);
result.difficult = (stmt != NULL);
result.exit = NULL;
switch (type)
{
case GBB_LAST:
result.next = NULL;
result.exits = false;
/* Mark bbs terminating a SESE region difficult, if they start
a condition. */
if (!single_succ_p (bb))
result.difficult = true;
else
result.exit = single_succ (bb);
break;
case GBB_SIMPLE:
result.next = single_succ (bb);
result.exits = false;
result.exit = single_succ (bb);
break;
case GBB_LOOP_SING_EXIT_HEADER:
{
VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
struct scopdet_info sinfo;
edge exit_e = single_exit (loop);
sinfo = build_scops_1 (bb, outermost_loop, ®ions, loop);
if (!graphite_can_represent_loop (entry_block, loop))
result.difficult = true;
result.difficult |= sinfo.difficult;
/* Try again with another loop level. */
if (result.difficult
&& loop_depth (outermost_loop) + 1 == loop_depth (loop))
{
outermost_loop = loop;
VEC_free (sd_region, heap, regions);
regions = VEC_alloc (sd_region, heap, 3);
sinfo = scopdet_basic_block_info (bb, outermost_loop, scops, type);
result = sinfo;
result.difficult = true;
if (sinfo.difficult)
move_sd_regions (®ions, scops);
else
{
sd_region open_scop;
open_scop.entry = bb;
open_scop.exit = exit_e->dest;
VEC_safe_push (sd_region, heap, *scops, &open_scop);
VEC_free (sd_region, heap, regions);
}
}
else
{
result.exit = exit_e->dest;
result.next = exit_e->dest;
/* If we do not dominate result.next, remove it. It's either
the EXIT_BLOCK_PTR, or another bb dominates it and will
call the scop detection for this bb. */
if (!dominated_by_p (CDI_DOMINATORS, result.next, bb))
result.next = NULL;
if (exit_e->src->loop_father != loop)
result.next = NULL;
result.exits = false;
if (result.difficult)
move_sd_regions (®ions, scops);
else
VEC_free (sd_region, heap, regions);
}
break;
}
case GBB_LOOP_MULT_EXIT_HEADER:
{
/* XXX: For now we just do not join loops with multiple exits. If the
exits lead to the same bb it may be possible to join the loop. */
VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
VEC (edge, heap) *exits = get_loop_exit_edges (loop);
edge e;
int i;
build_scops_1 (bb, loop, ®ions, loop);
/* Scan the code dominated by this loop. This means all bbs, that are
are dominated by a bb in this loop, but are not part of this loop.
The easiest case:
- The loop exit destination is dominated by the exit sources.
TODO: We miss here the more complex cases:
- The exit destinations are dominated by another bb inside
the loop.
- The loop dominates bbs, that are not exit destinations. */
FOR_EACH_VEC_ELT (edge, exits, i, e)
if (e->src->loop_father == loop
&& dominated_by_p (CDI_DOMINATORS, e->dest, e->src))
{
if (loop_outer (outermost_loop))
outermost_loop = loop_outer (outermost_loop);
/* Pass loop_outer to recognize e->dest as loop header in
build_scops_1. */
if (e->dest->loop_father->header == e->dest)
build_scops_1 (e->dest, outermost_loop, ®ions,
loop_outer (e->dest->loop_father));
else
build_scops_1 (e->dest, outermost_loop, ®ions,
e->dest->loop_father);
}
result.next = NULL;
result.exit = NULL;
result.difficult = true;
result.exits = false;
move_sd_regions (®ions, scops);
VEC_free (edge, heap, exits);
break;
}
case GBB_COND_HEADER:
{
VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
struct scopdet_info sinfo;
VEC (basic_block, heap) *dominated;
int i;
basic_block dom_bb;
basic_block last_exit = NULL;
edge e;
result.exits = false;
/* First check the successors of BB, and check if it is
possible to join the different branches. */
FOR_EACH_VEC_ELT (edge, bb->succs, i, e)
{
/* Ignore loop exits. They will be handled after the loop
body. */
if (loop_exits_to_bb_p (loop, e->dest))
{
result.exits = true;
continue;
}
/* Do not follow edges that lead to the end of the
conditions block. For example, in
| 0
| /|\
| 1 2 |
| | | |
| 3 4 |
| \|/
| 6
the edge from 0 => 6. Only check if all paths lead to
the same node 6. */
if (!single_pred_p (e->dest))
{
/* Check, if edge leads directly to the end of this
condition. */
if (!last_exit)
last_exit = e->dest;
if (e->dest != last_exit)
result.difficult = true;
continue;
}
if (!dominated_by_p (CDI_DOMINATORS, e->dest, bb))
{
result.difficult = true;
continue;
}
sinfo = build_scops_1 (e->dest, outermost_loop, ®ions, loop);
result.exits |= sinfo.exits;
result.difficult |= sinfo.difficult;
/* Checks, if all branches end at the same point.
If that is true, the condition stays joinable.
Have a look at the example above. */
if (sinfo.exit)
{
if (!last_exit)
last_exit = sinfo.exit;
if (sinfo.exit != last_exit)
result.difficult = true;
}
else
result.difficult = true;
}
if (!last_exit)
result.difficult = true;
/* Join the branches of the condition if possible. */
if (!result.exits && !result.difficult)
{
/* Only return a next pointer if we dominate this pointer.
Otherwise it will be handled by the bb dominating it. */
if (dominated_by_p (CDI_DOMINATORS, last_exit, bb)
&& last_exit != bb)
result.next = last_exit;
else
result.next = NULL;
result.exit = last_exit;
VEC_free (sd_region, heap, regions);
break;
}
/* Scan remaining bbs dominated by BB. */
dominated = get_dominated_by (CDI_DOMINATORS, bb);
FOR_EACH_VEC_ELT (basic_block, dominated, i, dom_bb)
{
/* Ignore loop exits: they will be handled after the loop body. */
if (loop_depth (find_common_loop (loop, dom_bb->loop_father))
< loop_depth (loop))
{
result.exits = true;
continue;
}
/* Ignore the bbs processed above. */
if (single_pred_p (dom_bb) && single_pred (dom_bb) == bb)
continue;
if (loop_depth (loop) > loop_depth (dom_bb->loop_father))
sinfo = build_scops_1 (dom_bb, outermost_loop, ®ions,
loop_outer (loop));
else
sinfo = build_scops_1 (dom_bb, outermost_loop, ®ions, loop);
result.exits |= sinfo.exits;
result.difficult = true;
result.exit = NULL;
}
VEC_free (basic_block, heap, dominated);
result.next = NULL;
move_sd_regions (®ions, scops);
break;
}
default:
gcc_unreachable ();
}
return result;
}
/* Starting from CURRENT we walk the dominance tree and add new sd_regions to
SCOPS. The analyse if a sd_region can be handled is based on the value
of OUTERMOST_LOOP. Only loops inside OUTERMOST loops may change. LOOP
is the loop in which CURRENT is handled.
TODO: These functions got a little bit big. They definitely should be cleaned
up. */
static struct scopdet_info
build_scops_1 (basic_block current, loop_p outermost_loop,
VEC (sd_region, heap) **scops, loop_p loop)
{
bool in_scop = false;
sd_region open_scop;
struct scopdet_info sinfo;
/* Initialize result. */
struct scopdet_info result;
result.exits = false;
result.difficult = false;
result.next = NULL;
result.exit = NULL;
open_scop.entry = NULL;
open_scop.exit = NULL;
sinfo.exit = NULL;
/* Loop over the dominance tree. If we meet a difficult bb, close
the current SCoP. Loop and condition header start a new layer,
and can only be added if all bbs in deeper layers are simple. */
while (current != NULL)
{
sinfo = scopdet_basic_block_info (current, outermost_loop, scops,
get_bb_type (current, loop));
if (!in_scop && !(sinfo.exits || sinfo.difficult))
{
open_scop.entry = current;
open_scop.exit = NULL;
in_scop = true;
}
else if (in_scop && (sinfo.exits || sinfo.difficult))
{
open_scop.exit = current;
VEC_safe_push (sd_region, heap, *scops, &open_scop);
in_scop = false;
}
result.difficult |= sinfo.difficult;
result.exits |= sinfo.exits;
current = sinfo.next;
}
/* Try to close open_scop, if we are still in an open SCoP. */
if (in_scop)
{
open_scop.exit = sinfo.exit;
gcc_assert (open_scop.exit);
VEC_safe_push (sd_region, heap, *scops, &open_scop);
}
result.exit = sinfo.exit;
return result;
}
/* Checks if a bb is contained in REGION. */
static bool
bb_in_sd_region (basic_block bb, sd_region *region)
{
return bb_in_region (bb, region->entry, region->exit);
}
/* Returns the single entry edge of REGION, if it does not exits NULL. */
static edge
find_single_entry_edge (sd_region *region)
{
edge e;
edge_iterator ei;
edge entry = NULL;
FOR_EACH_EDGE (e, ei, region->entry->preds)
if (!bb_in_sd_region (e->src, region))
{
if (entry)
{
entry = NULL;
break;
}
else
entry = e;
}
return entry;
}
/* Returns the single exit edge of REGION, if it does not exits NULL. */
static edge
find_single_exit_edge (sd_region *region)
{
edge e;
edge_iterator ei;
edge exit = NULL;
FOR_EACH_EDGE (e, ei, region->exit->preds)
if (bb_in_sd_region (e->src, region))
{
if (exit)
{
exit = NULL;
break;
}
else
exit = e;
}
return exit;
}
/* Create a single entry edge for REGION. */
static void
create_single_entry_edge (sd_region *region)
{
if (find_single_entry_edge (region))
return;
/* There are multiple predecessors for bb_3
| 1 2
| | /
| |/
| 3 <- entry
| |\
| | |
| 4 ^
| | |
| |/
| 5
There are two edges (1->3, 2->3), that point from outside into the region,
and another one (5->3), a loop latch, lead to bb_3.
We split bb_3.
| 1 2
| | /
| |/
|3.0
| |\ (3.0 -> 3.1) = single entry edge
|3.1 | <- entry
| | |
| | |
| 4 ^
| | |
| |/
| 5
If the loop is part of the SCoP, we have to redirect the loop latches.
| 1 2
| | /
| |/
|3.0
| | (3.0 -> 3.1) = entry edge
|3.1 <- entry
| |\
| | |
| 4 ^
| | |
| |/
| 5 */
if (region->entry->loop_father->header != region->entry
|| dominated_by_p (CDI_DOMINATORS,
loop_latch_edge (region->entry->loop_father)->src,
region->exit))
{
edge forwarder = split_block_after_labels (region->entry);
region->entry = forwarder->dest;
}
else
/* This case is never executed, as the loop headers seem always to have a
single edge pointing from outside into the loop. */
gcc_unreachable ();
gcc_checking_assert (find_single_entry_edge (region));
}
/* Check if the sd_region, mentioned in EDGE, has no exit bb. */
static bool
sd_region_without_exit (edge e)
{
sd_region *r = (sd_region *) e->aux;
if (r)
return r->exit == NULL;
else
return false;
}
/* Create a single exit edge for REGION. */
static void
create_single_exit_edge (sd_region *region)
{
edge e;
edge_iterator ei;
edge forwarder = NULL;
basic_block exit;
/* We create a forwarder bb (5) for all edges leaving this region
(3->5, 4->5). All other edges leading to the same bb, are moved
to a new bb (6). If these edges where part of another region (2->5)
we update the region->exit pointer, of this region.
To identify which edge belongs to which region we depend on the e->aux
pointer in every edge. It points to the region of the edge or to NULL,
if the edge is not part of any region.
1 2 3 4 1->5 no region, 2->5 region->exit = 5,
\| |/ 3->5 region->exit = NULL, 4->5 region->exit = NULL
5 <- exit
changes to
1 2 3 4 1->6 no region, 2->6 region->exit = 6,
| | \/ 3->5 no region, 4->5 no region,
| | 5
\| / 5->6 region->exit = 6
6
Now there is only a single exit edge (5->6). */
exit = region->exit;
region->exit = NULL;
forwarder = make_forwarder_block (exit, &sd_region_without_exit, NULL);
/* Unmark the edges, that are no longer exit edges. */
FOR_EACH_EDGE (e, ei, forwarder->src->preds)
if (e->aux)
e->aux = NULL;
/* Mark the new exit edge. */
single_succ_edge (forwarder->src)->aux = region;
/* Update the exit bb of all regions, where exit edges lead to
forwarder->dest. */
FOR_EACH_EDGE (e, ei, forwarder->dest->preds)
if (e->aux)
((sd_region *) e->aux)->exit = forwarder->dest;
gcc_checking_assert (find_single_exit_edge (region));
}
/* Unmark the exit edges of all REGIONS.
See comment in "create_single_exit_edge". */
static void
unmark_exit_edges (VEC (sd_region, heap) *regions)
{
int i;
sd_region *s;
edge e;
edge_iterator ei;
FOR_EACH_VEC_ELT (sd_region, regions, i, s)
FOR_EACH_EDGE (e, ei, s->exit->preds)
e->aux = NULL;
}
/* Mark the exit edges of all REGIONS.
See comment in "create_single_exit_edge". */
static void
mark_exit_edges (VEC (sd_region, heap) *regions)
{
int i;
sd_region *s;
edge e;
edge_iterator ei;
FOR_EACH_VEC_ELT (sd_region, regions, i, s)
FOR_EACH_EDGE (e, ei, s->exit->preds)
if (bb_in_sd_region (e->src, s))
e->aux = s;
}
/* Create for all scop regions a single entry and a single exit edge. */
static void
create_sese_edges (VEC (sd_region, heap) *regions)
{
int i;
sd_region *s;
FOR_EACH_VEC_ELT (sd_region, regions, i, s)
create_single_entry_edge (s);
mark_exit_edges (regions);
FOR_EACH_VEC_ELT (sd_region, regions, i, s)
/* Don't handle multiple edges exiting the function. */
if (!find_single_exit_edge (s)
&& s->exit != EXIT_BLOCK_PTR)
create_single_exit_edge (s);
unmark_exit_edges (regions);
fix_loop_structure (NULL);
#ifdef ENABLE_CHECKING
verify_loop_structure ();
verify_dominators (CDI_DOMINATORS);
verify_ssa (false);
#endif
}
/* Create graphite SCoPs from an array of scop detection REGIONS. */
static void
build_graphite_scops (VEC (sd_region, heap) *regions,
VEC (scop_p, heap) **scops)
{
int i;
sd_region *s;
FOR_EACH_VEC_ELT (sd_region, regions, i, s)
{
edge entry = find_single_entry_edge (s);
edge exit = find_single_exit_edge (s);
scop_p scop;
if (!exit)
continue;
scop = new_scop (new_sese (entry, exit));
VEC_safe_push (scop_p, heap, *scops, scop);
/* Are there overlapping SCoPs? */
#ifdef ENABLE_CHECKING
{
int j;
sd_region *s2;
FOR_EACH_VEC_ELT (sd_region, regions, j, s2)
if (s != s2)
gcc_assert (!bb_in_sd_region (s->entry, s2));
}
#endif
}
}
/* Returns true when BB contains only close phi nodes. */
static bool
contains_only_close_phi_nodes (basic_block bb)
{
gimple_stmt_iterator gsi;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
if (gimple_code (gsi_stmt (gsi)) != GIMPLE_LABEL)
return false;
return true;
}
/* Print statistics for SCOP to FILE. */
static void
print_graphite_scop_statistics (FILE* file, scop_p scop)
{
long n_bbs = 0;
long n_loops = 0;
long n_stmts = 0;
long n_conditions = 0;
long n_p_bbs = 0;
long n_p_loops = 0;
long n_p_stmts = 0;
long n_p_conditions = 0;
basic_block bb;
FOR_ALL_BB (bb)
{
gimple_stmt_iterator psi;
loop_p loop = bb->loop_father;
if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
continue;
n_bbs++;
n_p_bbs += bb->count;
if (VEC_length (edge, bb->succs) > 1)
{
n_conditions++;
n_p_conditions += bb->count;
}
for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
{
n_stmts++;
n_p_stmts += bb->count;
}
if (loop->header == bb && loop_in_sese_p (loop, SCOP_REGION (scop)))
{
n_loops++;
n_p_loops += bb->count;
}
}
fprintf (file, "\nBefore limit_scops SCoP statistics (");
fprintf (file, "BBS:%ld, ", n_bbs);
fprintf (file, "LOOPS:%ld, ", n_loops);
fprintf (file, "CONDITIONS:%ld, ", n_conditions);
fprintf (file, "STMTS:%ld)\n", n_stmts);
fprintf (file, "\nBefore limit_scops SCoP profiling statistics (");
fprintf (file, "BBS:%ld, ", n_p_bbs);
fprintf (file, "LOOPS:%ld, ", n_p_loops);
fprintf (file, "CONDITIONS:%ld, ", n_p_conditions);
fprintf (file, "STMTS:%ld)\n", n_p_stmts);
}
/* Print statistics for SCOPS to FILE. */
static void
print_graphite_statistics (FILE* file, VEC (scop_p, heap) *scops)
{
int i;
scop_p scop;
FOR_EACH_VEC_ELT (scop_p, scops, i, scop)
print_graphite_scop_statistics (file, scop);
}
/* We limit all SCoPs to SCoPs, that are completely surrounded by a loop.
Example:
for (i |
{ |
for (j | SCoP 1
for (k |
} |
* SCoP frontier, as this line is not surrounded by any loop. *
for (l | SCoP 2
This is necessary as scalar evolution and parameter detection need a
outermost loop to initialize parameters correctly.
TODO: FIX scalar evolution and parameter detection to allow more flexible
SCoP frontiers. */
static void
limit_scops (VEC (scop_p, heap) **scops)
{
VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
int i;
scop_p scop;
FOR_EACH_VEC_ELT (scop_p, *scops, i, scop)
{
int j;
loop_p loop;
sese region = SCOP_REGION (scop);
build_sese_loop_nests (region);
FOR_EACH_VEC_ELT (loop_p, SESE_LOOP_NEST (region), j, loop)
if (!loop_in_sese_p (loop_outer (loop), region)
&& single_exit (loop))
{
sd_region open_scop;
open_scop.entry = loop->header;
open_scop.exit = single_exit (loop)->dest;
/* This is a hack on top of the limit_scops hack. The
limit_scops hack should disappear all together. */
if (single_succ_p (open_scop.exit)
&& contains_only_close_phi_nodes (open_scop.exit))
open_scop.exit = single_succ_edge (open_scop.exit)->dest;
VEC_safe_push (sd_region, heap, regions, &open_scop);
}
}
free_scops (*scops);
*scops = VEC_alloc (scop_p, heap, 3);
create_sese_edges (regions);
build_graphite_scops (regions, scops);
VEC_free (sd_region, heap, regions);
}
/* Returns true when P1 and P2 are close phis with the same
argument. */
static inline bool
same_close_phi_node (gimple p1, gimple p2)
{
return operand_equal_p (gimple_phi_arg_def (p1, 0),
gimple_phi_arg_def (p2, 0), 0);
}
/* Remove the close phi node at GSI and replace its rhs with the rhs
of PHI. */
static void
remove_duplicate_close_phi (gimple phi, gimple_stmt_iterator *gsi)
{
gimple use_stmt;
use_operand_p use_p;
imm_use_iterator imm_iter;
tree res = gimple_phi_result (phi);
tree def = gimple_phi_result (gsi_stmt (*gsi));
gcc_assert (same_close_phi_node (phi, gsi_stmt (*gsi)));
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
{
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
SET_USE (use_p, res);
update_stmt (use_stmt);
}
remove_phi_node (gsi, true);
}
/* Removes all the close phi duplicates from BB. */
static void
make_close_phi_nodes_unique (basic_block bb)
{
gimple_stmt_iterator psi;
for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
{
gimple_stmt_iterator gsi = psi;
gimple phi = gsi_stmt (psi);
/* At this point, PHI should be a close phi in normal form. */
gcc_assert (gimple_phi_num_args (phi) == 1);
/* Iterate over the next phis and remove duplicates. */
gsi_next (&gsi);
while (!gsi_end_p (gsi))
if (same_close_phi_node (phi, gsi_stmt (gsi)))
remove_duplicate_close_phi (phi, &gsi);
else
gsi_next (&gsi);
}
}
/* Transforms LOOP to the canonical loop closed SSA form. */
static void
canonicalize_loop_closed_ssa (loop_p loop)
{
edge e = single_exit (loop);
basic_block bb;
if (!e || e->flags & EDGE_ABNORMAL)
return;
bb = e->dest;
if (VEC_length (edge, bb->preds) == 1)
{
e = split_block_after_labels (bb);
make_close_phi_nodes_unique (e->src);
}
else
{
gimple_stmt_iterator psi;
basic_block close = split_edge (e);
e = single_succ_edge (close);
for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
{
gimple phi = gsi_stmt (psi);
unsigned i;
for (i = 0; i < gimple_phi_num_args (phi); i++)
if (gimple_phi_arg_edge (phi, i) == e)
{
tree res, arg = gimple_phi_arg_def (phi, i);
use_operand_p use_p;
gimple close_phi;
if (TREE_CODE (arg) != SSA_NAME)
continue;
close_phi = create_phi_node (arg, close);
res = create_new_def_for (gimple_phi_result (close_phi),
close_phi,
gimple_phi_result_ptr (close_phi));
add_phi_arg (close_phi, arg,
gimple_phi_arg_edge (close_phi, 0),
UNKNOWN_LOCATION);
use_p = gimple_phi_arg_imm_use_ptr (phi, i);
replace_exp (use_p, res);
update_stmt (phi);
}
}
make_close_phi_nodes_unique (close);
}
/* The code above does not properly handle changes in the post dominance
information (yet). */
free_dominance_info (CDI_POST_DOMINATORS);
}
/* Converts the current loop closed SSA form to a canonical form
expected by the Graphite code generation.
The loop closed SSA form has the following invariant: a variable
defined in a loop that is used outside the loop appears only in the
phi nodes in the destination of the loop exit. These phi nodes are
called close phi nodes.
The canonical loop closed SSA form contains the extra invariants:
- when the loop contains only one exit, the close phi nodes contain
only one argument. That implies that the basic block that contains
the close phi nodes has only one predecessor, that is a basic block
in the loop.
- the basic block containing the close phi nodes does not contain
other statements.
- there exist only one phi node per definition in the loop.
*/
static void
canonicalize_loop_closed_ssa_form (void)
{
loop_iterator li;
loop_p loop;
#ifdef ENABLE_CHECKING
verify_loop_closed_ssa (true);
#endif
FOR_EACH_LOOP (li, loop, 0)
canonicalize_loop_closed_ssa (loop);
rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
update_ssa (TODO_update_ssa);
#ifdef ENABLE_CHECKING
verify_loop_closed_ssa (true);
#endif
}
/* Find Static Control Parts (SCoP) in the current function and pushes
them to SCOPS. */
void
build_scops (VEC (scop_p, heap) **scops)
{
struct loop *loop = current_loops->tree_root;
VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
canonicalize_loop_closed_ssa_form ();
build_scops_1 (single_succ (ENTRY_BLOCK_PTR), ENTRY_BLOCK_PTR->loop_father,
®ions, loop);
create_sese_edges (regions);
build_graphite_scops (regions, scops);
if (dump_file && (dump_flags & TDF_DETAILS))
print_graphite_statistics (dump_file, *scops);
limit_scops (scops);
VEC_free (sd_region, heap, regions);
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "\nnumber of SCoPs: %d\n",
VEC_length (scop_p, *scops));
}
/* Pretty print to FILE all the SCoPs in DOT format and mark them with
different colors. If there are not enough colors, paint the
remaining SCoPs in gray.
Special nodes:
- "*" after the node number denotes the entry of a SCoP,
- "#" after the node number denotes the exit of a SCoP,
- "()" around the node number denotes the entry or the
exit nodes of the SCOP. These are not part of SCoP. */
static void
dot_all_scops_1 (FILE *file, VEC (scop_p, heap) *scops)
{
basic_block bb;
edge e;
edge_iterator ei;
scop_p scop;
const char* color;
int i;
/* Disable debugging while printing graph. */
int tmp_dump_flags = dump_flags;
dump_flags = 0;
fprintf (file, "digraph all {\n");
FOR_ALL_BB (bb)
{
int part_of_scop = false;
/* Use HTML for every bb label. So we are able to print bbs
which are part of two different SCoPs, with two different
background colors. */
fprintf (file, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
bb->index);
fprintf (file, "CELLSPACING=\"0\">\n");
/* Select color for SCoP. */
FOR_EACH_VEC_ELT (scop_p, scops, i, scop)
{
sese region = SCOP_REGION (scop);
if (bb_in_sese_p (bb, region)
|| (SESE_EXIT_BB (region) == bb)
|| (SESE_ENTRY_BB (region) == bb))
{
switch (i % 17)
{
case 0: /* red */
color = "#e41a1c";
break;
case 1: /* blue */
color = "#377eb8";
break;
case 2: /* green */
color = "#4daf4a";
break;
case 3: /* purple */
color = "#984ea3";
break;
case 4: /* orange */
color = "#ff7f00";
break;
case 5: /* yellow */
color = "#ffff33";
break;
case 6: /* brown */
color = "#a65628";
break;
case 7: /* rose */
color = "#f781bf";
break;
case 8:
color = "#8dd3c7";
break;
case 9:
color = "#ffffb3";
break;
case 10:
color = "#bebada";
break;
case 11:
color = "#fb8072";
break;
case 12:
color = "#80b1d3";
break;
case 13:
color = "#fdb462";
break;
case 14:
color = "#b3de69";
break;
case 15:
color = "#fccde5";
break;
case 16:
color = "#bc80bd";
break;
default: /* gray */
color = "#999999";
}
fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">", color);
if (!bb_in_sese_p (bb, region))
fprintf (file, " (");
if (bb == SESE_ENTRY_BB (region)
&& bb == SESE_EXIT_BB (region))
fprintf (file, " %d*# ", bb->index);
else if (bb == SESE_ENTRY_BB (region))
fprintf (file, " %d* ", bb->index);
else if (bb == SESE_EXIT_BB (region))
fprintf (file, " %d# ", bb->index);
else
fprintf (file, " %d ", bb->index);
if (!bb_in_sese_p (bb,region))
fprintf (file, ")");
fprintf (file, "</TD></TR>\n");
part_of_scop = true;
}
}
if (!part_of_scop)
{
fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
fprintf (file, " %d </TD></TR>\n", bb->index);
}
fprintf (file, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
}
FOR_ALL_BB (bb)
{
FOR_EACH_EDGE (e, ei, bb->succs)
fprintf (file, "%d -> %d;\n", bb->index, e->dest->index);
}
fputs ("}\n\n", file);
/* Enable debugging again. */
dump_flags = tmp_dump_flags;
}
/* Display all SCoPs using dotty. */
DEBUG_FUNCTION void
dot_all_scops (VEC (scop_p, heap) *scops)
{
/* When debugging, enable the following code. This cannot be used
in production compilers because it calls "system". */
#if 0
int x;
FILE *stream = fopen ("/tmp/allscops.dot", "w");
gcc_assert (stream);
dot_all_scops_1 (stream, scops);
fclose (stream);
x = system ("dotty /tmp/allscops.dot &");
#else
dot_all_scops_1 (stderr, scops);
#endif
}
/* Display all SCoPs using dotty. */
DEBUG_FUNCTION void
dot_scop (scop_p scop)
{
VEC (scop_p, heap) *scops = NULL;
if (scop)
VEC_safe_push (scop_p, heap, scops, scop);
/* When debugging, enable the following code. This cannot be used
in production compilers because it calls "system". */
#if 0
{
int x;
FILE *stream = fopen ("/tmp/allscops.dot", "w");
gcc_assert (stream);
dot_all_scops_1 (stream, scops);
fclose (stream);
x = system ("dotty /tmp/allscops.dot &");
}
#else
dot_all_scops_1 (stderr, scops);
#endif
VEC_free (scop_p, heap, scops);
}
#endif
|