summaryrefslogtreecommitdiff
path: root/gcc/graphite-scop-detection.c
blob: a498ddcdbfc1dfb7b0ececb1386712ed6299ff95 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
/* Detection of Static Control Parts (SCoP) for Graphite.
   Copyright (C) 2009-2015 Free Software Foundation, Inc.
   Contributed by Sebastian Pop <sebastian.pop@amd.com> and
   Tobias Grosser <grosser@fim.uni-passau.de>.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"

#ifdef HAVE_isl
/* Workaround for GMP 5.1.3 bug, see PR56019.  */
#include <stddef.h>

#include <isl/constraint.h>
#include <isl/set.h>
#include <isl/map.h>
#include <isl/union_map.h>

#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "cfghooks.h"
#include "params.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "fold-const.h"
#include "gimple-iterator.h"
#include "tree-ssa-loop-manip.h"
#include "tree-ssa-loop-niter.h"
#include "tree-ssa-loop.h"
#include "tree-into-ssa.h"
#include "tree-ssa.h"
#include "cfgloop.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "tree-pass.h"
#include "graphite-poly.h"
#include "tree-ssa-propagate.h"
#include "graphite-scop-detection.h"
#include "gimple-pretty-print.h"

/* Lightweight representation of sese for scop detection.
   TODO: Make all this as a constant_edge.  */
struct sese_l
{
  sese_l (edge e, edge x)
  : entry (e), exit (x)
  { }

  operator bool () const
  {
    return entry && exit;
  }

  edge entry;
  edge exit;
};

/* APIs for getting entry/exit of an sese.  */
static basic_block
get_entry_bb (edge e)
{
  return e->dest;
}

static basic_block
get_exit_bb (edge e)
{
  return e->src;
}

class debug_printer
{
private:
  FILE *dump_file;
public:
  void set_dump_file (FILE *f)
  {
    gcc_assert (f);
    dump_file = f;
  }

  friend debug_printer &operator<<(debug_printer &output, int i)
  {
    fprintf (output.dump_file, "%d", i);
    return output;
  }
  friend debug_printer &operator<<(debug_printer &output, const char *s)
  {
    fprintf (output.dump_file, "%s", s);
    return output;
  }
} dp;

#define DEBUG_PRINT(args) do \
    {								\
      if (dump_file && (dump_flags & TDF_DETAILS)) { args; }	\
    } while (0);


/* Return true if BB is empty, contains only DEBUG_INSNs.  */

static bool
trivially_empty_bb_p (basic_block bb)
{
  gimple_stmt_iterator gsi;

  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    if (gimple_code (gsi_stmt (gsi)) != GIMPLE_DEBUG)
      return false;

  return true;
}


/* Forward declarations.  */
static void make_close_phi_nodes_unique (basic_block);

/* Something like "n * m" is not allowed.  */

static bool
graphite_can_represent_init (tree e)
{
  switch (TREE_CODE (e))
    {
    case POLYNOMIAL_CHREC:
      return graphite_can_represent_init (CHREC_LEFT (e))
	&& graphite_can_represent_init (CHREC_RIGHT (e));

    case MULT_EXPR:
      if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
	return graphite_can_represent_init (TREE_OPERAND (e, 0))
	  && tree_fits_shwi_p (TREE_OPERAND (e, 1));
      else
	return graphite_can_represent_init (TREE_OPERAND (e, 1))
	  && tree_fits_shwi_p (TREE_OPERAND (e, 0));

    case PLUS_EXPR:
    case POINTER_PLUS_EXPR:
    case MINUS_EXPR:
      return graphite_can_represent_init (TREE_OPERAND (e, 0))
	&& graphite_can_represent_init (TREE_OPERAND (e, 1));

    case NEGATE_EXPR:
    case BIT_NOT_EXPR:
    CASE_CONVERT:
    case NON_LVALUE_EXPR:
      return graphite_can_represent_init (TREE_OPERAND (e, 0));

   default:
     break;
    }

  return true;
}

/* Return true when SCEV can be represented in the polyhedral model.

   An expression can be represented, if it can be expressed as an
   affine expression.  For loops (i, j) and parameters (m, n) all
   affine expressions are of the form:

   x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z

   1 i + 20 j + (-2) m + 25

   Something like "i * n" or "n * m" is not allowed.  */

static bool
graphite_can_represent_scev (tree scev)
{
  if (chrec_contains_undetermined (scev))
    return false;

  /* We disable the handling of pointer types, because it’s currently not
     supported by Graphite with the ISL AST generator. SSA_NAME nodes are
     the only nodes, which are disabled in case they are pointers to object
     types, but this can be changed.  */

  if (POINTER_TYPE_P (TREE_TYPE (scev)) && TREE_CODE (scev) == SSA_NAME)
    return false;

  switch (TREE_CODE (scev))
    {
    case NEGATE_EXPR:
    case BIT_NOT_EXPR:
    CASE_CONVERT:
    case NON_LVALUE_EXPR:
      return graphite_can_represent_scev (TREE_OPERAND (scev, 0));

    case PLUS_EXPR:
    case POINTER_PLUS_EXPR:
    case MINUS_EXPR:
      return graphite_can_represent_scev (TREE_OPERAND (scev, 0))
	&& graphite_can_represent_scev (TREE_OPERAND (scev, 1));

    case MULT_EXPR:
      return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 0)))
	&& !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 1)))
	&& !(chrec_contains_symbols (TREE_OPERAND (scev, 0))
	     && chrec_contains_symbols (TREE_OPERAND (scev, 1)))
	&& graphite_can_represent_init (scev)
	&& graphite_can_represent_scev (TREE_OPERAND (scev, 0))
	&& graphite_can_represent_scev (TREE_OPERAND (scev, 1));

    case POLYNOMIAL_CHREC:
      /* Check for constant strides.  With a non constant stride of
	 'n' we would have a value of 'iv * n'.  Also check that the
	 initial value can represented: for example 'n * m' cannot be
	 represented.  */
      if (!evolution_function_right_is_integer_cst (scev)
	  || !graphite_can_represent_init (scev))
	return false;
      return graphite_can_represent_scev (CHREC_LEFT (scev));

    default:
      break;
    }

  /* Only affine functions can be represented.  */
  if (tree_contains_chrecs (scev, NULL)
      || !scev_is_linear_expression (scev))
    return false;

  return true;
}


/* Return true when EXPR can be represented in the polyhedral model.

   This means an expression can be represented, if it is linear with respect to
   the loops and the strides are non parametric.  LOOP is the place where the
   expr will be evaluated.  SCOP defines the region we analyse.  */

static bool
graphite_can_represent_expr (sese_l scop, loop_p loop, tree expr)
{
  sese region = new_sese (scop.entry, scop.exit);
  tree scev = scalar_evolution_in_region (region, loop, expr);
  free_sese (region);
  return graphite_can_represent_scev (scev);
}

/* Return true if the data references of STMT can be represented by Graphite.
   We try to analyze the data references in a loop contained in the SCOP.  */

static bool
stmt_has_simple_data_refs_p (sese_l scop, gimple *stmt)
{
  data_reference_p dr;
  int j;
  bool res = true;
  vec<data_reference_p> drs = vNULL;
  loop_p outer;
  loop_p loop_around_scop = get_entry_bb (scop.entry)->loop_father;

  for (outer = loop_containing_stmt (stmt); outer && outer != loop_around_scop;
       outer = loop_outer (outer))
    {
      graphite_find_data_references_in_stmt (outer,
					     loop_containing_stmt (stmt),
					     stmt, &drs);

      FOR_EACH_VEC_ELT (drs, j, dr)
	{
	  int nb_subscripts = DR_NUM_DIMENSIONS (dr);
	  tree ref = DR_REF (dr);

	  for (int i = nb_subscripts - 1; i >= 0; i--)
	    {
	      if (!graphite_can_represent_scev (DR_ACCESS_FN (dr, i))
		  || (TREE_CODE (ref) != ARRAY_REF
		      && TREE_CODE (ref) != MEM_REF
		      && TREE_CODE (ref) != COMPONENT_REF))
		{
		  free_data_refs (drs);
		  return false;
		}

	      ref = TREE_OPERAND (ref, 0);
	    }
	}

      free_data_refs (drs);
      drs.create (0);
    }

  free_data_refs (drs);
  return res;
}

/* Return true only when STMT is simple enough for being handled by Graphite.
   This depends on SCOP, as the parameters are initialized relatively to
   this basic block, the linear functions are initialized based on the outermost
   loop containing STMT inside the SCOP.  BB is the place where we try to
   evaluate the STMT.  */

static bool
stmt_simple_for_scop_p (sese_l scop, gimple *stmt, basic_block bb)
{
  loop_p loop = bb->loop_father;

  gcc_assert (scop);

  /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
     Calls have side-effects, except those to const or pure
     functions.  */
  if (gimple_has_volatile_ops (stmt)
      || (gimple_code (stmt) == GIMPLE_CALL
	  && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
      || (gimple_code (stmt) == GIMPLE_ASM))
    {
      DEBUG_PRINT (dp << "[scop-detection-fail] "
		      << "Graphite cannot handle this stmt:\n";
	print_gimple_stmt (dump_file, stmt, 0, TDF_VOPS|TDF_MEMSYMS));
      return false;
    }

  if (is_gimple_debug (stmt))
    return true;

  if (!stmt_has_simple_data_refs_p (scop, stmt))
    {
      DEBUG_PRINT (dp << "[scop-detection-fail] "
		      << "Graphite cannot handle data-refs in stmt:\n";
	print_gimple_stmt (dump_file, stmt, 0, TDF_VOPS|TDF_MEMSYMS););
      return false;
    }

  switch (gimple_code (stmt))
    {
    case GIMPLE_LABEL:
      return true;

    case GIMPLE_COND:
      {
	/* We can handle all binary comparisons.  Inequalities are
	   also supported as they can be represented with union of
	   polyhedra.  */
        enum tree_code code = gimple_cond_code (stmt);
        if (!(code == LT_EXPR
	      || code == GT_EXPR
	      || code == LE_EXPR
	      || code == GE_EXPR
	      || code == EQ_EXPR
	      || code == NE_EXPR))
          {
	    DEBUG_PRINT (dp <<  "[scop-detection-fail] "
			    << "Graphite cannot handle cond stmt:\n";
	      print_gimple_stmt (dump_file, stmt, 0, TDF_VOPS|TDF_MEMSYMS));
	    return false;
	  }

	for (unsigned i = 0; i < 2; ++i)
	  {
	    tree op = gimple_op (stmt, i);
	    if (!graphite_can_represent_expr (scop, loop, op)
		/* We can only constrain on integer type.  */
		|| (TREE_CODE (TREE_TYPE (op)) != INTEGER_TYPE))
	      {
		DEBUG_PRINT (dp <<  "[scop-detection-fail] "
			        << "Graphite cannot represent stmt:\n";
		  print_gimple_stmt (dump_file, stmt, 0, TDF_VOPS|TDF_MEMSYMS));
		return false;
	      }
	  }

	return true;
      }

    case GIMPLE_ASSIGN:
    case GIMPLE_CALL:
      return true;

    default:
      /* These nodes cut a new scope.  */
      DEBUG_PRINT (dp << "[scop-detection-fail] "
		      << "Gimple stmt not handled in Graphite:\n";
	print_gimple_stmt (dump_file, stmt, 0, TDF_VOPS|TDF_MEMSYMS));
      return false;
    }

  return false;
}

/* Return true when BB contains a harmful operation for a scop: that
   can be a function call with side effects, the induction variables
   are not linear with respect to SCOP, etc.  The current open
   scop should end before this statement.  */

static bool
harmful_stmt_in_bb (sese_l scop, basic_block bb)
{
  gimple_stmt_iterator gsi;

  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    if (!stmt_simple_for_scop_p (scop, gsi_stmt (gsi), bb))
      return true;

  return false;
}

/* Returns true when P1 and P2 are close phis with the same
   argument.  */

static inline bool
same_close_phi_node (gphi *p1, gphi *p2)
{
  return operand_equal_p (gimple_phi_arg_def (p1, 0),
			  gimple_phi_arg_def (p2, 0), 0);
}

/* Remove the close phi node at GSI and replace its rhs with the rhs
   of PHI.  */

static void
remove_duplicate_close_phi (gphi *phi, gphi_iterator *gsi)
{
  gimple *use_stmt;
  use_operand_p use_p;
  imm_use_iterator imm_iter;
  tree res = gimple_phi_result (phi);
  tree def = gimple_phi_result (gsi->phi ());

  gcc_assert (same_close_phi_node (phi, gsi->phi ()));

  FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
    {
      FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
	SET_USE (use_p, res);

      update_stmt (use_stmt);
      
      /* It is possible that we just created a duplicate close-phi
	 for an already-processed containing loop.  Check for this
	 case and clean it up.  */
      if (gimple_code (use_stmt) == GIMPLE_PHI
	  && gimple_phi_num_args (use_stmt) == 1)
	make_close_phi_nodes_unique (gimple_bb (use_stmt));
    }

  remove_phi_node (gsi, true);
}

/* Removes all the close phi duplicates from BB.  */

static void
make_close_phi_nodes_unique (basic_block bb)
{
  gphi_iterator psi;

  for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
    {
      gphi_iterator gsi = psi;
      gphi *phi = psi.phi ();

      /* At this point, PHI should be a close phi in normal form.  */
      gcc_assert (gimple_phi_num_args (phi) == 1);

      /* Iterate over the next phis and remove duplicates.  */
      gsi_next (&gsi);
      while (!gsi_end_p (gsi))
	if (same_close_phi_node (phi, gsi.phi ()))
	  remove_duplicate_close_phi (phi, &gsi);
	else
	  gsi_next (&gsi);
    }
}

/* Transforms LOOP to the canonical loop closed SSA form.  */

static void
canonicalize_loop_closed_ssa (loop_p loop)
{
  edge e = single_exit (loop);
  basic_block bb;

  if (!e || e->flags & EDGE_ABNORMAL)
    return;

  bb = e->dest;

  if (single_pred_p (bb))
    {
      e = split_block_after_labels (bb);
      DEBUG_PRINT (dp << "\nSplitting bb_" << bb->index);
      make_close_phi_nodes_unique (e->src);
    }
  else
    {
      gphi_iterator psi;
      basic_block close = split_edge (e);

      e = single_succ_edge (close);
      DEBUG_PRINT (dp << "\nSplitting edge ("
		      << e->src->index << "," << e->dest->index
		      << ")\n");

      for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
	{
	  gphi *phi = psi.phi ();
	  unsigned i;

	  for (i = 0; i < gimple_phi_num_args (phi); i++)
	    if (gimple_phi_arg_edge (phi, i) == e)
	      {
		tree res, arg = gimple_phi_arg_def (phi, i);
		use_operand_p use_p;
		gphi *close_phi;

		if (TREE_CODE (arg) != SSA_NAME)
		  continue;

		close_phi = create_phi_node (NULL_TREE, close);
		res = create_new_def_for (arg, close_phi,
					  gimple_phi_result_ptr (close_phi));
		add_phi_arg (close_phi, arg,
			     gimple_phi_arg_edge (close_phi, 0),
			     UNKNOWN_LOCATION);
		use_p = gimple_phi_arg_imm_use_ptr (phi, i);
		replace_exp (use_p, res);
		update_stmt (phi);
	      }
	}

      make_close_phi_nodes_unique (close);
    }

  /* The code above does not properly handle changes in the post dominance
     information (yet).  */
  recompute_all_dominators ();
}

/* Converts the current loop closed SSA form to a canonical form
   expected by the Graphite code generation.

   The loop closed SSA form has the following invariant: a variable
   defined in a loop that is used outside the loop appears only in the
   phi nodes in the destination of the loop exit.  These phi nodes are
   called close phi nodes.

   The canonical loop closed SSA form contains the extra invariants:

   - when the loop contains only one exit, the close phi nodes contain
   only one argument.  That implies that the basic block that contains
   the close phi nodes has only one predecessor, that is a basic block
   in the loop.

   - the basic block containing the close phi nodes does not contain
   other statements.

   - there exist only one phi node per definition in the loop.
*/

static void
canonicalize_loop_closed_ssa_form (void)
{
  loop_p loop;

#ifdef ENABLE_CHECKING
  verify_loop_closed_ssa (true);
#endif

  FOR_EACH_LOOP (loop, 0)
    canonicalize_loop_closed_ssa (loop);

  rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
  update_ssa (TODO_update_ssa);

#ifdef ENABLE_CHECKING
  verify_loop_closed_ssa (true);
#endif
}

/* Pretty print to FILE all the SCoPs in DOT format and mark them with
   different colors.  If there are not enough colors, paint the
   remaining SCoPs in gray.

   Special nodes:
   - "*" after the node number denotes the entry of a SCoP,
   - "#" after the node number denotes the exit of a SCoP,
   - "()" around the node number denotes the entry or the
     exit nodes of the SCOP.  These are not part of SCoP.  */

static void
dot_all_scops_1 (FILE *file, vec<scop_p> scops)
{
  basic_block bb;
  edge e;
  edge_iterator ei;
  scop_p scop;
  const char* color;
  int i;

  /* Disable debugging while printing graph.  */
  int tmp_dump_flags = dump_flags;
  dump_flags = 0;

  fprintf (file, "digraph all {\n");

  FOR_ALL_BB_FN (bb, cfun)
    {
      int part_of_scop = false;

      /* Use HTML for every bb label.  So we are able to print bbs
         which are part of two different SCoPs, with two different
         background colors.  */
      fprintf (file, "%d [label=<\n  <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
                     bb->index);
      fprintf (file, "CELLSPACING=\"0\">\n");

      /* Select color for SCoP.  */
      FOR_EACH_VEC_ELT (scops, i, scop)
	{
	  sese region = SCOP_REGION (scop);
	  if (bb_in_sese_p (bb, region)
	      || (SESE_EXIT_BB (region) == bb)
	      || (SESE_ENTRY_BB (region) == bb))
	    {
	      switch (i % 17)
		{
		case 0: /* red */
		  color = "#e41a1c";
		  break;
		case 1: /* blue */
		  color = "#377eb8";
		  break;
		case 2: /* green */
		  color = "#4daf4a";
		  break;
		case 3: /* purple */
		  color = "#984ea3";
		  break;
		case 4: /* orange */
		  color = "#ff7f00";
		  break;
		case 5: /* yellow */
		  color = "#ffff33";
		  break;
		case 6: /* brown */
		  color = "#a65628";
		  break;
		case 7: /* rose */
		  color = "#f781bf";
		  break;
		case 8:
		  color = "#8dd3c7";
		  break;
		case 9:
		  color = "#ffffb3";
		  break;
		case 10:
		  color = "#bebada";
		  break;
		case 11:
		  color = "#fb8072";
		  break;
		case 12:
		  color = "#80b1d3";
		  break;
		case 13:
		  color = "#fdb462";
		  break;
		case 14:
		  color = "#b3de69";
		  break;
		case 15:
		  color = "#fccde5";
		  break;
		case 16:
		  color = "#bc80bd";
		  break;
		default: /* gray */
		  color = "#999999";
		}

	      fprintf (file, "    <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">", color);

	      if (!bb_in_sese_p (bb, region))
		fprintf (file, " (");

	      if (bb == SESE_ENTRY_BB (region)
		  && bb == SESE_EXIT_BB (region))
		fprintf (file, " %d*# ", bb->index);
	      else if (bb == SESE_ENTRY_BB (region))
		fprintf (file, " %d* ", bb->index);
	      else if (bb == SESE_EXIT_BB (region))
		fprintf (file, " %d# ", bb->index);
	      else
		fprintf (file, " %d ", bb->index);

	      fprintf (file, "{lp_%d}", bb->loop_father->num);

	      if (!bb_in_sese_p (bb,region))
		fprintf (file, ")");

	      fprintf (file, "</TD></TR>\n");
	      part_of_scop  = true;
	    }
	}

      if (!part_of_scop)
	{
	  fprintf (file, "    <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
	  fprintf (file, " %d {lp_%d} </TD></TR>\n",
		   bb->index, bb->loop_father->num);
	}
      fprintf (file, "  </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
    }

  FOR_ALL_BB_FN (bb, cfun)
    {
      FOR_EACH_EDGE (e, ei, bb->succs)
	      fprintf (file, "%d -> %d;\n", bb->index, e->dest->index);
    }

  fputs ("}\n\n", file);

  /* Enable debugging again.  */
  dump_flags = tmp_dump_flags;
}

/* Display all SCoPs using dotty.  */

DEBUG_FUNCTION void
dot_all_scops (vec<scop_p> scops)
{
  /* When debugging, enable the following code.  This cannot be used
     in production compilers because it calls "system".  */
#if 0
  int x;
  FILE *stream = fopen ("/tmp/allscops.dot", "w");
  gcc_assert (stream);

  dot_all_scops_1 (stream, scops);
  fclose (stream);

  x = system ("dotty /tmp/allscops.dot &");
#else
  dot_all_scops_1 (stderr, scops);
#endif
}

/* Display all SCoPs using dotty.  */

DEBUG_FUNCTION void
dot_scop (scop_p scop)
{
  auto_vec<scop_p, 1> scops;

  if (scop)
    scops.safe_push (scop);

  /* When debugging, enable the following code.  This cannot be used
     in production compilers because it calls "system".  */
#if 0
  {
    int x;
    FILE *stream = fopen ("/tmp/allscops.dot", "w");
    gcc_assert (stream);

    dot_all_scops_1 (stream, scops);
    fclose (stream);
    x = system ("dotty /tmp/allscops.dot &");
  }
#else
  dot_all_scops_1 (stderr, scops);
#endif
}

/* Return true when the body of LOOP has statements that can be represented as a
   valid scop.  */

static bool
loop_body_is_valid_scop (loop_p loop, sese_l scop)
{
  if (!loop_nest_has_data_refs (loop))
    {
      DEBUG_PRINT (dp << "[scop-detection-fail] loop_"
		      << loop->num << "does not have any data reference.\n");
      return false;
    }

  basic_block *bbs = get_loop_body (loop);
  for (unsigned i = 0; i < loop->num_nodes; i++)
    {
      basic_block bb = bbs[i];

      if (harmful_stmt_in_bb (scop, bb))
	return false;
    }
  free (bbs);
  return true;
}

/* Build the maximal scop containing LOOP(s) and add it to SCOPS.  */

class scop_builder
{
 public:
  scop_builder (vec<scop_p> *s)
    : scops (s)
  { }

  static sese_l invalid_sese;

  sese_l get_sese (loop_p loop)
  {
    if (!loop)
      return invalid_sese;

    if (!loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS))
      return invalid_sese;
    edge scop_end = single_exit (loop);
    if (!scop_end)
      return invalid_sese;
    edge scop_begin = loop_preheader_edge (loop);
    sese_l s (scop_begin, scop_end);
    return s;
  }

  static edge
    get_nearest_dom_with_single_entry (basic_block dom)
  {
    if (!dom->preds)
      return NULL;
    /* If e1->src dominates e2->src then e1->src will also dominate dom.  */
    if (dom->preds->length () == 2)
      {
	edge e1 = (*dom->preds)[0];
	edge e2 = (*dom->preds)[1];
	if (dominated_by_p (CDI_DOMINATORS, e2->src, e1->src))
	  return e1;
	if (dominated_by_p (CDI_DOMINATORS, e1->src, e2->src))
	  return e2;
      }

    while (dom->preds->length () != 1)
      {
	if (dom->preds->length () < 1)
	  return NULL;
	dom = get_immediate_dominator (CDI_DOMINATORS, dom);
	if (!dom->preds)
	  return NULL;
      }
    return (*dom->preds)[0];
  }

  static edge
    get_nearest_pdom_with_single_exit (basic_block dom)
  {
    if (!dom->succs)
      return NULL;
    if (dom->succs->length () == 2)
      {
	edge e1 = (*dom->succs)[0];
	edge e2 = (*dom->succs)[1];
	if (dominated_by_p (CDI_POST_DOMINATORS, e2->dest, e1->dest))
	  return e1;
	if (dominated_by_p (CDI_POST_DOMINATORS, e1->dest, e2->dest))
	  return e2;
      }

    while (dom->succs->length () != 1)
      {
	if (dom->succs->length () < 1)
	  return NULL;
	dom = get_immediate_dominator (CDI_POST_DOMINATORS, dom);
	if (!dom->succs)
	  return NULL;
      }
    return (*dom->succs)[0];
  }

  /* Print S to FILE.  */

  static void
    print_sese (FILE *file, sese_l s)
  {
    fprintf (file, "(entry_edge (bb_%d, bb_%d), exit_edge (bb_%d, bb_%d))\n",
	     s.entry->src->index, s.entry->dest->index,
	     s.exit->src->index, s.exit->dest->index);
  }

  /* Merge scops at same loop depth and returns the new sese.
     TODO: Free the already allocated sese's first and second, or reuse.
     Returns SECOND when first is NULL.  SECOND cannot be NULL.
     Frees up SECOND and returns a new SESE when merge was successful.
  */

  static sese_l
    merge_sese (sese_l first, sese_l second)
  {
    /* In the trivial case first/second may be NULL.  */
    if (!first)
      return second;
    if (!second)
      return first;

    DEBUG_PRINT (dp << "[try-merging-sese] s1: ";
		 print_sese (dump_file, first);
		 dp << "[try-merging-sese] s2: ";
		 print_sese (dump_file, second));

    /* Assumption: Both the sese's should be at the same loop depth or one scop
       should subsume the other like in case of nested loops.  */

    /* Find the common dominators for entry,
       and common post-dominators for the exit.  */
    basic_block dom = nearest_common_dominator (CDI_DOMINATORS,
						get_entry_bb (first.entry),
						get_entry_bb (second.entry));


    edge entry = get_nearest_dom_with_single_entry (dom);
    if (!entry)
      return invalid_sese;

    basic_block pdom = nearest_common_dominator (CDI_POST_DOMINATORS,
						 get_exit_bb (first.exit),
						 get_exit_bb (second.exit));
    pdom = nearest_common_dominator (CDI_POST_DOMINATORS, dom, pdom);

    edge exit = get_nearest_pdom_with_single_exit (pdom);
    if (!exit)
      return invalid_sese;

    sese_l combined (entry, exit);

    /* FIXME: We could iterate to find the dom which dominates pdom, and pdom
       which post-dominates dom, until it stabilizes.  Also, ENTRY->SRC and
       EXIT->DEST should be in the same loop nest.  */
    if (!dominated_by_p (CDI_DOMINATORS, pdom, dom)
	|| loop_depth (entry->src->loop_father)
	   != loop_depth (exit->dest->loop_father))
      return invalid_sese;

    /* For now we just want to bail out when exit does not post-dominate entry.
       TODO: We might just add a basic_block at the exit to make exit
       post-dominate entry (the entrire region).  */
    if (!dominated_by_p (CDI_POST_DOMINATORS, get_entry_bb (entry),
                         get_exit_bb (exit))
	|| !dominated_by_p (CDI_DOMINATORS, get_exit_bb (exit),
			    get_entry_bb (entry)))
      {
	DEBUG_PRINT (dp <<  "[scop-detection-fail] cannot merge seses.\n");
	return invalid_sese;
      }

    /* FIXME: We should remove this piece of code once
       canonicalize_loop_closed_ssa has been removed, because that function
       adds a BB with single exit.  */
    if (!trivially_empty_bb_p (get_exit_bb (combined.exit)))
      {
	/* Find the first empty succ (with single exit) of combined.exit.  */
	basic_block imm_succ = combined.exit->dest;
	if (single_succ_p (imm_succ) && trivially_empty_bb_p (imm_succ))
	  combined.exit = single_succ_edge (imm_succ);
	else
	  {
	    DEBUG_PRINT (dp << "\n[scop-detection-fail] Discarding SCoP because "
			    << "no single exit (empty succ) for sese exit";
			 print_sese (dump_file, combined));
	    return invalid_sese;
	  }
      }

    /* Analyze all the BBs in new sese.  */
    if (harmful_stmt_in_region (combined))
      return invalid_sese;

    DEBUG_PRINT (dp <<  "[merged-sese] s1: ";
		 print_sese (dump_file, combined));

    return combined;
  }

  /* Build scop outer->inner if possible.  */
  sese_l
    build_scop_depth (sese_l s, loop_p loop)
  {
    if (!loop)
      return s;

    DEBUG_PRINT (dp << "\n[Depth loop_" << loop->num << "]");
    s = build_scop_depth (s, loop->inner);

    sese_l s2 = merge_sese (s, get_sese (loop));
    if (!s2)
      {
	/* s might be a valid scop, so return it and start analyzing from the
	   adjacent loop.  */
	build_scop_depth (invalid_sese, loop->next);
	return s;
      }

    if (!loop_is_valid_scop (loop, s2))
      return build_scop_depth (invalid_sese, loop->next);

    return build_scop_breadth (s2, loop);
  }

  /* If loop and loop->next are valid scops, try to merge them.  */

  sese_l
    build_scop_breadth (sese_l s1, loop_p loop)
  {
    if (!loop)
      return s1;
    DEBUG_PRINT (dp << "\n[Breadth loop_" << loop->num << "]");
    gcc_assert (s1);

    loop_p l = loop;
    sese_l s2 = build_scop_depth (invalid_sese, l->next);
    if (!s2)
      {
	if (s1)
	  add_scop (s1);
	return s1;
      }

    sese_l combined = merge_sese (s1, s2);

    if (combined)
      s1 = combined;
    else
      add_scop (s2);

    if (s1)
      add_scop (s1);
    return s1;
  }

  /* Returns true when Graphite can represent LOOP in SCOP.
     FIXME: For the moment, graphite cannot be used on loops that iterate using
     induction variables that wrap.  */
  static bool
    can_represent_loop_1 (loop_p loop, sese_l scop)
  {
    tree niter;
    struct tree_niter_desc niter_desc;

    return single_exit (loop)
      && number_of_iterations_exit (loop, single_exit (loop), &niter_desc, false)
      && niter_desc.control.no_overflow
      && (niter = number_of_latch_executions (loop))
      && !chrec_contains_undetermined (niter)
      && graphite_can_represent_expr (scop, loop, niter);
  }

  /* Return true when all the loops within LOOP can be represented by
     Graphite.  */

  static bool
    can_represent_loop (loop_p loop, sese_l scop)
  {
    if (!can_represent_loop_1 (loop, scop))
      return false;
    if (loop->inner && !can_represent_loop (loop->inner, scop))
      return false;
    if (loop->next && !can_represent_loop (loop->next, scop))
      return false;

    return true;
  }

  /* Return true when LOOP is a valid scop, that is a Static Control Part, a
     region of code that can be represented in the polyhedral model.  SCOP
     defines the region we analyse.  */

  static bool
    loop_is_valid_scop (loop_p loop, sese_l scop)
  {
    if (!scop)
      return false;

    if (!can_represent_loop (loop, scop))
      {
	DEBUG_PRINT (dp << "[scop-detection-fail] cannot represent loop_"
		        << loop->num << "\n");
	return false;
      }

    if (loop_body_is_valid_scop (loop, scop))
      {
	DEBUG_PRINT (dp << "[valid-scop] loop_"
		        << loop->num << "is a valid scop.\n");
	return true;
      }
    return false;
  }

  /* Return true when BEGIN is the preheader edge of a loop with a single exit
     END.  */

  static bool
    region_has_one_loop (sese_l s)
  {
    edge begin = s.entry;
    edge end = s.exit;
    /* Check for a single perfectly nested loop.  */
    if (begin->dest->loop_father->inner)
      return false;

    /* Otherwise, check whether we have adjacent loops.  */
    return begin->dest->loop_father == end->src->loop_father;
  }

  /* Add to SCOPS a scop starting at SCOP_BEGIN and ending at SCOP_END.  */

  void
    add_scop (sese_l s)
  {
    gcc_assert (s);
    edge scop_begin = s.entry;
    edge scop_end = s.exit;

    /* Do not add scops with only one loop.  */
    if (region_has_one_loop (s))
      {
	DEBUG_PRINT (dp << "\n[scop-detection-fail] Discarding one loop SCoP";
		     print_sese (dump_file, s));
	return;
      }

    if (get_exit_bb (scop_end) == EXIT_BLOCK_PTR_FOR_FN (cfun))
      {
	DEBUG_PRINT (dp << "\n[scop-detection-fail] "
		        << "Discarding SCoP exiting to return";
		     print_sese (dump_file, s));
	return;
      }

    sese sese_reg = new_sese (scop_begin, scop_end);
    scop_p newscop = new_scop (sese_reg);

    /* Remove all the scops which are subsumed by s.  */
    remove_subscops (newscop);

    /* Replace this with split-intersecting scops.  */
    remove_intersecting_scops (newscop);

    scops->safe_push (newscop);
    DEBUG_PRINT (dp << "\nAdding SCoP "; print_sese (dump_file, s));
  }

  /* Return true when a statement in SCOP cannot be represented by Graphite.
     The assumptions are that L1 dominates L2, and SCOP->entry dominates L1.
     Limit the number of bbs between adjacent loops to
     PARAM_SCOP_MAX_NUM_BBS_BETWEEN_LOOPS.  */

  static bool
    harmful_stmt_in_region (sese_l scop)
  {
    basic_block exit_bb = get_exit_bb (scop.exit);
    basic_block entry_bb = get_entry_bb (scop.entry);

    DEBUG_PRINT (dp << "\n[checking-harmful-bbs] ";
		 print_sese (dump_file, scop));
    gcc_assert (dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb));

    int depth = bb_dom_dfs_in (CDI_DOMINATORS, exit_bb)
      - bb_dom_dfs_in (CDI_DOMINATORS, entry_bb);

    gcc_assert (depth >0);

    vec<basic_block> dom = get_dominated_to_depth (CDI_DOMINATORS,
						   entry_bb, depth);
    int i;
    basic_block bb;
    FOR_EACH_VEC_ELT (dom, i, bb)
      {
	DEBUG_PRINT (dp << "\nVisiting bb_" << bb->index);

	/* We don't want to analyze any bb outside sese.  */
	if (!dominated_by_p (CDI_POST_DOMINATORS, bb, exit_bb))
	  continue;

	if (harmful_stmt_in_bb (scop, bb))
	  return true;
      }

    return false;
  }

  /* Returns true if S1 subsumes/surrounds S2.  */
  static bool
    subsumes (scop_p s1, scop_p s2)
  {
    if (dominated_by_p (CDI_DOMINATORS, get_entry_bb (s2->region->entry),
			get_entry_bb (s1->region->entry))
	&& dominated_by_p (CDI_POST_DOMINATORS, get_entry_bb (s2->region->exit),
			   get_entry_bb (s1->region->exit)))
      return true;
    return false;
  }

  /* TODO: Maybe vec<scops_p> can be made as vec<sese_l> so that it consumes
   less memory and later push only the relevant scops to vec <scops_p>.  */
  void
    remove_subscops (scop_p s1)
  {
    int j;
    scop_p s2;
    FOR_EACH_VEC_ELT_REVERSE (*scops, j, s2)
      {
	if (subsumes (s1, s2))
	  {
	    DEBUG_PRINT (dp << "\nRemoving sub-SCoP";
		 print_sese (dump_file,
			     sese_l (s2->region->entry, s2->region->exit)));
	    scops->unordered_remove (j);
	  }
      }
  }

  /* Returns true if S1 intersects with S2.  Since we already know that S1 does
     not subsume S2 or vice-versa, we only check for entry bbs.  */

  static bool
    intersects (scop_p s1, scop_p s2)
  {
    if (dominated_by_p (CDI_DOMINATORS, get_entry_bb (s2->region->entry),
			get_entry_bb (s1->region->entry))
	&& !dominated_by_p (CDI_DOMINATORS, get_entry_bb (s2->region->entry),
			    get_exit_bb (s1->region->exit)))
      return true;
    if ((s1->region->exit == s2->region->entry)
	|| (s2->region->exit == s1->region->entry))
      return true;

    return false;
  }

  /* Remove one of the scops when it intersects with any other.  */

  void
    remove_intersecting_scops (scop_p s1)
  {
    int j;
    scop_p s2;
    FOR_EACH_VEC_ELT_REVERSE (*scops, j, s2)
      {
	if (intersects (s1, s2))
	  {
	    DEBUG_PRINT (dp << "\nRemoving intersecting SCoP";
		print_sese (dump_file, sese_l (s2->region->entry,
					       s2->region->exit));
		dp << "Intersects with:";
		print_sese (dump_file, sese_l (s1->region->entry,
					       s1->region->exit)));
	    scops->unordered_remove (j);
	  }
      }
  }

 private:
  vec<scop_p> *scops;
};

sese_l scop_builder::invalid_sese (NULL, NULL);

/* Find Static Control Parts (SCoP) in the current function and pushes
   them to SCOPS.  */

void
build_scops (vec<scop_p> *scops)
{
  if (dump_file)
    dp.set_dump_file (dump_file);

  canonicalize_loop_closed_ssa_form ();

  scop_builder s (scops);
  s.build_scop_depth (scop_builder::invalid_sese, current_loops->tree_root);
  DEBUG_PRINT (dp << "number of SCoPs: " << (scops ? scops->length () : 0););
}

#endif  /* HAVE_isl */