1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
|
/* Data dependence analysis for Graphite.
Copyright (C) 2009, 2010 Free Software Foundation, Inc.
Contributed by Sebastian Pop <sebastian.pop@amd.com> and
Konrad Trifunovic <konrad.trifunovic@inria.fr>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "rtl.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "toplev.h"
#include "tree-dump.h"
#include "timevar.h"
#include "cfgloop.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "tree-pass.h"
#include "domwalk.h"
#include "pointer-set.h"
#include "gimple.h"
#ifdef HAVE_cloog
#include "ppl_c.h"
#include "sese.h"
#include "graphite-ppl.h"
#include "graphite.h"
#include "graphite-poly.h"
#include "graphite-dependences.h"
/* Returns a new polyhedral Data Dependence Relation (DDR). SOURCE is
the source data reference, SINK is the sink data reference. When
the Data Dependence Polyhedron DDP is not NULL or not empty, SOURCE
and SINK are in dependence as described by DDP. */
static poly_ddr_p
new_poly_ddr (poly_dr_p source, poly_dr_p sink,
ppl_Pointset_Powerset_C_Polyhedron_t ddp,
bool original_scattering_p)
{
poly_ddr_p pddr = XNEW (struct poly_ddr);
PDDR_SOURCE (pddr) = source;
PDDR_SINK (pddr) = sink;
PDDR_DDP (pddr) = ddp;
PDDR_ORIGINAL_SCATTERING_P (pddr) = original_scattering_p;
if (!ddp || ppl_Pointset_Powerset_C_Polyhedron_is_empty (ddp))
PDDR_KIND (pddr) = no_dependence;
else
PDDR_KIND (pddr) = has_dependence;
return pddr;
}
/* Free the poly_ddr_p P. */
void
free_poly_ddr (void *p)
{
poly_ddr_p pddr = (poly_ddr_p) p;
ppl_delete_Pointset_Powerset_C_Polyhedron (PDDR_DDP (pddr));
free (pddr);
}
/* Comparison function for poly_ddr hash table. */
int
eq_poly_ddr_p (const void *pddr1, const void *pddr2)
{
const struct poly_ddr *p1 = (const struct poly_ddr *) pddr1;
const struct poly_ddr *p2 = (const struct poly_ddr *) pddr2;
return (PDDR_SOURCE (p1) == PDDR_SOURCE (p2)
&& PDDR_SINK (p1) == PDDR_SINK (p2));
}
/* Hash function for poly_ddr hashtable. */
hashval_t
hash_poly_ddr_p (const void *pddr)
{
const struct poly_ddr *p = (const struct poly_ddr *) pddr;
return (hashval_t) ((long) PDDR_SOURCE (p) + (long) PDDR_SINK (p));
}
/* Returns true when PDDR has no dependence. */
static bool
pddr_is_empty (poly_ddr_p pddr)
{
if (!pddr)
return true;
gcc_assert (PDDR_KIND (pddr) != unknown_dependence);
return PDDR_KIND (pddr) == no_dependence ? true : false;
}
/* Prints to FILE the layout of the dependence polyhedron of PDDR:
T1|I1|T2|I2|S1|S2|G
with
| T1 and T2 the scattering dimensions for PDDR_SOURCE and PDDR_SINK
| I1 and I2 the iteration domains
| S1 and S2 the subscripts
| G the global parameters. */
static void
print_dependence_polyhedron_layout (FILE *file, poly_ddr_p pddr)
{
poly_dr_p pdr1 = PDDR_SOURCE (pddr);
poly_dr_p pdr2 = PDDR_SINK (pddr);
poly_bb_p pbb1 = PDR_PBB (pdr1);
poly_bb_p pbb2 = PDR_PBB (pdr2);
graphite_dim_t i;
graphite_dim_t tdim1 = PDDR_ORIGINAL_SCATTERING_P (pddr) ?
pbb_nb_scattering_orig (pbb1) : pbb_nb_scattering_transform (pbb1);
graphite_dim_t tdim2 = PDDR_ORIGINAL_SCATTERING_P (pddr) ?
pbb_nb_scattering_orig (pbb2) : pbb_nb_scattering_transform (pbb2);
graphite_dim_t idim1 = pbb_dim_iter_domain (pbb1);
graphite_dim_t idim2 = pbb_dim_iter_domain (pbb2);
graphite_dim_t sdim1 = PDR_NB_SUBSCRIPTS (pdr1) + 1;
graphite_dim_t sdim2 = PDR_NB_SUBSCRIPTS (pdr2) + 1;
graphite_dim_t gdim = scop_nb_params (PBB_SCOP (pbb1));
fprintf (file, "# eq");
for (i = 0; i < tdim1; i++)
fprintf (file, " t1_%d", (int) i);
for (i = 0; i < idim1; i++)
fprintf (file, " i1_%d", (int) i);
for (i = 0; i < tdim2; i++)
fprintf (file, " t2_%d", (int) i);
for (i = 0; i < idim2; i++)
fprintf (file, " i2_%d", (int) i);
for (i = 0; i < sdim1; i++)
fprintf (file, " s1_%d", (int) i);
for (i = 0; i < sdim2; i++)
fprintf (file, " s2_%d", (int) i);
for (i = 0; i < gdim; i++)
fprintf (file, " g_%d", (int) i);
fprintf (file, " cst\n");
}
/* Prints to FILE the poly_ddr_p PDDR. */
void
print_pddr (FILE *file, poly_ddr_p pddr)
{
fprintf (file, "pddr (kind: ");
if (PDDR_KIND (pddr) == unknown_dependence)
fprintf (file, "unknown_dependence");
else if (PDDR_KIND (pddr) == no_dependence)
fprintf (file, "no_dependence");
else if (PDDR_KIND (pddr) == has_dependence)
fprintf (file, "has_dependence");
fprintf (file, "\n source ");
print_pdr (file, PDDR_SOURCE (pddr), 2);
fprintf (file, "\n sink ");
print_pdr (file, PDDR_SINK (pddr), 2);
if (PDDR_KIND (pddr) == has_dependence)
{
fprintf (file, "\n dependence polyhedron (\n");
print_dependence_polyhedron_layout (file, pddr);
ppl_print_powerset_matrix (file, PDDR_DDP (pddr));
fprintf (file, ")\n");
}
fprintf (file, ")\n");
}
/* Prints to STDERR the poly_ddr_p PDDR. */
DEBUG_FUNCTION void
debug_pddr (poly_ddr_p pddr)
{
print_pddr (stderr, pddr);
}
/* Remove all the dimensions except alias information at dimension
ALIAS_DIM. */
static void
build_alias_set_powerset (ppl_Pointset_Powerset_C_Polyhedron_t alias_powerset,
ppl_dimension_type alias_dim)
{
ppl_dimension_type *ds;
ppl_dimension_type access_dim;
unsigned i, pos = 0;
ppl_Pointset_Powerset_C_Polyhedron_space_dimension (alias_powerset,
&access_dim);
ds = XNEWVEC (ppl_dimension_type, access_dim-1);
for (i = 0; i < access_dim; i++)
{
if (i == alias_dim)
continue;
ds[pos] = i;
pos++;
}
ppl_Pointset_Powerset_C_Polyhedron_remove_space_dimensions (alias_powerset,
ds,
access_dim - 1);
free (ds);
}
/* Return true when PDR1 and PDR2 may alias. */
static bool
poly_drs_may_alias_p (poly_dr_p pdr1, poly_dr_p pdr2)
{
ppl_Pointset_Powerset_C_Polyhedron_t alias_powerset1, alias_powerset2;
ppl_Pointset_Powerset_C_Polyhedron_t accesses1 = PDR_ACCESSES (pdr1);
ppl_Pointset_Powerset_C_Polyhedron_t accesses2 = PDR_ACCESSES (pdr2);
ppl_dimension_type alias_dim1 = pdr_alias_set_dim (pdr1);
ppl_dimension_type alias_dim2 = pdr_alias_set_dim (pdr2);
int empty_p;
ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
(&alias_powerset1, accesses1);
ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
(&alias_powerset2, accesses2);
build_alias_set_powerset (alias_powerset1, alias_dim1);
build_alias_set_powerset (alias_powerset2, alias_dim2);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign
(alias_powerset1, alias_powerset2);
empty_p = ppl_Pointset_Powerset_C_Polyhedron_is_empty (alias_powerset1);
ppl_delete_Pointset_Powerset_C_Polyhedron (alias_powerset1);
ppl_delete_Pointset_Powerset_C_Polyhedron (alias_powerset2);
return !empty_p;
}
/* Swap [cut0, ..., cut1] to the end of DR: "a CUT0 b CUT1 c" is
transformed into "a CUT0 c CUT1' b"
Add NB0 zeros before "a": "00...0 a CUT0 c CUT1' b"
Add NB1 zeros between "a" and "c": "00...0 a 00...0 c CUT1' b"
Add DIM - NB0 - NB1 - PDIM zeros between "c" and "b":
"00...0 a 00...0 c 00...0 b". */
static ppl_Pointset_Powerset_C_Polyhedron_t
map_dr_into_dep_poly (graphite_dim_t dim,
ppl_Pointset_Powerset_C_Polyhedron_t dr,
graphite_dim_t cut0, graphite_dim_t cut1,
graphite_dim_t nb0, graphite_dim_t nb1)
{
ppl_dimension_type pdim;
ppl_dimension_type *map;
ppl_Pointset_Powerset_C_Polyhedron_t res;
ppl_dimension_type i;
ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
(&res, dr);
ppl_Pointset_Powerset_C_Polyhedron_space_dimension (res, &pdim);
map = (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, pdim);
/* First mapping: move 'g' vector to right position. */
for (i = 0; i < cut0; i++)
map[i] = i;
for (i = cut0; i < cut1; i++)
map[i] = pdim - cut1 + i;
for (i = cut1; i < pdim; i++)
map[i] = cut0 + i - cut1;
ppl_Pointset_Powerset_C_Polyhedron_map_space_dimensions (res, map, pdim);
free (map);
/* After swapping 's' and 'g' vectors, we have to update a new cut. */
cut1 = pdim - cut1 + cut0;
ppl_insert_dimensions_pointset (res, 0, nb0);
ppl_insert_dimensions_pointset (res, nb0 + cut0, nb1);
ppl_insert_dimensions_pointset (res, nb0 + nb1 + cut1,
dim - nb0 - nb1 - pdim);
return res;
}
/* Builds subscript equality constraints. */
static ppl_Pointset_Powerset_C_Polyhedron_t
dr_equality_constraints (graphite_dim_t dim,
graphite_dim_t pos, graphite_dim_t nb_subscripts)
{
ppl_Polyhedron_t eqs;
ppl_Pointset_Powerset_C_Polyhedron_t res;
graphite_dim_t i;
ppl_new_C_Polyhedron_from_space_dimension (&eqs, dim, 0);
for (i = 0; i < nb_subscripts; i++)
{
ppl_Constraint_t cstr
= ppl_build_relation (dim, pos + i, pos + i + nb_subscripts,
0, PPL_CONSTRAINT_TYPE_EQUAL);
ppl_Polyhedron_add_constraint (eqs, cstr);
ppl_delete_Constraint (cstr);
}
ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&res, eqs);
ppl_delete_Polyhedron (eqs);
return res;
}
/* Builds scheduling inequality constraints: when DIRECTION is
1 builds a GE constraint,
0 builds an EQ constraint,
-1 builds a LE constraint. */
static ppl_Pointset_Powerset_C_Polyhedron_t
build_pairwise_scheduling (graphite_dim_t dim,
graphite_dim_t pos,
graphite_dim_t offset,
int direction)
{
ppl_Pointset_Powerset_C_Polyhedron_t res;
ppl_Polyhedron_t equalities;
ppl_Constraint_t cstr;
ppl_new_C_Polyhedron_from_space_dimension (&equalities, dim, 0);
switch (direction)
{
case -1:
cstr = ppl_build_relation (dim, pos, pos + offset, 1,
PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL);
break;
case 0:
cstr = ppl_build_relation (dim, pos, pos + offset, 0,
PPL_CONSTRAINT_TYPE_EQUAL);
break;
case 1:
cstr = ppl_build_relation (dim, pos, pos + offset, -1,
PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
break;
default:
gcc_unreachable ();
}
ppl_Polyhedron_add_constraint (equalities, cstr);
ppl_delete_Constraint (cstr);
ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&res, equalities);
ppl_delete_Polyhedron (equalities);
return res;
}
/* Add to a non empty polyhedron BAG the precedence constraints for
the lexicographical comparison of time vectors in BAG following the
lexicographical order. DIM is the dimension of the polyhedron BAG.
TDIM is the number of loops common to the two statements that are
compared lexicographically, i.e. the number of loops containing
both statements. OFFSET is the number of dimensions needed to
represent the first statement, i.e. dimT1 + dimI1 in the layout of
the BAG polyhedron: T1|I1|T2|I2|S1|S2|G. When DIRECTION is set to
1, compute the direct dependence from PDR1 to PDR2, and when
DIRECTION is -1, compute the reversed dependence relation, from
PDR2 to PDR1. */
static ppl_Pointset_Powerset_C_Polyhedron_t
build_lexicographical_constraint (ppl_Pointset_Powerset_C_Polyhedron_t bag,
graphite_dim_t dim,
graphite_dim_t tdim,
graphite_dim_t offset,
int direction)
{
graphite_dim_t i;
ppl_Pointset_Powerset_C_Polyhedron_t res, lex;
ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension (&res, dim, 1);
lex = build_pairwise_scheduling (dim, 0, offset, direction);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (lex, bag);
if (!ppl_Pointset_Powerset_C_Polyhedron_is_empty (lex))
ppl_Pointset_Powerset_C_Polyhedron_upper_bound_assign (res, lex);
ppl_delete_Pointset_Powerset_C_Polyhedron (lex);
for (i = 0; i < tdim - 1; i++)
{
ppl_Pointset_Powerset_C_Polyhedron_t sceq;
sceq = build_pairwise_scheduling (dim, i, offset, 0);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (bag, sceq);
ppl_delete_Pointset_Powerset_C_Polyhedron (sceq);
lex = build_pairwise_scheduling (dim, i + 1, offset, direction);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (lex, bag);
if (!ppl_Pointset_Powerset_C_Polyhedron_is_empty (lex))
ppl_Pointset_Powerset_C_Polyhedron_upper_bound_assign (res, lex);
ppl_delete_Pointset_Powerset_C_Polyhedron (lex);
}
return res;
}
/* Build the dependence polyhedron for data references PDR1 and PDR2.
The layout of the dependence polyhedron is:
T1|I1|T2|I2|S1|S2|G
with
| T1 and T2 the scattering dimensions for PDR1 and PDR2
| I1 and I2 the iteration domains
| S1 and S2 the subscripts
| G the global parameters.
When DIRECTION is set to 1, compute the direct dependence from PDR1
to PDR2, and when DIRECTION is -1, compute the reversed dependence
relation, from PDR2 to PDR1. */
static ppl_Pointset_Powerset_C_Polyhedron_t
dependence_polyhedron_1 (poly_dr_p pdr1, poly_dr_p pdr2,
int direction, bool original_scattering_p)
{
poly_bb_p pbb1 = PDR_PBB (pdr1);
poly_bb_p pbb2 = PDR_PBB (pdr2);
scop_p scop = PBB_SCOP (pbb1);
graphite_dim_t tdim1 = original_scattering_p ?
pbb_nb_scattering_orig (pbb1) : pbb_nb_scattering_transform (pbb1);
graphite_dim_t tdim2 = original_scattering_p ?
pbb_nb_scattering_orig (pbb2) : pbb_nb_scattering_transform (pbb2);
graphite_dim_t ddim1 = pbb_dim_iter_domain (pbb1);
graphite_dim_t ddim2 = pbb_dim_iter_domain (pbb2);
graphite_dim_t sdim1 = PDR_NB_SUBSCRIPTS (pdr1) + 1;
graphite_dim_t sdim2 = PDR_NB_SUBSCRIPTS (pdr2) + 1;
graphite_dim_t gdim = scop_nb_params (scop);
graphite_dim_t dim1 = pdr_dim (pdr1);
graphite_dim_t dim2 = pdr_dim (pdr2);
graphite_dim_t dim = tdim1 + tdim2 + dim1 + dim2 - gdim;
ppl_Pointset_Powerset_C_Polyhedron_t res;
ppl_Pointset_Powerset_C_Polyhedron_t idr1, idr2;
ppl_Pointset_Powerset_C_Polyhedron_t sc1, sc2, dreq;
gcc_assert (PBB_SCOP (pbb1) == PBB_SCOP (pbb2));
combine_context_id_scat (&sc1, pbb1, original_scattering_p);
combine_context_id_scat (&sc2, pbb2, original_scattering_p);
ppl_insert_dimensions_pointset (sc1, tdim1 + ddim1,
tdim2 + ddim2 + sdim1 + sdim2);
ppl_insert_dimensions_pointset (sc2, 0, tdim1 + ddim1);
ppl_insert_dimensions_pointset (sc2, tdim1 + ddim1 + tdim2 + ddim2,
sdim1 + sdim2);
idr1 = map_dr_into_dep_poly (dim, PDR_ACCESSES (pdr1), ddim1, ddim1 + gdim,
tdim1, tdim2 + ddim2);
idr2 = map_dr_into_dep_poly (dim, PDR_ACCESSES (pdr2), ddim2, ddim2 + gdim,
tdim1 + ddim1 + tdim2, sdim1);
/* Now add the subscript equalities. */
dreq = dr_equality_constraints (dim, tdim1 + ddim1 + tdim2 + ddim2, sdim1);
ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension (&res, dim, 0);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, sc1);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, sc2);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, idr1);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, idr2);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, dreq);
ppl_delete_Pointset_Powerset_C_Polyhedron (sc1);
ppl_delete_Pointset_Powerset_C_Polyhedron (sc2);
ppl_delete_Pointset_Powerset_C_Polyhedron (idr1);
ppl_delete_Pointset_Powerset_C_Polyhedron (idr2);
ppl_delete_Pointset_Powerset_C_Polyhedron (dreq);
if (!ppl_Pointset_Powerset_C_Polyhedron_is_empty (res))
{
ppl_Pointset_Powerset_C_Polyhedron_t lex =
build_lexicographical_constraint (res, dim, MIN (tdim1, tdim2),
tdim1 + ddim1, direction);
ppl_delete_Pointset_Powerset_C_Polyhedron (res);
res = lex;
}
return res;
}
/* Build the dependence polyhedron for data references PDR1 and PDR2.
If possible use already cached information.
When DIRECTION is set to 1, compute the direct dependence from PDR1
to PDR2, and when DIRECTION is -1, compute the reversed dependence
relation, from PDR2 to PDR1. */
static poly_ddr_p
dependence_polyhedron (poly_dr_p pdr1, poly_dr_p pdr2,
int direction, bool original_scattering_p)
{
PTR *x = NULL;
poly_ddr_p res;
ppl_Pointset_Powerset_C_Polyhedron_t ddp;
/* Return the PDDR from the cache if it already has been computed. */
if (original_scattering_p)
{
struct poly_ddr tmp;
scop_p scop = PBB_SCOP (PDR_PBB (pdr1));
tmp.source = pdr1;
tmp.sink = pdr2;
x = htab_find_slot (SCOP_ORIGINAL_PDDRS (scop),
&tmp, INSERT);
if (x && *x)
return (poly_ddr_p) *x;
}
if ((pdr_read_p (pdr1) && pdr_read_p (pdr2))
|| PDR_BASE_OBJECT_SET (pdr1) != PDR_BASE_OBJECT_SET (pdr2)
|| PDR_NB_SUBSCRIPTS (pdr1) != PDR_NB_SUBSCRIPTS (pdr2)
|| !poly_drs_may_alias_p (pdr1, pdr2))
ddp = NULL;
else
ddp = dependence_polyhedron_1 (pdr1, pdr2, direction,
original_scattering_p);
res = new_poly_ddr (pdr1, pdr2, ddp, original_scattering_p);
if (!(pdr_read_p (pdr1) && pdr_read_p (pdr2))
&& PDR_BASE_OBJECT_SET (pdr1) != PDR_BASE_OBJECT_SET (pdr2)
&& poly_drs_may_alias_p (pdr1, pdr2))
PDDR_KIND (res) = unknown_dependence;
if (original_scattering_p)
*x = res;
return res;
}
/* Return true when the data dependence relation between the data
references PDR1 belonging to PBB1 and PDR2 is part of a
reduction. */
static inline bool
reduction_dr_1 (poly_bb_p pbb1, poly_dr_p pdr1, poly_dr_p pdr2)
{
int i;
poly_dr_p pdr;
FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb1), i, pdr)
if (PDR_TYPE (pdr) == PDR_WRITE)
break;
return same_pdr_p (pdr, pdr1) && same_pdr_p (pdr, pdr2);
}
/* Return true when the data dependence relation between the data
references PDR1 belonging to PBB1 and PDR2 belonging to PBB2 is
part of a reduction. */
static inline bool
reduction_dr_p (poly_dr_p pdr1, poly_dr_p pdr2)
{
poly_bb_p pbb1 = PDR_PBB (pdr1);
poly_bb_p pbb2 = PDR_PBB (pdr2);
if (PBB_IS_REDUCTION (pbb1))
return reduction_dr_1 (pbb1, pdr1, pdr2);
if (PBB_IS_REDUCTION (pbb2))
return reduction_dr_1 (pbb2, pdr2, pdr1);
return false;
}
/* Returns true when the PBB_TRANSFORMED_SCATTERING functions of PBB1
and PBB2 respect the data dependences of PBB_ORIGINAL_SCATTERING
functions. */
static bool
graphite_legal_transform_dr (poly_dr_p pdr1, poly_dr_p pdr2)
{
ppl_Pointset_Powerset_C_Polyhedron_t po, pt;
graphite_dim_t ddim1, otdim1, otdim2, ttdim1, ttdim2;
ppl_Pointset_Powerset_C_Polyhedron_t po_temp;
ppl_dimension_type pdim;
bool is_empty_p;
poly_ddr_p opddr, tpddr;
poly_bb_p pbb1, pbb2;
if (reduction_dr_p (pdr1, pdr2))
return true;
/* We build the reverse dependence relation for the transformed
scattering, such that when we intersect it with the original PO,
we get an empty intersection when the transform is legal:
i.e. the transform should reverse no dependences, and so PT, the
reversed transformed PDDR, should have no constraint from PO. */
opddr = dependence_polyhedron (pdr1, pdr2, 1, true);
if (PDDR_KIND (opddr) == unknown_dependence)
return false;
/* There are no dependences between PDR1 and PDR2 in the original
version of the program, or after the transform, so the
transform is legal. */
if (pddr_is_empty (opddr))
return true;
tpddr = dependence_polyhedron (pdr1, pdr2, -1, false);
if (PDDR_KIND (tpddr) == unknown_dependence)
{
free_poly_ddr (tpddr);
return false;
}
if (pddr_is_empty (tpddr))
{
free_poly_ddr (tpddr);
return true;
}
po = PDDR_DDP (opddr);
pt = PDDR_DDP (tpddr);
/* Copy PO into PO_TEMP, such that PO is not destroyed. PO is
stored in a cache and should not be modified or freed. */
ppl_Pointset_Powerset_C_Polyhedron_space_dimension (po, &pdim);
ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension (&po_temp,
pdim, 0);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (po_temp, po);
/* Extend PO and PT to have the same dimensions. */
pbb1 = PDR_PBB (pdr1);
pbb2 = PDR_PBB (pdr2);
ddim1 = pbb_dim_iter_domain (pbb1);
otdim1 = pbb_nb_scattering_orig (pbb1);
otdim2 = pbb_nb_scattering_orig (pbb2);
ttdim1 = pbb_nb_scattering_transform (pbb1);
ttdim2 = pbb_nb_scattering_transform (pbb2);
ppl_insert_dimensions_pointset (po_temp, otdim1, ttdim1);
ppl_insert_dimensions_pointset (po_temp, otdim1 + ttdim1 + ddim1 + otdim2,
ttdim2);
ppl_insert_dimensions_pointset (pt, 0, otdim1);
ppl_insert_dimensions_pointset (pt, otdim1 + ttdim1 + ddim1, otdim2);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (po_temp, pt);
is_empty_p = ppl_Pointset_Powerset_C_Polyhedron_is_empty (po_temp);
ppl_delete_Pointset_Powerset_C_Polyhedron (po_temp);
free_poly_ddr (tpddr);
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "\nloop carries dependency.\n");
return is_empty_p;
}
/* Return true when the data dependence relation for PBB1 and PBB2 is
part of a reduction. */
static inline bool
reduction_ddr_p (poly_bb_p pbb1, poly_bb_p pbb2)
{
return pbb1 == pbb2 && PBB_IS_REDUCTION (pbb1);
}
/* Iterates over the data references of PBB1 and PBB2 and detect
whether the transformed schedule is correct. */
static bool
graphite_legal_transform_bb (poly_bb_p pbb1, poly_bb_p pbb2)
{
int i, j;
poly_dr_p pdr1, pdr2;
if (!PBB_PDR_DUPLICATES_REMOVED (pbb1))
pbb_remove_duplicate_pdrs (pbb1);
if (!PBB_PDR_DUPLICATES_REMOVED (pbb2))
pbb_remove_duplicate_pdrs (pbb2);
if (reduction_ddr_p (pbb1, pbb2))
return true;
FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb1), i, pdr1)
FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb2), j, pdr2)
if (!graphite_legal_transform_dr (pdr1, pdr2))
return false;
return true;
}
/* Iterates over the SCOP and detect whether the transformed schedule
is correct. */
bool
graphite_legal_transform (scop_p scop)
{
int i, j;
poly_bb_p pbb1, pbb2;
timevar_push (TV_GRAPHITE_DATA_DEPS);
FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb1)
FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), j, pbb2)
if (!graphite_legal_transform_bb (pbb1, pbb2))
{
timevar_pop (TV_GRAPHITE_DATA_DEPS);
return false;
}
timevar_pop (TV_GRAPHITE_DATA_DEPS);
return true;
}
/* Returns TRUE when the dependence polyhedron between PDR1 and
PDR2 represents a loop carried dependence at level LEVEL. */
static bool
graphite_carried_dependence_level_k (poly_dr_p pdr1, poly_dr_p pdr2,
int level)
{
ppl_Pointset_Powerset_C_Polyhedron_t po;
ppl_Pointset_Powerset_C_Polyhedron_t eqpp;
graphite_dim_t tdim1 = pbb_nb_scattering_transform (PDR_PBB (pdr1));
graphite_dim_t ddim1 = pbb_dim_iter_domain (PDR_PBB (pdr1));
ppl_dimension_type dim;
bool empty_p;
poly_ddr_p pddr = dependence_polyhedron (pdr1, pdr2, 1, false);
if (PDDR_KIND (pddr) == unknown_dependence)
{
free_poly_ddr (pddr);
return true;
}
if (pddr_is_empty (pddr))
{
free_poly_ddr (pddr);
return false;
}
po = PDDR_DDP (pddr);
ppl_Pointset_Powerset_C_Polyhedron_space_dimension (po, &dim);
eqpp = build_pairwise_scheduling (dim, level, tdim1 + ddim1, 1);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (eqpp, po);
empty_p = ppl_Pointset_Powerset_C_Polyhedron_is_empty (eqpp);
ppl_delete_Pointset_Powerset_C_Polyhedron (eqpp);
free_poly_ddr (pddr);
return !empty_p;
}
/* Check data dependency between PBB1 and PBB2 at level LEVEL. */
bool
dependency_between_pbbs_p (poly_bb_p pbb1, poly_bb_p pbb2, int level)
{
int i, j;
poly_dr_p pdr1, pdr2;
timevar_push (TV_GRAPHITE_DATA_DEPS);
FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb1), i, pdr1)
FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb2), j, pdr2)
if (graphite_carried_dependence_level_k (pdr1, pdr2, level))
{
timevar_pop (TV_GRAPHITE_DATA_DEPS);
return true;
}
timevar_pop (TV_GRAPHITE_DATA_DEPS);
return false;
}
/* Pretty print to FILE all the original data dependences of SCoP in
DOT format. */
static void
dot_original_deps_stmt_1 (FILE *file, scop_p scop)
{
int i, j, k, l;
poly_bb_p pbb1, pbb2;
poly_dr_p pdr1, pdr2;
FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb1)
FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), j, pbb2)
{
FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb1), k, pdr1)
FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb2), l, pdr2)
if (!pddr_is_empty (dependence_polyhedron (pdr1, pdr2, 1, true)))
{
fprintf (file, "OS%d -> OS%d\n",
pbb_index (pbb1), pbb_index (pbb2));
goto done;
}
done:;
}
}
/* Pretty print to FILE all the transformed data dependences of SCoP in
DOT format. */
static void
dot_transformed_deps_stmt_1 (FILE *file, scop_p scop)
{
int i, j, k, l;
poly_bb_p pbb1, pbb2;
poly_dr_p pdr1, pdr2;
FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb1)
FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), j, pbb2)
{
FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb1), k, pdr1)
FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb2), l, pdr2)
{
poly_ddr_p pddr = dependence_polyhedron (pdr1, pdr2, 1, false);
if (!pddr_is_empty (pddr))
{
fprintf (file, "TS%d -> TS%d\n",
pbb_index (pbb1), pbb_index (pbb2));
free_poly_ddr (pddr);
goto done;
}
free_poly_ddr (pddr);
}
done:;
}
}
/* Pretty print to FILE all the data dependences of SCoP in DOT
format. */
static void
dot_deps_stmt_1 (FILE *file, scop_p scop)
{
fputs ("digraph all {\n", file);
dot_original_deps_stmt_1 (file, scop);
dot_transformed_deps_stmt_1 (file, scop);
fputs ("}\n\n", file);
}
/* Pretty print to FILE all the original data dependences of SCoP in
DOT format. */
static void
dot_original_deps (FILE *file, scop_p scop)
{
int i, j, k, l;
poly_bb_p pbb1, pbb2;
poly_dr_p pdr1, pdr2;
FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb1)
FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), j, pbb2)
FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb1), k, pdr1)
FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb2), l, pdr2)
if (!pddr_is_empty (dependence_polyhedron (pdr1, pdr2, 1, true)))
fprintf (file, "OS%d_D%d -> OS%d_D%d\n",
pbb_index (pbb1), PDR_ID (pdr1),
pbb_index (pbb2), PDR_ID (pdr2));
}
/* Pretty print to FILE all the transformed data dependences of SCoP in
DOT format. */
static void
dot_transformed_deps (FILE *file, scop_p scop)
{
int i, j, k, l;
poly_bb_p pbb1, pbb2;
poly_dr_p pdr1, pdr2;
FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb1)
FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), j, pbb2)
FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb1), k, pdr1)
FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb2), l, pdr2)
{
poly_ddr_p pddr = dependence_polyhedron (pdr1, pdr2, 1, false);
if (!pddr_is_empty (pddr))
fprintf (file, "TS%d_D%d -> TS%d_D%d\n",
pbb_index (pbb1), PDR_ID (pdr1),
pbb_index (pbb2), PDR_ID (pdr2));
free_poly_ddr (pddr);
}
}
/* Pretty print to FILE all the data dependences of SCoP in DOT
format. */
static void
dot_deps_1 (FILE *file, scop_p scop)
{
fputs ("digraph all {\n", file);
dot_original_deps (file, scop);
dot_transformed_deps (file, scop);
fputs ("}\n\n", file);
}
/* Display all the data dependences in SCoP using dotty. */
void
dot_deps (scop_p scop)
{
/* When debugging, enable the following code. This cannot be used
in production compilers because it calls "system". */
#if 0
int x;
FILE *stream = fopen ("/tmp/scopdeps.dot", "w");
gcc_assert (stream);
dot_deps_1 (stream, scop);
fclose (stream);
x = system ("dotty /tmp/scopdeps.dot &");
#else
dot_deps_1 (stderr, scop);
#endif
}
/* Display all the statement dependences in SCoP using dotty. */
void
dot_deps_stmt (scop_p scop)
{
/* When debugging, enable the following code. This cannot be used
in production compilers because it calls "system". */
#if 0
int x;
FILE *stream = fopen ("/tmp/scopdeps.dot", "w");
gcc_assert (stream);
dot_deps_stmt_1 (stream, scop);
fclose (stream);
x = system ("dotty /tmp/scopdeps.dot &");
#else
dot_deps_stmt_1 (stderr, scop);
#endif
}
#endif
|