1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
|
/* Gimple Represented as Polyhedra.
Copyright (C) 2009 Free Software Foundation, Inc.
Contributed by Sebastian Pop <sebastian.pop@amd.com>
and Tobias Grosser <grosser@fim.uni-passau.de>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#ifdef HAVE_cloog
#include "ppl_c.h"
#include "cloog/cloog.h"
#include "graphite-ppl.h"
/* Translates row ROW of the CloogMatrix MATRIX to a PPL Constraint. */
static ppl_Constraint_t
cloog_matrix_to_ppl_constraint (CloogMatrix *matrix, int row)
{
int j;
ppl_Constraint_t cstr;
ppl_Coefficient_t coef;
ppl_Linear_Expression_t expr;
ppl_dimension_type dim = matrix->NbColumns - 2;
ppl_new_Coefficient (&coef);
ppl_new_Linear_Expression_with_dimension (&expr, dim);
for (j = 1; j < matrix->NbColumns - 1; j++)
{
ppl_assign_Coefficient_from_mpz_t (coef, matrix->p[row][j]);
ppl_Linear_Expression_add_to_coefficient (expr, j - 1, coef);
}
ppl_assign_Coefficient_from_mpz_t (coef,
matrix->p[row][matrix->NbColumns - 1]);
ppl_Linear_Expression_add_to_inhomogeneous (expr, coef);
ppl_delete_Coefficient (coef);
if (value_zero_p (matrix->p[row][0]))
ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_EQUAL);
else
ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
ppl_delete_Linear_Expression (expr);
return cstr;
}
/* Creates a PPL constraint system from MATRIX. */
static void
new_Constraint_System_from_Cloog_Matrix (ppl_Constraint_System_t *pcs,
CloogMatrix *matrix)
{
int i;
ppl_new_Constraint_System (pcs);
for (i = 0; i < matrix->NbRows; i++)
{
ppl_Constraint_t c = cloog_matrix_to_ppl_constraint (matrix, i);
ppl_Constraint_System_insert_Constraint (*pcs, c);
ppl_delete_Constraint (c);
}
}
/* Creates a PPL Polyhedron from MATRIX. */
void
new_C_Polyhedron_from_Cloog_Matrix (ppl_Polyhedron_t *ph,
CloogMatrix *matrix)
{
ppl_Constraint_System_t cs;
new_Constraint_System_from_Cloog_Matrix (&cs, matrix);
ppl_new_C_Polyhedron_recycle_Constraint_System (ph, cs);
}
/* Counts the number of constraints in PCS. */
static int
ppl_Constrain_System_number_of_constraints (ppl_const_Constraint_System_t pcs)
{
ppl_Constraint_System_const_iterator_t cit, end;
int num = 0;
ppl_new_Constraint_System_const_iterator (&cit);
ppl_new_Constraint_System_const_iterator (&end);
for (ppl_Constraint_System_begin (pcs, cit),
ppl_Constraint_System_end (pcs, end);
!ppl_Constraint_System_const_iterator_equal_test (cit, end);
ppl_Constraint_System_const_iterator_increment (cit))
num++;
ppl_delete_Constraint_System_const_iterator (cit);
ppl_delete_Constraint_System_const_iterator (end);
return num;
}
static void
oppose_constraint (CloogMatrix *m, int row)
{
int k;
/* Do not oppose the first column: it is the eq/ineq one. */
for (k = 1; k < m->NbColumns; k++)
value_oppose (m->p[row][k], m->p[row][k]);
}
/* Inserts constraint CSTR at row ROW of matrix M. */
void
insert_constraint_into_matrix (CloogMatrix *m, int row,
ppl_const_Constraint_t cstr)
{
ppl_Coefficient_t c;
ppl_dimension_type i, dim, nb_cols = m->NbColumns;
ppl_Constraint_space_dimension (cstr, &dim);
ppl_new_Coefficient (&c);
for (i = 0; i < dim; i++)
{
ppl_Constraint_coefficient (cstr, i, c);
ppl_Coefficient_to_mpz_t (c, m->p[row][i + 1]);
}
for (i = dim; i < nb_cols - 1; i++)
value_set_si (m->p[row][i + 1], 0);
ppl_Constraint_inhomogeneous_term (cstr, c);
ppl_Coefficient_to_mpz_t (c, m->p[row][nb_cols - 1]);
value_set_si (m->p[row][0], 1);
switch (ppl_Constraint_type (cstr))
{
case PPL_CONSTRAINT_TYPE_LESS_THAN:
oppose_constraint (m, row);
case PPL_CONSTRAINT_TYPE_GREATER_THAN:
value_sub_int (m->p[row][nb_cols - 1],
m->p[row][nb_cols - 1], 1);
break;
case PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL:
oppose_constraint (m, row);
case PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL:
break;
case PPL_CONSTRAINT_TYPE_EQUAL:
value_set_si (m->p[row][0], 0);
break;
default:
/* Not yet implemented. */
gcc_unreachable();
}
ppl_delete_Coefficient (c);
}
/* Creates a CloogMatrix from constraint system PCS. */
static CloogMatrix *
new_Cloog_Matrix_from_ppl_Constraint_System (ppl_const_Constraint_System_t pcs)
{
CloogMatrix *matrix;
ppl_Constraint_System_const_iterator_t cit, end;
ppl_dimension_type dim;
int rows;
int row = 0;
rows = ppl_Constrain_System_number_of_constraints (pcs);
ppl_Constraint_System_space_dimension (pcs, &dim);
matrix = cloog_matrix_alloc (rows, dim + 2);
ppl_new_Constraint_System_const_iterator (&cit);
ppl_new_Constraint_System_const_iterator (&end);
for (ppl_Constraint_System_begin (pcs, cit),
ppl_Constraint_System_end (pcs, end);
!ppl_Constraint_System_const_iterator_equal_test (cit, end);
ppl_Constraint_System_const_iterator_increment (cit))
{
ppl_const_Constraint_t c;
ppl_Constraint_System_const_iterator_dereference (cit, &c);
insert_constraint_into_matrix (matrix, row, c);
row++;
}
ppl_delete_Constraint_System_const_iterator (cit);
ppl_delete_Constraint_System_const_iterator (end);
return matrix;
}
/* Creates a CloogMatrix from polyhedron PH. */
CloogMatrix *
new_Cloog_Matrix_from_ppl_Polyhedron (ppl_const_Polyhedron_t ph)
{
ppl_const_Constraint_System_t pcs;
CloogMatrix *res;
ppl_Polyhedron_get_constraints (ph, &pcs);
res = new_Cloog_Matrix_from_ppl_Constraint_System (pcs);
return res;
}
/* Creates a CloogDomain from polyhedron PH. */
CloogDomain *
new_Cloog_Domain_from_ppl_Polyhedron (ppl_const_Polyhedron_t ph)
{
CloogMatrix *mat = new_Cloog_Matrix_from_ppl_Polyhedron (ph);
CloogDomain *res = cloog_domain_matrix2domain (mat);
cloog_matrix_free (mat);
return res;
}
/* Creates a CloogDomain from a pointset powerset PS. */
CloogDomain *
new_Cloog_Domain_from_ppl_Pointset_Powerset (
ppl_Pointset_Powerset_C_Polyhedron_t ps)
{
CloogDomain *res = NULL;
ppl_Pointset_Powerset_C_Polyhedron_iterator_t it, end;
ppl_new_Pointset_Powerset_C_Polyhedron_iterator (&it);
ppl_new_Pointset_Powerset_C_Polyhedron_iterator (&end);
for (ppl_Pointset_Powerset_C_Polyhedron_iterator_begin (ps, it),
ppl_Pointset_Powerset_C_Polyhedron_iterator_end (ps, end);
!ppl_Pointset_Powerset_C_Polyhedron_iterator_equal_test (it, end);
ppl_Pointset_Powerset_C_Polyhedron_iterator_increment (it))
{
ppl_const_Polyhedron_t ph;
CloogDomain *tmp;
ppl_Pointset_Powerset_C_Polyhedron_iterator_dereference (it, &ph);
tmp = new_Cloog_Domain_from_ppl_Polyhedron (ph);
if (res == NULL)
res = tmp;
else
res = cloog_domain_union (res, tmp);
}
ppl_delete_Pointset_Powerset_C_Polyhedron_iterator (it);
ppl_delete_Pointset_Powerset_C_Polyhedron_iterator (end);
gcc_assert (res != NULL);
return res;
}
/* Set the inhomogeneous term of E to X. */
void
ppl_set_inhomogeneous_gmp (ppl_Linear_Expression_t e, Value x)
{
Value v0, v1;
ppl_Coefficient_t c;
value_init (v0);
value_init (v1);
ppl_new_Coefficient (&c);
ppl_Linear_Expression_inhomogeneous_term (e, c);
ppl_Coefficient_to_mpz_t (c, v1);
value_oppose (v1, v1);
value_assign (v0, x);
value_addto (v0, v0, v1);
ppl_assign_Coefficient_from_mpz_t (c, v0);
ppl_Linear_Expression_add_to_inhomogeneous (e, c);
value_clear (v0);
value_clear (v1);
ppl_delete_Coefficient (c);
}
/* Set E[I] to X. */
void
ppl_set_coef_gmp (ppl_Linear_Expression_t e, ppl_dimension_type i, Value x)
{
Value v0, v1;
ppl_Coefficient_t c;
value_init (v0);
value_init (v1);
ppl_new_Coefficient (&c);
ppl_Linear_Expression_coefficient (e, i, c);
ppl_Coefficient_to_mpz_t (c, v1);
value_oppose (v1, v1);
value_assign (v0, x);
value_addto (v0, v0, v1);
ppl_assign_Coefficient_from_mpz_t (c, v0);
ppl_Linear_Expression_add_to_coefficient (e, i, c);
value_clear (v0);
value_clear (v1);
ppl_delete_Coefficient (c);
}
/* Insert after X NB_NEW_DIMS empty dimensions into PH.
With x = 3 and nb_new_dims = 4
| d0 d1 d2 d3 d4
is transformed to
| d0 d1 d2 x0 x1 x2 x3 d3 d4
| map = {0, 1, 2, 7, 8, 3, 4, 5, 6}
*/
void
ppl_insert_dimensions_pointset (ppl_Pointset_Powerset_C_Polyhedron_t ph, int x,
int nb_new_dims)
{
ppl_dimension_type i, dim;
ppl_dimension_type *map;
ppl_dimension_type x_ppl, nb_new_dims_ppl;
x_ppl = (ppl_dimension_type) x;
nb_new_dims_ppl = (ppl_dimension_type) nb_new_dims;
ppl_Pointset_Powerset_C_Polyhedron_space_dimension (ph, &dim);
ppl_Pointset_Powerset_C_Polyhedron_add_space_dimensions_and_embed (ph, nb_new_dims);
map = (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, dim + nb_new_dims);
for (i = 0; i < x_ppl; i++)
map[i] = i;
for (i = x_ppl; i < x_ppl + nb_new_dims_ppl; i++)
map[dim + i - x_ppl] = i;
for (i = x_ppl + nb_new_dims_ppl; i < dim + nb_new_dims_ppl; i++)
map[i - nb_new_dims_ppl] = i;
ppl_Pointset_Powerset_C_Polyhedron_map_space_dimensions (ph, map, dim + nb_new_dims);
free (map);
}
/* Insert after X NB_NEW_DIMS empty dimensions into PH.
With x = 3 and nb_new_dims = 4
| d0 d1 d2 d3 d4
is transformed to
| d0 d1 d2 x0 x1 x2 x3 d3 d4
| map = {0, 1, 2, 7, 8, 3, 4, 5, 6}
*/
void
ppl_insert_dimensions (ppl_Polyhedron_t ph, int x,
int nb_new_dims)
{
ppl_dimension_type i, dim;
ppl_dimension_type *map;
ppl_dimension_type x_ppl, nb_new_dims_ppl;
x_ppl = (ppl_dimension_type) x;
nb_new_dims_ppl = (ppl_dimension_type) nb_new_dims;
ppl_Polyhedron_space_dimension (ph, &dim);
ppl_Polyhedron_add_space_dimensions_and_embed (ph, nb_new_dims);
map = (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, dim + nb_new_dims);
for (i = 0; i < x_ppl; i++)
map[i] = i;
for (i = x_ppl; i < x_ppl + nb_new_dims_ppl; i++)
map[dim + i - x_ppl] = i;
for (i = x_ppl + nb_new_dims_ppl; i < dim + nb_new_dims_ppl; i++)
map[i - nb_new_dims_ppl] = i;
ppl_Polyhedron_map_space_dimensions (ph, map, dim + nb_new_dims);
free (map);
}
/* Based on the original polyhedron PH, returns a new polyhedron with
an extra dimension placed at position LOOP + 1 that slices the
dimension LOOP into strips of size STRIDE. */
ppl_Polyhedron_t
ppl_strip_loop (ppl_Polyhedron_t ph, ppl_dimension_type loop, int stride)
{
ppl_const_Constraint_System_t pcs;
ppl_Constraint_System_const_iterator_t cit, end;
ppl_const_Constraint_t cstr;
ppl_Linear_Expression_t expr;
int v;
ppl_dimension_type dim;
ppl_Polyhedron_t res;
ppl_Coefficient_t c;
Value val;
value_init (val);
ppl_new_Coefficient (&c);
ppl_Polyhedron_space_dimension (ph, &dim);
ppl_Polyhedron_get_constraints (ph, &pcs);
/* Start from a copy of the constraints. */
ppl_new_C_Polyhedron_from_space_dimension (&res, dim + 1, 0);
ppl_Polyhedron_add_constraints (res, pcs);
/* Add an empty dimension for the strip loop. */
ppl_insert_dimensions (res, loop, 1);
/* Identify the constraints that define the lower and upper bounds
of the strip-mined loop, and add them to the strip loop. */
{
ppl_Polyhedron_t tmp;
ppl_new_C_Polyhedron_from_space_dimension (&tmp, dim + 1, 0);
ppl_new_Constraint_System_const_iterator (&cit);
ppl_new_Constraint_System_const_iterator (&end);
for (ppl_Constraint_System_begin (pcs, cit),
ppl_Constraint_System_end (pcs, end);
!ppl_Constraint_System_const_iterator_equal_test (cit, end);
ppl_Constraint_System_const_iterator_increment (cit))
{
ppl_Constraint_System_const_iterator_dereference (cit, &cstr);
ppl_new_Linear_Expression_from_Constraint (&expr, cstr);
ppl_Linear_Expression_coefficient (expr, loop, c);
ppl_delete_Linear_Expression (expr);
ppl_Coefficient_to_mpz_t (c, val);
v = value_get_si (val);
if (0 < v || v < 0)
ppl_Polyhedron_add_constraint (tmp, cstr);
}
ppl_delete_Constraint_System_const_iterator (cit);
ppl_delete_Constraint_System_const_iterator (end);
ppl_insert_dimensions (tmp, loop + 1, 1);
ppl_Polyhedron_get_constraints (tmp, &pcs);
ppl_Polyhedron_add_constraints (res, pcs);
ppl_delete_Polyhedron (tmp);
}
/* Lower bound of a tile starts at "stride * outer_iv". */
{
ppl_Constraint_t new_cstr;
ppl_new_Linear_Expression_with_dimension (&expr, dim + 1);
ppl_set_coef (expr, loop + 1, 1);
ppl_set_coef (expr, loop, -1 * stride);
ppl_new_Constraint (&new_cstr, expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
ppl_delete_Linear_Expression (expr);
ppl_Polyhedron_add_constraint (res, new_cstr);
ppl_delete_Constraint (new_cstr);
}
/* Upper bound of a tile stops at "stride * outer_iv + stride - 1",
or at the old upper bound that is not modified. */
{
ppl_Constraint_t new_cstr;
ppl_new_Linear_Expression_with_dimension (&expr, dim + 1);
ppl_set_coef (expr, loop + 1, -1);
ppl_set_coef (expr, loop, stride);
ppl_set_inhomogeneous (expr, stride - 1);
ppl_new_Constraint (&new_cstr, expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
ppl_delete_Linear_Expression (expr);
ppl_Polyhedron_add_constraint (res, new_cstr);
ppl_delete_Constraint (new_cstr);
}
value_clear (val);
ppl_delete_Coefficient (c);
return res;
}
/* Lexicographically compares two linear expressions A and B and
returns negative when A < B, 0 when A == B and positive when A > B. */
int
ppl_lexico_compare_linear_expressions (ppl_Linear_Expression_t a,
ppl_Linear_Expression_t b)
{
ppl_dimension_type min_length, length1, length2;
ppl_dimension_type i;
ppl_Coefficient_t c;
int res;
Value va, vb;
ppl_Linear_Expression_space_dimension (a, &length1);
ppl_Linear_Expression_space_dimension (b, &length2);
ppl_new_Coefficient (&c);
value_init (va);
value_init (vb);
if (length1 < length2)
min_length = length1;
else
min_length = length2;
for (i = 0; i < min_length; i++)
{
ppl_Linear_Expression_coefficient (a, i, c);
ppl_Coefficient_to_mpz_t (c, va);
ppl_Linear_Expression_coefficient (b, i, c);
ppl_Coefficient_to_mpz_t (c, vb);
res = value_compare (va, vb);
if (res == 0)
continue;
value_clear (va);
value_clear (vb);
ppl_delete_Coefficient (c);
return res;
}
value_clear (va);
value_clear (vb);
ppl_delete_Coefficient (c);
return length1 - length2;
}
/* Print to FILE the polyhedron PH under its PolyLib matrix form. */
void
ppl_print_polyhedron_matrix (FILE *file, ppl_const_Polyhedron_t ph)
{
CloogMatrix *mat = new_Cloog_Matrix_from_ppl_Polyhedron (ph);
cloog_matrix_print (file, mat);
cloog_matrix_free (mat);
}
/* Print to FILE the linear expression LE. */
void
ppl_print_linear_expr (FILE *file, ppl_Linear_Expression_t le)
{
ppl_Constraint_t c;
ppl_Polyhedron_t pol;
ppl_dimension_type dim;
ppl_Linear_Expression_space_dimension (le, &dim);
ppl_new_C_Polyhedron_from_space_dimension (&pol, dim, 0);
ppl_new_Constraint (&c, le, PPL_CONSTRAINT_TYPE_EQUAL);
ppl_Polyhedron_add_constraint (pol, c);
ppl_print_polyhedron_matrix (file, pol);
}
/* Print to STDERR the linear expression LE. */
void
debug_ppl_linear_expr (ppl_Linear_Expression_t le)
{
ppl_print_linear_expr (stderr, le);
}
/* Print to FILE the powerset PS in its PolyLib matrix form. */
void
ppl_print_powerset_matrix (FILE *file,
ppl_Pointset_Powerset_C_Polyhedron_t ps)
{
size_t nb_disjuncts;
ppl_Pointset_Powerset_C_Polyhedron_iterator_t it, end;
ppl_new_Pointset_Powerset_C_Polyhedron_iterator (&it);
ppl_new_Pointset_Powerset_C_Polyhedron_iterator (&end);
ppl_Pointset_Powerset_C_Polyhedron_size (ps, &nb_disjuncts);
fprintf (file, "%d\n", (int) nb_disjuncts);
for (ppl_Pointset_Powerset_C_Polyhedron_iterator_begin (ps, it),
ppl_Pointset_Powerset_C_Polyhedron_iterator_end (ps, end);
!ppl_Pointset_Powerset_C_Polyhedron_iterator_equal_test (it, end);
ppl_Pointset_Powerset_C_Polyhedron_iterator_increment (it))
{
ppl_const_Polyhedron_t ph;
ppl_Pointset_Powerset_C_Polyhedron_iterator_dereference (it, &ph);
ppl_print_polyhedron_matrix (file, ph);
}
ppl_delete_Pointset_Powerset_C_Polyhedron_iterator (it);
ppl_delete_Pointset_Powerset_C_Polyhedron_iterator (end);
}
/* Print to STDERR the polyhedron PH under its PolyLib matrix form. */
void
debug_ppl_polyhedron_matrix (ppl_Polyhedron_t ph)
{
ppl_print_polyhedron_matrix (stderr, ph);
}
/* Print to STDERR the powerset PS in its PolyLib matrix form. */
void
debug_ppl_powerset_matrix (ppl_Pointset_Powerset_C_Polyhedron_t ps)
{
ppl_print_powerset_matrix (stderr, ps);
}
/* Read from FILE a polyhedron under PolyLib matrix form and return a
PPL polyhedron object. */
void
ppl_read_polyhedron_matrix (ppl_Polyhedron_t *ph, FILE *file)
{
CloogMatrix *mat = cloog_matrix_read (file);
new_C_Polyhedron_from_Cloog_Matrix (ph, mat);
cloog_matrix_free (mat);
}
/* Return in RES the maximum of the linear expression LE on the
pointset powerset of polyhedra PS. */
void
ppl_max_for_le_pointset (ppl_Pointset_Powerset_C_Polyhedron_t ps,
ppl_Linear_Expression_t le, Value res)
{
ppl_Coefficient_t num, denom;
Value dv, nv;
int maximum, err;
value_init (nv);
value_init (dv);
ppl_new_Coefficient (&num);
ppl_new_Coefficient (&denom);
err = ppl_Pointset_Powerset_C_Polyhedron_maximize (ps, le, num, denom, &maximum);
if (err > 0)
{
ppl_Coefficient_to_mpz_t (num, nv);
ppl_Coefficient_to_mpz_t (denom, dv);
gcc_assert (value_notzero_p (dv));
value_division (res, nv, dv);
}
value_clear (nv);
value_clear (dv);
ppl_delete_Coefficient (num);
ppl_delete_Coefficient (denom);
}
/* Return in RES the maximum of the linear expression LE on the
polyhedron POL. */
void
ppl_min_for_le_pointset (ppl_Pointset_Powerset_C_Polyhedron_t ps,
ppl_Linear_Expression_t le, Value res)
{
ppl_Coefficient_t num, denom;
Value dv, nv;
int minimum, err;
value_init (nv);
value_init (dv);
ppl_new_Coefficient (&num);
ppl_new_Coefficient (&denom);
err = ppl_Pointset_Powerset_C_Polyhedron_minimize (ps, le, num, denom, &minimum);
if (err > 0)
{
ppl_Coefficient_to_mpz_t (num, nv);
ppl_Coefficient_to_mpz_t (denom, dv);
gcc_assert (value_notzero_p (dv));
value_division (res, nv, dv);
}
value_clear (nv);
value_clear (dv);
ppl_delete_Coefficient (num);
ppl_delete_Coefficient (denom);
}
/* Builds a constraint in dimension DIM relating dimensions POS1 to
POS2 as "POS1 - POS2 + C CSTR_TYPE 0" */
ppl_Constraint_t
ppl_build_relation (int dim, int pos1, int pos2, int c,
enum ppl_enum_Constraint_Type cstr_type)
{
ppl_Linear_Expression_t expr;
ppl_Constraint_t cstr;
ppl_Coefficient_t coef;
Value v, v_op, v_c;
value_init (v);
value_init (v_op);
value_init (v_c);
value_set_si (v, 1);
value_set_si (v_op, -1);
value_set_si (v_c, c);
ppl_new_Coefficient (&coef);
ppl_new_Linear_Expression_with_dimension (&expr, dim);
ppl_assign_Coefficient_from_mpz_t (coef, v);
ppl_Linear_Expression_add_to_coefficient (expr, pos1, coef);
ppl_assign_Coefficient_from_mpz_t (coef, v_op);
ppl_Linear_Expression_add_to_coefficient (expr, pos2, coef);
ppl_assign_Coefficient_from_mpz_t (coef, v_c);
ppl_Linear_Expression_add_to_inhomogeneous (expr, coef);
ppl_new_Constraint (&cstr, expr, cstr_type);
ppl_delete_Linear_Expression (expr);
ppl_delete_Coefficient (coef);
value_clear (v);
value_clear (v_op);
value_clear (v_c);
return cstr;
}
#endif
|