1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
|
/* Interchange heuristics and transform for loop interchange on
polyhedral representation.
Copyright (C) 2009 Free Software Foundation, Inc.
Contributed by Sebastian Pop <sebastian.pop@amd.com> and
Harsha Jagasia <harsha.jagasia@amd.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "rtl.h"
#include "output.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "toplev.h"
#include "tree-dump.h"
#include "timevar.h"
#include "cfgloop.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "tree-pass.h"
#include "domwalk.h"
#include "value-prof.h"
#include "pointer-set.h"
#include "gimple.h"
#include "params.h"
#ifdef HAVE_cloog
#include "ppl_c.h"
#include "sese.h"
#include "graphite-ppl.h"
#include "graphite.h"
#include "graphite-poly.h"
/* Builds a linear expression, of dimension DIM, representing PDR's
memory access:
L = r_{n}*r_{n-1}*...*r_{1}*s_{0} + ... + r_{n}*s_{n-1} + s_{n}.
For an array A[10][20] with two subscript locations s0 and s1, the
linear memory access is 20 * s0 + s1: a stride of 1 in subscript s0
corresponds to a memory stride of 20.
OFFSET is a number of dimensions to prepend before the
subscript dimensions: s_0, s_1, ..., s_n.
Thus, the final linear expression has the following format:
0 .. 0_{offset} | 0 .. 0_{nit} | 0 .. 0_{gd} | 0 | c_0 c_1 ... c_n
where the expression itself is:
c_0 * s_0 + c_1 * s_1 + ... c_n * s_n. */
static ppl_Linear_Expression_t
build_linearized_memory_access (ppl_dimension_type offset, poly_dr_p pdr)
{
ppl_Linear_Expression_t res;
ppl_Linear_Expression_t le;
ppl_dimension_type i;
ppl_dimension_type first = pdr_subscript_dim (pdr, 0);
ppl_dimension_type last = pdr_subscript_dim (pdr, PDR_NB_SUBSCRIPTS (pdr));
mpz_t size, sub_size;
graphite_dim_t dim = offset + pdr_dim (pdr);
ppl_new_Linear_Expression_with_dimension (&res, dim);
mpz_init (size);
mpz_set_si (size, 1);
mpz_init (sub_size);
mpz_set_si (sub_size, 1);
for (i = last - 1; i >= first; i--)
{
ppl_set_coef_gmp (res, i + offset, size);
ppl_new_Linear_Expression_with_dimension (&le, dim - offset);
ppl_set_coef (le, i, 1);
ppl_max_for_le_pointset (PDR_ACCESSES (pdr), le, sub_size);
mpz_mul (size, size, sub_size);
ppl_delete_Linear_Expression (le);
}
mpz_clear (sub_size);
mpz_clear (size);
return res;
}
/* Builds a partial difference equations and inserts them
into pointset powerset polyhedron P. Polyhedron is assumed
to have the format: T|I|T'|I'|G|S|S'|l1|l2.
TIME_DEPTH is the time dimension w.r.t. which we are
differentiating.
OFFSET represents the number of dimensions between
columns t_{time_depth} and t'_{time_depth}.
DIM_SCTR is the number of scattering dimensions. It is
essentially the dimensionality of the T vector.
The following equations are inserted into the polyhedron P:
| t_1 = t_1'
| ...
| t_{time_depth-1} = t'_{time_depth-1}
| t_{time_depth} = t'_{time_depth} + 1
| t_{time_depth+1} = t'_{time_depth + 1}
| ...
| t_{dim_sctr} = t'_{dim_sctr}. */
static void
build_partial_difference (ppl_Pointset_Powerset_C_Polyhedron_t *p,
ppl_dimension_type time_depth,
ppl_dimension_type offset,
ppl_dimension_type dim_sctr)
{
ppl_Constraint_t new_cstr;
ppl_Linear_Expression_t le;
ppl_dimension_type i;
ppl_dimension_type dim;
ppl_Pointset_Powerset_C_Polyhedron_t temp;
/* Add the equality: t_{time_depth} = t'_{time_depth} + 1.
This is the core part of this alogrithm, since this
constraint asks for the memory access stride (difference)
between two consecutive points in time dimensions. */
ppl_Pointset_Powerset_C_Polyhedron_space_dimension (*p, &dim);
ppl_new_Linear_Expression_with_dimension (&le, dim);
ppl_set_coef (le, time_depth, 1);
ppl_set_coef (le, time_depth + offset, -1);
ppl_set_inhomogeneous (le, 1);
ppl_new_Constraint (&new_cstr, le, PPL_CONSTRAINT_TYPE_EQUAL);
ppl_Pointset_Powerset_C_Polyhedron_add_constraint (*p, new_cstr);
ppl_delete_Linear_Expression (le);
ppl_delete_Constraint (new_cstr);
/* Add equalities:
| t1 = t1'
| ...
| t_{time_depth-1} = t'_{time_depth-1}
| t_{time_depth+1} = t'_{time_depth+1}
| ...
| t_{dim_sctr} = t'_{dim_sctr}
This means that all the time dimensions are equal except for
time_depth, where the constraint is t_{depth} = t'_{depth} + 1
step. More to this: we should be carefull not to add equalities
to the 'coupled' dimensions, which happens when the one dimension
is stripmined dimension, and the other dimension corresponds
to the point loop inside stripmined dimension. */
ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron (&temp, *p);
for (i = 0; i < dim_sctr; i++)
if (i != time_depth)
{
ppl_new_Linear_Expression_with_dimension (&le, dim);
ppl_set_coef (le, i, 1);
ppl_set_coef (le, i + offset, -1);
ppl_new_Constraint (&new_cstr, le, PPL_CONSTRAINT_TYPE_EQUAL);
ppl_Pointset_Powerset_C_Polyhedron_add_constraint (temp, new_cstr);
if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (temp))
{
ppl_delete_Pointset_Powerset_C_Polyhedron (temp);
ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron (&temp, *p);
}
else
ppl_Pointset_Powerset_C_Polyhedron_add_constraint (*p, new_cstr);
ppl_delete_Linear_Expression (le);
ppl_delete_Constraint (new_cstr);
}
ppl_delete_Pointset_Powerset_C_Polyhedron (temp);
}
/* Set STRIDE to the stride of PDR in memory by advancing by one in
the loop at DEPTH. */
static void
pdr_stride_in_loop (mpz_t stride, graphite_dim_t depth, poly_dr_p pdr)
{
ppl_dimension_type time_depth;
ppl_Linear_Expression_t le, lma;
ppl_Constraint_t new_cstr;
ppl_dimension_type i, *map;
ppl_Pointset_Powerset_C_Polyhedron_t p1, p2, sctr;
graphite_dim_t nb_subscripts = PDR_NB_SUBSCRIPTS (pdr) + 1;
poly_bb_p pbb = PDR_PBB (pdr);
ppl_dimension_type offset = pbb_nb_scattering_transform (pbb)
+ pbb_nb_local_vars (pbb)
+ pbb_dim_iter_domain (pbb);
ppl_dimension_type offsetg = offset + pbb_nb_params (pbb);
ppl_dimension_type dim_sctr = pbb_nb_scattering_transform (pbb)
+ pbb_nb_local_vars (pbb);
ppl_dimension_type dim_L1 = offset + offsetg + 2 * nb_subscripts;
ppl_dimension_type dim_L2 = offset + offsetg + 2 * nb_subscripts + 1;
ppl_dimension_type new_dim = offset + offsetg + 2 * nb_subscripts + 2;
/* The resulting polyhedron should have the following format:
T|I|T'|I'|G|S|S'|l1|l2
where:
| T = t_1..t_{dim_sctr}
| I = i_1..i_{dim_iter_domain}
| T'= t'_1..t'_{dim_sctr}
| I'= i'_1..i'_{dim_iter_domain}
| G = g_1..g_{nb_params}
| S = s_1..s_{nb_subscripts}
| S'= s'_1..s'_{nb_subscripts}
| l1 and l2 are scalars.
Some invariants:
offset = dim_sctr + dim_iter_domain + nb_local_vars
offsetg = dim_sctr + dim_iter_domain + nb_local_vars + nb_params. */
/* Construct the T|I|0|0|G|0|0|0|0 part. */
{
ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
(&sctr, PBB_TRANSFORMED_SCATTERING (pbb));
ppl_Pointset_Powerset_C_Polyhedron_add_space_dimensions_and_embed
(sctr, 2 * nb_subscripts + 2);
ppl_insert_dimensions_pointset (sctr, offset, offset);
}
/* Construct the 0|I|0|0|G|S|0|0|0 part. */
{
ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
(&p1, PDR_ACCESSES (pdr));
ppl_Pointset_Powerset_C_Polyhedron_add_space_dimensions_and_embed
(p1, nb_subscripts + 2);
ppl_insert_dimensions_pointset (p1, 0, dim_sctr);
ppl_insert_dimensions_pointset (p1, offset, offset);
}
/* Construct the 0|0|0|0|0|S|0|l1|0 part. */
{
lma = build_linearized_memory_access (offset + dim_sctr, pdr);
ppl_set_coef (lma, dim_L1, -1);
ppl_new_Constraint (&new_cstr, lma, PPL_CONSTRAINT_TYPE_EQUAL);
ppl_Pointset_Powerset_C_Polyhedron_add_constraint (p1, new_cstr);
ppl_delete_Linear_Expression (lma);
ppl_delete_Constraint (new_cstr);
}
/* Now intersect all the parts to get the polyhedron P1:
T|I|0|0|G|0|0|0 |0
0|I|0|0|G|S|0|0 |0
0|0|0|0|0|S|0|l1|0
------------------
T|I|0|0|G|S|0|l1|0. */
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (p1, sctr);
ppl_delete_Pointset_Powerset_C_Polyhedron (sctr);
/* Build P2, which would have the following form:
0|0|T'|I'|G|0|S'|0|l2
P2 is built, by remapping the P1 polyhedron:
T|I|0|0|G|S|0|l1|0
using the following mapping:
T->T'
I->I'
S->S'
l1->l2. */
{
ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
(&p2, p1);
map = ppl_new_id_map (new_dim);
/* TI -> T'I'. */
for (i = 0; i < offset; i++)
ppl_interchange (map, i, i + offset);
/* l1 -> l2. */
ppl_interchange (map, dim_L1, dim_L2);
/* S -> S'. */
for (i = 0; i < nb_subscripts; i++)
ppl_interchange (map, offset + offsetg + i,
offset + offsetg + nb_subscripts + i);
ppl_Pointset_Powerset_C_Polyhedron_map_space_dimensions (p2, map, new_dim);
free (map);
}
time_depth = psct_dynamic_dim (pbb, depth);
/* P1 = P1 inter P2. */
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (p1, p2);
build_partial_difference (&p1, time_depth, offset, dim_sctr);
/* Maximise the expression L2 - L1. */
{
ppl_new_Linear_Expression_with_dimension (&le, new_dim);
ppl_set_coef (le, dim_L2, 1);
ppl_set_coef (le, dim_L1, -1);
ppl_max_for_le_pointset (p1, le, stride);
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
char *str;
void (*gmp_free) (void *, size_t);
fprintf (dump_file, "\nStride in BB_%d, DR_%d, depth %d:",
pbb_index (pbb), PDR_ID (pdr), (int) depth);
str = mpz_get_str (0, 10, stride);
fprintf (dump_file, " %s ", str);
mp_get_memory_functions (NULL, NULL, &gmp_free);
(*gmp_free) (str, strlen (str) + 1);
}
ppl_delete_Pointset_Powerset_C_Polyhedron (p1);
ppl_delete_Pointset_Powerset_C_Polyhedron (p2);
ppl_delete_Linear_Expression (le);
}
/* Sets STRIDES to the sum of all the strides of the data references
accessed in LOOP at DEPTH. */
static void
memory_strides_in_loop_1 (lst_p loop, graphite_dim_t depth, mpz_t strides)
{
int i, j;
lst_p l;
poly_dr_p pdr;
mpz_t s, n;
mpz_init (s);
mpz_init (n);
FOR_EACH_VEC_ELT (lst_p, LST_SEQ (loop), j, l)
if (LST_LOOP_P (l))
memory_strides_in_loop_1 (l, depth, strides);
else
FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (LST_PBB (l)), i, pdr)
{
pdr_stride_in_loop (s, depth, pdr);
mpz_set_si (n, PDR_NB_REFS (pdr));
mpz_mul (s, s, n);
mpz_add (strides, strides, s);
}
mpz_clear (s);
mpz_clear (n);
}
/* Sets STRIDES to the sum of all the strides of the data references
accessed in LOOP at DEPTH. */
static void
memory_strides_in_loop (lst_p loop, graphite_dim_t depth, mpz_t strides)
{
if (mpz_cmp_si (loop->memory_strides, -1) == 0)
{
mpz_set_si (strides, 0);
memory_strides_in_loop_1 (loop, depth, strides);
}
else
mpz_set (strides, loop->memory_strides);
}
/* Return true when the interchange of loops LOOP1 and LOOP2 is
profitable.
Example:
| int a[100][100];
|
| int
| foo (int N)
| {
| int j;
| int i;
|
| for (i = 0; i < N; i++)
| for (j = 0; j < N; j++)
| a[j][2 * i] += 1;
|
| return a[N][12];
| }
The data access A[j][i] is described like this:
| i j N a s0 s1 1
| 0 0 0 1 0 0 -5 = 0
| 0 -1 0 0 1 0 0 = 0
|-2 0 0 0 0 1 0 = 0
| 0 0 0 0 1 0 0 >= 0
| 0 0 0 0 0 1 0 >= 0
| 0 0 0 0 -1 0 100 >= 0
| 0 0 0 0 0 -1 100 >= 0
The linearized memory access L to A[100][100] is:
| i j N a s0 s1 1
| 0 0 0 0 100 1 0
TODO: the shown format is not valid as it does not show the fact
that the iteration domain "i j" is transformed using the scattering.
Next, to measure the impact of iterating once in loop "i", we build
a maximization problem: first, we add to DR accesses the dimensions
k, s2, s3, L1 = 100 * s0 + s1, L2, and D1: this is the polyhedron P1.
L1 and L2 are the linearized memory access functions.
| i j N a s0 s1 k s2 s3 L1 L2 D1 1
| 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
| 0 -1 0 0 1 0 0 0 0 0 0 0 0 = 0 s0 = j
|-2 0 0 0 0 1 0 0 0 0 0 0 0 = 0 s1 = 2 * i
| 0 0 0 0 1 0 0 0 0 0 0 0 0 >= 0
| 0 0 0 0 0 1 0 0 0 0 0 0 0 >= 0
| 0 0 0 0 -1 0 0 0 0 0 0 0 100 >= 0
| 0 0 0 0 0 -1 0 0 0 0 0 0 100 >= 0
| 0 0 0 0 100 1 0 0 0 -1 0 0 0 = 0 L1 = 100 * s0 + s1
Then, we generate the polyhedron P2 by interchanging the dimensions
(s0, s2), (s1, s3), (L1, L2), (k, i)
| i j N a s0 s1 k s2 s3 L1 L2 D1 1
| 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
| 0 -1 0 0 0 0 0 1 0 0 0 0 0 = 0 s2 = j
| 0 0 0 0 0 0 -2 0 1 0 0 0 0 = 0 s3 = 2 * k
| 0 0 0 0 0 0 0 1 0 0 0 0 0 >= 0
| 0 0 0 0 0 0 0 0 1 0 0 0 0 >= 0
| 0 0 0 0 0 0 0 -1 0 0 0 0 100 >= 0
| 0 0 0 0 0 0 0 0 -1 0 0 0 100 >= 0
| 0 0 0 0 0 0 0 100 1 0 -1 0 0 = 0 L2 = 100 * s2 + s3
then we add to P2 the equality k = i + 1:
|-1 0 0 0 0 0 1 0 0 0 0 0 -1 = 0 k = i + 1
and finally we maximize the expression "D1 = max (P1 inter P2, L2 - L1)".
Similarly, to determine the impact of one iteration on loop "j", we
interchange (k, j), we add "k = j + 1", and we compute D2 the
maximal value of the difference.
Finally, the profitability test is D1 < D2: if in the outer loop
the strides are smaller than in the inner loop, then it is
profitable to interchange the loops at DEPTH1 and DEPTH2. */
static bool
lst_interchange_profitable_p (lst_p loop1, lst_p loop2)
{
mpz_t d1, d2;
bool res;
gcc_assert (loop1 && loop2
&& LST_LOOP_P (loop1) && LST_LOOP_P (loop2)
&& lst_depth (loop1) < lst_depth (loop2));
mpz_init (d1);
mpz_init (d2);
memory_strides_in_loop (loop1, lst_depth (loop1), d1);
memory_strides_in_loop (loop2, lst_depth (loop2), d2);
res = mpz_cmp (d1, d2) < 0;
mpz_clear (d1);
mpz_clear (d2);
return res;
}
/* Interchanges the loops at DEPTH1 and DEPTH2 of the original
scattering and assigns the resulting polyhedron to the transformed
scattering. */
static void
pbb_interchange_loop_depths (graphite_dim_t depth1, graphite_dim_t depth2,
poly_bb_p pbb)
{
ppl_dimension_type i, dim;
ppl_dimension_type *map;
ppl_Polyhedron_t poly = PBB_TRANSFORMED_SCATTERING (pbb);
ppl_dimension_type dim1 = psct_dynamic_dim (pbb, depth1);
ppl_dimension_type dim2 = psct_dynamic_dim (pbb, depth2);
ppl_Polyhedron_space_dimension (poly, &dim);
map = (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, dim);
for (i = 0; i < dim; i++)
map[i] = i;
map[dim1] = dim2;
map[dim2] = dim1;
ppl_Polyhedron_map_space_dimensions (poly, map, dim);
free (map);
}
/* Apply the interchange of loops at depths DEPTH1 and DEPTH2 to all
the statements below LST. */
static void
lst_apply_interchange (lst_p lst, int depth1, int depth2)
{
if (!lst)
return;
if (LST_LOOP_P (lst))
{
int i;
lst_p l;
FOR_EACH_VEC_ELT (lst_p, LST_SEQ (lst), i, l)
lst_apply_interchange (l, depth1, depth2);
}
else
pbb_interchange_loop_depths (depth1, depth2, LST_PBB (lst));
}
/* Return true when the nest starting at LOOP1 and ending on LOOP2 is
perfect: i.e. there are no sequence of statements. */
static bool
lst_perfectly_nested_p (lst_p loop1, lst_p loop2)
{
if (loop1 == loop2)
return true;
if (!LST_LOOP_P (loop1))
return false;
return VEC_length (lst_p, LST_SEQ (loop1)) == 1
&& lst_perfectly_nested_p (VEC_index (lst_p, LST_SEQ (loop1), 0), loop2);
}
/* Transform the loop nest between LOOP1 and LOOP2 into a perfect
nest. To continue the naming tradition, this function is called
after perfect_nestify. NEST is set to the perfectly nested loop
that is created. BEFORE/AFTER are set to the loops distributed
before/after the loop NEST. */
static void
lst_perfect_nestify (lst_p loop1, lst_p loop2, lst_p *before,
lst_p *nest, lst_p *after)
{
poly_bb_p first, last;
gcc_assert (loop1 && loop2
&& loop1 != loop2
&& LST_LOOP_P (loop1) && LST_LOOP_P (loop2));
first = LST_PBB (lst_find_first_pbb (loop2));
last = LST_PBB (lst_find_last_pbb (loop2));
*before = copy_lst (loop1);
*nest = copy_lst (loop1);
*after = copy_lst (loop1);
lst_remove_all_before_including_pbb (*before, first, false);
lst_remove_all_before_including_pbb (*after, last, true);
lst_remove_all_before_excluding_pbb (*nest, first, true);
lst_remove_all_before_excluding_pbb (*nest, last, false);
if (lst_empty_p (*before))
{
free_lst (*before);
*before = NULL;
}
if (lst_empty_p (*after))
{
free_lst (*after);
*after = NULL;
}
if (lst_empty_p (*nest))
{
free_lst (*nest);
*nest = NULL;
}
}
/* Try to interchange LOOP1 with LOOP2 for all the statements of the
body of LOOP2. LOOP1 contains LOOP2. Return true if it did the
interchange. */
static bool
lst_try_interchange_loops (scop_p scop, lst_p loop1, lst_p loop2)
{
int depth1 = lst_depth (loop1);
int depth2 = lst_depth (loop2);
lst_p transformed;
lst_p before = NULL, nest = NULL, after = NULL;
if (!lst_interchange_profitable_p (loop1, loop2))
return false;
if (!lst_perfectly_nested_p (loop1, loop2))
lst_perfect_nestify (loop1, loop2, &before, &nest, &after);
lst_apply_interchange (loop2, depth1, depth2);
/* Sync the transformed LST information and the PBB scatterings
before using the scatterings in the data dependence analysis. */
if (before || nest || after)
{
transformed = lst_substitute_3 (SCOP_TRANSFORMED_SCHEDULE (scop), loop1,
before, nest, after);
lst_update_scattering (transformed);
free_lst (transformed);
}
if (graphite_legal_transform (scop))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Loops at depths %d and %d will be interchanged.\n",
depth1, depth2);
/* Transform the SCOP_TRANSFORMED_SCHEDULE of the SCOP. */
lst_insert_in_sequence (before, loop1, true);
lst_insert_in_sequence (after, loop1, false);
if (nest)
{
lst_replace (loop1, nest);
free_lst (loop1);
}
return true;
}
/* Undo the transform. */
free_lst (before);
free_lst (nest);
free_lst (after);
lst_apply_interchange (loop2, depth2, depth1);
return false;
}
/* Selects the inner loop in LST_SEQ (INNER_FATHER) to be interchanged
with the loop OUTER in LST_SEQ (OUTER_FATHER). */
static bool
lst_interchange_select_inner (scop_p scop, lst_p outer_father, int outer,
lst_p inner_father)
{
int inner;
lst_p loop1, loop2;
gcc_assert (outer_father
&& LST_LOOP_P (outer_father)
&& LST_LOOP_P (VEC_index (lst_p, LST_SEQ (outer_father), outer))
&& inner_father
&& LST_LOOP_P (inner_father));
loop1 = VEC_index (lst_p, LST_SEQ (outer_father), outer);
FOR_EACH_VEC_ELT (lst_p, LST_SEQ (inner_father), inner, loop2)
if (LST_LOOP_P (loop2)
&& (lst_try_interchange_loops (scop, loop1, loop2)
|| lst_interchange_select_inner (scop, outer_father, outer, loop2)))
return true;
return false;
}
/* Interchanges all the loops of LOOP and the loops of its body that
are considered profitable to interchange. Return true if it did
interchanged some loops. OUTER is the index in LST_SEQ (LOOP) that
points to the next outer loop to be considered for interchange. */
static bool
lst_interchange_select_outer (scop_p scop, lst_p loop, int outer)
{
lst_p l;
bool res = false;
int i = 0;
lst_p father;
if (!loop || !LST_LOOP_P (loop))
return false;
father = LST_LOOP_FATHER (loop);
if (father)
{
while (lst_interchange_select_inner (scop, father, outer, loop))
{
res = true;
loop = VEC_index (lst_p, LST_SEQ (father), outer);
}
}
if (LST_LOOP_P (loop))
FOR_EACH_VEC_ELT (lst_p, LST_SEQ (loop), i, l)
if (LST_LOOP_P (l))
res |= lst_interchange_select_outer (scop, l, i);
return res;
}
/* Interchanges all the loop depths that are considered profitable for SCOP. */
bool
scop_do_interchange (scop_p scop)
{
bool res = lst_interchange_select_outer
(scop, SCOP_TRANSFORMED_SCHEDULE (scop), 0);
lst_update_scattering (SCOP_TRANSFORMED_SCHEDULE (scop));
return res;
}
#endif
|