1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
|
// dataflow.cc -- Go frontend dataflow.
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "go-system.h"
#include "gogo.h"
#include "expressions.h"
#include "statements.h"
#include "dataflow.h"
// This class is used to traverse the tree to look for uses of
// variables.
class Dataflow_traverse_expressions : public Traverse
{
public:
Dataflow_traverse_expressions(Dataflow* dataflow, Statement* statement)
: Traverse(traverse_blocks | traverse_expressions),
dataflow_(dataflow), statement_(statement)
{ }
protected:
// Only look at top-level expressions: do not descend into blocks.
// They will be examined via Dataflow_traverse_statements.
int
block(Block*)
{ return TRAVERSE_SKIP_COMPONENTS; }
int
expression(Expression**);
private:
// The dataflow information.
Dataflow* dataflow_;
// The Statement in which we are looking.
Statement* statement_;
};
// Given an expression, return the Named_object that it refers to, if
// it is a local variable.
static Named_object*
get_var(Expression* expr)
{
Var_expression* ve = expr->var_expression();
if (ve == NULL)
return NULL;
Named_object* no = ve->named_object();
go_assert(no->is_variable() || no->is_result_variable());
if (no->is_variable() && no->var_value()->is_global())
return NULL;
return no;
}
// Look for a reference to a variable in an expression.
int
Dataflow_traverse_expressions::expression(Expression** expr)
{
Named_object* no = get_var(*expr);
if (no != NULL)
this->dataflow_->add_ref(no, this->statement_);
return TRAVERSE_CONTINUE;
}
// This class is used to handle an assignment statement.
class Dataflow_traverse_assignment : public Traverse_assignments
{
public:
Dataflow_traverse_assignment(Dataflow* dataflow, Statement* statement)
: dataflow_(dataflow), statement_(statement)
{ }
protected:
void
initialize_variable(Named_object*);
void
assignment(Expression** lhs, Expression** rhs);
void
value(Expression**, bool, bool);
private:
// The dataflow information.
Dataflow* dataflow_;
// The Statement in which we are looking.
Statement* statement_;
};
// Handle a variable initialization.
void
Dataflow_traverse_assignment::initialize_variable(Named_object* var)
{
Expression* init = var->var_value()->init();
this->dataflow_->add_def(var, init, this->statement_, true);
if (init != NULL)
{
Expression* e = init;
this->value(&e, true, true);
go_assert(e == init);
}
}
// Handle an assignment in a statement.
void
Dataflow_traverse_assignment::assignment(Expression** plhs, Expression** prhs)
{
Named_object* no = get_var(*plhs);
if (no != NULL)
{
Expression* rhs = prhs == NULL ? NULL : *prhs;
this->dataflow_->add_def(no, rhs, this->statement_, false);
}
else
{
// If this is not a variable it may be some computed lvalue, and
// we want to look for references to variables in that lvalue.
this->value(plhs, false, false);
}
if (prhs != NULL)
this->value(prhs, true, false);
}
// Handle a value in a statement.
void
Dataflow_traverse_assignment::value(Expression** pexpr, bool, bool)
{
Named_object* no = get_var(*pexpr);
if (no != NULL)
this->dataflow_->add_ref(no, this->statement_);
else
{
Dataflow_traverse_expressions dte(this->dataflow_, this->statement_);
Expression::traverse(pexpr, &dte);
}
}
// This class is used to traverse the tree to look for statements.
class Dataflow_traverse_statements : public Traverse
{
public:
Dataflow_traverse_statements(Dataflow* dataflow)
: Traverse(traverse_statements),
dataflow_(dataflow)
{ }
protected:
int
statement(Block*, size_t* pindex, Statement*);
private:
// The dataflow information.
Dataflow* dataflow_;
};
// For each Statement, we look for expressions.
int
Dataflow_traverse_statements::statement(Block* block, size_t* pindex,
Statement *statement)
{
Dataflow_traverse_assignment dta(this->dataflow_, statement);
if (!statement->traverse_assignments(&dta))
{
Dataflow_traverse_expressions dte(this->dataflow_, statement);
statement->traverse(block, pindex, &dte);
}
return TRAVERSE_CONTINUE;
}
// Compare variables.
bool
Dataflow::Compare_vars::operator()(const Named_object* no1,
const Named_object* no2) const
{
if (no1->name() < no2->name())
return true;
if (no1->name() > no2->name())
return false;
// We can have two different variables with the same name.
Location loc1 = no1->location();
Location loc2 = no2->location();
if (loc1 < loc2)
return false;
if (loc1 > loc2)
return true;
if (no1 == no2)
return false;
// We can't have two variables with the same name in the same
// location.
go_unreachable();
}
// Class Dataflow.
Dataflow::Dataflow()
: defs_(), refs_()
{
}
// Build the dataflow information.
void
Dataflow::initialize(Gogo* gogo)
{
Dataflow_traverse_statements dts(this);
gogo->traverse(&dts);
}
// Add a definition of a variable.
void
Dataflow::add_def(Named_object* var, Expression* val, Statement* statement,
bool is_init)
{
Defs* defnull = NULL;
std::pair<Defmap::iterator, bool> ins =
this->defs_.insert(std::make_pair(var, defnull));
if (ins.second)
ins.first->second = new Defs;
Def def;
def.statement = statement;
def.val = val;
def.is_init = is_init;
ins.first->second->push_back(def);
}
// Add a reference to a variable.
void
Dataflow::add_ref(Named_object* var, Statement* statement)
{
Refs* refnull = NULL;
std::pair<Refmap::iterator, bool> ins =
this->refs_.insert(std::make_pair(var, refnull));
if (ins.second)
ins.first->second = new Refs;
Ref ref;
ref.statement = statement;
ins.first->second->push_back(ref);
}
// Return the definitions of a variable.
const Dataflow::Defs*
Dataflow::find_defs(Named_object* var) const
{
Defmap::const_iterator p = this->defs_.find(var);
if (p == this->defs_.end())
return NULL;
else
return p->second;
}
// Return the references of a variable.
const Dataflow::Refs*
Dataflow::find_refs(Named_object* var) const
{
Refmap::const_iterator p = this->refs_.find(var);
if (p == this->refs_.end())
return NULL;
else
return p->second;
}
|