1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
|
/* Gimple IR support functions.
Copyright (C) 2007-2014 Free Software Foundation, Inc.
Contributed by Aldy Hernandez <aldyh@redhat.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "target.h"
#include "tree.h"
#include "calls.h"
#include "stmt.h"
#include "stor-layout.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "tree-ssa-alias.h"
#include "internal-fn.h"
#include "tree-eh.h"
#include "gimple-expr.h"
#include "is-a.h"
#include "gimple.h"
#include "gimple-iterator.h"
#include "gimple-walk.h"
#include "gimple.h"
#include "gimplify.h"
#include "diagnostic.h"
#include "value-prof.h"
#include "flags.h"
#include "alias.h"
#include "demangle.h"
#include "langhooks.h"
#include "bitmap.h"
/* All the tuples have their operand vector (if present) at the very bottom
of the structure. Therefore, the offset required to find the
operands vector the size of the structure minus the size of the 1
element tree array at the end (see gimple_ops). */
#define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
(HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
EXPORTED_CONST size_t gimple_ops_offset_[] = {
#include "gsstruct.def"
};
#undef DEFGSSTRUCT
#define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof (struct STRUCT),
static const size_t gsstruct_code_size[] = {
#include "gsstruct.def"
};
#undef DEFGSSTRUCT
#define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
const char *const gimple_code_name[] = {
#include "gimple.def"
};
#undef DEFGSCODE
#define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
#include "gimple.def"
};
#undef DEFGSCODE
/* Gimple stats. */
int gimple_alloc_counts[(int) gimple_alloc_kind_all];
int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
/* Keep in sync with gimple.h:enum gimple_alloc_kind. */
static const char * const gimple_alloc_kind_names[] = {
"assignments",
"phi nodes",
"conditionals",
"everything else"
};
/* Gimple tuple constructors.
Note: Any constructor taking a ``gimple_seq'' as a parameter, can
be passed a NULL to start with an empty sequence. */
/* Set the code for statement G to CODE. */
static inline void
gimple_set_code (gimple g, enum gimple_code code)
{
g->code = code;
}
/* Return the number of bytes needed to hold a GIMPLE statement with
code CODE. */
static inline size_t
gimple_size (enum gimple_code code)
{
return gsstruct_code_size[gss_for_code (code)];
}
/* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
operands. */
gimple
gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
{
size_t size;
gimple stmt;
size = gimple_size (code);
if (num_ops > 0)
size += sizeof (tree) * (num_ops - 1);
if (GATHER_STATISTICS)
{
enum gimple_alloc_kind kind = gimple_alloc_kind (code);
gimple_alloc_counts[(int) kind]++;
gimple_alloc_sizes[(int) kind] += size;
}
stmt = ggc_alloc_cleared_gimple_statement_stat (size PASS_MEM_STAT);
gimple_set_code (stmt, code);
gimple_set_num_ops (stmt, num_ops);
/* Do not call gimple_set_modified here as it has other side
effects and this tuple is still not completely built. */
stmt->modified = 1;
gimple_init_singleton (stmt);
return stmt;
}
/* Set SUBCODE to be the code of the expression computed by statement G. */
static inline void
gimple_set_subcode (gimple g, unsigned subcode)
{
/* We only have 16 bits for the RHS code. Assert that we are not
overflowing it. */
gcc_assert (subcode < (1 << 16));
g->subcode = subcode;
}
/* Build a tuple with operands. CODE is the statement to build (which
must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the subcode
for the new tuple. NUM_OPS is the number of operands to allocate. */
#define gimple_build_with_ops(c, s, n) \
gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
static gimple
gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
unsigned num_ops MEM_STAT_DECL)
{
gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
gimple_set_subcode (s, subcode);
return s;
}
/* Build a GIMPLE_RETURN statement returning RETVAL. */
gimple
gimple_build_return (tree retval)
{
gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1);
if (retval)
gimple_return_set_retval (s, retval);
return s;
}
/* Reset alias information on call S. */
void
gimple_call_reset_alias_info (gimple s)
{
if (gimple_call_flags (s) & ECF_CONST)
memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
else
pt_solution_reset (gimple_call_use_set (s));
if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
else
pt_solution_reset (gimple_call_clobber_set (s));
}
/* Helper for gimple_build_call, gimple_build_call_valist,
gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
components of a GIMPLE_CALL statement to function FN with NARGS
arguments. */
static inline gimple
gimple_build_call_1 (tree fn, unsigned nargs)
{
gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
if (TREE_CODE (fn) == FUNCTION_DECL)
fn = build_fold_addr_expr (fn);
gimple_set_op (s, 1, fn);
gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
gimple_call_reset_alias_info (s);
return s;
}
/* Build a GIMPLE_CALL statement to function FN with the arguments
specified in vector ARGS. */
gimple
gimple_build_call_vec (tree fn, vec<tree> args)
{
unsigned i;
unsigned nargs = args.length ();
gimple call = gimple_build_call_1 (fn, nargs);
for (i = 0; i < nargs; i++)
gimple_call_set_arg (call, i, args[i]);
return call;
}
/* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
arguments. The ... are the arguments. */
gimple
gimple_build_call (tree fn, unsigned nargs, ...)
{
va_list ap;
gimple call;
unsigned i;
gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
call = gimple_build_call_1 (fn, nargs);
va_start (ap, nargs);
for (i = 0; i < nargs; i++)
gimple_call_set_arg (call, i, va_arg (ap, tree));
va_end (ap);
return call;
}
/* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
arguments. AP contains the arguments. */
gimple
gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
{
gimple call;
unsigned i;
gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
call = gimple_build_call_1 (fn, nargs);
for (i = 0; i < nargs; i++)
gimple_call_set_arg (call, i, va_arg (ap, tree));
return call;
}
/* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
Build the basic components of a GIMPLE_CALL statement to internal
function FN with NARGS arguments. */
static inline gimple
gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
{
gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
s->subcode |= GF_CALL_INTERNAL;
gimple_call_set_internal_fn (s, fn);
gimple_call_reset_alias_info (s);
return s;
}
/* Build a GIMPLE_CALL statement to internal function FN. NARGS is
the number of arguments. The ... are the arguments. */
gimple
gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
{
va_list ap;
gimple call;
unsigned i;
call = gimple_build_call_internal_1 (fn, nargs);
va_start (ap, nargs);
for (i = 0; i < nargs; i++)
gimple_call_set_arg (call, i, va_arg (ap, tree));
va_end (ap);
return call;
}
/* Build a GIMPLE_CALL statement to internal function FN with the arguments
specified in vector ARGS. */
gimple
gimple_build_call_internal_vec (enum internal_fn fn, vec<tree> args)
{
unsigned i, nargs;
gimple call;
nargs = args.length ();
call = gimple_build_call_internal_1 (fn, nargs);
for (i = 0; i < nargs; i++)
gimple_call_set_arg (call, i, args[i]);
return call;
}
/* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
assumed to be in GIMPLE form already. Minimal checking is done of
this fact. */
gimple
gimple_build_call_from_tree (tree t)
{
unsigned i, nargs;
gimple call;
tree fndecl = get_callee_fndecl (t);
gcc_assert (TREE_CODE (t) == CALL_EXPR);
nargs = call_expr_nargs (t);
call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
for (i = 0; i < nargs; i++)
gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
gimple_set_block (call, TREE_BLOCK (t));
/* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
&& (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
|| DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN))
gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
else
gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
gimple_call_set_nothrow (call, TREE_NOTHROW (t));
gimple_set_no_warning (call, TREE_NO_WARNING (t));
return call;
}
/* Build a GIMPLE_ASSIGN statement.
LHS of the assignment.
RHS of the assignment which can be unary or binary. */
gimple
gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
{
enum tree_code subcode;
tree op1, op2, op3;
extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
return gimple_build_assign_with_ops (subcode, lhs, op1, op2, op3
PASS_MEM_STAT);
}
/* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
gimple
gimple_build_assign_with_ops (enum tree_code subcode, tree lhs, tree op1,
tree op2, tree op3 MEM_STAT_DECL)
{
unsigned num_ops;
gimple p;
/* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
code). */
num_ops = get_gimple_rhs_num_ops (subcode) + 1;
p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
PASS_MEM_STAT);
gimple_assign_set_lhs (p, lhs);
gimple_assign_set_rhs1 (p, op1);
if (op2)
{
gcc_assert (num_ops > 2);
gimple_assign_set_rhs2 (p, op2);
}
if (op3)
{
gcc_assert (num_ops > 3);
gimple_assign_set_rhs3 (p, op3);
}
return p;
}
gimple
gimple_build_assign_with_ops (enum tree_code subcode, tree lhs, tree op1,
tree op2 MEM_STAT_DECL)
{
return gimple_build_assign_with_ops (subcode, lhs, op1, op2, NULL_TREE
PASS_MEM_STAT);
}
/* Build a GIMPLE_COND statement.
PRED is the condition used to compare LHS and the RHS.
T_LABEL is the label to jump to if the condition is true.
F_LABEL is the label to jump to otherwise. */
gimple
gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
tree t_label, tree f_label)
{
gimple p;
gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
gimple_cond_set_lhs (p, lhs);
gimple_cond_set_rhs (p, rhs);
gimple_cond_set_true_label (p, t_label);
gimple_cond_set_false_label (p, f_label);
return p;
}
/* Build a GIMPLE_COND statement from the conditional expression tree
COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
gimple
gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
{
enum tree_code code;
tree lhs, rhs;
gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
return gimple_build_cond (code, lhs, rhs, t_label, f_label);
}
/* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
boolean expression tree COND. */
void
gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
{
enum tree_code code;
tree lhs, rhs;
gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
gimple_cond_set_condition (stmt, code, lhs, rhs);
}
/* Build a GIMPLE_LABEL statement for LABEL. */
gimple
gimple_build_label (tree label)
{
gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1);
gimple_label_set_label (p, label);
return p;
}
/* Build a GIMPLE_GOTO statement to label DEST. */
gimple
gimple_build_goto (tree dest)
{
gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1);
gimple_goto_set_dest (p, dest);
return p;
}
/* Build a GIMPLE_NOP statement. */
gimple
gimple_build_nop (void)
{
return gimple_alloc (GIMPLE_NOP, 0);
}
/* Build a GIMPLE_BIND statement.
VARS are the variables in BODY.
BLOCK is the containing block. */
gimple
gimple_build_bind (tree vars, gimple_seq body, tree block)
{
gimple p = gimple_alloc (GIMPLE_BIND, 0);
gimple_bind_set_vars (p, vars);
if (body)
gimple_bind_set_body (p, body);
if (block)
gimple_bind_set_block (p, block);
return p;
}
/* Helper function to set the simple fields of a asm stmt.
STRING is a pointer to a string that is the asm blocks assembly code.
NINPUT is the number of register inputs.
NOUTPUT is the number of register outputs.
NCLOBBERS is the number of clobbered registers.
*/
static inline gimple
gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
unsigned nclobbers, unsigned nlabels)
{
gimple_statement_asm *p;
int size = strlen (string);
/* ASMs with labels cannot have outputs. This should have been
enforced by the front end. */
gcc_assert (nlabels == 0 || noutputs == 0);
p = as_a <gimple_statement_asm> (
gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
ninputs + noutputs + nclobbers + nlabels));
p->ni = ninputs;
p->no = noutputs;
p->nc = nclobbers;
p->nl = nlabels;
p->string = ggc_alloc_string (string, size);
if (GATHER_STATISTICS)
gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
return p;
}
/* Build a GIMPLE_ASM statement.
STRING is the assembly code.
NINPUT is the number of register inputs.
NOUTPUT is the number of register outputs.
NCLOBBERS is the number of clobbered registers.
INPUTS is a vector of the input register parameters.
OUTPUTS is a vector of the output register parameters.
CLOBBERS is a vector of the clobbered register parameters.
LABELS is a vector of destination labels. */
gimple
gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs,
vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
vec<tree, va_gc> *labels)
{
gimple p;
unsigned i;
p = gimple_build_asm_1 (string,
vec_safe_length (inputs),
vec_safe_length (outputs),
vec_safe_length (clobbers),
vec_safe_length (labels));
for (i = 0; i < vec_safe_length (inputs); i++)
gimple_asm_set_input_op (p, i, (*inputs)[i]);
for (i = 0; i < vec_safe_length (outputs); i++)
gimple_asm_set_output_op (p, i, (*outputs)[i]);
for (i = 0; i < vec_safe_length (clobbers); i++)
gimple_asm_set_clobber_op (p, i, (*clobbers)[i]);
for (i = 0; i < vec_safe_length (labels); i++)
gimple_asm_set_label_op (p, i, (*labels)[i]);
return p;
}
/* Build a GIMPLE_CATCH statement.
TYPES are the catch types.
HANDLER is the exception handler. */
gimple
gimple_build_catch (tree types, gimple_seq handler)
{
gimple p = gimple_alloc (GIMPLE_CATCH, 0);
gimple_catch_set_types (p, types);
if (handler)
gimple_catch_set_handler (p, handler);
return p;
}
/* Build a GIMPLE_EH_FILTER statement.
TYPES are the filter's types.
FAILURE is the filter's failure action. */
gimple
gimple_build_eh_filter (tree types, gimple_seq failure)
{
gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
gimple_eh_filter_set_types (p, types);
if (failure)
gimple_eh_filter_set_failure (p, failure);
return p;
}
/* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
gimple
gimple_build_eh_must_not_throw (tree decl)
{
gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0);
gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
gimple_eh_must_not_throw_set_fndecl (p, decl);
return p;
}
/* Build a GIMPLE_EH_ELSE statement. */
gimple
gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
{
gimple p = gimple_alloc (GIMPLE_EH_ELSE, 0);
gimple_eh_else_set_n_body (p, n_body);
gimple_eh_else_set_e_body (p, e_body);
return p;
}
/* Build a GIMPLE_TRY statement.
EVAL is the expression to evaluate.
CLEANUP is the cleanup expression.
KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
whether this is a try/catch or a try/finally respectively. */
gimple_statement_try *
gimple_build_try (gimple_seq eval, gimple_seq cleanup,
enum gimple_try_flags kind)
{
gimple_statement_try *p;
gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
p = as_a <gimple_statement_try> (gimple_alloc (GIMPLE_TRY, 0));
gimple_set_subcode (p, kind);
if (eval)
gimple_try_set_eval (p, eval);
if (cleanup)
gimple_try_set_cleanup (p, cleanup);
return p;
}
/* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
CLEANUP is the cleanup expression. */
gimple
gimple_build_wce (gimple_seq cleanup)
{
gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
if (cleanup)
gimple_wce_set_cleanup (p, cleanup);
return p;
}
/* Build a GIMPLE_RESX statement. */
gimple
gimple_build_resx (int region)
{
gimple_statement_resx *p =
as_a <gimple_statement_resx> (
gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0));
p->region = region;
return p;
}
/* The helper for constructing a gimple switch statement.
INDEX is the switch's index.
NLABELS is the number of labels in the switch excluding the default.
DEFAULT_LABEL is the default label for the switch statement. */
gimple
gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
{
/* nlabels + 1 default label + 1 index. */
gcc_checking_assert (default_label);
gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK,
1 + 1 + nlabels);
gimple_switch_set_index (p, index);
gimple_switch_set_default_label (p, default_label);
return p;
}
/* Build a GIMPLE_SWITCH statement.
INDEX is the switch's index.
DEFAULT_LABEL is the default label
ARGS is a vector of labels excluding the default. */
gimple
gimple_build_switch (tree index, tree default_label, vec<tree> args)
{
unsigned i, nlabels = args.length ();
gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
/* Copy the labels from the vector to the switch statement. */
for (i = 0; i < nlabels; i++)
gimple_switch_set_label (p, i + 1, args[i]);
return p;
}
/* Build a GIMPLE_EH_DISPATCH statement. */
gimple
gimple_build_eh_dispatch (int region)
{
gimple_statement_eh_dispatch *p =
as_a <gimple_statement_eh_dispatch> (
gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0));
p->region = region;
return p;
}
/* Build a new GIMPLE_DEBUG_BIND statement.
VAR is bound to VALUE; block and location are taken from STMT. */
gimple
gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
{
gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
(unsigned)GIMPLE_DEBUG_BIND, 2
PASS_MEM_STAT);
gimple_debug_bind_set_var (p, var);
gimple_debug_bind_set_value (p, value);
if (stmt)
gimple_set_location (p, gimple_location (stmt));
return p;
}
/* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
VAR is bound to VALUE; block and location are taken from STMT. */
gimple
gimple_build_debug_source_bind_stat (tree var, tree value,
gimple stmt MEM_STAT_DECL)
{
gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
(unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
PASS_MEM_STAT);
gimple_debug_source_bind_set_var (p, var);
gimple_debug_source_bind_set_value (p, value);
if (stmt)
gimple_set_location (p, gimple_location (stmt));
return p;
}
/* Build a GIMPLE_OMP_CRITICAL statement.
BODY is the sequence of statements for which only one thread can execute.
NAME is optional identifier for this critical block. */
gimple
gimple_build_omp_critical (gimple_seq body, tree name)
{
gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
gimple_omp_critical_set_name (p, name);
if (body)
gimple_omp_set_body (p, body);
return p;
}
/* Build a GIMPLE_OMP_FOR statement.
BODY is sequence of statements inside the for loop.
KIND is the `for' variant.
CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
lastprivate, reductions, ordered, schedule, and nowait.
COLLAPSE is the collapse count.
PRE_BODY is the sequence of statements that are loop invariant. */
gimple
gimple_build_omp_for (gimple_seq body, int kind, tree clauses, size_t collapse,
gimple_seq pre_body)
{
gimple_statement_omp_for *p =
as_a <gimple_statement_omp_for> (gimple_alloc (GIMPLE_OMP_FOR, 0));
if (body)
gimple_omp_set_body (p, body);
gimple_omp_for_set_clauses (p, clauses);
gimple_omp_for_set_kind (p, kind);
p->collapse = collapse;
p->iter = static_cast <struct gimple_omp_for_iter *> (
ggc_internal_cleared_vec_alloc_stat (sizeof (*p->iter),
collapse MEM_STAT_INFO));
if (pre_body)
gimple_omp_for_set_pre_body (p, pre_body);
return p;
}
/* Build a GIMPLE_OMP_PARALLEL statement.
BODY is sequence of statements which are executed in parallel.
CLAUSES, are the OMP parallel construct's clauses.
CHILD_FN is the function created for the parallel threads to execute.
DATA_ARG are the shared data argument(s). */
gimple
gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
tree data_arg)
{
gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
if (body)
gimple_omp_set_body (p, body);
gimple_omp_parallel_set_clauses (p, clauses);
gimple_omp_parallel_set_child_fn (p, child_fn);
gimple_omp_parallel_set_data_arg (p, data_arg);
return p;
}
/* Build a GIMPLE_OMP_TASK statement.
BODY is sequence of statements which are executed by the explicit task.
CLAUSES, are the OMP parallel construct's clauses.
CHILD_FN is the function created for the parallel threads to execute.
DATA_ARG are the shared data argument(s).
COPY_FN is the optional function for firstprivate initialization.
ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
gimple
gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
tree data_arg, tree copy_fn, tree arg_size,
tree arg_align)
{
gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
if (body)
gimple_omp_set_body (p, body);
gimple_omp_task_set_clauses (p, clauses);
gimple_omp_task_set_child_fn (p, child_fn);
gimple_omp_task_set_data_arg (p, data_arg);
gimple_omp_task_set_copy_fn (p, copy_fn);
gimple_omp_task_set_arg_size (p, arg_size);
gimple_omp_task_set_arg_align (p, arg_align);
return p;
}
/* Build a GIMPLE_OMP_SECTION statement for a sections statement.
BODY is the sequence of statements in the section. */
gimple
gimple_build_omp_section (gimple_seq body)
{
gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
if (body)
gimple_omp_set_body (p, body);
return p;
}
/* Build a GIMPLE_OMP_MASTER statement.
BODY is the sequence of statements to be executed by just the master. */
gimple
gimple_build_omp_master (gimple_seq body)
{
gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
if (body)
gimple_omp_set_body (p, body);
return p;
}
/* Build a GIMPLE_OMP_TASKGROUP statement.
BODY is the sequence of statements to be executed by the taskgroup
construct. */
gimple
gimple_build_omp_taskgroup (gimple_seq body)
{
gimple p = gimple_alloc (GIMPLE_OMP_TASKGROUP, 0);
if (body)
gimple_omp_set_body (p, body);
return p;
}
/* Build a GIMPLE_OMP_CONTINUE statement.
CONTROL_DEF is the definition of the control variable.
CONTROL_USE is the use of the control variable. */
gimple
gimple_build_omp_continue (tree control_def, tree control_use)
{
gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
gimple_omp_continue_set_control_def (p, control_def);
gimple_omp_continue_set_control_use (p, control_use);
return p;
}
/* Build a GIMPLE_OMP_ORDERED statement.
BODY is the sequence of statements inside a loop that will executed in
sequence. */
gimple
gimple_build_omp_ordered (gimple_seq body)
{
gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
if (body)
gimple_omp_set_body (p, body);
return p;
}
/* Build a GIMPLE_OMP_RETURN statement.
WAIT_P is true if this is a non-waiting return. */
gimple
gimple_build_omp_return (bool wait_p)
{
gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
if (wait_p)
gimple_omp_return_set_nowait (p);
return p;
}
/* Build a GIMPLE_OMP_SECTIONS statement.
BODY is a sequence of section statements.
CLAUSES are any of the OMP sections contsruct's clauses: private,
firstprivate, lastprivate, reduction, and nowait. */
gimple
gimple_build_omp_sections (gimple_seq body, tree clauses)
{
gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
if (body)
gimple_omp_set_body (p, body);
gimple_omp_sections_set_clauses (p, clauses);
return p;
}
/* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
gimple
gimple_build_omp_sections_switch (void)
{
return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
}
/* Build a GIMPLE_OMP_SINGLE statement.
BODY is the sequence of statements that will be executed once.
CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
copyprivate, nowait. */
gimple
gimple_build_omp_single (gimple_seq body, tree clauses)
{
gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
if (body)
gimple_omp_set_body (p, body);
gimple_omp_single_set_clauses (p, clauses);
return p;
}
/* Build a GIMPLE_OMP_TARGET statement.
BODY is the sequence of statements that will be executed.
CLAUSES are any of the OMP target construct's clauses. */
gimple
gimple_build_omp_target (gimple_seq body, int kind, tree clauses)
{
gimple p = gimple_alloc (GIMPLE_OMP_TARGET, 0);
if (body)
gimple_omp_set_body (p, body);
gimple_omp_target_set_clauses (p, clauses);
gimple_omp_target_set_kind (p, kind);
return p;
}
/* Build a GIMPLE_OMP_TEAMS statement.
BODY is the sequence of statements that will be executed.
CLAUSES are any of the OMP teams construct's clauses. */
gimple
gimple_build_omp_teams (gimple_seq body, tree clauses)
{
gimple p = gimple_alloc (GIMPLE_OMP_TEAMS, 0);
if (body)
gimple_omp_set_body (p, body);
gimple_omp_teams_set_clauses (p, clauses);
return p;
}
/* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
gimple
gimple_build_omp_atomic_load (tree lhs, tree rhs)
{
gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
gimple_omp_atomic_load_set_lhs (p, lhs);
gimple_omp_atomic_load_set_rhs (p, rhs);
return p;
}
/* Build a GIMPLE_OMP_ATOMIC_STORE statement.
VAL is the value we are storing. */
gimple
gimple_build_omp_atomic_store (tree val)
{
gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
gimple_omp_atomic_store_set_val (p, val);
return p;
}
/* Build a GIMPLE_TRANSACTION statement. */
gimple
gimple_build_transaction (gimple_seq body, tree label)
{
gimple p = gimple_alloc (GIMPLE_TRANSACTION, 0);
gimple_transaction_set_body (p, body);
gimple_transaction_set_label (p, label);
return p;
}
/* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
gimple
gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
{
gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
/* Ensure all the predictors fit into the lower bits of the subcode. */
gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
gimple_predict_set_predictor (p, predictor);
gimple_predict_set_outcome (p, outcome);
return p;
}
#if defined ENABLE_GIMPLE_CHECKING
/* Complain of a gimple type mismatch and die. */
void
gimple_check_failed (const_gimple gs, const char *file, int line,
const char *function, enum gimple_code code,
enum tree_code subcode)
{
internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
gimple_code_name[code],
get_tree_code_name (subcode),
gimple_code_name[gimple_code (gs)],
gs->subcode > 0
? get_tree_code_name ((enum tree_code) gs->subcode)
: "",
function, trim_filename (file), line);
}
#endif /* ENABLE_GIMPLE_CHECKING */
/* Link gimple statement GS to the end of the sequence *SEQ_P. If
*SEQ_P is NULL, a new sequence is allocated. */
void
gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
{
gimple_stmt_iterator si;
if (gs == NULL)
return;
si = gsi_last (*seq_p);
gsi_insert_after (&si, gs, GSI_NEW_STMT);
}
/* Link gimple statement GS to the end of the sequence *SEQ_P. If
*SEQ_P is NULL, a new sequence is allocated. This function is
similar to gimple_seq_add_stmt, but does not scan the operands.
During gimplification, we need to manipulate statement sequences
before the def/use vectors have been constructed. */
void
gimple_seq_add_stmt_without_update (gimple_seq *seq_p, gimple gs)
{
gimple_stmt_iterator si;
if (gs == NULL)
return;
si = gsi_last (*seq_p);
gsi_insert_after_without_update (&si, gs, GSI_NEW_STMT);
}
/* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
NULL, a new sequence is allocated. */
void
gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
{
gimple_stmt_iterator si;
if (src == NULL)
return;
si = gsi_last (*dst_p);
gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
}
/* Determine whether to assign a location to the statement GS. */
static bool
should_carry_location_p (gimple gs)
{
/* Don't emit a line note for a label. We particularly don't want to
emit one for the break label, since it doesn't actually correspond
to the beginning of the loop/switch. */
if (gimple_code (gs) == GIMPLE_LABEL)
return false;
return true;
}
/* Set the location for gimple statement GS to LOCATION. */
static void
annotate_one_with_location (gimple gs, location_t location)
{
if (!gimple_has_location (gs)
&& !gimple_do_not_emit_location_p (gs)
&& should_carry_location_p (gs))
gimple_set_location (gs, location);
}
/* Set LOCATION for all the statements after iterator GSI in sequence
SEQ. If GSI is pointing to the end of the sequence, start with the
first statement in SEQ. */
void
annotate_all_with_location_after (gimple_seq seq, gimple_stmt_iterator gsi,
location_t location)
{
if (gsi_end_p (gsi))
gsi = gsi_start (seq);
else
gsi_next (&gsi);
for (; !gsi_end_p (gsi); gsi_next (&gsi))
annotate_one_with_location (gsi_stmt (gsi), location);
}
/* Set the location for all the statements in a sequence STMT_P to LOCATION. */
void
annotate_all_with_location (gimple_seq stmt_p, location_t location)
{
gimple_stmt_iterator i;
if (gimple_seq_empty_p (stmt_p))
return;
for (i = gsi_start (stmt_p); !gsi_end_p (i); gsi_next (&i))
{
gimple gs = gsi_stmt (i);
annotate_one_with_location (gs, location);
}
}
/* Helper function of empty_body_p. Return true if STMT is an empty
statement. */
static bool
empty_stmt_p (gimple stmt)
{
if (gimple_code (stmt) == GIMPLE_NOP)
return true;
if (gimple_code (stmt) == GIMPLE_BIND)
return empty_body_p (gimple_bind_body (stmt));
return false;
}
/* Return true if BODY contains nothing but empty statements. */
bool
empty_body_p (gimple_seq body)
{
gimple_stmt_iterator i;
if (gimple_seq_empty_p (body))
return true;
for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
if (!empty_stmt_p (gsi_stmt (i))
&& !is_gimple_debug (gsi_stmt (i)))
return false;
return true;
}
/* Perform a deep copy of sequence SRC and return the result. */
gimple_seq
gimple_seq_copy (gimple_seq src)
{
gimple_stmt_iterator gsi;
gimple_seq new_seq = NULL;
gimple stmt;
for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
{
stmt = gimple_copy (gsi_stmt (gsi));
gimple_seq_add_stmt (&new_seq, stmt);
}
return new_seq;
}
/* Return true if calls C1 and C2 are known to go to the same function. */
bool
gimple_call_same_target_p (const_gimple c1, const_gimple c2)
{
if (gimple_call_internal_p (c1))
return (gimple_call_internal_p (c2)
&& gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2));
else
return (gimple_call_fn (c1) == gimple_call_fn (c2)
|| (gimple_call_fndecl (c1)
&& gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
}
/* Detect flags from a GIMPLE_CALL. This is just like
call_expr_flags, but for gimple tuples. */
int
gimple_call_flags (const_gimple stmt)
{
int flags;
tree decl = gimple_call_fndecl (stmt);
if (decl)
flags = flags_from_decl_or_type (decl);
else if (gimple_call_internal_p (stmt))
flags = internal_fn_flags (gimple_call_internal_fn (stmt));
else
flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
if (stmt->subcode & GF_CALL_NOTHROW)
flags |= ECF_NOTHROW;
return flags;
}
/* Return the "fn spec" string for call STMT. */
static tree
gimple_call_fnspec (const_gimple stmt)
{
tree type, attr;
type = gimple_call_fntype (stmt);
if (!type)
return NULL_TREE;
attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
if (!attr)
return NULL_TREE;
return TREE_VALUE (TREE_VALUE (attr));
}
/* Detects argument flags for argument number ARG on call STMT. */
int
gimple_call_arg_flags (const_gimple stmt, unsigned arg)
{
tree attr = gimple_call_fnspec (stmt);
if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
return 0;
switch (TREE_STRING_POINTER (attr)[1 + arg])
{
case 'x':
case 'X':
return EAF_UNUSED;
case 'R':
return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
case 'r':
return EAF_NOCLOBBER | EAF_NOESCAPE;
case 'W':
return EAF_DIRECT | EAF_NOESCAPE;
case 'w':
return EAF_NOESCAPE;
case '.':
default:
return 0;
}
}
/* Detects return flags for the call STMT. */
int
gimple_call_return_flags (const_gimple stmt)
{
tree attr;
if (gimple_call_flags (stmt) & ECF_MALLOC)
return ERF_NOALIAS;
attr = gimple_call_fnspec (stmt);
if (!attr || TREE_STRING_LENGTH (attr) < 1)
return 0;
switch (TREE_STRING_POINTER (attr)[0])
{
case '1':
case '2':
case '3':
case '4':
return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
case 'm':
return ERF_NOALIAS;
case '.':
default:
return 0;
}
}
/* Return true if GS is a copy assignment. */
bool
gimple_assign_copy_p (gimple gs)
{
return (gimple_assign_single_p (gs)
&& is_gimple_val (gimple_op (gs, 1)));
}
/* Return true if GS is a SSA_NAME copy assignment. */
bool
gimple_assign_ssa_name_copy_p (gimple gs)
{
return (gimple_assign_single_p (gs)
&& TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
&& TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
}
/* Return true if GS is an assignment with a unary RHS, but the
operator has no effect on the assigned value. The logic is adapted
from STRIP_NOPS. This predicate is intended to be used in tuplifying
instances in which STRIP_NOPS was previously applied to the RHS of
an assignment.
NOTE: In the use cases that led to the creation of this function
and of gimple_assign_single_p, it is typical to test for either
condition and to proceed in the same manner. In each case, the
assigned value is represented by the single RHS operand of the
assignment. I suspect there may be cases where gimple_assign_copy_p,
gimple_assign_single_p, or equivalent logic is used where a similar
treatment of unary NOPs is appropriate. */
bool
gimple_assign_unary_nop_p (gimple gs)
{
return (is_gimple_assign (gs)
&& (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
|| gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
&& gimple_assign_rhs1 (gs) != error_mark_node
&& (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
== TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
}
/* Set BB to be the basic block holding G. */
void
gimple_set_bb (gimple stmt, basic_block bb)
{
stmt->bb = bb;
if (gimple_code (stmt) != GIMPLE_LABEL)
return;
/* If the statement is a label, add the label to block-to-labels map
so that we can speed up edge creation for GIMPLE_GOTOs. */
if (cfun->cfg)
{
tree t;
int uid;
t = gimple_label_label (stmt);
uid = LABEL_DECL_UID (t);
if (uid == -1)
{
unsigned old_len =
vec_safe_length (label_to_block_map_for_fn (cfun));
LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
if (old_len <= (unsigned) uid)
{
unsigned new_len = 3 * uid / 2 + 1;
vec_safe_grow_cleared (label_to_block_map_for_fn (cfun),
new_len);
}
}
(*label_to_block_map_for_fn (cfun))[uid] = bb;
}
}
/* Modify the RHS of the assignment pointed-to by GSI using the
operands in the expression tree EXPR.
NOTE: The statement pointed-to by GSI may be reallocated if it
did not have enough operand slots.
This function is useful to convert an existing tree expression into
the flat representation used for the RHS of a GIMPLE assignment.
It will reallocate memory as needed to expand or shrink the number
of operand slots needed to represent EXPR.
NOTE: If you find yourself building a tree and then calling this
function, you are most certainly doing it the slow way. It is much
better to build a new assignment or to use the function
gimple_assign_set_rhs_with_ops, which does not require an
expression tree to be built. */
void
gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
{
enum tree_code subcode;
tree op1, op2, op3;
extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
gimple_assign_set_rhs_with_ops_1 (gsi, subcode, op1, op2, op3);
}
/* Set the RHS of assignment statement pointed-to by GSI to CODE with
operands OP1, OP2 and OP3.
NOTE: The statement pointed-to by GSI may be reallocated if it
did not have enough operand slots. */
void
gimple_assign_set_rhs_with_ops_1 (gimple_stmt_iterator *gsi, enum tree_code code,
tree op1, tree op2, tree op3)
{
unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
gimple stmt = gsi_stmt (*gsi);
/* If the new CODE needs more operands, allocate a new statement. */
if (gimple_num_ops (stmt) < new_rhs_ops + 1)
{
tree lhs = gimple_assign_lhs (stmt);
gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
gimple_init_singleton (new_stmt);
gsi_replace (gsi, new_stmt, true);
stmt = new_stmt;
/* The LHS needs to be reset as this also changes the SSA name
on the LHS. */
gimple_assign_set_lhs (stmt, lhs);
}
gimple_set_num_ops (stmt, new_rhs_ops + 1);
gimple_set_subcode (stmt, code);
gimple_assign_set_rhs1 (stmt, op1);
if (new_rhs_ops > 1)
gimple_assign_set_rhs2 (stmt, op2);
if (new_rhs_ops > 2)
gimple_assign_set_rhs3 (stmt, op3);
}
/* Return the LHS of a statement that performs an assignment,
either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
for a call to a function that returns no value, or for a
statement other than an assignment or a call. */
tree
gimple_get_lhs (const_gimple stmt)
{
enum gimple_code code = gimple_code (stmt);
if (code == GIMPLE_ASSIGN)
return gimple_assign_lhs (stmt);
else if (code == GIMPLE_CALL)
return gimple_call_lhs (stmt);
else
return NULL_TREE;
}
/* Set the LHS of a statement that performs an assignment,
either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
void
gimple_set_lhs (gimple stmt, tree lhs)
{
enum gimple_code code = gimple_code (stmt);
if (code == GIMPLE_ASSIGN)
gimple_assign_set_lhs (stmt, lhs);
else if (code == GIMPLE_CALL)
gimple_call_set_lhs (stmt, lhs);
else
gcc_unreachable ();
}
/* Return a deep copy of statement STMT. All the operands from STMT
are reallocated and copied using unshare_expr. The DEF, USE, VDEF
and VUSE operand arrays are set to empty in the new copy. The new
copy isn't part of any sequence. */
gimple
gimple_copy (gimple stmt)
{
enum gimple_code code = gimple_code (stmt);
unsigned num_ops = gimple_num_ops (stmt);
gimple copy = gimple_alloc (code, num_ops);
unsigned i;
/* Shallow copy all the fields from STMT. */
memcpy (copy, stmt, gimple_size (code));
gimple_init_singleton (copy);
/* If STMT has sub-statements, deep-copy them as well. */
if (gimple_has_substatements (stmt))
{
gimple_seq new_seq;
tree t;
switch (gimple_code (stmt))
{
case GIMPLE_BIND:
new_seq = gimple_seq_copy (gimple_bind_body (stmt));
gimple_bind_set_body (copy, new_seq);
gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
gimple_bind_set_block (copy, gimple_bind_block (stmt));
break;
case GIMPLE_CATCH:
new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
gimple_catch_set_handler (copy, new_seq);
t = unshare_expr (gimple_catch_types (stmt));
gimple_catch_set_types (copy, t);
break;
case GIMPLE_EH_FILTER:
new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
gimple_eh_filter_set_failure (copy, new_seq);
t = unshare_expr (gimple_eh_filter_types (stmt));
gimple_eh_filter_set_types (copy, t);
break;
case GIMPLE_EH_ELSE:
new_seq = gimple_seq_copy (gimple_eh_else_n_body (stmt));
gimple_eh_else_set_n_body (copy, new_seq);
new_seq = gimple_seq_copy (gimple_eh_else_e_body (stmt));
gimple_eh_else_set_e_body (copy, new_seq);
break;
case GIMPLE_TRY:
new_seq = gimple_seq_copy (gimple_try_eval (stmt));
gimple_try_set_eval (copy, new_seq);
new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
gimple_try_set_cleanup (copy, new_seq);
break;
case GIMPLE_OMP_FOR:
new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
gimple_omp_for_set_pre_body (copy, new_seq);
t = unshare_expr (gimple_omp_for_clauses (stmt));
gimple_omp_for_set_clauses (copy, t);
{
gimple_statement_omp_for *omp_for_copy =
as_a <gimple_statement_omp_for> (copy);
omp_for_copy->iter =
static_cast <struct gimple_omp_for_iter *> (
ggc_internal_vec_alloc_stat (sizeof (struct gimple_omp_for_iter),
gimple_omp_for_collapse (stmt)
MEM_STAT_INFO));
}
for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
{
gimple_omp_for_set_cond (copy, i,
gimple_omp_for_cond (stmt, i));
gimple_omp_for_set_index (copy, i,
gimple_omp_for_index (stmt, i));
t = unshare_expr (gimple_omp_for_initial (stmt, i));
gimple_omp_for_set_initial (copy, i, t);
t = unshare_expr (gimple_omp_for_final (stmt, i));
gimple_omp_for_set_final (copy, i, t);
t = unshare_expr (gimple_omp_for_incr (stmt, i));
gimple_omp_for_set_incr (copy, i, t);
}
goto copy_omp_body;
case GIMPLE_OMP_PARALLEL:
t = unshare_expr (gimple_omp_parallel_clauses (stmt));
gimple_omp_parallel_set_clauses (copy, t);
t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
gimple_omp_parallel_set_child_fn (copy, t);
t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
gimple_omp_parallel_set_data_arg (copy, t);
goto copy_omp_body;
case GIMPLE_OMP_TASK:
t = unshare_expr (gimple_omp_task_clauses (stmt));
gimple_omp_task_set_clauses (copy, t);
t = unshare_expr (gimple_omp_task_child_fn (stmt));
gimple_omp_task_set_child_fn (copy, t);
t = unshare_expr (gimple_omp_task_data_arg (stmt));
gimple_omp_task_set_data_arg (copy, t);
t = unshare_expr (gimple_omp_task_copy_fn (stmt));
gimple_omp_task_set_copy_fn (copy, t);
t = unshare_expr (gimple_omp_task_arg_size (stmt));
gimple_omp_task_set_arg_size (copy, t);
t = unshare_expr (gimple_omp_task_arg_align (stmt));
gimple_omp_task_set_arg_align (copy, t);
goto copy_omp_body;
case GIMPLE_OMP_CRITICAL:
t = unshare_expr (gimple_omp_critical_name (stmt));
gimple_omp_critical_set_name (copy, t);
goto copy_omp_body;
case GIMPLE_OMP_SECTIONS:
t = unshare_expr (gimple_omp_sections_clauses (stmt));
gimple_omp_sections_set_clauses (copy, t);
t = unshare_expr (gimple_omp_sections_control (stmt));
gimple_omp_sections_set_control (copy, t);
/* FALLTHRU */
case GIMPLE_OMP_SINGLE:
case GIMPLE_OMP_TARGET:
case GIMPLE_OMP_TEAMS:
case GIMPLE_OMP_SECTION:
case GIMPLE_OMP_MASTER:
case GIMPLE_OMP_TASKGROUP:
case GIMPLE_OMP_ORDERED:
copy_omp_body:
new_seq = gimple_seq_copy (gimple_omp_body (stmt));
gimple_omp_set_body (copy, new_seq);
break;
case GIMPLE_TRANSACTION:
new_seq = gimple_seq_copy (gimple_transaction_body (stmt));
gimple_transaction_set_body (copy, new_seq);
break;
case GIMPLE_WITH_CLEANUP_EXPR:
new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
gimple_wce_set_cleanup (copy, new_seq);
break;
default:
gcc_unreachable ();
}
}
/* Make copy of operands. */
for (i = 0; i < num_ops; i++)
gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
if (gimple_has_mem_ops (stmt))
{
gimple_set_vdef (copy, gimple_vdef (stmt));
gimple_set_vuse (copy, gimple_vuse (stmt));
}
/* Clear out SSA operand vectors on COPY. */
if (gimple_has_ops (stmt))
{
gimple_set_use_ops (copy, NULL);
/* SSA operands need to be updated. */
gimple_set_modified (copy, true);
}
return copy;
}
/* Return true if statement S has side-effects. We consider a
statement to have side effects if:
- It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
- Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
bool
gimple_has_side_effects (const_gimple s)
{
if (is_gimple_debug (s))
return false;
/* We don't have to scan the arguments to check for
volatile arguments, though, at present, we still
do a scan to check for TREE_SIDE_EFFECTS. */
if (gimple_has_volatile_ops (s))
return true;
if (gimple_code (s) == GIMPLE_ASM
&& gimple_asm_volatile_p (s))
return true;
if (is_gimple_call (s))
{
int flags = gimple_call_flags (s);
/* An infinite loop is considered a side effect. */
if (!(flags & (ECF_CONST | ECF_PURE))
|| (flags & ECF_LOOPING_CONST_OR_PURE))
return true;
return false;
}
return false;
}
/* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
Return true if S can trap. When INCLUDE_MEM is true, check whether
the memory operations could trap. When INCLUDE_STORES is true and
S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
bool
gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores)
{
tree t, div = NULL_TREE;
enum tree_code op;
if (include_mem)
{
unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
for (i = start; i < gimple_num_ops (s); i++)
if (tree_could_trap_p (gimple_op (s, i)))
return true;
}
switch (gimple_code (s))
{
case GIMPLE_ASM:
return gimple_asm_volatile_p (s);
case GIMPLE_CALL:
t = gimple_call_fndecl (s);
/* Assume that calls to weak functions may trap. */
if (!t || !DECL_P (t) || DECL_WEAK (t))
return true;
return false;
case GIMPLE_ASSIGN:
t = gimple_expr_type (s);
op = gimple_assign_rhs_code (s);
if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
div = gimple_assign_rhs2 (s);
return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
(INTEGRAL_TYPE_P (t)
&& TYPE_OVERFLOW_TRAPS (t)),
div));
default:
break;
}
return false;
}
/* Return true if statement S can trap. */
bool
gimple_could_trap_p (gimple s)
{
return gimple_could_trap_p_1 (s, true, true);
}
/* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
bool
gimple_assign_rhs_could_trap_p (gimple s)
{
gcc_assert (is_gimple_assign (s));
return gimple_could_trap_p_1 (s, true, false);
}
/* Print debugging information for gimple stmts generated. */
void
dump_gimple_statistics (void)
{
int i, total_tuples = 0, total_bytes = 0;
if (! GATHER_STATISTICS)
{
fprintf (stderr, "No gimple statistics\n");
return;
}
fprintf (stderr, "\nGIMPLE statements\n");
fprintf (stderr, "Kind Stmts Bytes\n");
fprintf (stderr, "---------------------------------------\n");
for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
{
fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
gimple_alloc_counts[i], gimple_alloc_sizes[i]);
total_tuples += gimple_alloc_counts[i];
total_bytes += gimple_alloc_sizes[i];
}
fprintf (stderr, "---------------------------------------\n");
fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
fprintf (stderr, "---------------------------------------\n");
}
/* Return the number of operands needed on the RHS of a GIMPLE
assignment for an expression with tree code CODE. */
unsigned
get_gimple_rhs_num_ops (enum tree_code code)
{
enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
return 1;
else if (rhs_class == GIMPLE_BINARY_RHS)
return 2;
else if (rhs_class == GIMPLE_TERNARY_RHS)
return 3;
else
gcc_unreachable ();
}
#define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
(unsigned char) \
((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
: ((TYPE) == tcc_binary \
|| (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
: ((TYPE) == tcc_constant \
|| (TYPE) == tcc_declaration \
|| (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
: ((SYM) == TRUTH_AND_EXPR \
|| (SYM) == TRUTH_OR_EXPR \
|| (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
: (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
: ((SYM) == COND_EXPR \
|| (SYM) == WIDEN_MULT_PLUS_EXPR \
|| (SYM) == WIDEN_MULT_MINUS_EXPR \
|| (SYM) == DOT_PROD_EXPR \
|| (SYM) == REALIGN_LOAD_EXPR \
|| (SYM) == VEC_COND_EXPR \
|| (SYM) == VEC_PERM_EXPR \
|| (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
: ((SYM) == CONSTRUCTOR \
|| (SYM) == OBJ_TYPE_REF \
|| (SYM) == ASSERT_EXPR \
|| (SYM) == ADDR_EXPR \
|| (SYM) == WITH_SIZE_EXPR \
|| (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
: GIMPLE_INVALID_RHS),
#define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
const unsigned char gimple_rhs_class_table[] = {
#include "all-tree.def"
};
#undef DEFTREECODE
#undef END_OF_BASE_TREE_CODES
/* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
we failed to create one. */
tree
canonicalize_cond_expr_cond (tree t)
{
/* Strip conversions around boolean operations. */
if (CONVERT_EXPR_P (t)
&& (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
|| TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
== BOOLEAN_TYPE))
t = TREE_OPERAND (t, 0);
/* For !x use x == 0. */
if (TREE_CODE (t) == TRUTH_NOT_EXPR)
{
tree top0 = TREE_OPERAND (t, 0);
t = build2 (EQ_EXPR, TREE_TYPE (t),
top0, build_int_cst (TREE_TYPE (top0), 0));
}
/* For cmp ? 1 : 0 use cmp. */
else if (TREE_CODE (t) == COND_EXPR
&& COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
&& integer_onep (TREE_OPERAND (t, 1))
&& integer_zerop (TREE_OPERAND (t, 2)))
{
tree top0 = TREE_OPERAND (t, 0);
t = build2 (TREE_CODE (top0), TREE_TYPE (t),
TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
}
/* For x ^ y use x != y. */
else if (TREE_CODE (t) == BIT_XOR_EXPR)
t = build2 (NE_EXPR, TREE_TYPE (t),
TREE_OPERAND (t, 0), TREE_OPERAND (t, 1));
if (is_gimple_condexpr (t))
return t;
return NULL_TREE;
}
/* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
the positions marked by the set ARGS_TO_SKIP. */
gimple
gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
{
int i;
int nargs = gimple_call_num_args (stmt);
auto_vec<tree> vargs (nargs);
gimple new_stmt;
for (i = 0; i < nargs; i++)
if (!bitmap_bit_p (args_to_skip, i))
vargs.quick_push (gimple_call_arg (stmt, i));
if (gimple_call_internal_p (stmt))
new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
vargs);
else
new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
if (gimple_call_lhs (stmt))
gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
gimple_set_vuse (new_stmt, gimple_vuse (stmt));
gimple_set_vdef (new_stmt, gimple_vdef (stmt));
if (gimple_has_location (stmt))
gimple_set_location (new_stmt, gimple_location (stmt));
gimple_call_copy_flags (new_stmt, stmt);
gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
gimple_set_modified (new_stmt, true);
return new_stmt;
}
/* Return true if the field decls F1 and F2 are at the same offset.
This is intended to be used on GIMPLE types only. */
bool
gimple_compare_field_offset (tree f1, tree f2)
{
if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
{
tree offset1 = DECL_FIELD_OFFSET (f1);
tree offset2 = DECL_FIELD_OFFSET (f2);
return ((offset1 == offset2
/* Once gimplification is done, self-referential offsets are
instantiated as operand #2 of the COMPONENT_REF built for
each access and reset. Therefore, they are not relevant
anymore and fields are interchangeable provided that they
represent the same access. */
|| (TREE_CODE (offset1) == PLACEHOLDER_EXPR
&& TREE_CODE (offset2) == PLACEHOLDER_EXPR
&& (DECL_SIZE (f1) == DECL_SIZE (f2)
|| (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
&& TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
|| operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
&& DECL_ALIGN (f1) == DECL_ALIGN (f2))
|| operand_equal_p (offset1, offset2, 0))
&& tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
DECL_FIELD_BIT_OFFSET (f2)));
}
/* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
should be, so handle differing ones specially by decomposing
the offset into a byte and bit offset manually. */
if (tree_fits_shwi_p (DECL_FIELD_OFFSET (f1))
&& tree_fits_shwi_p (DECL_FIELD_OFFSET (f2)))
{
unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
+ bit_offset1 / BITS_PER_UNIT);
bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
+ bit_offset2 / BITS_PER_UNIT);
if (byte_offset1 != byte_offset2)
return false;
return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
}
return false;
}
/* Return a type the same as TYPE except unsigned or
signed according to UNSIGNEDP. */
static tree
gimple_signed_or_unsigned_type (bool unsignedp, tree type)
{
tree type1;
type1 = TYPE_MAIN_VARIANT (type);
if (type1 == signed_char_type_node
|| type1 == char_type_node
|| type1 == unsigned_char_type_node)
return unsignedp ? unsigned_char_type_node : signed_char_type_node;
if (type1 == integer_type_node || type1 == unsigned_type_node)
return unsignedp ? unsigned_type_node : integer_type_node;
if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
return unsignedp ? short_unsigned_type_node : short_integer_type_node;
if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
return unsignedp ? long_unsigned_type_node : long_integer_type_node;
if (type1 == long_long_integer_type_node
|| type1 == long_long_unsigned_type_node)
return unsignedp
? long_long_unsigned_type_node
: long_long_integer_type_node;
if (int128_integer_type_node && (type1 == int128_integer_type_node || type1 == int128_unsigned_type_node))
return unsignedp
? int128_unsigned_type_node
: int128_integer_type_node;
#if HOST_BITS_PER_WIDE_INT >= 64
if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
#endif
if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
#define GIMPLE_FIXED_TYPES(NAME) \
if (type1 == short_ ## NAME ## _type_node \
|| type1 == unsigned_short_ ## NAME ## _type_node) \
return unsignedp ? unsigned_short_ ## NAME ## _type_node \
: short_ ## NAME ## _type_node; \
if (type1 == NAME ## _type_node \
|| type1 == unsigned_ ## NAME ## _type_node) \
return unsignedp ? unsigned_ ## NAME ## _type_node \
: NAME ## _type_node; \
if (type1 == long_ ## NAME ## _type_node \
|| type1 == unsigned_long_ ## NAME ## _type_node) \
return unsignedp ? unsigned_long_ ## NAME ## _type_node \
: long_ ## NAME ## _type_node; \
if (type1 == long_long_ ## NAME ## _type_node \
|| type1 == unsigned_long_long_ ## NAME ## _type_node) \
return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
: long_long_ ## NAME ## _type_node;
#define GIMPLE_FIXED_MODE_TYPES(NAME) \
if (type1 == NAME ## _type_node \
|| type1 == u ## NAME ## _type_node) \
return unsignedp ? u ## NAME ## _type_node \
: NAME ## _type_node;
#define GIMPLE_FIXED_TYPES_SAT(NAME) \
if (type1 == sat_ ## short_ ## NAME ## _type_node \
|| type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
: sat_ ## short_ ## NAME ## _type_node; \
if (type1 == sat_ ## NAME ## _type_node \
|| type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
: sat_ ## NAME ## _type_node; \
if (type1 == sat_ ## long_ ## NAME ## _type_node \
|| type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
: sat_ ## long_ ## NAME ## _type_node; \
if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
|| type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
: sat_ ## long_long_ ## NAME ## _type_node;
#define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
if (type1 == sat_ ## NAME ## _type_node \
|| type1 == sat_ ## u ## NAME ## _type_node) \
return unsignedp ? sat_ ## u ## NAME ## _type_node \
: sat_ ## NAME ## _type_node;
GIMPLE_FIXED_TYPES (fract);
GIMPLE_FIXED_TYPES_SAT (fract);
GIMPLE_FIXED_TYPES (accum);
GIMPLE_FIXED_TYPES_SAT (accum);
GIMPLE_FIXED_MODE_TYPES (qq);
GIMPLE_FIXED_MODE_TYPES (hq);
GIMPLE_FIXED_MODE_TYPES (sq);
GIMPLE_FIXED_MODE_TYPES (dq);
GIMPLE_FIXED_MODE_TYPES (tq);
GIMPLE_FIXED_MODE_TYPES_SAT (qq);
GIMPLE_FIXED_MODE_TYPES_SAT (hq);
GIMPLE_FIXED_MODE_TYPES_SAT (sq);
GIMPLE_FIXED_MODE_TYPES_SAT (dq);
GIMPLE_FIXED_MODE_TYPES_SAT (tq);
GIMPLE_FIXED_MODE_TYPES (ha);
GIMPLE_FIXED_MODE_TYPES (sa);
GIMPLE_FIXED_MODE_TYPES (da);
GIMPLE_FIXED_MODE_TYPES (ta);
GIMPLE_FIXED_MODE_TYPES_SAT (ha);
GIMPLE_FIXED_MODE_TYPES_SAT (sa);
GIMPLE_FIXED_MODE_TYPES_SAT (da);
GIMPLE_FIXED_MODE_TYPES_SAT (ta);
/* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
the precision; they have precision set to match their range, but
may use a wider mode to match an ABI. If we change modes, we may
wind up with bad conversions. For INTEGER_TYPEs in C, must check
the precision as well, so as to yield correct results for
bit-field types. C++ does not have these separate bit-field
types, and producing a signed or unsigned variant of an
ENUMERAL_TYPE may cause other problems as well. */
if (!INTEGRAL_TYPE_P (type)
|| TYPE_UNSIGNED (type) == unsignedp)
return type;
#define TYPE_OK(node) \
(TYPE_MODE (type) == TYPE_MODE (node) \
&& TYPE_PRECISION (type) == TYPE_PRECISION (node))
if (TYPE_OK (signed_char_type_node))
return unsignedp ? unsigned_char_type_node : signed_char_type_node;
if (TYPE_OK (integer_type_node))
return unsignedp ? unsigned_type_node : integer_type_node;
if (TYPE_OK (short_integer_type_node))
return unsignedp ? short_unsigned_type_node : short_integer_type_node;
if (TYPE_OK (long_integer_type_node))
return unsignedp ? long_unsigned_type_node : long_integer_type_node;
if (TYPE_OK (long_long_integer_type_node))
return (unsignedp
? long_long_unsigned_type_node
: long_long_integer_type_node);
if (int128_integer_type_node && TYPE_OK (int128_integer_type_node))
return (unsignedp
? int128_unsigned_type_node
: int128_integer_type_node);
#if HOST_BITS_PER_WIDE_INT >= 64
if (TYPE_OK (intTI_type_node))
return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
#endif
if (TYPE_OK (intDI_type_node))
return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
if (TYPE_OK (intSI_type_node))
return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
if (TYPE_OK (intHI_type_node))
return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
if (TYPE_OK (intQI_type_node))
return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
#undef GIMPLE_FIXED_TYPES
#undef GIMPLE_FIXED_MODE_TYPES
#undef GIMPLE_FIXED_TYPES_SAT
#undef GIMPLE_FIXED_MODE_TYPES_SAT
#undef TYPE_OK
return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
}
/* Return an unsigned type the same as TYPE in other respects. */
tree
gimple_unsigned_type (tree type)
{
return gimple_signed_or_unsigned_type (true, type);
}
/* Return a signed type the same as TYPE in other respects. */
tree
gimple_signed_type (tree type)
{
return gimple_signed_or_unsigned_type (false, type);
}
/* Return the typed-based alias set for T, which may be an expression
or a type. Return -1 if we don't do anything special. */
alias_set_type
gimple_get_alias_set (tree t)
{
tree u;
/* Permit type-punning when accessing a union, provided the access
is directly through the union. For example, this code does not
permit taking the address of a union member and then storing
through it. Even the type-punning allowed here is a GCC
extension, albeit a common and useful one; the C standard says
that such accesses have implementation-defined behavior. */
for (u = t;
TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
u = TREE_OPERAND (u, 0))
if (TREE_CODE (u) == COMPONENT_REF
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
return 0;
/* That's all the expressions we handle specially. */
if (!TYPE_P (t))
return -1;
/* For convenience, follow the C standard when dealing with
character types. Any object may be accessed via an lvalue that
has character type. */
if (t == char_type_node
|| t == signed_char_type_node
|| t == unsigned_char_type_node)
return 0;
/* Allow aliasing between signed and unsigned variants of the same
type. We treat the signed variant as canonical. */
if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
{
tree t1 = gimple_signed_type (t);
/* t1 == t can happen for boolean nodes which are always unsigned. */
if (t1 != t)
return get_alias_set (t1);
}
return -1;
}
/* Helper for gimple_ior_addresses_taken_1. */
static bool
gimple_ior_addresses_taken_1 (gimple, tree addr, tree, void *data)
{
bitmap addresses_taken = (bitmap)data;
addr = get_base_address (addr);
if (addr
&& DECL_P (addr))
{
bitmap_set_bit (addresses_taken, DECL_UID (addr));
return true;
}
return false;
}
/* Set the bit for the uid of all decls that have their address taken
in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
were any in this stmt. */
bool
gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
{
return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
gimple_ior_addresses_taken_1);
}
/* Return true if TYPE1 and TYPE2 are compatible enough for builtin
processing. */
static bool
validate_type (tree type1, tree type2)
{
if (INTEGRAL_TYPE_P (type1)
&& INTEGRAL_TYPE_P (type2))
;
else if (POINTER_TYPE_P (type1)
&& POINTER_TYPE_P (type2))
;
else if (TREE_CODE (type1)
!= TREE_CODE (type2))
return false;
return true;
}
/* Return true when STMTs arguments and return value match those of FNDECL,
a decl of a builtin function. */
bool
gimple_builtin_call_types_compatible_p (gimple stmt, tree fndecl)
{
gcc_checking_assert (DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN);
tree ret = gimple_call_lhs (stmt);
if (ret
&& !validate_type (TREE_TYPE (ret), TREE_TYPE (TREE_TYPE (fndecl))))
return false;
tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
unsigned nargs = gimple_call_num_args (stmt);
for (unsigned i = 0; i < nargs; ++i)
{
/* Variadic args follow. */
if (!targs)
return true;
tree arg = gimple_call_arg (stmt, i);
if (!validate_type (TREE_TYPE (arg), TREE_VALUE (targs)))
return false;
targs = TREE_CHAIN (targs);
}
if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
return false;
return true;
}
/* Return true when STMT is builtins call. */
bool
gimple_call_builtin_p (gimple stmt)
{
tree fndecl;
if (is_gimple_call (stmt)
&& (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
&& DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN)
return gimple_builtin_call_types_compatible_p (stmt, fndecl);
return false;
}
/* Return true when STMT is builtins call to CLASS. */
bool
gimple_call_builtin_p (gimple stmt, enum built_in_class klass)
{
tree fndecl;
if (is_gimple_call (stmt)
&& (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
&& DECL_BUILT_IN_CLASS (fndecl) == klass)
return gimple_builtin_call_types_compatible_p (stmt, fndecl);
return false;
}
/* Return true when STMT is builtins call to CODE of CLASS. */
bool
gimple_call_builtin_p (gimple stmt, enum built_in_function code)
{
tree fndecl;
if (is_gimple_call (stmt)
&& (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
&& DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
&& DECL_FUNCTION_CODE (fndecl) == code)
return gimple_builtin_call_types_compatible_p (stmt, fndecl);
return false;
}
/* Return true if STMT clobbers memory. STMT is required to be a
GIMPLE_ASM. */
bool
gimple_asm_clobbers_memory_p (const_gimple stmt)
{
unsigned i;
for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
{
tree op = gimple_asm_clobber_op (stmt, i);
if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
return true;
}
return false;
}
/* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
void
dump_decl_set (FILE *file, bitmap set)
{
if (set)
{
bitmap_iterator bi;
unsigned i;
fprintf (file, "{ ");
EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
{
fprintf (file, "D.%u", i);
fprintf (file, " ");
}
fprintf (file, "}");
}
else
fprintf (file, "NIL");
}
/* Return true when CALL is a call stmt that definitely doesn't
free any memory or makes it unavailable otherwise. */
bool
nonfreeing_call_p (gimple call)
{
if (gimple_call_builtin_p (call, BUILT_IN_NORMAL)
&& gimple_call_flags (call) & ECF_LEAF)
switch (DECL_FUNCTION_CODE (gimple_call_fndecl (call)))
{
/* Just in case these become ECF_LEAF in the future. */
case BUILT_IN_FREE:
case BUILT_IN_TM_FREE:
case BUILT_IN_REALLOC:
case BUILT_IN_STACK_RESTORE:
return false;
default:
return true;
}
return false;
}
/* Callback for walk_stmt_load_store_ops.
Return TRUE if OP will dereference the tree stored in DATA, FALSE
otherwise.
This routine only makes a superficial check for a dereference. Thus
it must only be used if it is safe to return a false negative. */
static bool
check_loadstore (gimple, tree op, tree, void *data)
{
if ((TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
&& operand_equal_p (TREE_OPERAND (op, 0), (tree)data, 0))
return true;
return false;
}
/* If OP can be inferred to be non-NULL after STMT executes, return true.
DEREFERENCE is TRUE if we can use a pointer dereference to infer a
non-NULL range, FALSE otherwise.
ATTRIBUTE is TRUE if we can use attributes to infer a non-NULL range
for function arguments and return values. FALSE otherwise. */
bool
infer_nonnull_range (gimple stmt, tree op, bool dereference, bool attribute)
{
/* We can only assume that a pointer dereference will yield
non-NULL if -fdelete-null-pointer-checks is enabled. */
if (!flag_delete_null_pointer_checks
|| !POINTER_TYPE_P (TREE_TYPE (op))
|| gimple_code (stmt) == GIMPLE_ASM)
return false;
if (dereference
&& walk_stmt_load_store_ops (stmt, (void *)op,
check_loadstore, check_loadstore))
return true;
if (attribute
&& is_gimple_call (stmt) && !gimple_call_internal_p (stmt))
{
tree fntype = gimple_call_fntype (stmt);
tree attrs = TYPE_ATTRIBUTES (fntype);
for (; attrs; attrs = TREE_CHAIN (attrs))
{
attrs = lookup_attribute ("nonnull", attrs);
/* If "nonnull" wasn't specified, we know nothing about
the argument. */
if (attrs == NULL_TREE)
return false;
/* If "nonnull" applies to all the arguments, then ARG
is non-null if it's in the argument list. */
if (TREE_VALUE (attrs) == NULL_TREE)
{
for (unsigned int i = 0; i < gimple_call_num_args (stmt); i++)
{
if (operand_equal_p (op, gimple_call_arg (stmt, i), 0)
&& POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (stmt, i))))
return true;
}
return false;
}
/* Now see if op appears in the nonnull list. */
for (tree t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
{
int idx = TREE_INT_CST_LOW (TREE_VALUE (t)) - 1;
tree arg = gimple_call_arg (stmt, idx);
if (operand_equal_p (op, arg, 0))
return true;
}
}
}
/* If this function is marked as returning non-null, then we can
infer OP is non-null if it is used in the return statement. */
if (attribute
&& gimple_code (stmt) == GIMPLE_RETURN
&& gimple_return_retval (stmt)
&& operand_equal_p (gimple_return_retval (stmt), op, 0)
&& lookup_attribute ("returns_nonnull",
TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
return true;
return false;
}
/* Compare two case labels. Because the front end should already have
made sure that case ranges do not overlap, it is enough to only compare
the CASE_LOW values of each case label. */
static int
compare_case_labels (const void *p1, const void *p2)
{
const_tree const case1 = *(const_tree const*)p1;
const_tree const case2 = *(const_tree const*)p2;
/* The 'default' case label always goes first. */
if (!CASE_LOW (case1))
return -1;
else if (!CASE_LOW (case2))
return 1;
else
return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
}
/* Sort the case labels in LABEL_VEC in place in ascending order. */
void
sort_case_labels (vec<tree> label_vec)
{
label_vec.qsort (compare_case_labels);
}
/* Prepare a vector of case labels to be used in a GIMPLE_SWITCH statement.
LABELS is a vector that contains all case labels to look at.
INDEX_TYPE is the type of the switch index expression. Case labels
in LABELS are discarded if their values are not in the value range
covered by INDEX_TYPE. The remaining case label values are folded
to INDEX_TYPE.
If a default case exists in LABELS, it is removed from LABELS and
returned in DEFAULT_CASEP. If no default case exists, but the
case labels already cover the whole range of INDEX_TYPE, a default
case is returned pointing to one of the existing case labels.
Otherwise DEFAULT_CASEP is set to NULL_TREE.
DEFAULT_CASEP may be NULL, in which case the above comment doesn't
apply and no action is taken regardless of whether a default case is
found or not. */
void
preprocess_case_label_vec_for_gimple (vec<tree> labels,
tree index_type,
tree *default_casep)
{
tree min_value, max_value;
tree default_case = NULL_TREE;
size_t i, len;
i = 0;
min_value = TYPE_MIN_VALUE (index_type);
max_value = TYPE_MAX_VALUE (index_type);
while (i < labels.length ())
{
tree elt = labels[i];
tree low = CASE_LOW (elt);
tree high = CASE_HIGH (elt);
bool remove_element = FALSE;
if (low)
{
gcc_checking_assert (TREE_CODE (low) == INTEGER_CST);
gcc_checking_assert (!high || TREE_CODE (high) == INTEGER_CST);
/* This is a non-default case label, i.e. it has a value.
See if the case label is reachable within the range of
the index type. Remove out-of-range case values. Turn
case ranges into a canonical form (high > low strictly)
and convert the case label values to the index type.
NB: The type of gimple_switch_index() may be the promoted
type, but the case labels retain the original type. */
if (high)
{
/* This is a case range. Discard empty ranges.
If the bounds or the range are equal, turn this
into a simple (one-value) case. */
int cmp = tree_int_cst_compare (high, low);
if (cmp < 0)
remove_element = TRUE;
else if (cmp == 0)
high = NULL_TREE;
}
if (! high)
{
/* If the simple case value is unreachable, ignore it. */
if ((TREE_CODE (min_value) == INTEGER_CST
&& tree_int_cst_compare (low, min_value) < 0)
|| (TREE_CODE (max_value) == INTEGER_CST
&& tree_int_cst_compare (low, max_value) > 0))
remove_element = TRUE;
else
low = fold_convert (index_type, low);
}
else
{
/* If the entire case range is unreachable, ignore it. */
if ((TREE_CODE (min_value) == INTEGER_CST
&& tree_int_cst_compare (high, min_value) < 0)
|| (TREE_CODE (max_value) == INTEGER_CST
&& tree_int_cst_compare (low, max_value) > 0))
remove_element = TRUE;
else
{
/* If the lower bound is less than the index type's
minimum value, truncate the range bounds. */
if (TREE_CODE (min_value) == INTEGER_CST
&& tree_int_cst_compare (low, min_value) < 0)
low = min_value;
low = fold_convert (index_type, low);
/* If the upper bound is greater than the index type's
maximum value, truncate the range bounds. */
if (TREE_CODE (max_value) == INTEGER_CST
&& tree_int_cst_compare (high, max_value) > 0)
high = max_value;
high = fold_convert (index_type, high);
/* We may have folded a case range to a one-value case. */
if (tree_int_cst_equal (low, high))
high = NULL_TREE;
}
}
CASE_LOW (elt) = low;
CASE_HIGH (elt) = high;
}
else
{
gcc_assert (!default_case);
default_case = elt;
/* The default case must be passed separately to the
gimple_build_switch routine. But if DEFAULT_CASEP
is NULL, we do not remove the default case (it would
be completely lost). */
if (default_casep)
remove_element = TRUE;
}
if (remove_element)
labels.ordered_remove (i);
else
i++;
}
len = i;
if (!labels.is_empty ())
sort_case_labels (labels);
if (default_casep && !default_case)
{
/* If the switch has no default label, add one, so that we jump
around the switch body. If the labels already cover the whole
range of the switch index_type, add the default label pointing
to one of the existing labels. */
if (len
&& TYPE_MIN_VALUE (index_type)
&& TYPE_MAX_VALUE (index_type)
&& tree_int_cst_equal (CASE_LOW (labels[0]),
TYPE_MIN_VALUE (index_type)))
{
tree low, high = CASE_HIGH (labels[len - 1]);
if (!high)
high = CASE_LOW (labels[len - 1]);
if (tree_int_cst_equal (high, TYPE_MAX_VALUE (index_type)))
{
for (i = 1; i < len; i++)
{
high = CASE_LOW (labels[i]);
low = CASE_HIGH (labels[i - 1]);
if (!low)
low = CASE_LOW (labels[i - 1]);
if ((TREE_INT_CST_LOW (low) + 1
!= TREE_INT_CST_LOW (high))
|| (TREE_INT_CST_HIGH (low)
+ (TREE_INT_CST_LOW (high) == 0)
!= TREE_INT_CST_HIGH (high)))
break;
}
if (i == len)
{
tree label = CASE_LABEL (labels[0]);
default_case = build_case_label (NULL_TREE, NULL_TREE,
label);
}
}
}
}
if (default_casep)
*default_casep = default_case;
}
/* Set the location of all statements in SEQ to LOC. */
void
gimple_seq_set_location (gimple_seq seq, location_t loc)
{
for (gimple_stmt_iterator i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
gimple_set_location (gsi_stmt (i), loc);
}
|