1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
|
/* GIMPLE store merging and byte swapping passes.
Copyright (C) 2009-2018 Free Software Foundation, Inc.
Contributed by ARM Ltd.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* The purpose of the store merging pass is to combine multiple memory stores
of constant values, values loaded from memory, bitwise operations on those,
or bit-field values, to consecutive locations, into fewer wider stores.
For example, if we have a sequence peforming four byte stores to
consecutive memory locations:
[p ] := imm1;
[p + 1B] := imm2;
[p + 2B] := imm3;
[p + 3B] := imm4;
we can transform this into a single 4-byte store if the target supports it:
[p] := imm1:imm2:imm3:imm4 concatenated according to endianness.
Or:
[p ] := [q ];
[p + 1B] := [q + 1B];
[p + 2B] := [q + 2B];
[p + 3B] := [q + 3B];
if there is no overlap can be transformed into a single 4-byte
load followed by single 4-byte store.
Or:
[p ] := [q ] ^ imm1;
[p + 1B] := [q + 1B] ^ imm2;
[p + 2B] := [q + 2B] ^ imm3;
[p + 3B] := [q + 3B] ^ imm4;
if there is no overlap can be transformed into a single 4-byte
load, xored with imm1:imm2:imm3:imm4 and stored using a single 4-byte store.
Or:
[p:1 ] := imm;
[p:31] := val & 0x7FFFFFFF;
we can transform this into a single 4-byte store if the target supports it:
[p] := imm:(val & 0x7FFFFFFF) concatenated according to endianness.
The algorithm is applied to each basic block in three phases:
1) Scan through the basic block and record assignments to destinations
that can be expressed as a store to memory of a certain size at a certain
bit offset from base expressions we can handle. For bit-fields we also
record the surrounding bit region, i.e. bits that could be stored in
a read-modify-write operation when storing the bit-field. Record store
chains to different bases in a hash_map (m_stores) and make sure to
terminate such chains when appropriate (for example when when the stored
values get used subsequently).
These stores can be a result of structure element initializers, array stores
etc. A store_immediate_info object is recorded for every such store.
Record as many such assignments to a single base as possible until a
statement that interferes with the store sequence is encountered.
Each store has up to 2 operands, which can be a either constant, a memory
load or an SSA name, from which the value to be stored can be computed.
At most one of the operands can be a constant. The operands are recorded
in store_operand_info struct.
2) Analyze the chains of stores recorded in phase 1) (i.e. the vector of
store_immediate_info objects) and coalesce contiguous stores into
merged_store_group objects. For bit-field stores, we don't need to
require the stores to be contiguous, just their surrounding bit regions
have to be contiguous. If the expression being stored is different
between adjacent stores, such as one store storing a constant and
following storing a value loaded from memory, or if the loaded memory
objects are not adjacent, a new merged_store_group is created as well.
For example, given the stores:
[p ] := 0;
[p + 1B] := 1;
[p + 3B] := 0;
[p + 4B] := 1;
[p + 5B] := 0;
[p + 6B] := 0;
This phase would produce two merged_store_group objects, one recording the
two bytes stored in the memory region [p : p + 1] and another
recording the four bytes stored in the memory region [p + 3 : p + 6].
3) The merged_store_group objects produced in phase 2) are processed
to generate the sequence of wider stores that set the contiguous memory
regions to the sequence of bytes that correspond to it. This may emit
multiple stores per store group to handle contiguous stores that are not
of a size that is a power of 2. For example it can try to emit a 40-bit
store as a 32-bit store followed by an 8-bit store.
We try to emit as wide stores as we can while respecting STRICT_ALIGNMENT
or TARGET_SLOW_UNALIGNED_ACCESS settings.
Note on endianness and example:
Consider 2 contiguous 16-bit stores followed by 2 contiguous 8-bit stores:
[p ] := 0x1234;
[p + 2B] := 0x5678;
[p + 4B] := 0xab;
[p + 5B] := 0xcd;
The memory layout for little-endian (LE) and big-endian (BE) must be:
p |LE|BE|
---------
0 |34|12|
1 |12|34|
2 |78|56|
3 |56|78|
4 |ab|ab|
5 |cd|cd|
To merge these into a single 48-bit merged value 'val' in phase 2)
on little-endian we insert stores to higher (consecutive) bitpositions
into the most significant bits of the merged value.
The final merged value would be: 0xcdab56781234
For big-endian we insert stores to higher bitpositions into the least
significant bits of the merged value.
The final merged value would be: 0x12345678abcd
Then, in phase 3), we want to emit this 48-bit value as a 32-bit store
followed by a 16-bit store. Again, we must consider endianness when
breaking down the 48-bit value 'val' computed above.
For little endian we emit:
[p] (32-bit) := 0x56781234; // val & 0x0000ffffffff;
[p + 4B] (16-bit) := 0xcdab; // (val & 0xffff00000000) >> 32;
Whereas for big-endian we emit:
[p] (32-bit) := 0x12345678; // (val & 0xffffffff0000) >> 16;
[p + 4B] (16-bit) := 0xabcd; // val & 0x00000000ffff; */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "builtins.h"
#include "fold-const.h"
#include "tree-pass.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "alias.h"
#include "fold-const.h"
#include "params.h"
#include "print-tree.h"
#include "tree-hash-traits.h"
#include "gimple-iterator.h"
#include "gimplify.h"
#include "gimple-fold.h"
#include "stor-layout.h"
#include "timevar.h"
#include "tree-cfg.h"
#include "tree-eh.h"
#include "target.h"
#include "gimplify-me.h"
#include "rtl.h"
#include "expr.h" /* For get_bit_range. */
#include "optabs-tree.h"
#include "selftest.h"
/* The maximum size (in bits) of the stores this pass should generate. */
#define MAX_STORE_BITSIZE (BITS_PER_WORD)
#define MAX_STORE_BYTES (MAX_STORE_BITSIZE / BITS_PER_UNIT)
/* Limit to bound the number of aliasing checks for loads with the same
vuse as the corresponding store. */
#define MAX_STORE_ALIAS_CHECKS 64
namespace {
struct bswap_stat
{
/* Number of hand-written 16-bit nop / bswaps found. */
int found_16bit;
/* Number of hand-written 32-bit nop / bswaps found. */
int found_32bit;
/* Number of hand-written 64-bit nop / bswaps found. */
int found_64bit;
} nop_stats, bswap_stats;
/* A symbolic number structure is used to detect byte permutation and selection
patterns of a source. To achieve that, its field N contains an artificial
number consisting of BITS_PER_MARKER sized markers tracking where does each
byte come from in the source:
0 - target byte has the value 0
FF - target byte has an unknown value (eg. due to sign extension)
1..size - marker value is the byte index in the source (0 for lsb).
To detect permutations on memory sources (arrays and structures), a symbolic
number is also associated:
- a base address BASE_ADDR and an OFFSET giving the address of the source;
- a range which gives the difference between the highest and lowest accessed
memory location to make such a symbolic number;
- the address SRC of the source element of lowest address as a convenience
to easily get BASE_ADDR + offset + lowest bytepos;
- number of expressions N_OPS bitwise ored together to represent
approximate cost of the computation.
Note 1: the range is different from size as size reflects the size of the
type of the current expression. For instance, for an array char a[],
(short) a[0] | (short) a[3] would have a size of 2 but a range of 4 while
(short) a[0] | ((short) a[0] << 1) would still have a size of 2 but this
time a range of 1.
Note 2: for non-memory sources, range holds the same value as size.
Note 3: SRC points to the SSA_NAME in case of non-memory source. */
struct symbolic_number {
uint64_t n;
tree type;
tree base_addr;
tree offset;
poly_int64_pod bytepos;
tree src;
tree alias_set;
tree vuse;
unsigned HOST_WIDE_INT range;
int n_ops;
};
#define BITS_PER_MARKER 8
#define MARKER_MASK ((1 << BITS_PER_MARKER) - 1)
#define MARKER_BYTE_UNKNOWN MARKER_MASK
#define HEAD_MARKER(n, size) \
((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER)))
/* The number which the find_bswap_or_nop_1 result should match in
order to have a nop. The number is masked according to the size of
the symbolic number before using it. */
#define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
(uint64_t)0x08070605 << 32 | 0x04030201)
/* The number which the find_bswap_or_nop_1 result should match in
order to have a byte swap. The number is masked according to the
size of the symbolic number before using it. */
#define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
(uint64_t)0x01020304 << 32 | 0x05060708)
/* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
number N. Return false if the requested operation is not permitted
on a symbolic number. */
inline bool
do_shift_rotate (enum tree_code code,
struct symbolic_number *n,
int count)
{
int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
unsigned head_marker;
if (count % BITS_PER_UNIT != 0)
return false;
count = (count / BITS_PER_UNIT) * BITS_PER_MARKER;
/* Zero out the extra bits of N in order to avoid them being shifted
into the significant bits. */
if (size < 64 / BITS_PER_MARKER)
n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
switch (code)
{
case LSHIFT_EXPR:
n->n <<= count;
break;
case RSHIFT_EXPR:
head_marker = HEAD_MARKER (n->n, size);
n->n >>= count;
/* Arithmetic shift of signed type: result is dependent on the value. */
if (!TYPE_UNSIGNED (n->type) && head_marker)
for (i = 0; i < count / BITS_PER_MARKER; i++)
n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
<< ((size - 1 - i) * BITS_PER_MARKER);
break;
case LROTATE_EXPR:
n->n = (n->n << count) | (n->n >> ((size * BITS_PER_MARKER) - count));
break;
case RROTATE_EXPR:
n->n = (n->n >> count) | (n->n << ((size * BITS_PER_MARKER) - count));
break;
default:
return false;
}
/* Zero unused bits for size. */
if (size < 64 / BITS_PER_MARKER)
n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
return true;
}
/* Perform sanity checking for the symbolic number N and the gimple
statement STMT. */
inline bool
verify_symbolic_number_p (struct symbolic_number *n, gimple *stmt)
{
tree lhs_type;
lhs_type = gimple_expr_type (stmt);
if (TREE_CODE (lhs_type) != INTEGER_TYPE)
return false;
if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type))
return false;
return true;
}
/* Initialize the symbolic number N for the bswap pass from the base element
SRC manipulated by the bitwise OR expression. */
bool
init_symbolic_number (struct symbolic_number *n, tree src)
{
int size;
if (! INTEGRAL_TYPE_P (TREE_TYPE (src)))
return false;
n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE;
n->src = src;
/* Set up the symbolic number N by setting each byte to a value between 1 and
the byte size of rhs1. The highest order byte is set to n->size and the
lowest order byte to 1. */
n->type = TREE_TYPE (src);
size = TYPE_PRECISION (n->type);
if (size % BITS_PER_UNIT != 0)
return false;
size /= BITS_PER_UNIT;
if (size > 64 / BITS_PER_MARKER)
return false;
n->range = size;
n->n = CMPNOP;
n->n_ops = 1;
if (size < 64 / BITS_PER_MARKER)
n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
return true;
}
/* Check if STMT might be a byte swap or a nop from a memory source and returns
the answer. If so, REF is that memory source and the base of the memory area
accessed and the offset of the access from that base are recorded in N. */
bool
find_bswap_or_nop_load (gimple *stmt, tree ref, struct symbolic_number *n)
{
/* Leaf node is an array or component ref. Memorize its base and
offset from base to compare to other such leaf node. */
poly_int64 bitsize, bitpos, bytepos;
machine_mode mode;
int unsignedp, reversep, volatilep;
tree offset, base_addr;
/* Not prepared to handle PDP endian. */
if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
return false;
if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt))
return false;
base_addr = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
&unsignedp, &reversep, &volatilep);
if (TREE_CODE (base_addr) == TARGET_MEM_REF)
/* Do not rewrite TARGET_MEM_REF. */
return false;
else if (TREE_CODE (base_addr) == MEM_REF)
{
poly_offset_int bit_offset = 0;
tree off = TREE_OPERAND (base_addr, 1);
if (!integer_zerop (off))
{
poly_offset_int boff = mem_ref_offset (base_addr);
boff <<= LOG2_BITS_PER_UNIT;
bit_offset += boff;
}
base_addr = TREE_OPERAND (base_addr, 0);
/* Avoid returning a negative bitpos as this may wreak havoc later. */
if (maybe_lt (bit_offset, 0))
{
tree byte_offset = wide_int_to_tree
(sizetype, bits_to_bytes_round_down (bit_offset));
bit_offset = num_trailing_bits (bit_offset);
if (offset)
offset = size_binop (PLUS_EXPR, offset, byte_offset);
else
offset = byte_offset;
}
bitpos += bit_offset.force_shwi ();
}
else
base_addr = build_fold_addr_expr (base_addr);
if (!multiple_p (bitpos, BITS_PER_UNIT, &bytepos))
return false;
if (!multiple_p (bitsize, BITS_PER_UNIT))
return false;
if (reversep)
return false;
if (!init_symbolic_number (n, ref))
return false;
n->base_addr = base_addr;
n->offset = offset;
n->bytepos = bytepos;
n->alias_set = reference_alias_ptr_type (ref);
n->vuse = gimple_vuse (stmt);
return true;
}
/* Compute the symbolic number N representing the result of a bitwise OR on 2
symbolic number N1 and N2 whose source statements are respectively
SOURCE_STMT1 and SOURCE_STMT2. */
gimple *
perform_symbolic_merge (gimple *source_stmt1, struct symbolic_number *n1,
gimple *source_stmt2, struct symbolic_number *n2,
struct symbolic_number *n)
{
int i, size;
uint64_t mask;
gimple *source_stmt;
struct symbolic_number *n_start;
tree rhs1 = gimple_assign_rhs1 (source_stmt1);
if (TREE_CODE (rhs1) == BIT_FIELD_REF
&& TREE_CODE (TREE_OPERAND (rhs1, 0)) == SSA_NAME)
rhs1 = TREE_OPERAND (rhs1, 0);
tree rhs2 = gimple_assign_rhs1 (source_stmt2);
if (TREE_CODE (rhs2) == BIT_FIELD_REF
&& TREE_CODE (TREE_OPERAND (rhs2, 0)) == SSA_NAME)
rhs2 = TREE_OPERAND (rhs2, 0);
/* Sources are different, cancel bswap if they are not memory location with
the same base (array, structure, ...). */
if (rhs1 != rhs2)
{
uint64_t inc;
HOST_WIDE_INT start1, start2, start_sub, end_sub, end1, end2, end;
struct symbolic_number *toinc_n_ptr, *n_end;
basic_block bb1, bb2;
if (!n1->base_addr || !n2->base_addr
|| !operand_equal_p (n1->base_addr, n2->base_addr, 0))
return NULL;
if (!n1->offset != !n2->offset
|| (n1->offset && !operand_equal_p (n1->offset, n2->offset, 0)))
return NULL;
start1 = 0;
if (!(n2->bytepos - n1->bytepos).is_constant (&start2))
return NULL;
if (start1 < start2)
{
n_start = n1;
start_sub = start2 - start1;
}
else
{
n_start = n2;
start_sub = start1 - start2;
}
bb1 = gimple_bb (source_stmt1);
bb2 = gimple_bb (source_stmt2);
if (dominated_by_p (CDI_DOMINATORS, bb1, bb2))
source_stmt = source_stmt1;
else
source_stmt = source_stmt2;
/* Find the highest address at which a load is performed and
compute related info. */
end1 = start1 + (n1->range - 1);
end2 = start2 + (n2->range - 1);
if (end1 < end2)
{
end = end2;
end_sub = end2 - end1;
}
else
{
end = end1;
end_sub = end1 - end2;
}
n_end = (end2 > end1) ? n2 : n1;
/* Find symbolic number whose lsb is the most significant. */
if (BYTES_BIG_ENDIAN)
toinc_n_ptr = (n_end == n1) ? n2 : n1;
else
toinc_n_ptr = (n_start == n1) ? n2 : n1;
n->range = end - MIN (start1, start2) + 1;
/* Check that the range of memory covered can be represented by
a symbolic number. */
if (n->range > 64 / BITS_PER_MARKER)
return NULL;
/* Reinterpret byte marks in symbolic number holding the value of
bigger weight according to target endianness. */
inc = BYTES_BIG_ENDIAN ? end_sub : start_sub;
size = TYPE_PRECISION (n1->type) / BITS_PER_UNIT;
for (i = 0; i < size; i++, inc <<= BITS_PER_MARKER)
{
unsigned marker
= (toinc_n_ptr->n >> (i * BITS_PER_MARKER)) & MARKER_MASK;
if (marker && marker != MARKER_BYTE_UNKNOWN)
toinc_n_ptr->n += inc;
}
}
else
{
n->range = n1->range;
n_start = n1;
source_stmt = source_stmt1;
}
if (!n1->alias_set
|| alias_ptr_types_compatible_p (n1->alias_set, n2->alias_set))
n->alias_set = n1->alias_set;
else
n->alias_set = ptr_type_node;
n->vuse = n_start->vuse;
n->base_addr = n_start->base_addr;
n->offset = n_start->offset;
n->src = n_start->src;
n->bytepos = n_start->bytepos;
n->type = n_start->type;
size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
for (i = 0, mask = MARKER_MASK; i < size; i++, mask <<= BITS_PER_MARKER)
{
uint64_t masked1, masked2;
masked1 = n1->n & mask;
masked2 = n2->n & mask;
if (masked1 && masked2 && masked1 != masked2)
return NULL;
}
n->n = n1->n | n2->n;
n->n_ops = n1->n_ops + n2->n_ops;
return source_stmt;
}
/* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
the operation given by the rhs of STMT on the result. If the operation
could successfully be executed the function returns a gimple stmt whose
rhs's first tree is the expression of the source operand and NULL
otherwise. */
gimple *
find_bswap_or_nop_1 (gimple *stmt, struct symbolic_number *n, int limit)
{
enum tree_code code;
tree rhs1, rhs2 = NULL;
gimple *rhs1_stmt, *rhs2_stmt, *source_stmt1;
enum gimple_rhs_class rhs_class;
if (!limit || !is_gimple_assign (stmt))
return NULL;
rhs1 = gimple_assign_rhs1 (stmt);
if (find_bswap_or_nop_load (stmt, rhs1, n))
return stmt;
/* Handle BIT_FIELD_REF. */
if (TREE_CODE (rhs1) == BIT_FIELD_REF
&& TREE_CODE (TREE_OPERAND (rhs1, 0)) == SSA_NAME)
{
unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (TREE_OPERAND (rhs1, 1));
unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (TREE_OPERAND (rhs1, 2));
if (bitpos % BITS_PER_UNIT == 0
&& bitsize % BITS_PER_UNIT == 0
&& init_symbolic_number (n, TREE_OPERAND (rhs1, 0)))
{
/* Handle big-endian bit numbering in BIT_FIELD_REF. */
if (BYTES_BIG_ENDIAN)
bitpos = TYPE_PRECISION (n->type) - bitpos - bitsize;
/* Shift. */
if (!do_shift_rotate (RSHIFT_EXPR, n, bitpos))
return NULL;
/* Mask. */
uint64_t mask = 0;
uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
for (unsigned i = 0; i < bitsize / BITS_PER_UNIT;
i++, tmp <<= BITS_PER_UNIT)
mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
n->n &= mask;
/* Convert. */
n->type = TREE_TYPE (rhs1);
if (!n->base_addr)
n->range = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
return verify_symbolic_number_p (n, stmt) ? stmt : NULL;
}
return NULL;
}
if (TREE_CODE (rhs1) != SSA_NAME)
return NULL;
code = gimple_assign_rhs_code (stmt);
rhs_class = gimple_assign_rhs_class (stmt);
rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
if (rhs_class == GIMPLE_BINARY_RHS)
rhs2 = gimple_assign_rhs2 (stmt);
/* Handle unary rhs and binary rhs with integer constants as second
operand. */
if (rhs_class == GIMPLE_UNARY_RHS
|| (rhs_class == GIMPLE_BINARY_RHS
&& TREE_CODE (rhs2) == INTEGER_CST))
{
if (code != BIT_AND_EXPR
&& code != LSHIFT_EXPR
&& code != RSHIFT_EXPR
&& code != LROTATE_EXPR
&& code != RROTATE_EXPR
&& !CONVERT_EXPR_CODE_P (code))
return NULL;
source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, n, limit - 1);
/* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
we have to initialize the symbolic number. */
if (!source_stmt1)
{
if (gimple_assign_load_p (stmt)
|| !init_symbolic_number (n, rhs1))
return NULL;
source_stmt1 = stmt;
}
switch (code)
{
case BIT_AND_EXPR:
{
int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
uint64_t val = int_cst_value (rhs2), mask = 0;
uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
/* Only constants masking full bytes are allowed. */
for (i = 0; i < size; i++, tmp <<= BITS_PER_UNIT)
if ((val & tmp) != 0 && (val & tmp) != tmp)
return NULL;
else if (val & tmp)
mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
n->n &= mask;
}
break;
case LSHIFT_EXPR:
case RSHIFT_EXPR:
case LROTATE_EXPR:
case RROTATE_EXPR:
if (!do_shift_rotate (code, n, (int) TREE_INT_CST_LOW (rhs2)))
return NULL;
break;
CASE_CONVERT:
{
int i, type_size, old_type_size;
tree type;
type = gimple_expr_type (stmt);
type_size = TYPE_PRECISION (type);
if (type_size % BITS_PER_UNIT != 0)
return NULL;
type_size /= BITS_PER_UNIT;
if (type_size > 64 / BITS_PER_MARKER)
return NULL;
/* Sign extension: result is dependent on the value. */
old_type_size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
if (!TYPE_UNSIGNED (n->type) && type_size > old_type_size
&& HEAD_MARKER (n->n, old_type_size))
for (i = 0; i < type_size - old_type_size; i++)
n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
<< ((type_size - 1 - i) * BITS_PER_MARKER);
if (type_size < 64 / BITS_PER_MARKER)
{
/* If STMT casts to a smaller type mask out the bits not
belonging to the target type. */
n->n &= ((uint64_t) 1 << (type_size * BITS_PER_MARKER)) - 1;
}
n->type = type;
if (!n->base_addr)
n->range = type_size;
}
break;
default:
return NULL;
};
return verify_symbolic_number_p (n, stmt) ? source_stmt1 : NULL;
}
/* Handle binary rhs. */
if (rhs_class == GIMPLE_BINARY_RHS)
{
struct symbolic_number n1, n2;
gimple *source_stmt, *source_stmt2;
if (code != BIT_IOR_EXPR)
return NULL;
if (TREE_CODE (rhs2) != SSA_NAME)
return NULL;
rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
switch (code)
{
case BIT_IOR_EXPR:
source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, &n1, limit - 1);
if (!source_stmt1)
return NULL;
source_stmt2 = find_bswap_or_nop_1 (rhs2_stmt, &n2, limit - 1);
if (!source_stmt2)
return NULL;
if (TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type))
return NULL;
if (n1.vuse != n2.vuse)
return NULL;
source_stmt
= perform_symbolic_merge (source_stmt1, &n1, source_stmt2, &n2, n);
if (!source_stmt)
return NULL;
if (!verify_symbolic_number_p (n, stmt))
return NULL;
break;
default:
return NULL;
}
return source_stmt;
}
return NULL;
}
/* Helper for find_bswap_or_nop and try_coalesce_bswap to compute
*CMPXCHG, *CMPNOP and adjust *N. */
void
find_bswap_or_nop_finalize (struct symbolic_number *n, uint64_t *cmpxchg,
uint64_t *cmpnop)
{
unsigned rsize;
uint64_t tmpn, mask;
/* The number which the find_bswap_or_nop_1 result should match in order
to have a full byte swap. The number is shifted to the right
according to the size of the symbolic number before using it. */
*cmpxchg = CMPXCHG;
*cmpnop = CMPNOP;
/* Find real size of result (highest non-zero byte). */
if (n->base_addr)
for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_MARKER, rsize++);
else
rsize = n->range;
/* Zero out the bits corresponding to untouched bytes in original gimple
expression. */
if (n->range < (int) sizeof (int64_t))
{
mask = ((uint64_t) 1 << (n->range * BITS_PER_MARKER)) - 1;
*cmpxchg >>= (64 / BITS_PER_MARKER - n->range) * BITS_PER_MARKER;
*cmpnop &= mask;
}
/* Zero out the bits corresponding to unused bytes in the result of the
gimple expression. */
if (rsize < n->range)
{
if (BYTES_BIG_ENDIAN)
{
mask = ((uint64_t) 1 << (rsize * BITS_PER_MARKER)) - 1;
*cmpxchg &= mask;
*cmpnop >>= (n->range - rsize) * BITS_PER_MARKER;
}
else
{
mask = ((uint64_t) 1 << (rsize * BITS_PER_MARKER)) - 1;
*cmpxchg >>= (n->range - rsize) * BITS_PER_MARKER;
*cmpnop &= mask;
}
n->range = rsize;
}
n->range *= BITS_PER_UNIT;
}
/* Check if STMT completes a bswap implementation or a read in a given
endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
accordingly. It also sets N to represent the kind of operations
performed: size of the resulting expression and whether it works on
a memory source, and if so alias-set and vuse. At last, the
function returns a stmt whose rhs's first tree is the source
expression. */
gimple *
find_bswap_or_nop (gimple *stmt, struct symbolic_number *n, bool *bswap)
{
/* The last parameter determines the depth search limit. It usually
correlates directly to the number n of bytes to be touched. We
increase that number by log2(n) + 1 here in order to also
cover signed -> unsigned conversions of the src operand as can be seen
in libgcc, and for initial shift/and operation of the src operand. */
int limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
gimple *ins_stmt = find_bswap_or_nop_1 (stmt, n, limit);
if (!ins_stmt)
return NULL;
uint64_t cmpxchg, cmpnop;
find_bswap_or_nop_finalize (n, &cmpxchg, &cmpnop);
/* A complete byte swap should make the symbolic number to start with
the largest digit in the highest order byte. Unchanged symbolic
number indicates a read with same endianness as target architecture. */
if (n->n == cmpnop)
*bswap = false;
else if (n->n == cmpxchg)
*bswap = true;
else
return NULL;
/* Useless bit manipulation performed by code. */
if (!n->base_addr && n->n == cmpnop && n->n_ops == 1)
return NULL;
return ins_stmt;
}
const pass_data pass_data_optimize_bswap =
{
GIMPLE_PASS, /* type */
"bswap", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_NONE, /* tv_id */
PROP_ssa, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_optimize_bswap : public gimple_opt_pass
{
public:
pass_optimize_bswap (gcc::context *ctxt)
: gimple_opt_pass (pass_data_optimize_bswap, ctxt)
{}
/* opt_pass methods: */
virtual bool gate (function *)
{
return flag_expensive_optimizations && optimize && BITS_PER_UNIT == 8;
}
virtual unsigned int execute (function *);
}; // class pass_optimize_bswap
/* Perform the bswap optimization: replace the expression computed in the rhs
of gsi_stmt (GSI) (or if NULL add instead of replace) by an equivalent
bswap, load or load + bswap expression.
Which of these alternatives replace the rhs is given by N->base_addr (non
null if a load is needed) and BSWAP. The type, VUSE and set-alias of the
load to perform are also given in N while the builtin bswap invoke is given
in FNDEL. Finally, if a load is involved, INS_STMT refers to one of the
load statements involved to construct the rhs in gsi_stmt (GSI) and
N->range gives the size of the rhs expression for maintaining some
statistics.
Note that if the replacement involve a load and if gsi_stmt (GSI) is
non-NULL, that stmt is moved just after INS_STMT to do the load with the
same VUSE which can lead to gsi_stmt (GSI) changing of basic block. */
tree
bswap_replace (gimple_stmt_iterator gsi, gimple *ins_stmt, tree fndecl,
tree bswap_type, tree load_type, struct symbolic_number *n,
bool bswap)
{
tree src, tmp, tgt = NULL_TREE;
gimple *bswap_stmt;
gimple *cur_stmt = gsi_stmt (gsi);
src = n->src;
if (cur_stmt)
tgt = gimple_assign_lhs (cur_stmt);
/* Need to load the value from memory first. */
if (n->base_addr)
{
gimple_stmt_iterator gsi_ins = gsi;
if (ins_stmt)
gsi_ins = gsi_for_stmt (ins_stmt);
tree addr_expr, addr_tmp, val_expr, val_tmp;
tree load_offset_ptr, aligned_load_type;
gimple *load_stmt;
unsigned align = get_object_alignment (src);
poly_int64 load_offset = 0;
if (cur_stmt)
{
basic_block ins_bb = gimple_bb (ins_stmt);
basic_block cur_bb = gimple_bb (cur_stmt);
if (!dominated_by_p (CDI_DOMINATORS, cur_bb, ins_bb))
return NULL_TREE;
/* Move cur_stmt just before one of the load of the original
to ensure it has the same VUSE. See PR61517 for what could
go wrong. */
if (gimple_bb (cur_stmt) != gimple_bb (ins_stmt))
reset_flow_sensitive_info (gimple_assign_lhs (cur_stmt));
gsi_move_before (&gsi, &gsi_ins);
gsi = gsi_for_stmt (cur_stmt);
}
else
gsi = gsi_ins;
/* Compute address to load from and cast according to the size
of the load. */
addr_expr = build_fold_addr_expr (src);
if (is_gimple_mem_ref_addr (addr_expr))
addr_tmp = unshare_expr (addr_expr);
else
{
addr_tmp = unshare_expr (n->base_addr);
if (!is_gimple_mem_ref_addr (addr_tmp))
addr_tmp = force_gimple_operand_gsi_1 (&gsi, addr_tmp,
is_gimple_mem_ref_addr,
NULL_TREE, true,
GSI_SAME_STMT);
load_offset = n->bytepos;
if (n->offset)
{
tree off
= force_gimple_operand_gsi (&gsi, unshare_expr (n->offset),
true, NULL_TREE, true,
GSI_SAME_STMT);
gimple *stmt
= gimple_build_assign (make_ssa_name (TREE_TYPE (addr_tmp)),
POINTER_PLUS_EXPR, addr_tmp, off);
gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
addr_tmp = gimple_assign_lhs (stmt);
}
}
/* Perform the load. */
aligned_load_type = load_type;
if (align < TYPE_ALIGN (load_type))
aligned_load_type = build_aligned_type (load_type, align);
load_offset_ptr = build_int_cst (n->alias_set, load_offset);
val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp,
load_offset_ptr);
if (!bswap)
{
if (n->range == 16)
nop_stats.found_16bit++;
else if (n->range == 32)
nop_stats.found_32bit++;
else
{
gcc_assert (n->range == 64);
nop_stats.found_64bit++;
}
/* Convert the result of load if necessary. */
if (tgt && !useless_type_conversion_p (TREE_TYPE (tgt), load_type))
{
val_tmp = make_temp_ssa_name (aligned_load_type, NULL,
"load_dst");
load_stmt = gimple_build_assign (val_tmp, val_expr);
gimple_set_vuse (load_stmt, n->vuse);
gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
gimple_assign_set_rhs_with_ops (&gsi, NOP_EXPR, val_tmp);
update_stmt (cur_stmt);
}
else if (cur_stmt)
{
gimple_assign_set_rhs_with_ops (&gsi, MEM_REF, val_expr);
gimple_set_vuse (cur_stmt, n->vuse);
update_stmt (cur_stmt);
}
else
{
tgt = make_ssa_name (load_type);
cur_stmt = gimple_build_assign (tgt, MEM_REF, val_expr);
gimple_set_vuse (cur_stmt, n->vuse);
gsi_insert_before (&gsi, cur_stmt, GSI_SAME_STMT);
}
if (dump_file)
{
fprintf (dump_file,
"%d bit load in target endianness found at: ",
(int) n->range);
print_gimple_stmt (dump_file, cur_stmt, 0);
}
return tgt;
}
else
{
val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst");
load_stmt = gimple_build_assign (val_tmp, val_expr);
gimple_set_vuse (load_stmt, n->vuse);
gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
}
src = val_tmp;
}
else if (!bswap)
{
gimple *g = NULL;
if (tgt && !useless_type_conversion_p (TREE_TYPE (tgt), TREE_TYPE (src)))
{
if (!is_gimple_val (src))
return NULL_TREE;
g = gimple_build_assign (tgt, NOP_EXPR, src);
}
else if (cur_stmt)
g = gimple_build_assign (tgt, src);
else
tgt = src;
if (n->range == 16)
nop_stats.found_16bit++;
else if (n->range == 32)
nop_stats.found_32bit++;
else
{
gcc_assert (n->range == 64);
nop_stats.found_64bit++;
}
if (dump_file)
{
fprintf (dump_file,
"%d bit reshuffle in target endianness found at: ",
(int) n->range);
if (cur_stmt)
print_gimple_stmt (dump_file, cur_stmt, 0);
else
{
print_generic_expr (dump_file, tgt, TDF_NONE);
fprintf (dump_file, "\n");
}
}
if (cur_stmt)
gsi_replace (&gsi, g, true);
return tgt;
}
else if (TREE_CODE (src) == BIT_FIELD_REF)
src = TREE_OPERAND (src, 0);
if (n->range == 16)
bswap_stats.found_16bit++;
else if (n->range == 32)
bswap_stats.found_32bit++;
else
{
gcc_assert (n->range == 64);
bswap_stats.found_64bit++;
}
tmp = src;
/* Convert the src expression if necessary. */
if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type))
{
gimple *convert_stmt;
tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
convert_stmt = gimple_build_assign (tmp, NOP_EXPR, src);
gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
}
/* Canonical form for 16 bit bswap is a rotate expression. Only 16bit values
are considered as rotation of 2N bit values by N bits is generally not
equivalent to a bswap. Consider for instance 0x01020304 r>> 16 which
gives 0x03040102 while a bswap for that value is 0x04030201. */
if (bswap && n->range == 16)
{
tree count = build_int_cst (NULL, BITS_PER_UNIT);
src = fold_build2 (LROTATE_EXPR, bswap_type, tmp, count);
bswap_stmt = gimple_build_assign (NULL, src);
}
else
bswap_stmt = gimple_build_call (fndecl, 1, tmp);
if (tgt == NULL_TREE)
tgt = make_ssa_name (bswap_type);
tmp = tgt;
/* Convert the result if necessary. */
if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type))
{
gimple *convert_stmt;
tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
convert_stmt = gimple_build_assign (tgt, NOP_EXPR, tmp);
gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
}
gimple_set_lhs (bswap_stmt, tmp);
if (dump_file)
{
fprintf (dump_file, "%d bit bswap implementation found at: ",
(int) n->range);
if (cur_stmt)
print_gimple_stmt (dump_file, cur_stmt, 0);
else
{
print_generic_expr (dump_file, tgt, TDF_NONE);
fprintf (dump_file, "\n");
}
}
if (cur_stmt)
{
gsi_insert_after (&gsi, bswap_stmt, GSI_SAME_STMT);
gsi_remove (&gsi, true);
}
else
gsi_insert_before (&gsi, bswap_stmt, GSI_SAME_STMT);
return tgt;
}
/* Find manual byte swap implementations as well as load in a given
endianness. Byte swaps are turned into a bswap builtin invokation
while endian loads are converted to bswap builtin invokation or
simple load according to the target endianness. */
unsigned int
pass_optimize_bswap::execute (function *fun)
{
basic_block bb;
bool bswap32_p, bswap64_p;
bool changed = false;
tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
&& optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
&& (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
|| (bswap32_p && word_mode == SImode)));
/* Determine the argument type of the builtins. The code later on
assumes that the return and argument type are the same. */
if (bswap32_p)
{
tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
}
if (bswap64_p)
{
tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
}
memset (&nop_stats, 0, sizeof (nop_stats));
memset (&bswap_stats, 0, sizeof (bswap_stats));
calculate_dominance_info (CDI_DOMINATORS);
FOR_EACH_BB_FN (bb, fun)
{
gimple_stmt_iterator gsi;
/* We do a reverse scan for bswap patterns to make sure we get the
widest match. As bswap pattern matching doesn't handle previously
inserted smaller bswap replacements as sub-patterns, the wider
variant wouldn't be detected. */
for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
{
gimple *ins_stmt, *cur_stmt = gsi_stmt (gsi);
tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
enum tree_code code;
struct symbolic_number n;
bool bswap;
/* This gsi_prev (&gsi) is not part of the for loop because cur_stmt
might be moved to a different basic block by bswap_replace and gsi
must not points to it if that's the case. Moving the gsi_prev
there make sure that gsi points to the statement previous to
cur_stmt while still making sure that all statements are
considered in this basic block. */
gsi_prev (&gsi);
if (!is_gimple_assign (cur_stmt))
continue;
code = gimple_assign_rhs_code (cur_stmt);
switch (code)
{
case LROTATE_EXPR:
case RROTATE_EXPR:
if (!tree_fits_uhwi_p (gimple_assign_rhs2 (cur_stmt))
|| tree_to_uhwi (gimple_assign_rhs2 (cur_stmt))
% BITS_PER_UNIT)
continue;
/* Fall through. */
case BIT_IOR_EXPR:
break;
default:
continue;
}
ins_stmt = find_bswap_or_nop (cur_stmt, &n, &bswap);
if (!ins_stmt)
continue;
switch (n.range)
{
case 16:
/* Already in canonical form, nothing to do. */
if (code == LROTATE_EXPR || code == RROTATE_EXPR)
continue;
load_type = bswap_type = uint16_type_node;
break;
case 32:
load_type = uint32_type_node;
if (bswap32_p)
{
fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
bswap_type = bswap32_type;
}
break;
case 64:
load_type = uint64_type_node;
if (bswap64_p)
{
fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
bswap_type = bswap64_type;
}
break;
default:
continue;
}
if (bswap && !fndecl && n.range != 16)
continue;
if (bswap_replace (gsi_for_stmt (cur_stmt), ins_stmt, fndecl,
bswap_type, load_type, &n, bswap))
changed = true;
}
}
statistics_counter_event (fun, "16-bit nop implementations found",
nop_stats.found_16bit);
statistics_counter_event (fun, "32-bit nop implementations found",
nop_stats.found_32bit);
statistics_counter_event (fun, "64-bit nop implementations found",
nop_stats.found_64bit);
statistics_counter_event (fun, "16-bit bswap implementations found",
bswap_stats.found_16bit);
statistics_counter_event (fun, "32-bit bswap implementations found",
bswap_stats.found_32bit);
statistics_counter_event (fun, "64-bit bswap implementations found",
bswap_stats.found_64bit);
return (changed ? TODO_update_ssa : 0);
}
} // anon namespace
gimple_opt_pass *
make_pass_optimize_bswap (gcc::context *ctxt)
{
return new pass_optimize_bswap (ctxt);
}
namespace {
/* Struct recording one operand for the store, which is either a constant,
then VAL represents the constant and all the other fields are zero, or
a memory load, then VAL represents the reference, BASE_ADDR is non-NULL
and the other fields also reflect the memory load, or an SSA name, then
VAL represents the SSA name and all the other fields are zero, */
struct store_operand_info
{
tree val;
tree base_addr;
poly_uint64 bitsize;
poly_uint64 bitpos;
poly_uint64 bitregion_start;
poly_uint64 bitregion_end;
gimple *stmt;
bool bit_not_p;
store_operand_info ();
};
store_operand_info::store_operand_info ()
: val (NULL_TREE), base_addr (NULL_TREE), bitsize (0), bitpos (0),
bitregion_start (0), bitregion_end (0), stmt (NULL), bit_not_p (false)
{
}
/* Struct recording the information about a single store of an immediate
to memory. These are created in the first phase and coalesced into
merged_store_group objects in the second phase. */
struct store_immediate_info
{
unsigned HOST_WIDE_INT bitsize;
unsigned HOST_WIDE_INT bitpos;
unsigned HOST_WIDE_INT bitregion_start;
/* This is one past the last bit of the bit region. */
unsigned HOST_WIDE_INT bitregion_end;
gimple *stmt;
unsigned int order;
/* INTEGER_CST for constant stores, MEM_REF for memory copy,
BIT_*_EXPR for logical bitwise operation, BIT_INSERT_EXPR
for bit insertion.
LROTATE_EXPR if it can be only bswap optimized and
ops are not really meaningful.
NOP_EXPR if bswap optimization detected identity, ops
are not meaningful. */
enum tree_code rhs_code;
/* Two fields for bswap optimization purposes. */
struct symbolic_number n;
gimple *ins_stmt;
/* True if BIT_{AND,IOR,XOR}_EXPR result is inverted before storing. */
bool bit_not_p;
/* True if ops have been swapped and thus ops[1] represents
rhs1 of BIT_{AND,IOR,XOR}_EXPR and ops[0] represents rhs2. */
bool ops_swapped_p;
/* Operands. For BIT_*_EXPR rhs_code both operands are used, otherwise
just the first one. */
store_operand_info ops[2];
store_immediate_info (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
gimple *, unsigned int, enum tree_code,
struct symbolic_number &, gimple *, bool,
const store_operand_info &,
const store_operand_info &);
};
store_immediate_info::store_immediate_info (unsigned HOST_WIDE_INT bs,
unsigned HOST_WIDE_INT bp,
unsigned HOST_WIDE_INT brs,
unsigned HOST_WIDE_INT bre,
gimple *st,
unsigned int ord,
enum tree_code rhscode,
struct symbolic_number &nr,
gimple *ins_stmtp,
bool bitnotp,
const store_operand_info &op0r,
const store_operand_info &op1r)
: bitsize (bs), bitpos (bp), bitregion_start (brs), bitregion_end (bre),
stmt (st), order (ord), rhs_code (rhscode), n (nr),
ins_stmt (ins_stmtp), bit_not_p (bitnotp), ops_swapped_p (false)
#if __cplusplus >= 201103L
, ops { op0r, op1r }
{
}
#else
{
ops[0] = op0r;
ops[1] = op1r;
}
#endif
/* Struct representing a group of stores to contiguous memory locations.
These are produced by the second phase (coalescing) and consumed in the
third phase that outputs the widened stores. */
struct merged_store_group
{
unsigned HOST_WIDE_INT start;
unsigned HOST_WIDE_INT width;
unsigned HOST_WIDE_INT bitregion_start;
unsigned HOST_WIDE_INT bitregion_end;
/* The size of the allocated memory for val and mask. */
unsigned HOST_WIDE_INT buf_size;
unsigned HOST_WIDE_INT align_base;
poly_uint64 load_align_base[2];
unsigned int align;
unsigned int load_align[2];
unsigned int first_order;
unsigned int last_order;
bool bit_insertion;
auto_vec<store_immediate_info *> stores;
/* We record the first and last original statements in the sequence because
we'll need their vuse/vdef and replacement position. It's easier to keep
track of them separately as 'stores' is reordered by apply_stores. */
gimple *last_stmt;
gimple *first_stmt;
unsigned char *val;
unsigned char *mask;
merged_store_group (store_immediate_info *);
~merged_store_group ();
bool can_be_merged_into (store_immediate_info *);
void merge_into (store_immediate_info *);
void merge_overlapping (store_immediate_info *);
bool apply_stores ();
private:
void do_merge (store_immediate_info *);
};
/* Debug helper. Dump LEN elements of byte array PTR to FD in hex. */
static void
dump_char_array (FILE *fd, unsigned char *ptr, unsigned int len)
{
if (!fd)
return;
for (unsigned int i = 0; i < len; i++)
fprintf (fd, "%02x ", ptr[i]);
fprintf (fd, "\n");
}
/* Shift left the bytes in PTR of SZ elements by AMNT bits, carrying over the
bits between adjacent elements. AMNT should be within
[0, BITS_PER_UNIT).
Example, AMNT = 2:
00011111|11100000 << 2 = 01111111|10000000
PTR[1] | PTR[0] PTR[1] | PTR[0]. */
static void
shift_bytes_in_array (unsigned char *ptr, unsigned int sz, unsigned int amnt)
{
if (amnt == 0)
return;
unsigned char carry_over = 0U;
unsigned char carry_mask = (~0U) << (unsigned char) (BITS_PER_UNIT - amnt);
unsigned char clear_mask = (~0U) << amnt;
for (unsigned int i = 0; i < sz; i++)
{
unsigned prev_carry_over = carry_over;
carry_over = (ptr[i] & carry_mask) >> (BITS_PER_UNIT - amnt);
ptr[i] <<= amnt;
if (i != 0)
{
ptr[i] &= clear_mask;
ptr[i] |= prev_carry_over;
}
}
}
/* Like shift_bytes_in_array but for big-endian.
Shift right the bytes in PTR of SZ elements by AMNT bits, carrying over the
bits between adjacent elements. AMNT should be within
[0, BITS_PER_UNIT).
Example, AMNT = 2:
00011111|11100000 >> 2 = 00000111|11111000
PTR[0] | PTR[1] PTR[0] | PTR[1]. */
static void
shift_bytes_in_array_right (unsigned char *ptr, unsigned int sz,
unsigned int amnt)
{
if (amnt == 0)
return;
unsigned char carry_over = 0U;
unsigned char carry_mask = ~(~0U << amnt);
for (unsigned int i = 0; i < sz; i++)
{
unsigned prev_carry_over = carry_over;
carry_over = ptr[i] & carry_mask;
carry_over <<= (unsigned char) BITS_PER_UNIT - amnt;
ptr[i] >>= amnt;
ptr[i] |= prev_carry_over;
}
}
/* Clear out LEN bits starting from bit START in the byte array
PTR. This clears the bits to the *right* from START.
START must be within [0, BITS_PER_UNIT) and counts starting from
the least significant bit. */
static void
clear_bit_region_be (unsigned char *ptr, unsigned int start,
unsigned int len)
{
if (len == 0)
return;
/* Clear len bits to the right of start. */
else if (len <= start + 1)
{
unsigned char mask = (~(~0U << len));
mask = mask << (start + 1U - len);
ptr[0] &= ~mask;
}
else if (start != BITS_PER_UNIT - 1)
{
clear_bit_region_be (ptr, start, (start % BITS_PER_UNIT) + 1);
clear_bit_region_be (ptr + 1, BITS_PER_UNIT - 1,
len - (start % BITS_PER_UNIT) - 1);
}
else if (start == BITS_PER_UNIT - 1
&& len > BITS_PER_UNIT)
{
unsigned int nbytes = len / BITS_PER_UNIT;
memset (ptr, 0, nbytes);
if (len % BITS_PER_UNIT != 0)
clear_bit_region_be (ptr + nbytes, BITS_PER_UNIT - 1,
len % BITS_PER_UNIT);
}
else
gcc_unreachable ();
}
/* In the byte array PTR clear the bit region starting at bit
START and is LEN bits wide.
For regions spanning multiple bytes do this recursively until we reach
zero LEN or a region contained within a single byte. */
static void
clear_bit_region (unsigned char *ptr, unsigned int start,
unsigned int len)
{
/* Degenerate base case. */
if (len == 0)
return;
else if (start >= BITS_PER_UNIT)
clear_bit_region (ptr + 1, start - BITS_PER_UNIT, len);
/* Second base case. */
else if ((start + len) <= BITS_PER_UNIT)
{
unsigned char mask = (~0U) << (unsigned char) (BITS_PER_UNIT - len);
mask >>= BITS_PER_UNIT - (start + len);
ptr[0] &= ~mask;
return;
}
/* Clear most significant bits in a byte and proceed with the next byte. */
else if (start != 0)
{
clear_bit_region (ptr, start, BITS_PER_UNIT - start);
clear_bit_region (ptr + 1, 0, len - (BITS_PER_UNIT - start));
}
/* Whole bytes need to be cleared. */
else if (start == 0 && len > BITS_PER_UNIT)
{
unsigned int nbytes = len / BITS_PER_UNIT;
/* We could recurse on each byte but we clear whole bytes, so a simple
memset will do. */
memset (ptr, '\0', nbytes);
/* Clear the remaining sub-byte region if there is one. */
if (len % BITS_PER_UNIT != 0)
clear_bit_region (ptr + nbytes, 0, len % BITS_PER_UNIT);
}
else
gcc_unreachable ();
}
/* Write BITLEN bits of EXPR to the byte array PTR at
bit position BITPOS. PTR should contain TOTAL_BYTES elements.
Return true if the operation succeeded. */
static bool
encode_tree_to_bitpos (tree expr, unsigned char *ptr, int bitlen, int bitpos,
unsigned int total_bytes)
{
unsigned int first_byte = bitpos / BITS_PER_UNIT;
tree tmp_int = expr;
bool sub_byte_op_p = ((bitlen % BITS_PER_UNIT)
|| (bitpos % BITS_PER_UNIT)
|| !int_mode_for_size (bitlen, 0).exists ());
if (!sub_byte_op_p)
return native_encode_expr (tmp_int, ptr + first_byte, total_bytes) != 0;
/* LITTLE-ENDIAN
We are writing a non byte-sized quantity or at a position that is not
at a byte boundary.
|--------|--------|--------| ptr + first_byte
^ ^
xxx xxxxxxxx xxx< bp>
|______EXPR____|
First native_encode_expr EXPR into a temporary buffer and shift each
byte in the buffer by 'bp' (carrying the bits over as necessary).
|00000000|00xxxxxx|xxxxxxxx| << bp = |000xxxxx|xxxxxxxx|xxx00000|
<------bitlen---->< bp>
Then we clear the destination bits:
|---00000|00000000|000-----| ptr + first_byte
<-------bitlen--->< bp>
Finally we ORR the bytes of the shifted EXPR into the cleared region:
|---xxxxx||xxxxxxxx||xxx-----| ptr + first_byte.
BIG-ENDIAN
We are writing a non byte-sized quantity or at a position that is not
at a byte boundary.
ptr + first_byte |--------|--------|--------|
^ ^
<bp >xxx xxxxxxxx xxx
|_____EXPR_____|
First native_encode_expr EXPR into a temporary buffer and shift each
byte in the buffer to the right by (carrying the bits over as necessary).
We shift by as much as needed to align the most significant bit of EXPR
with bitpos:
|00xxxxxx|xxxxxxxx| >> 3 = |00000xxx|xxxxxxxx|xxxxx000|
<---bitlen----> <bp ><-----bitlen----->
Then we clear the destination bits:
ptr + first_byte |-----000||00000000||00000---|
<bp ><-------bitlen----->
Finally we ORR the bytes of the shifted EXPR into the cleared region:
ptr + first_byte |---xxxxx||xxxxxxxx||xxx-----|.
The awkwardness comes from the fact that bitpos is counted from the
most significant bit of a byte. */
/* We must be dealing with fixed-size data at this point, since the
total size is also fixed. */
fixed_size_mode mode = as_a <fixed_size_mode> (TYPE_MODE (TREE_TYPE (expr)));
/* Allocate an extra byte so that we have space to shift into. */
unsigned int byte_size = GET_MODE_SIZE (mode) + 1;
unsigned char *tmpbuf = XALLOCAVEC (unsigned char, byte_size);
memset (tmpbuf, '\0', byte_size);
/* The store detection code should only have allowed constants that are
accepted by native_encode_expr. */
if (native_encode_expr (expr, tmpbuf, byte_size - 1) == 0)
gcc_unreachable ();
/* The native_encode_expr machinery uses TYPE_MODE to determine how many
bytes to write. This means it can write more than
ROUND_UP (bitlen, BITS_PER_UNIT) / BITS_PER_UNIT bytes (for example
write 8 bytes for a bitlen of 40). Skip the bytes that are not within
bitlen and zero out the bits that are not relevant as well (that may
contain a sign bit due to sign-extension). */
unsigned int padding
= byte_size - ROUND_UP (bitlen, BITS_PER_UNIT) / BITS_PER_UNIT - 1;
/* On big-endian the padding is at the 'front' so just skip the initial
bytes. */
if (BYTES_BIG_ENDIAN)
tmpbuf += padding;
byte_size -= padding;
if (bitlen % BITS_PER_UNIT != 0)
{
if (BYTES_BIG_ENDIAN)
clear_bit_region_be (tmpbuf, BITS_PER_UNIT - 1,
BITS_PER_UNIT - (bitlen % BITS_PER_UNIT));
else
clear_bit_region (tmpbuf, bitlen,
byte_size * BITS_PER_UNIT - bitlen);
}
/* Left shifting relies on the last byte being clear if bitlen is
a multiple of BITS_PER_UNIT, which might not be clear if
there are padding bytes. */
else if (!BYTES_BIG_ENDIAN)
tmpbuf[byte_size - 1] = '\0';
/* Clear the bit region in PTR where the bits from TMPBUF will be
inserted into. */
if (BYTES_BIG_ENDIAN)
clear_bit_region_be (ptr + first_byte,
BITS_PER_UNIT - 1 - (bitpos % BITS_PER_UNIT), bitlen);
else
clear_bit_region (ptr + first_byte, bitpos % BITS_PER_UNIT, bitlen);
int shift_amnt;
int bitlen_mod = bitlen % BITS_PER_UNIT;
int bitpos_mod = bitpos % BITS_PER_UNIT;
bool skip_byte = false;
if (BYTES_BIG_ENDIAN)
{
/* BITPOS and BITLEN are exactly aligned and no shifting
is necessary. */
if (bitpos_mod + bitlen_mod == BITS_PER_UNIT
|| (bitpos_mod == 0 && bitlen_mod == 0))
shift_amnt = 0;
/* |. . . . . . . .|
<bp > <blen >.
We always shift right for BYTES_BIG_ENDIAN so shift the beginning
of the value until it aligns with 'bp' in the next byte over. */
else if (bitpos_mod + bitlen_mod < BITS_PER_UNIT)
{
shift_amnt = bitlen_mod + bitpos_mod;
skip_byte = bitlen_mod != 0;
}
/* |. . . . . . . .|
<----bp--->
<---blen---->.
Shift the value right within the same byte so it aligns with 'bp'. */
else
shift_amnt = bitlen_mod + bitpos_mod - BITS_PER_UNIT;
}
else
shift_amnt = bitpos % BITS_PER_UNIT;
/* Create the shifted version of EXPR. */
if (!BYTES_BIG_ENDIAN)
{
shift_bytes_in_array (tmpbuf, byte_size, shift_amnt);
if (shift_amnt == 0)
byte_size--;
}
else
{
gcc_assert (BYTES_BIG_ENDIAN);
shift_bytes_in_array_right (tmpbuf, byte_size, shift_amnt);
/* If shifting right forced us to move into the next byte skip the now
empty byte. */
if (skip_byte)
{
tmpbuf++;
byte_size--;
}
}
/* Insert the bits from TMPBUF. */
for (unsigned int i = 0; i < byte_size; i++)
ptr[first_byte + i] |= tmpbuf[i];
return true;
}
/* Sorting function for store_immediate_info objects.
Sorts them by bitposition. */
static int
sort_by_bitpos (const void *x, const void *y)
{
store_immediate_info *const *tmp = (store_immediate_info * const *) x;
store_immediate_info *const *tmp2 = (store_immediate_info * const *) y;
if ((*tmp)->bitpos < (*tmp2)->bitpos)
return -1;
else if ((*tmp)->bitpos > (*tmp2)->bitpos)
return 1;
else
/* If they are the same let's use the order which is guaranteed to
be different. */
return (*tmp)->order - (*tmp2)->order;
}
/* Sorting function for store_immediate_info objects.
Sorts them by the order field. */
static int
sort_by_order (const void *x, const void *y)
{
store_immediate_info *const *tmp = (store_immediate_info * const *) x;
store_immediate_info *const *tmp2 = (store_immediate_info * const *) y;
if ((*tmp)->order < (*tmp2)->order)
return -1;
else if ((*tmp)->order > (*tmp2)->order)
return 1;
gcc_unreachable ();
}
/* Initialize a merged_store_group object from a store_immediate_info
object. */
merged_store_group::merged_store_group (store_immediate_info *info)
{
start = info->bitpos;
width = info->bitsize;
bitregion_start = info->bitregion_start;
bitregion_end = info->bitregion_end;
/* VAL has memory allocated for it in apply_stores once the group
width has been finalized. */
val = NULL;
mask = NULL;
bit_insertion = false;
unsigned HOST_WIDE_INT align_bitpos = 0;
get_object_alignment_1 (gimple_assign_lhs (info->stmt),
&align, &align_bitpos);
align_base = start - align_bitpos;
for (int i = 0; i < 2; ++i)
{
store_operand_info &op = info->ops[i];
if (op.base_addr == NULL_TREE)
{
load_align[i] = 0;
load_align_base[i] = 0;
}
else
{
get_object_alignment_1 (op.val, &load_align[i], &align_bitpos);
load_align_base[i] = op.bitpos - align_bitpos;
}
}
stores.create (1);
stores.safe_push (info);
last_stmt = info->stmt;
last_order = info->order;
first_stmt = last_stmt;
first_order = last_order;
buf_size = 0;
}
merged_store_group::~merged_store_group ()
{
if (val)
XDELETEVEC (val);
}
/* Return true if the store described by INFO can be merged into the group. */
bool
merged_store_group::can_be_merged_into (store_immediate_info *info)
{
/* Do not merge bswap patterns. */
if (info->rhs_code == LROTATE_EXPR)
return false;
/* The canonical case. */
if (info->rhs_code == stores[0]->rhs_code)
return true;
/* BIT_INSERT_EXPR is compatible with INTEGER_CST. */
if (info->rhs_code == BIT_INSERT_EXPR && stores[0]->rhs_code == INTEGER_CST)
return true;
if (stores[0]->rhs_code == BIT_INSERT_EXPR && info->rhs_code == INTEGER_CST)
return true;
/* We can turn MEM_REF into BIT_INSERT_EXPR for bit-field stores. */
if (info->rhs_code == MEM_REF
&& (stores[0]->rhs_code == INTEGER_CST
|| stores[0]->rhs_code == BIT_INSERT_EXPR)
&& info->bitregion_start == stores[0]->bitregion_start
&& info->bitregion_end == stores[0]->bitregion_end)
return true;
if (stores[0]->rhs_code == MEM_REF
&& (info->rhs_code == INTEGER_CST
|| info->rhs_code == BIT_INSERT_EXPR)
&& info->bitregion_start == stores[0]->bitregion_start
&& info->bitregion_end == stores[0]->bitregion_end)
return true;
return false;
}
/* Helper method for merge_into and merge_overlapping to do
the common part. */
void
merged_store_group::do_merge (store_immediate_info *info)
{
bitregion_start = MIN (bitregion_start, info->bitregion_start);
bitregion_end = MAX (bitregion_end, info->bitregion_end);
unsigned int this_align;
unsigned HOST_WIDE_INT align_bitpos = 0;
get_object_alignment_1 (gimple_assign_lhs (info->stmt),
&this_align, &align_bitpos);
if (this_align > align)
{
align = this_align;
align_base = info->bitpos - align_bitpos;
}
for (int i = 0; i < 2; ++i)
{
store_operand_info &op = info->ops[i];
if (!op.base_addr)
continue;
get_object_alignment_1 (op.val, &this_align, &align_bitpos);
if (this_align > load_align[i])
{
load_align[i] = this_align;
load_align_base[i] = op.bitpos - align_bitpos;
}
}
gimple *stmt = info->stmt;
stores.safe_push (info);
if (info->order > last_order)
{
last_order = info->order;
last_stmt = stmt;
}
else if (info->order < first_order)
{
first_order = info->order;
first_stmt = stmt;
}
}
/* Merge a store recorded by INFO into this merged store.
The store is not overlapping with the existing recorded
stores. */
void
merged_store_group::merge_into (store_immediate_info *info)
{
/* Make sure we're inserting in the position we think we're inserting. */
gcc_assert (info->bitpos >= start + width
&& info->bitregion_start <= bitregion_end);
width = info->bitpos + info->bitsize - start;
do_merge (info);
}
/* Merge a store described by INFO into this merged store.
INFO overlaps in some way with the current store (i.e. it's not contiguous
which is handled by merged_store_group::merge_into). */
void
merged_store_group::merge_overlapping (store_immediate_info *info)
{
/* If the store extends the size of the group, extend the width. */
if (info->bitpos + info->bitsize > start + width)
width = info->bitpos + info->bitsize - start;
do_merge (info);
}
/* Go through all the recorded stores in this group in program order and
apply their values to the VAL byte array to create the final merged
value. Return true if the operation succeeded. */
bool
merged_store_group::apply_stores ()
{
/* Make sure we have more than one store in the group, otherwise we cannot
merge anything. */
if (bitregion_start % BITS_PER_UNIT != 0
|| bitregion_end % BITS_PER_UNIT != 0
|| stores.length () == 1)
return false;
stores.qsort (sort_by_order);
store_immediate_info *info;
unsigned int i;
/* Create a power-of-2-sized buffer for native_encode_expr. */
buf_size = 1 << ceil_log2 ((bitregion_end - bitregion_start) / BITS_PER_UNIT);
val = XNEWVEC (unsigned char, 2 * buf_size);
mask = val + buf_size;
memset (val, 0, buf_size);
memset (mask, ~0U, buf_size);
FOR_EACH_VEC_ELT (stores, i, info)
{
unsigned int pos_in_buffer = info->bitpos - bitregion_start;
tree cst;
if (info->ops[0].val && info->ops[0].base_addr == NULL_TREE)
cst = info->ops[0].val;
else if (info->ops[1].val && info->ops[1].base_addr == NULL_TREE)
cst = info->ops[1].val;
else
cst = NULL_TREE;
bool ret = true;
if (cst)
{
if (info->rhs_code == BIT_INSERT_EXPR)
bit_insertion = true;
else
ret = encode_tree_to_bitpos (cst, val, info->bitsize,
pos_in_buffer, buf_size);
}
unsigned char *m = mask + (pos_in_buffer / BITS_PER_UNIT);
if (BYTES_BIG_ENDIAN)
clear_bit_region_be (m, (BITS_PER_UNIT - 1
- (pos_in_buffer % BITS_PER_UNIT)),
info->bitsize);
else
clear_bit_region (m, pos_in_buffer % BITS_PER_UNIT, info->bitsize);
if (cst && dump_file && (dump_flags & TDF_DETAILS))
{
if (ret)
{
fputs ("After writing ", dump_file);
print_generic_expr (dump_file, cst, TDF_NONE);
fprintf (dump_file, " of size " HOST_WIDE_INT_PRINT_DEC
" at position %d\n", info->bitsize, pos_in_buffer);
fputs (" the merged value contains ", dump_file);
dump_char_array (dump_file, val, buf_size);
fputs (" the merged mask contains ", dump_file);
dump_char_array (dump_file, mask, buf_size);
if (bit_insertion)
fputs (" bit insertion is required\n", dump_file);
}
else
fprintf (dump_file, "Failed to merge stores\n");
}
if (!ret)
return false;
}
stores.qsort (sort_by_bitpos);
return true;
}
/* Structure describing the store chain. */
struct imm_store_chain_info
{
/* Doubly-linked list that imposes an order on chain processing.
PNXP (prev's next pointer) points to the head of a list, or to
the next field in the previous chain in the list.
See pass_store_merging::m_stores_head for more rationale. */
imm_store_chain_info *next, **pnxp;
tree base_addr;
auto_vec<store_immediate_info *> m_store_info;
auto_vec<merged_store_group *> m_merged_store_groups;
imm_store_chain_info (imm_store_chain_info *&inspt, tree b_a)
: next (inspt), pnxp (&inspt), base_addr (b_a)
{
inspt = this;
if (next)
{
gcc_checking_assert (pnxp == next->pnxp);
next->pnxp = &next;
}
}
~imm_store_chain_info ()
{
*pnxp = next;
if (next)
{
gcc_checking_assert (&next == next->pnxp);
next->pnxp = pnxp;
}
}
bool terminate_and_process_chain ();
bool try_coalesce_bswap (merged_store_group *, unsigned int, unsigned int);
bool coalesce_immediate_stores ();
bool output_merged_store (merged_store_group *);
bool output_merged_stores ();
};
const pass_data pass_data_tree_store_merging = {
GIMPLE_PASS, /* type */
"store-merging", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_GIMPLE_STORE_MERGING, /* tv_id */
PROP_ssa, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_update_ssa, /* todo_flags_finish */
};
class pass_store_merging : public gimple_opt_pass
{
public:
pass_store_merging (gcc::context *ctxt)
: gimple_opt_pass (pass_data_tree_store_merging, ctxt), m_stores_head ()
{
}
/* Pass not supported for PDP-endian, nor for insane hosts or
target character sizes where native_{encode,interpret}_expr
doesn't work properly. */
virtual bool
gate (function *)
{
return flag_store_merging
&& BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
&& CHAR_BIT == 8
&& BITS_PER_UNIT == 8;
}
virtual unsigned int execute (function *);
private:
hash_map<tree_operand_hash, struct imm_store_chain_info *> m_stores;
/* Form a doubly-linked stack of the elements of m_stores, so that
we can iterate over them in a predictable way. Using this order
avoids extraneous differences in the compiler output just because
of tree pointer variations (e.g. different chains end up in
different positions of m_stores, so they are handled in different
orders, so they allocate or release SSA names in different
orders, and when they get reused, subsequent passes end up
getting different SSA names, which may ultimately change
decisions when going out of SSA). */
imm_store_chain_info *m_stores_head;
void process_store (gimple *);
bool terminate_and_process_all_chains ();
bool terminate_all_aliasing_chains (imm_store_chain_info **, gimple *);
bool terminate_and_release_chain (imm_store_chain_info *);
}; // class pass_store_merging
/* Terminate and process all recorded chains. Return true if any changes
were made. */
bool
pass_store_merging::terminate_and_process_all_chains ()
{
bool ret = false;
while (m_stores_head)
ret |= terminate_and_release_chain (m_stores_head);
gcc_assert (m_stores.elements () == 0);
gcc_assert (m_stores_head == NULL);
return ret;
}
/* Terminate all chains that are affected by the statement STMT.
CHAIN_INFO is the chain we should ignore from the checks if
non-NULL. */
bool
pass_store_merging::terminate_all_aliasing_chains (imm_store_chain_info
**chain_info,
gimple *stmt)
{
bool ret = false;
/* If the statement doesn't touch memory it can't alias. */
if (!gimple_vuse (stmt))
return false;
tree store_lhs = gimple_store_p (stmt) ? gimple_get_lhs (stmt) : NULL_TREE;
for (imm_store_chain_info *next = m_stores_head, *cur = next; cur; cur = next)
{
next = cur->next;
/* We already checked all the stores in chain_info and terminated the
chain if necessary. Skip it here. */
if (chain_info && *chain_info == cur)
continue;
store_immediate_info *info;
unsigned int i;
FOR_EACH_VEC_ELT (cur->m_store_info, i, info)
{
tree lhs = gimple_assign_lhs (info->stmt);
if (ref_maybe_used_by_stmt_p (stmt, lhs)
|| stmt_may_clobber_ref_p (stmt, lhs)
|| (store_lhs && refs_output_dependent_p (store_lhs, lhs)))
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "stmt causes chain termination:\n");
print_gimple_stmt (dump_file, stmt, 0);
}
terminate_and_release_chain (cur);
ret = true;
break;
}
}
}
return ret;
}
/* Helper function. Terminate the recorded chain storing to base object
BASE. Return true if the merging and output was successful. The m_stores
entry is removed after the processing in any case. */
bool
pass_store_merging::terminate_and_release_chain (imm_store_chain_info *chain_info)
{
bool ret = chain_info->terminate_and_process_chain ();
m_stores.remove (chain_info->base_addr);
delete chain_info;
return ret;
}
/* Return true if stmts in between FIRST (inclusive) and LAST (exclusive)
may clobber REF. FIRST and LAST must be in the same basic block and
have non-NULL vdef. We want to be able to sink load of REF across
stores between FIRST and LAST, up to right before LAST. */
bool
stmts_may_clobber_ref_p (gimple *first, gimple *last, tree ref)
{
ao_ref r;
ao_ref_init (&r, ref);
unsigned int count = 0;
tree vop = gimple_vdef (last);
gimple *stmt;
gcc_checking_assert (gimple_bb (first) == gimple_bb (last));
do
{
stmt = SSA_NAME_DEF_STMT (vop);
if (stmt_may_clobber_ref_p_1 (stmt, &r))
return true;
if (gimple_store_p (stmt)
&& refs_anti_dependent_p (ref, gimple_get_lhs (stmt)))
return true;
/* Avoid quadratic compile time by bounding the number of checks
we perform. */
if (++count > MAX_STORE_ALIAS_CHECKS)
return true;
vop = gimple_vuse (stmt);
}
while (stmt != first);
return false;
}
/* Return true if INFO->ops[IDX] is mergeable with the
corresponding loads already in MERGED_STORE group.
BASE_ADDR is the base address of the whole store group. */
bool
compatible_load_p (merged_store_group *merged_store,
store_immediate_info *info,
tree base_addr, int idx)
{
store_immediate_info *infof = merged_store->stores[0];
if (!info->ops[idx].base_addr
|| maybe_ne (info->ops[idx].bitpos - infof->ops[idx].bitpos,
info->bitpos - infof->bitpos)
|| !operand_equal_p (info->ops[idx].base_addr,
infof->ops[idx].base_addr, 0))
return false;
store_immediate_info *infol = merged_store->stores.last ();
tree load_vuse = gimple_vuse (info->ops[idx].stmt);
/* In this case all vuses should be the same, e.g.
_1 = s.a; _2 = s.b; _3 = _1 | 1; t.a = _3; _4 = _2 | 2; t.b = _4;
or
_1 = s.a; _2 = s.b; t.a = _1; t.b = _2;
and we can emit the coalesced load next to any of those loads. */
if (gimple_vuse (infof->ops[idx].stmt) == load_vuse
&& gimple_vuse (infol->ops[idx].stmt) == load_vuse)
return true;
/* Otherwise, at least for now require that the load has the same
vuse as the store. See following examples. */
if (gimple_vuse (info->stmt) != load_vuse)
return false;
if (gimple_vuse (infof->stmt) != gimple_vuse (infof->ops[idx].stmt)
|| (infof != infol
&& gimple_vuse (infol->stmt) != gimple_vuse (infol->ops[idx].stmt)))
return false;
/* If the load is from the same location as the store, already
the construction of the immediate chain info guarantees no intervening
stores, so no further checks are needed. Example:
_1 = s.a; _2 = _1 & -7; s.a = _2; _3 = s.b; _4 = _3 & -7; s.b = _4; */
if (known_eq (info->ops[idx].bitpos, info->bitpos)
&& operand_equal_p (info->ops[idx].base_addr, base_addr, 0))
return true;
/* Otherwise, we need to punt if any of the loads can be clobbered by any
of the stores in the group, or any other stores in between those.
Previous calls to compatible_load_p ensured that for all the
merged_store->stores IDX loads, no stmts starting with
merged_store->first_stmt and ending right before merged_store->last_stmt
clobbers those loads. */
gimple *first = merged_store->first_stmt;
gimple *last = merged_store->last_stmt;
unsigned int i;
store_immediate_info *infoc;
/* The stores are sorted by increasing store bitpos, so if info->stmt store
comes before the so far first load, we'll be changing
merged_store->first_stmt. In that case we need to give up if
any of the earlier processed loads clobber with the stmts in the new
range. */
if (info->order < merged_store->first_order)
{
FOR_EACH_VEC_ELT (merged_store->stores, i, infoc)
if (stmts_may_clobber_ref_p (info->stmt, first, infoc->ops[idx].val))
return false;
first = info->stmt;
}
/* Similarly, we could change merged_store->last_stmt, so ensure
in that case no stmts in the new range clobber any of the earlier
processed loads. */
else if (info->order > merged_store->last_order)
{
FOR_EACH_VEC_ELT (merged_store->stores, i, infoc)
if (stmts_may_clobber_ref_p (last, info->stmt, infoc->ops[idx].val))
return false;
last = info->stmt;
}
/* And finally, we'd be adding a new load to the set, ensure it isn't
clobbered in the new range. */
if (stmts_may_clobber_ref_p (first, last, info->ops[idx].val))
return false;
/* Otherwise, we are looking for:
_1 = s.a; _2 = _1 ^ 15; t.a = _2; _3 = s.b; _4 = _3 ^ 15; t.b = _4;
or
_1 = s.a; t.a = _1; _2 = s.b; t.b = _2; */
return true;
}
/* Add all refs loaded to compute VAL to REFS vector. */
void
gather_bswap_load_refs (vec<tree> *refs, tree val)
{
if (TREE_CODE (val) != SSA_NAME)
return;
gimple *stmt = SSA_NAME_DEF_STMT (val);
if (!is_gimple_assign (stmt))
return;
if (gimple_assign_load_p (stmt))
{
refs->safe_push (gimple_assign_rhs1 (stmt));
return;
}
switch (gimple_assign_rhs_class (stmt))
{
case GIMPLE_BINARY_RHS:
gather_bswap_load_refs (refs, gimple_assign_rhs2 (stmt));
/* FALLTHRU */
case GIMPLE_UNARY_RHS:
gather_bswap_load_refs (refs, gimple_assign_rhs1 (stmt));
break;
default:
gcc_unreachable ();
}
}
/* Check if there are any stores in M_STORE_INFO after index I
(where M_STORE_INFO must be sorted by sort_by_bitpos) that overlap
a potential group ending with END that have their order
smaller than LAST_ORDER. RHS_CODE is the kind of store in the
group. Return true if there are no such stores.
Consider:
MEM[(long long int *)p_28] = 0;
MEM[(long long int *)p_28 + 8B] = 0;
MEM[(long long int *)p_28 + 16B] = 0;
MEM[(long long int *)p_28 + 24B] = 0;
_129 = (int) _130;
MEM[(int *)p_28 + 8B] = _129;
MEM[(int *)p_28].a = -1;
We already have
MEM[(long long int *)p_28] = 0;
MEM[(int *)p_28].a = -1;
stmts in the current group and need to consider if it is safe to
add MEM[(long long int *)p_28 + 8B] = 0; store into the same group.
There is an overlap between that store and the MEM[(int *)p_28 + 8B] = _129;
store though, so if we add the MEM[(long long int *)p_28 + 8B] = 0;
into the group and merging of those 3 stores is successful, merged
stmts will be emitted at the latest store from that group, i.e.
LAST_ORDER, which is the MEM[(int *)p_28].a = -1; store.
The MEM[(int *)p_28 + 8B] = _129; store that originally follows
the MEM[(long long int *)p_28 + 8B] = 0; would now be before it,
so we need to refuse merging MEM[(long long int *)p_28 + 8B] = 0;
into the group. That way it will be its own store group and will
not be touched. If RHS_CODE is INTEGER_CST and there are overlapping
INTEGER_CST stores, those are mergeable using merge_overlapping,
so don't return false for those. */
static bool
check_no_overlap (vec<store_immediate_info *> m_store_info, unsigned int i,
enum tree_code rhs_code, unsigned int last_order,
unsigned HOST_WIDE_INT end)
{
unsigned int len = m_store_info.length ();
for (++i; i < len; ++i)
{
store_immediate_info *info = m_store_info[i];
if (info->bitpos >= end)
break;
if (info->order < last_order
&& (rhs_code != INTEGER_CST || info->rhs_code != INTEGER_CST))
return false;
}
return true;
}
/* Return true if m_store_info[first] and at least one following store
form a group which store try_size bitsize value which is byte swapped
from a memory load or some value, or identity from some value.
This uses the bswap pass APIs. */
bool
imm_store_chain_info::try_coalesce_bswap (merged_store_group *merged_store,
unsigned int first,
unsigned int try_size)
{
unsigned int len = m_store_info.length (), last = first;
unsigned HOST_WIDE_INT width = m_store_info[first]->bitsize;
if (width >= try_size)
return false;
for (unsigned int i = first + 1; i < len; ++i)
{
if (m_store_info[i]->bitpos != m_store_info[first]->bitpos + width
|| m_store_info[i]->ins_stmt == NULL)
return false;
width += m_store_info[i]->bitsize;
if (width >= try_size)
{
last = i;
break;
}
}
if (width != try_size)
return false;
bool allow_unaligned
= !STRICT_ALIGNMENT && PARAM_VALUE (PARAM_STORE_MERGING_ALLOW_UNALIGNED);
/* Punt if the combined store would not be aligned and we need alignment. */
if (!allow_unaligned)
{
unsigned int align = merged_store->align;
unsigned HOST_WIDE_INT align_base = merged_store->align_base;
for (unsigned int i = first + 1; i <= last; ++i)
{
unsigned int this_align;
unsigned HOST_WIDE_INT align_bitpos = 0;
get_object_alignment_1 (gimple_assign_lhs (m_store_info[i]->stmt),
&this_align, &align_bitpos);
if (this_align > align)
{
align = this_align;
align_base = m_store_info[i]->bitpos - align_bitpos;
}
}
unsigned HOST_WIDE_INT align_bitpos
= (m_store_info[first]->bitpos - align_base) & (align - 1);
if (align_bitpos)
align = least_bit_hwi (align_bitpos);
if (align < try_size)
return false;
}
tree type;
switch (try_size)
{
case 16: type = uint16_type_node; break;
case 32: type = uint32_type_node; break;
case 64: type = uint64_type_node; break;
default: gcc_unreachable ();
}
struct symbolic_number n;
gimple *ins_stmt = NULL;
int vuse_store = -1;
unsigned int first_order = merged_store->first_order;
unsigned int last_order = merged_store->last_order;
gimple *first_stmt = merged_store->first_stmt;
gimple *last_stmt = merged_store->last_stmt;
unsigned HOST_WIDE_INT end = merged_store->start + merged_store->width;
store_immediate_info *infof = m_store_info[first];
for (unsigned int i = first; i <= last; ++i)
{
store_immediate_info *info = m_store_info[i];
struct symbolic_number this_n = info->n;
this_n.type = type;
if (!this_n.base_addr)
this_n.range = try_size / BITS_PER_UNIT;
else
/* Update vuse in case it has changed by output_merged_stores. */
this_n.vuse = gimple_vuse (info->ins_stmt);
unsigned int bitpos = info->bitpos - infof->bitpos;
if (!do_shift_rotate (LSHIFT_EXPR, &this_n,
BYTES_BIG_ENDIAN
? try_size - info->bitsize - bitpos
: bitpos))
return false;
if (this_n.base_addr && vuse_store)
{
unsigned int j;
for (j = first; j <= last; ++j)
if (this_n.vuse == gimple_vuse (m_store_info[j]->stmt))
break;
if (j > last)
{
if (vuse_store == 1)
return false;
vuse_store = 0;
}
}
if (i == first)
{
n = this_n;
ins_stmt = info->ins_stmt;
}
else
{
if (n.base_addr && n.vuse != this_n.vuse)
{
if (vuse_store == 0)
return false;
vuse_store = 1;
}
if (info->order > last_order)
{
last_order = info->order;
last_stmt = info->stmt;
}
else if (info->order < first_order)
{
first_order = info->order;
first_stmt = info->stmt;
}
end = MAX (end, info->bitpos + info->bitsize);
ins_stmt = perform_symbolic_merge (ins_stmt, &n, info->ins_stmt,
&this_n, &n);
if (ins_stmt == NULL)
return false;
}
}
uint64_t cmpxchg, cmpnop;
find_bswap_or_nop_finalize (&n, &cmpxchg, &cmpnop);
/* A complete byte swap should make the symbolic number to start with
the largest digit in the highest order byte. Unchanged symbolic
number indicates a read with same endianness as target architecture. */
if (n.n != cmpnop && n.n != cmpxchg)
return false;
if (n.base_addr == NULL_TREE && !is_gimple_val (n.src))
return false;
if (!check_no_overlap (m_store_info, last, LROTATE_EXPR, last_order, end))
return false;
/* Don't handle memory copy this way if normal non-bswap processing
would handle it too. */
if (n.n == cmpnop && (unsigned) n.n_ops == last - first + 1)
{
unsigned int i;
for (i = first; i <= last; ++i)
if (m_store_info[i]->rhs_code != MEM_REF)
break;
if (i == last + 1)
return false;
}
if (n.n == cmpxchg)
switch (try_size)
{
case 16:
/* Will emit LROTATE_EXPR. */
break;
case 32:
if (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
&& optab_handler (bswap_optab, SImode) != CODE_FOR_nothing)
break;
return false;
case 64:
if (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
&& optab_handler (bswap_optab, DImode) != CODE_FOR_nothing)
break;
return false;
default:
gcc_unreachable ();
}
if (!allow_unaligned && n.base_addr)
{
unsigned int align = get_object_alignment (n.src);
if (align < try_size)
return false;
}
/* If each load has vuse of the corresponding store, need to verify
the loads can be sunk right before the last store. */
if (vuse_store == 1)
{
auto_vec<tree, 64> refs;
for (unsigned int i = first; i <= last; ++i)
gather_bswap_load_refs (&refs,
gimple_assign_rhs1 (m_store_info[i]->stmt));
unsigned int i;
tree ref;
FOR_EACH_VEC_ELT (refs, i, ref)
if (stmts_may_clobber_ref_p (first_stmt, last_stmt, ref))
return false;
n.vuse = NULL_TREE;
}
infof->n = n;
infof->ins_stmt = ins_stmt;
for (unsigned int i = first; i <= last; ++i)
{
m_store_info[i]->rhs_code = n.n == cmpxchg ? LROTATE_EXPR : NOP_EXPR;
m_store_info[i]->ops[0].base_addr = NULL_TREE;
m_store_info[i]->ops[1].base_addr = NULL_TREE;
if (i != first)
merged_store->merge_into (m_store_info[i]);
}
return true;
}
/* Go through the candidate stores recorded in m_store_info and merge them
into merged_store_group objects recorded into m_merged_store_groups
representing the widened stores. Return true if coalescing was successful
and the number of widened stores is fewer than the original number
of stores. */
bool
imm_store_chain_info::coalesce_immediate_stores ()
{
/* Anything less can't be processed. */
if (m_store_info.length () < 2)
return false;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Attempting to coalesce %u stores in chain\n",
m_store_info.length ());
store_immediate_info *info;
unsigned int i, ignore = 0;
/* Order the stores by the bitposition they write to. */
m_store_info.qsort (sort_by_bitpos);
info = m_store_info[0];
merged_store_group *merged_store = new merged_store_group (info);
if (dump_file && (dump_flags & TDF_DETAILS))
fputs ("New store group\n", dump_file);
FOR_EACH_VEC_ELT (m_store_info, i, info)
{
if (i <= ignore)
goto done;
/* First try to handle group of stores like:
p[0] = data >> 24;
p[1] = data >> 16;
p[2] = data >> 8;
p[3] = data;
using the bswap framework. */
if (info->bitpos == merged_store->start + merged_store->width
&& merged_store->stores.length () == 1
&& merged_store->stores[0]->ins_stmt != NULL
&& info->ins_stmt != NULL)
{
unsigned int try_size;
for (try_size = 64; try_size >= 16; try_size >>= 1)
if (try_coalesce_bswap (merged_store, i - 1, try_size))
break;
if (try_size >= 16)
{
ignore = i + merged_store->stores.length () - 1;
m_merged_store_groups.safe_push (merged_store);
if (ignore < m_store_info.length ())
merged_store = new merged_store_group (m_store_info[ignore]);
else
merged_store = NULL;
goto done;
}
}
/* |---store 1---|
|---store 2---|
Overlapping stores. */
if (IN_RANGE (info->bitpos, merged_store->start,
merged_store->start + merged_store->width - 1))
{
/* Only allow overlapping stores of constants. */
if (info->rhs_code == INTEGER_CST
&& merged_store->stores[0]->rhs_code == INTEGER_CST
&& check_no_overlap (m_store_info, i, INTEGER_CST,
MAX (merged_store->last_order, info->order),
MAX (merged_store->start
+ merged_store->width,
info->bitpos + info->bitsize)))
{
merged_store->merge_overlapping (info);
goto done;
}
}
/* |---store 1---||---store 2---|
This store is consecutive to the previous one.
Merge it into the current store group. There can be gaps in between
the stores, but there can't be gaps in between bitregions. */
else if (info->bitregion_start <= merged_store->bitregion_end
&& merged_store->can_be_merged_into (info))
{
store_immediate_info *infof = merged_store->stores[0];
/* All the rhs_code ops that take 2 operands are commutative,
swap the operands if it could make the operands compatible. */
if (infof->ops[0].base_addr
&& infof->ops[1].base_addr
&& info->ops[0].base_addr
&& info->ops[1].base_addr
&& known_eq (info->ops[1].bitpos - infof->ops[0].bitpos,
info->bitpos - infof->bitpos)
&& operand_equal_p (info->ops[1].base_addr,
infof->ops[0].base_addr, 0))
{
std::swap (info->ops[0], info->ops[1]);
info->ops_swapped_p = true;
}
if (check_no_overlap (m_store_info, i, info->rhs_code,
MAX (merged_store->last_order, info->order),
MAX (merged_store->start + merged_store->width,
info->bitpos + info->bitsize)))
{
/* Turn MEM_REF into BIT_INSERT_EXPR for bit-field stores. */
if (info->rhs_code == MEM_REF && infof->rhs_code != MEM_REF)
{
info->rhs_code = BIT_INSERT_EXPR;
info->ops[0].val = gimple_assign_rhs1 (info->stmt);
info->ops[0].base_addr = NULL_TREE;
}
else if (infof->rhs_code == MEM_REF && info->rhs_code != MEM_REF)
{
store_immediate_info *infoj;
unsigned int j;
FOR_EACH_VEC_ELT (merged_store->stores, j, infoj)
{
infoj->rhs_code = BIT_INSERT_EXPR;
infoj->ops[0].val = gimple_assign_rhs1 (infoj->stmt);
infoj->ops[0].base_addr = NULL_TREE;
}
}
if ((infof->ops[0].base_addr
? compatible_load_p (merged_store, info, base_addr, 0)
: !info->ops[0].base_addr)
&& (infof->ops[1].base_addr
? compatible_load_p (merged_store, info, base_addr, 1)
: !info->ops[1].base_addr))
{
merged_store->merge_into (info);
goto done;
}
}
}
/* |---store 1---| <gap> |---store 2---|.
Gap between stores or the rhs not compatible. Start a new group. */
/* Try to apply all the stores recorded for the group to determine
the bitpattern they write and discard it if that fails.
This will also reject single-store groups. */
if (merged_store->apply_stores ())
m_merged_store_groups.safe_push (merged_store);
else
delete merged_store;
merged_store = new merged_store_group (info);
if (dump_file && (dump_flags & TDF_DETAILS))
fputs ("New store group\n", dump_file);
done:
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Store %u:\nbitsize:" HOST_WIDE_INT_PRINT_DEC
" bitpos:" HOST_WIDE_INT_PRINT_DEC " val:",
i, info->bitsize, info->bitpos);
print_generic_expr (dump_file, gimple_assign_rhs1 (info->stmt));
fputc ('\n', dump_file);
}
}
/* Record or discard the last store group. */
if (merged_store)
{
if (merged_store->apply_stores ())
m_merged_store_groups.safe_push (merged_store);
else
delete merged_store;
}
gcc_assert (m_merged_store_groups.length () <= m_store_info.length ());
bool success
= !m_merged_store_groups.is_empty ()
&& m_merged_store_groups.length () < m_store_info.length ();
if (success && dump_file)
fprintf (dump_file, "Coalescing successful!\nMerged into %u stores\n",
m_merged_store_groups.length ());
return success;
}
/* Return the type to use for the merged stores or loads described by STMTS.
This is needed to get the alias sets right. If IS_LOAD, look for rhs,
otherwise lhs. Additionally set *CLIQUEP and *BASEP to MR_DEPENDENCE_*
of the MEM_REFs if any. */
static tree
get_alias_type_for_stmts (vec<gimple *> &stmts, bool is_load,
unsigned short *cliquep, unsigned short *basep)
{
gimple *stmt;
unsigned int i;
tree type = NULL_TREE;
tree ret = NULL_TREE;
*cliquep = 0;
*basep = 0;
FOR_EACH_VEC_ELT (stmts, i, stmt)
{
tree ref = is_load ? gimple_assign_rhs1 (stmt)
: gimple_assign_lhs (stmt);
tree type1 = reference_alias_ptr_type (ref);
tree base = get_base_address (ref);
if (i == 0)
{
if (TREE_CODE (base) == MEM_REF)
{
*cliquep = MR_DEPENDENCE_CLIQUE (base);
*basep = MR_DEPENDENCE_BASE (base);
}
ret = type = type1;
continue;
}
if (!alias_ptr_types_compatible_p (type, type1))
ret = ptr_type_node;
if (TREE_CODE (base) != MEM_REF
|| *cliquep != MR_DEPENDENCE_CLIQUE (base)
|| *basep != MR_DEPENDENCE_BASE (base))
{
*cliquep = 0;
*basep = 0;
}
}
return ret;
}
/* Return the location_t information we can find among the statements
in STMTS. */
static location_t
get_location_for_stmts (vec<gimple *> &stmts)
{
gimple *stmt;
unsigned int i;
FOR_EACH_VEC_ELT (stmts, i, stmt)
if (gimple_has_location (stmt))
return gimple_location (stmt);
return UNKNOWN_LOCATION;
}
/* Used to decribe a store resulting from splitting a wide store in smaller
regularly-sized stores in split_group. */
struct split_store
{
unsigned HOST_WIDE_INT bytepos;
unsigned HOST_WIDE_INT size;
unsigned HOST_WIDE_INT align;
auto_vec<store_immediate_info *> orig_stores;
/* True if there is a single orig stmt covering the whole split store. */
bool orig;
split_store (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
unsigned HOST_WIDE_INT);
};
/* Simple constructor. */
split_store::split_store (unsigned HOST_WIDE_INT bp,
unsigned HOST_WIDE_INT sz,
unsigned HOST_WIDE_INT al)
: bytepos (bp), size (sz), align (al), orig (false)
{
orig_stores.create (0);
}
/* Record all stores in GROUP that write to the region starting at BITPOS and
is of size BITSIZE. Record infos for such statements in STORES if
non-NULL. The stores in GROUP must be sorted by bitposition. Return INFO
if there is exactly one original store in the range. */
static store_immediate_info *
find_constituent_stores (struct merged_store_group *group,
vec<store_immediate_info *> *stores,
unsigned int *first,
unsigned HOST_WIDE_INT bitpos,
unsigned HOST_WIDE_INT bitsize)
{
store_immediate_info *info, *ret = NULL;
unsigned int i;
bool second = false;
bool update_first = true;
unsigned HOST_WIDE_INT end = bitpos + bitsize;
for (i = *first; group->stores.iterate (i, &info); ++i)
{
unsigned HOST_WIDE_INT stmt_start = info->bitpos;
unsigned HOST_WIDE_INT stmt_end = stmt_start + info->bitsize;
if (stmt_end <= bitpos)
{
/* BITPOS passed to this function never decreases from within the
same split_group call, so optimize and don't scan info records
which are known to end before or at BITPOS next time.
Only do it if all stores before this one also pass this. */
if (update_first)
*first = i + 1;
continue;
}
else
update_first = false;
/* The stores in GROUP are ordered by bitposition so if we're past
the region for this group return early. */
if (stmt_start >= end)
return ret;
if (stores)
{
stores->safe_push (info);
if (ret)
{
ret = NULL;
second = true;
}
}
else if (ret)
return NULL;
if (!second)
ret = info;
}
return ret;
}
/* Return how many SSA_NAMEs used to compute value to store in the INFO
store have multiple uses. If any SSA_NAME has multiple uses, also
count statements needed to compute it. */
static unsigned
count_multiple_uses (store_immediate_info *info)
{
gimple *stmt = info->stmt;
unsigned ret = 0;
switch (info->rhs_code)
{
case INTEGER_CST:
return 0;
case BIT_AND_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
if (info->bit_not_p)
{
if (!has_single_use (gimple_assign_rhs1 (stmt)))
ret = 1; /* Fall through below to return
the BIT_NOT_EXPR stmt and then
BIT_{AND,IOR,XOR}_EXPR and anything it
uses. */
else
/* stmt is after this the BIT_NOT_EXPR. */
stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
}
if (!has_single_use (gimple_assign_rhs1 (stmt)))
{
ret += 1 + info->ops[0].bit_not_p;
if (info->ops[1].base_addr)
ret += 1 + info->ops[1].bit_not_p;
return ret + 1;
}
stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
/* stmt is now the BIT_*_EXPR. */
if (!has_single_use (gimple_assign_rhs1 (stmt)))
ret += 1 + info->ops[info->ops_swapped_p].bit_not_p;
else if (info->ops[info->ops_swapped_p].bit_not_p)
{
gimple *stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
if (!has_single_use (gimple_assign_rhs1 (stmt2)))
++ret;
}
if (info->ops[1].base_addr == NULL_TREE)
{
gcc_checking_assert (!info->ops_swapped_p);
return ret;
}
if (!has_single_use (gimple_assign_rhs2 (stmt)))
ret += 1 + info->ops[1 - info->ops_swapped_p].bit_not_p;
else if (info->ops[1 - info->ops_swapped_p].bit_not_p)
{
gimple *stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
if (!has_single_use (gimple_assign_rhs1 (stmt2)))
++ret;
}
return ret;
case MEM_REF:
if (!has_single_use (gimple_assign_rhs1 (stmt)))
return 1 + info->ops[0].bit_not_p;
else if (info->ops[0].bit_not_p)
{
stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
if (!has_single_use (gimple_assign_rhs1 (stmt)))
return 1;
}
return 0;
case BIT_INSERT_EXPR:
return has_single_use (gimple_assign_rhs1 (stmt)) ? 0 : 1;
default:
gcc_unreachable ();
}
}
/* Split a merged store described by GROUP by populating the SPLIT_STORES
vector (if non-NULL) with split_store structs describing the byte offset
(from the base), the bit size and alignment of each store as well as the
original statements involved in each such split group.
This is to separate the splitting strategy from the statement
building/emission/linking done in output_merged_store.
Return number of new stores.
If ALLOW_UNALIGNED_STORE is false, then all stores must be aligned.
If ALLOW_UNALIGNED_LOAD is false, then all loads must be aligned.
If SPLIT_STORES is NULL, it is just a dry run to count number of
new stores. */
static unsigned int
split_group (merged_store_group *group, bool allow_unaligned_store,
bool allow_unaligned_load,
vec<struct split_store *> *split_stores,
unsigned *total_orig,
unsigned *total_new)
{
unsigned HOST_WIDE_INT pos = group->bitregion_start;
unsigned HOST_WIDE_INT size = group->bitregion_end - pos;
unsigned HOST_WIDE_INT bytepos = pos / BITS_PER_UNIT;
unsigned HOST_WIDE_INT group_align = group->align;
unsigned HOST_WIDE_INT align_base = group->align_base;
unsigned HOST_WIDE_INT group_load_align = group_align;
bool any_orig = false;
gcc_assert ((size % BITS_PER_UNIT == 0) && (pos % BITS_PER_UNIT == 0));
if (group->stores[0]->rhs_code == LROTATE_EXPR
|| group->stores[0]->rhs_code == NOP_EXPR)
{
/* For bswap framework using sets of stores, all the checking
has been done earlier in try_coalesce_bswap and needs to be
emitted as a single store. */
if (total_orig)
{
/* Avoid the old/new stmt count heuristics. It should be
always beneficial. */
total_new[0] = 1;
total_orig[0] = 2;
}
if (split_stores)
{
unsigned HOST_WIDE_INT align_bitpos
= (group->start - align_base) & (group_align - 1);
unsigned HOST_WIDE_INT align = group_align;
if (align_bitpos)
align = least_bit_hwi (align_bitpos);
bytepos = group->start / BITS_PER_UNIT;
struct split_store *store
= new split_store (bytepos, group->width, align);
unsigned int first = 0;
find_constituent_stores (group, &store->orig_stores,
&first, group->start, group->width);
split_stores->safe_push (store);
}
return 1;
}
unsigned int ret = 0, first = 0;
unsigned HOST_WIDE_INT try_pos = bytepos;
if (total_orig)
{
unsigned int i;
store_immediate_info *info = group->stores[0];
total_new[0] = 0;
total_orig[0] = 1; /* The orig store. */
info = group->stores[0];
if (info->ops[0].base_addr)
total_orig[0]++;
if (info->ops[1].base_addr)
total_orig[0]++;
switch (info->rhs_code)
{
case BIT_AND_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
total_orig[0]++; /* The orig BIT_*_EXPR stmt. */
break;
default:
break;
}
total_orig[0] *= group->stores.length ();
FOR_EACH_VEC_ELT (group->stores, i, info)
{
total_new[0] += count_multiple_uses (info);
total_orig[0] += (info->bit_not_p
+ info->ops[0].bit_not_p
+ info->ops[1].bit_not_p);
}
}
if (!allow_unaligned_load)
for (int i = 0; i < 2; ++i)
if (group->load_align[i])
group_load_align = MIN (group_load_align, group->load_align[i]);
while (size > 0)
{
if ((allow_unaligned_store || group_align <= BITS_PER_UNIT)
&& group->mask[try_pos - bytepos] == (unsigned char) ~0U)
{
/* Skip padding bytes. */
++try_pos;
size -= BITS_PER_UNIT;
continue;
}
unsigned HOST_WIDE_INT try_bitpos = try_pos * BITS_PER_UNIT;
unsigned int try_size = MAX_STORE_BITSIZE, nonmasked;
unsigned HOST_WIDE_INT align_bitpos
= (try_bitpos - align_base) & (group_align - 1);
unsigned HOST_WIDE_INT align = group_align;
if (align_bitpos)
align = least_bit_hwi (align_bitpos);
if (!allow_unaligned_store)
try_size = MIN (try_size, align);
if (!allow_unaligned_load)
{
/* If we can't do or don't want to do unaligned stores
as well as loads, we need to take the loads into account
as well. */
unsigned HOST_WIDE_INT load_align = group_load_align;
align_bitpos = (try_bitpos - align_base) & (load_align - 1);
if (align_bitpos)
load_align = least_bit_hwi (align_bitpos);
for (int i = 0; i < 2; ++i)
if (group->load_align[i])
{
align_bitpos
= known_alignment (try_bitpos
- group->stores[0]->bitpos
+ group->stores[0]->ops[i].bitpos
- group->load_align_base[i]);
if (align_bitpos & (group_load_align - 1))
{
unsigned HOST_WIDE_INT a = least_bit_hwi (align_bitpos);
load_align = MIN (load_align, a);
}
}
try_size = MIN (try_size, load_align);
}
store_immediate_info *info
= find_constituent_stores (group, NULL, &first, try_bitpos, try_size);
if (info)
{
/* If there is just one original statement for the range, see if
we can just reuse the original store which could be even larger
than try_size. */
unsigned HOST_WIDE_INT stmt_end
= ROUND_UP (info->bitpos + info->bitsize, BITS_PER_UNIT);
info = find_constituent_stores (group, NULL, &first, try_bitpos,
stmt_end - try_bitpos);
if (info && info->bitpos >= try_bitpos)
{
try_size = stmt_end - try_bitpos;
goto found;
}
}
/* Approximate store bitsize for the case when there are no padding
bits. */
while (try_size > size)
try_size /= 2;
/* Now look for whole padding bytes at the end of that bitsize. */
for (nonmasked = try_size / BITS_PER_UNIT; nonmasked > 0; --nonmasked)
if (group->mask[try_pos - bytepos + nonmasked - 1]
!= (unsigned char) ~0U)
break;
if (nonmasked == 0)
{
/* If entire try_size range is padding, skip it. */
try_pos += try_size / BITS_PER_UNIT;
size -= try_size;
continue;
}
/* Otherwise try to decrease try_size if second half, last 3 quarters
etc. are padding. */
nonmasked *= BITS_PER_UNIT;
while (nonmasked <= try_size / 2)
try_size /= 2;
if (!allow_unaligned_store && group_align > BITS_PER_UNIT)
{
/* Now look for whole padding bytes at the start of that bitsize. */
unsigned int try_bytesize = try_size / BITS_PER_UNIT, masked;
for (masked = 0; masked < try_bytesize; ++masked)
if (group->mask[try_pos - bytepos + masked] != (unsigned char) ~0U)
break;
masked *= BITS_PER_UNIT;
gcc_assert (masked < try_size);
if (masked >= try_size / 2)
{
while (masked >= try_size / 2)
{
try_size /= 2;
try_pos += try_size / BITS_PER_UNIT;
size -= try_size;
masked -= try_size;
}
/* Need to recompute the alignment, so just retry at the new
position. */
continue;
}
}
found:
++ret;
if (split_stores)
{
struct split_store *store
= new split_store (try_pos, try_size, align);
info = find_constituent_stores (group, &store->orig_stores,
&first, try_bitpos, try_size);
if (info
&& info->bitpos >= try_bitpos
&& info->bitpos + info->bitsize <= try_bitpos + try_size)
{
store->orig = true;
any_orig = true;
}
split_stores->safe_push (store);
}
try_pos += try_size / BITS_PER_UNIT;
size -= try_size;
}
if (total_orig)
{
unsigned int i;
struct split_store *store;
/* If we are reusing some original stores and any of the
original SSA_NAMEs had multiple uses, we need to subtract
those now before we add the new ones. */
if (total_new[0] && any_orig)
{
FOR_EACH_VEC_ELT (*split_stores, i, store)
if (store->orig)
total_new[0] -= count_multiple_uses (store->orig_stores[0]);
}
total_new[0] += ret; /* The new store. */
store_immediate_info *info = group->stores[0];
if (info->ops[0].base_addr)
total_new[0] += ret;
if (info->ops[1].base_addr)
total_new[0] += ret;
switch (info->rhs_code)
{
case BIT_AND_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
total_new[0] += ret; /* The new BIT_*_EXPR stmt. */
break;
default:
break;
}
FOR_EACH_VEC_ELT (*split_stores, i, store)
{
unsigned int j;
bool bit_not_p[3] = { false, false, false };
/* If all orig_stores have certain bit_not_p set, then
we'd use a BIT_NOT_EXPR stmt and need to account for it.
If some orig_stores have certain bit_not_p set, then
we'd use a BIT_XOR_EXPR with a mask and need to account for
it. */
FOR_EACH_VEC_ELT (store->orig_stores, j, info)
{
if (info->ops[0].bit_not_p)
bit_not_p[0] = true;
if (info->ops[1].bit_not_p)
bit_not_p[1] = true;
if (info->bit_not_p)
bit_not_p[2] = true;
}
total_new[0] += bit_not_p[0] + bit_not_p[1] + bit_not_p[2];
}
}
return ret;
}
/* Return the operation through which the operand IDX (if < 2) or
result (IDX == 2) should be inverted. If NOP_EXPR, no inversion
is done, if BIT_NOT_EXPR, all bits are inverted, if BIT_XOR_EXPR,
the bits should be xored with mask. */
static enum tree_code
invert_op (split_store *split_store, int idx, tree int_type, tree &mask)
{
unsigned int i;
store_immediate_info *info;
unsigned int cnt = 0;
bool any_paddings = false;
FOR_EACH_VEC_ELT (split_store->orig_stores, i, info)
{
bool bit_not_p = idx < 2 ? info->ops[idx].bit_not_p : info->bit_not_p;
if (bit_not_p)
{
++cnt;
tree lhs = gimple_assign_lhs (info->stmt);
if (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
&& TYPE_PRECISION (TREE_TYPE (lhs)) < info->bitsize)
any_paddings = true;
}
}
mask = NULL_TREE;
if (cnt == 0)
return NOP_EXPR;
if (cnt == split_store->orig_stores.length () && !any_paddings)
return BIT_NOT_EXPR;
unsigned HOST_WIDE_INT try_bitpos = split_store->bytepos * BITS_PER_UNIT;
unsigned buf_size = split_store->size / BITS_PER_UNIT;
unsigned char *buf
= XALLOCAVEC (unsigned char, buf_size);
memset (buf, ~0U, buf_size);
FOR_EACH_VEC_ELT (split_store->orig_stores, i, info)
{
bool bit_not_p = idx < 2 ? info->ops[idx].bit_not_p : info->bit_not_p;
if (!bit_not_p)
continue;
/* Clear regions with bit_not_p and invert afterwards, rather than
clear regions with !bit_not_p, so that gaps in between stores aren't
set in the mask. */
unsigned HOST_WIDE_INT bitsize = info->bitsize;
unsigned HOST_WIDE_INT prec = bitsize;
unsigned int pos_in_buffer = 0;
if (any_paddings)
{
tree lhs = gimple_assign_lhs (info->stmt);
if (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
&& TYPE_PRECISION (TREE_TYPE (lhs)) < bitsize)
prec = TYPE_PRECISION (TREE_TYPE (lhs));
}
if (info->bitpos < try_bitpos)
{
gcc_assert (info->bitpos + bitsize > try_bitpos);
if (!BYTES_BIG_ENDIAN)
{
if (prec <= try_bitpos - info->bitpos)
continue;
prec -= try_bitpos - info->bitpos;
}
bitsize -= try_bitpos - info->bitpos;
if (BYTES_BIG_ENDIAN && prec > bitsize)
prec = bitsize;
}
else
pos_in_buffer = info->bitpos - try_bitpos;
if (prec < bitsize)
{
/* If this is a bool inversion, invert just the least significant
prec bits rather than all bits of it. */
if (BYTES_BIG_ENDIAN)
{
pos_in_buffer += bitsize - prec;
if (pos_in_buffer >= split_store->size)
continue;
}
bitsize = prec;
}
if (pos_in_buffer + bitsize > split_store->size)
bitsize = split_store->size - pos_in_buffer;
unsigned char *p = buf + (pos_in_buffer / BITS_PER_UNIT);
if (BYTES_BIG_ENDIAN)
clear_bit_region_be (p, (BITS_PER_UNIT - 1
- (pos_in_buffer % BITS_PER_UNIT)), bitsize);
else
clear_bit_region (p, pos_in_buffer % BITS_PER_UNIT, bitsize);
}
for (unsigned int i = 0; i < buf_size; ++i)
buf[i] = ~buf[i];
mask = native_interpret_expr (int_type, buf, buf_size);
return BIT_XOR_EXPR;
}
/* Given a merged store group GROUP output the widened version of it.
The store chain is against the base object BASE.
Try store sizes of at most MAX_STORE_BITSIZE bits wide and don't output
unaligned stores for STRICT_ALIGNMENT targets or if it's too expensive.
Make sure that the number of statements output is less than the number of
original statements. If a better sequence is possible emit it and
return true. */
bool
imm_store_chain_info::output_merged_store (merged_store_group *group)
{
split_store *split_store;
unsigned int i;
unsigned HOST_WIDE_INT start_byte_pos
= group->bitregion_start / BITS_PER_UNIT;
unsigned int orig_num_stmts = group->stores.length ();
if (orig_num_stmts < 2)
return false;
auto_vec<struct split_store *, 32> split_stores;
bool allow_unaligned_store
= !STRICT_ALIGNMENT && PARAM_VALUE (PARAM_STORE_MERGING_ALLOW_UNALIGNED);
bool allow_unaligned_load = allow_unaligned_store;
if (allow_unaligned_store)
{
/* If unaligned stores are allowed, see how many stores we'd emit
for unaligned and how many stores we'd emit for aligned stores.
Only use unaligned stores if it allows fewer stores than aligned. */
unsigned aligned_cnt
= split_group (group, false, allow_unaligned_load, NULL, NULL, NULL);
unsigned unaligned_cnt
= split_group (group, true, allow_unaligned_load, NULL, NULL, NULL);
if (aligned_cnt <= unaligned_cnt)
allow_unaligned_store = false;
}
unsigned total_orig, total_new;
split_group (group, allow_unaligned_store, allow_unaligned_load,
&split_stores, &total_orig, &total_new);
if (split_stores.length () >= orig_num_stmts)
{
/* We didn't manage to reduce the number of statements. Bail out. */
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Exceeded original number of stmts (%u)."
" Not profitable to emit new sequence.\n",
orig_num_stmts);
FOR_EACH_VEC_ELT (split_stores, i, split_store)
delete split_store;
return false;
}
if (total_orig <= total_new)
{
/* If number of estimated new statements is above estimated original
statements, bail out too. */
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Estimated number of original stmts (%u)"
" not larger than estimated number of new"
" stmts (%u).\n",
total_orig, total_new);
FOR_EACH_VEC_ELT (split_stores, i, split_store)
delete split_store;
return false;
}
gimple_stmt_iterator last_gsi = gsi_for_stmt (group->last_stmt);
gimple_seq seq = NULL;
tree last_vdef, new_vuse;
last_vdef = gimple_vdef (group->last_stmt);
new_vuse = gimple_vuse (group->last_stmt);
tree bswap_res = NULL_TREE;
if (group->stores[0]->rhs_code == LROTATE_EXPR
|| group->stores[0]->rhs_code == NOP_EXPR)
{
tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
gimple *ins_stmt = group->stores[0]->ins_stmt;
struct symbolic_number *n = &group->stores[0]->n;
bool bswap = group->stores[0]->rhs_code == LROTATE_EXPR;
switch (n->range)
{
case 16:
load_type = bswap_type = uint16_type_node;
break;
case 32:
load_type = uint32_type_node;
if (bswap)
{
fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
bswap_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
}
break;
case 64:
load_type = uint64_type_node;
if (bswap)
{
fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
bswap_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
}
break;
default:
gcc_unreachable ();
}
/* If the loads have each vuse of the corresponding store,
we've checked the aliasing already in try_coalesce_bswap and
we want to sink the need load into seq. So need to use new_vuse
on the load. */
if (n->base_addr)
{
if (n->vuse == NULL)
{
n->vuse = new_vuse;
ins_stmt = NULL;
}
else
/* Update vuse in case it has changed by output_merged_stores. */
n->vuse = gimple_vuse (ins_stmt);
}
bswap_res = bswap_replace (gsi_start (seq), ins_stmt, fndecl,
bswap_type, load_type, n, bswap);
gcc_assert (bswap_res);
}
gimple *stmt = NULL;
auto_vec<gimple *, 32> orig_stmts;
gimple_seq this_seq;
tree addr = force_gimple_operand_1 (unshare_expr (base_addr), &this_seq,
is_gimple_mem_ref_addr, NULL_TREE);
gimple_seq_add_seq_without_update (&seq, this_seq);
tree load_addr[2] = { NULL_TREE, NULL_TREE };
gimple_seq load_seq[2] = { NULL, NULL };
gimple_stmt_iterator load_gsi[2] = { gsi_none (), gsi_none () };
for (int j = 0; j < 2; ++j)
{
store_operand_info &op = group->stores[0]->ops[j];
if (op.base_addr == NULL_TREE)
continue;
store_immediate_info *infol = group->stores.last ();
if (gimple_vuse (op.stmt) == gimple_vuse (infol->ops[j].stmt))
{
/* We can't pick the location randomly; while we've verified
all the loads have the same vuse, they can be still in different
basic blocks and we need to pick the one from the last bb:
int x = q[0];
if (x == N) return;
int y = q[1];
p[0] = x;
p[1] = y;
otherwise if we put the wider load at the q[0] load, we might
segfault if q[1] is not mapped. */
basic_block bb = gimple_bb (op.stmt);
gimple *ostmt = op.stmt;
store_immediate_info *info;
FOR_EACH_VEC_ELT (group->stores, i, info)
{
gimple *tstmt = info->ops[j].stmt;
basic_block tbb = gimple_bb (tstmt);
if (dominated_by_p (CDI_DOMINATORS, tbb, bb))
{
ostmt = tstmt;
bb = tbb;
}
}
load_gsi[j] = gsi_for_stmt (ostmt);
load_addr[j]
= force_gimple_operand_1 (unshare_expr (op.base_addr),
&load_seq[j], is_gimple_mem_ref_addr,
NULL_TREE);
}
else if (operand_equal_p (base_addr, op.base_addr, 0))
load_addr[j] = addr;
else
{
load_addr[j]
= force_gimple_operand_1 (unshare_expr (op.base_addr),
&this_seq, is_gimple_mem_ref_addr,
NULL_TREE);
gimple_seq_add_seq_without_update (&seq, this_seq);
}
}
FOR_EACH_VEC_ELT (split_stores, i, split_store)
{
unsigned HOST_WIDE_INT try_size = split_store->size;
unsigned HOST_WIDE_INT try_pos = split_store->bytepos;
unsigned HOST_WIDE_INT try_bitpos = try_pos * BITS_PER_UNIT;
unsigned HOST_WIDE_INT align = split_store->align;
tree dest, src;
location_t loc;
if (split_store->orig)
{
/* If there is just a single constituent store which covers
the whole area, just reuse the lhs and rhs. */
gimple *orig_stmt = split_store->orig_stores[0]->stmt;
dest = gimple_assign_lhs (orig_stmt);
src = gimple_assign_rhs1 (orig_stmt);
loc = gimple_location (orig_stmt);
}
else
{
store_immediate_info *info;
unsigned short clique, base;
unsigned int k;
FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
orig_stmts.safe_push (info->stmt);
tree offset_type
= get_alias_type_for_stmts (orig_stmts, false, &clique, &base);
loc = get_location_for_stmts (orig_stmts);
orig_stmts.truncate (0);
tree int_type = build_nonstandard_integer_type (try_size, UNSIGNED);
int_type = build_aligned_type (int_type, align);
dest = fold_build2 (MEM_REF, int_type, addr,
build_int_cst (offset_type, try_pos));
if (TREE_CODE (dest) == MEM_REF)
{
MR_DEPENDENCE_CLIQUE (dest) = clique;
MR_DEPENDENCE_BASE (dest) = base;
}
tree mask;
if (bswap_res)
mask = integer_zero_node;
else
mask = native_interpret_expr (int_type,
group->mask + try_pos
- start_byte_pos,
group->buf_size);
tree ops[2];
for (int j = 0;
j < 1 + (split_store->orig_stores[0]->ops[1].val != NULL_TREE);
++j)
{
store_operand_info &op = split_store->orig_stores[0]->ops[j];
if (bswap_res)
ops[j] = bswap_res;
else if (op.base_addr)
{
FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
orig_stmts.safe_push (info->ops[j].stmt);
offset_type = get_alias_type_for_stmts (orig_stmts, true,
&clique, &base);
location_t load_loc = get_location_for_stmts (orig_stmts);
orig_stmts.truncate (0);
unsigned HOST_WIDE_INT load_align = group->load_align[j];
unsigned HOST_WIDE_INT align_bitpos
= known_alignment (try_bitpos
- split_store->orig_stores[0]->bitpos
+ op.bitpos);
if (align_bitpos & (load_align - 1))
load_align = least_bit_hwi (align_bitpos);
tree load_int_type
= build_nonstandard_integer_type (try_size, UNSIGNED);
load_int_type
= build_aligned_type (load_int_type, load_align);
poly_uint64 load_pos
= exact_div (try_bitpos
- split_store->orig_stores[0]->bitpos
+ op.bitpos,
BITS_PER_UNIT);
ops[j] = fold_build2 (MEM_REF, load_int_type, load_addr[j],
build_int_cst (offset_type, load_pos));
if (TREE_CODE (ops[j]) == MEM_REF)
{
MR_DEPENDENCE_CLIQUE (ops[j]) = clique;
MR_DEPENDENCE_BASE (ops[j]) = base;
}
if (!integer_zerop (mask))
/* The load might load some bits (that will be masked off
later on) uninitialized, avoid -W*uninitialized
warnings in that case. */
TREE_NO_WARNING (ops[j]) = 1;
stmt = gimple_build_assign (make_ssa_name (int_type),
ops[j]);
gimple_set_location (stmt, load_loc);
if (gsi_bb (load_gsi[j]))
{
gimple_set_vuse (stmt, gimple_vuse (op.stmt));
gimple_seq_add_stmt_without_update (&load_seq[j], stmt);
}
else
{
gimple_set_vuse (stmt, new_vuse);
gimple_seq_add_stmt_without_update (&seq, stmt);
}
ops[j] = gimple_assign_lhs (stmt);
tree xor_mask;
enum tree_code inv_op
= invert_op (split_store, j, int_type, xor_mask);
if (inv_op != NOP_EXPR)
{
stmt = gimple_build_assign (make_ssa_name (int_type),
inv_op, ops[j], xor_mask);
gimple_set_location (stmt, load_loc);
ops[j] = gimple_assign_lhs (stmt);
if (gsi_bb (load_gsi[j]))
gimple_seq_add_stmt_without_update (&load_seq[j],
stmt);
else
gimple_seq_add_stmt_without_update (&seq, stmt);
}
}
else
ops[j] = native_interpret_expr (int_type,
group->val + try_pos
- start_byte_pos,
group->buf_size);
}
switch (split_store->orig_stores[0]->rhs_code)
{
case BIT_AND_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
{
tree rhs1 = gimple_assign_rhs1 (info->stmt);
orig_stmts.safe_push (SSA_NAME_DEF_STMT (rhs1));
}
location_t bit_loc;
bit_loc = get_location_for_stmts (orig_stmts);
orig_stmts.truncate (0);
stmt
= gimple_build_assign (make_ssa_name (int_type),
split_store->orig_stores[0]->rhs_code,
ops[0], ops[1]);
gimple_set_location (stmt, bit_loc);
/* If there is just one load and there is a separate
load_seq[0], emit the bitwise op right after it. */
if (load_addr[1] == NULL_TREE && gsi_bb (load_gsi[0]))
gimple_seq_add_stmt_without_update (&load_seq[0], stmt);
/* Otherwise, if at least one load is in seq, we need to
emit the bitwise op right before the store. If there
are two loads and are emitted somewhere else, it would
be better to emit the bitwise op as early as possible;
we don't track where that would be possible right now
though. */
else
gimple_seq_add_stmt_without_update (&seq, stmt);
src = gimple_assign_lhs (stmt);
tree xor_mask;
enum tree_code inv_op;
inv_op = invert_op (split_store, 2, int_type, xor_mask);
if (inv_op != NOP_EXPR)
{
stmt = gimple_build_assign (make_ssa_name (int_type),
inv_op, src, xor_mask);
gimple_set_location (stmt, bit_loc);
if (load_addr[1] == NULL_TREE && gsi_bb (load_gsi[0]))
gimple_seq_add_stmt_without_update (&load_seq[0], stmt);
else
gimple_seq_add_stmt_without_update (&seq, stmt);
src = gimple_assign_lhs (stmt);
}
break;
case LROTATE_EXPR:
case NOP_EXPR:
src = ops[0];
if (!is_gimple_val (src))
{
stmt = gimple_build_assign (make_ssa_name (TREE_TYPE (src)),
src);
gimple_seq_add_stmt_without_update (&seq, stmt);
src = gimple_assign_lhs (stmt);
}
if (!useless_type_conversion_p (int_type, TREE_TYPE (src)))
{
stmt = gimple_build_assign (make_ssa_name (int_type),
NOP_EXPR, src);
gimple_seq_add_stmt_without_update (&seq, stmt);
src = gimple_assign_lhs (stmt);
}
inv_op = invert_op (split_store, 2, int_type, xor_mask);
if (inv_op != NOP_EXPR)
{
stmt = gimple_build_assign (make_ssa_name (int_type),
inv_op, src, xor_mask);
gimple_set_location (stmt, loc);
gimple_seq_add_stmt_without_update (&seq, stmt);
src = gimple_assign_lhs (stmt);
}
break;
default:
src = ops[0];
break;
}
/* If bit insertion is required, we use the source as an accumulator
into which the successive bit-field values are manually inserted.
FIXME: perhaps use BIT_INSERT_EXPR instead in some cases? */
if (group->bit_insertion)
FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
if (info->rhs_code == BIT_INSERT_EXPR
&& info->bitpos < try_bitpos + try_size
&& info->bitpos + info->bitsize > try_bitpos)
{
/* Mask, truncate, convert to final type, shift and ior into
the accumulator. Note that every step can be a no-op. */
const HOST_WIDE_INT start_gap = info->bitpos - try_bitpos;
const HOST_WIDE_INT end_gap
= (try_bitpos + try_size) - (info->bitpos + info->bitsize);
tree tem = info->ops[0].val;
if (TYPE_PRECISION (TREE_TYPE (tem)) <= info->bitsize)
{
tree bitfield_type
= build_nonstandard_integer_type (info->bitsize,
UNSIGNED);
tem = gimple_convert (&seq, loc, bitfield_type, tem);
}
else if ((BYTES_BIG_ENDIAN ? start_gap : end_gap) > 0)
{
const unsigned HOST_WIDE_INT imask
= (HOST_WIDE_INT_1U << info->bitsize) - 1;
tem = gimple_build (&seq, loc,
BIT_AND_EXPR, TREE_TYPE (tem), tem,
build_int_cst (TREE_TYPE (tem),
imask));
}
const HOST_WIDE_INT shift
= (BYTES_BIG_ENDIAN ? end_gap : start_gap);
if (shift < 0)
tem = gimple_build (&seq, loc,
RSHIFT_EXPR, TREE_TYPE (tem), tem,
build_int_cst (NULL_TREE, -shift));
tem = gimple_convert (&seq, loc, int_type, tem);
if (shift > 0)
tem = gimple_build (&seq, loc,
LSHIFT_EXPR, int_type, tem,
build_int_cst (NULL_TREE, shift));
src = gimple_build (&seq, loc,
BIT_IOR_EXPR, int_type, tem, src);
}
if (!integer_zerop (mask))
{
tree tem = make_ssa_name (int_type);
tree load_src = unshare_expr (dest);
/* The load might load some or all bits uninitialized,
avoid -W*uninitialized warnings in that case.
As optimization, it would be nice if all the bits are
provably uninitialized (no stores at all yet or previous
store a CLOBBER) we'd optimize away the load and replace
it e.g. with 0. */
TREE_NO_WARNING (load_src) = 1;
stmt = gimple_build_assign (tem, load_src);
gimple_set_location (stmt, loc);
gimple_set_vuse (stmt, new_vuse);
gimple_seq_add_stmt_without_update (&seq, stmt);
/* FIXME: If there is a single chunk of zero bits in mask,
perhaps use BIT_INSERT_EXPR instead? */
stmt = gimple_build_assign (make_ssa_name (int_type),
BIT_AND_EXPR, tem, mask);
gimple_set_location (stmt, loc);
gimple_seq_add_stmt_without_update (&seq, stmt);
tem = gimple_assign_lhs (stmt);
if (TREE_CODE (src) == INTEGER_CST)
src = wide_int_to_tree (int_type,
wi::bit_and_not (wi::to_wide (src),
wi::to_wide (mask)));
else
{
tree nmask
= wide_int_to_tree (int_type,
wi::bit_not (wi::to_wide (mask)));
stmt = gimple_build_assign (make_ssa_name (int_type),
BIT_AND_EXPR, src, nmask);
gimple_set_location (stmt, loc);
gimple_seq_add_stmt_without_update (&seq, stmt);
src = gimple_assign_lhs (stmt);
}
stmt = gimple_build_assign (make_ssa_name (int_type),
BIT_IOR_EXPR, tem, src);
gimple_set_location (stmt, loc);
gimple_seq_add_stmt_without_update (&seq, stmt);
src = gimple_assign_lhs (stmt);
}
}
stmt = gimple_build_assign (dest, src);
gimple_set_location (stmt, loc);
gimple_set_vuse (stmt, new_vuse);
gimple_seq_add_stmt_without_update (&seq, stmt);
tree new_vdef;
if (i < split_stores.length () - 1)
new_vdef = make_ssa_name (gimple_vop (cfun), stmt);
else
new_vdef = last_vdef;
gimple_set_vdef (stmt, new_vdef);
SSA_NAME_DEF_STMT (new_vdef) = stmt;
new_vuse = new_vdef;
}
FOR_EACH_VEC_ELT (split_stores, i, split_store)
delete split_store;
gcc_assert (seq);
if (dump_file)
{
fprintf (dump_file,
"New sequence of %u stores to replace old one of %u stores\n",
split_stores.length (), orig_num_stmts);
if (dump_flags & TDF_DETAILS)
print_gimple_seq (dump_file, seq, 0, TDF_VOPS | TDF_MEMSYMS);
}
gsi_insert_seq_after (&last_gsi, seq, GSI_SAME_STMT);
for (int j = 0; j < 2; ++j)
if (load_seq[j])
gsi_insert_seq_after (&load_gsi[j], load_seq[j], GSI_SAME_STMT);
return true;
}
/* Process the merged_store_group objects created in the coalescing phase.
The stores are all against the base object BASE.
Try to output the widened stores and delete the original statements if
successful. Return true iff any changes were made. */
bool
imm_store_chain_info::output_merged_stores ()
{
unsigned int i;
merged_store_group *merged_store;
bool ret = false;
FOR_EACH_VEC_ELT (m_merged_store_groups, i, merged_store)
{
if (output_merged_store (merged_store))
{
unsigned int j;
store_immediate_info *store;
FOR_EACH_VEC_ELT (merged_store->stores, j, store)
{
gimple *stmt = store->stmt;
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
gsi_remove (&gsi, true);
if (stmt != merged_store->last_stmt)
{
unlink_stmt_vdef (stmt);
release_defs (stmt);
}
}
ret = true;
}
}
if (ret && dump_file)
fprintf (dump_file, "Merging successful!\n");
return ret;
}
/* Coalesce the store_immediate_info objects recorded against the base object
BASE in the first phase and output them.
Delete the allocated structures.
Return true if any changes were made. */
bool
imm_store_chain_info::terminate_and_process_chain ()
{
/* Process store chain. */
bool ret = false;
if (m_store_info.length () > 1)
{
ret = coalesce_immediate_stores ();
if (ret)
ret = output_merged_stores ();
}
/* Delete all the entries we allocated ourselves. */
store_immediate_info *info;
unsigned int i;
FOR_EACH_VEC_ELT (m_store_info, i, info)
delete info;
merged_store_group *merged_info;
FOR_EACH_VEC_ELT (m_merged_store_groups, i, merged_info)
delete merged_info;
return ret;
}
/* Return true iff LHS is a destination potentially interesting for
store merging. In practice these are the codes that get_inner_reference
can process. */
static bool
lhs_valid_for_store_merging_p (tree lhs)
{
tree_code code = TREE_CODE (lhs);
if (code == ARRAY_REF || code == ARRAY_RANGE_REF || code == MEM_REF
|| code == COMPONENT_REF || code == BIT_FIELD_REF)
return true;
return false;
}
/* Return true if the tree RHS is a constant we want to consider
during store merging. In practice accept all codes that
native_encode_expr accepts. */
static bool
rhs_valid_for_store_merging_p (tree rhs)
{
unsigned HOST_WIDE_INT size;
return (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (rhs))).is_constant (&size)
&& native_encode_expr (rhs, NULL, size) != 0);
}
/* If MEM is a memory reference usable for store merging (either as
store destination or for loads), return the non-NULL base_addr
and set *PBITSIZE, *PBITPOS, *PBITREGION_START and *PBITREGION_END.
Otherwise return NULL, *PBITPOS should be still valid even for that
case. */
static tree
mem_valid_for_store_merging (tree mem, poly_uint64 *pbitsize,
poly_uint64 *pbitpos,
poly_uint64 *pbitregion_start,
poly_uint64 *pbitregion_end)
{
poly_int64 bitsize, bitpos;
poly_uint64 bitregion_start = 0, bitregion_end = 0;
machine_mode mode;
int unsignedp = 0, reversep = 0, volatilep = 0;
tree offset;
tree base_addr = get_inner_reference (mem, &bitsize, &bitpos, &offset, &mode,
&unsignedp, &reversep, &volatilep);
*pbitsize = bitsize;
if (known_eq (bitsize, 0))
return NULL_TREE;
if (TREE_CODE (mem) == COMPONENT_REF
&& DECL_BIT_FIELD_TYPE (TREE_OPERAND (mem, 1)))
{
get_bit_range (&bitregion_start, &bitregion_end, mem, &bitpos, &offset);
if (maybe_ne (bitregion_end, 0U))
bitregion_end += 1;
}
if (reversep)
return NULL_TREE;
/* We do not want to rewrite TARGET_MEM_REFs. */
if (TREE_CODE (base_addr) == TARGET_MEM_REF)
return NULL_TREE;
/* In some cases get_inner_reference may return a
MEM_REF [ptr + byteoffset]. For the purposes of this pass
canonicalize the base_addr to MEM_REF [ptr] and take
byteoffset into account in the bitpos. This occurs in
PR 23684 and this way we can catch more chains. */
else if (TREE_CODE (base_addr) == MEM_REF)
{
poly_offset_int byte_off = mem_ref_offset (base_addr);
poly_offset_int bit_off = byte_off << LOG2_BITS_PER_UNIT;
bit_off += bitpos;
if (known_ge (bit_off, 0) && bit_off.to_shwi (&bitpos))
{
if (maybe_ne (bitregion_end, 0U))
{
bit_off = byte_off << LOG2_BITS_PER_UNIT;
bit_off += bitregion_start;
if (bit_off.to_uhwi (&bitregion_start))
{
bit_off = byte_off << LOG2_BITS_PER_UNIT;
bit_off += bitregion_end;
if (!bit_off.to_uhwi (&bitregion_end))
bitregion_end = 0;
}
else
bitregion_end = 0;
}
}
else
return NULL_TREE;
base_addr = TREE_OPERAND (base_addr, 0);
}
/* get_inner_reference returns the base object, get at its
address now. */
else
{
if (maybe_lt (bitpos, 0))
return NULL_TREE;
base_addr = build_fold_addr_expr (base_addr);
}
if (known_eq (bitregion_end, 0U))
{
bitregion_start = round_down_to_byte_boundary (bitpos);
bitregion_end = bitpos;
bitregion_end = round_up_to_byte_boundary (bitregion_end + bitsize);
}
if (offset != NULL_TREE)
{
/* If the access is variable offset then a base decl has to be
address-taken to be able to emit pointer-based stores to it.
??? We might be able to get away with re-using the original
base up to the first variable part and then wrapping that inside
a BIT_FIELD_REF. */
tree base = get_base_address (base_addr);
if (! base
|| (DECL_P (base) && ! TREE_ADDRESSABLE (base)))
return NULL_TREE;
base_addr = build2 (POINTER_PLUS_EXPR, TREE_TYPE (base_addr),
base_addr, offset);
}
*pbitsize = bitsize;
*pbitpos = bitpos;
*pbitregion_start = bitregion_start;
*pbitregion_end = bitregion_end;
return base_addr;
}
/* Return true if STMT is a load that can be used for store merging.
In that case fill in *OP. BITSIZE, BITPOS, BITREGION_START and
BITREGION_END are properties of the corresponding store. */
static bool
handled_load (gimple *stmt, store_operand_info *op,
poly_uint64 bitsize, poly_uint64 bitpos,
poly_uint64 bitregion_start, poly_uint64 bitregion_end)
{
if (!is_gimple_assign (stmt))
return false;
if (gimple_assign_rhs_code (stmt) == BIT_NOT_EXPR)
{
tree rhs1 = gimple_assign_rhs1 (stmt);
if (TREE_CODE (rhs1) == SSA_NAME
&& handled_load (SSA_NAME_DEF_STMT (rhs1), op, bitsize, bitpos,
bitregion_start, bitregion_end))
{
/* Don't allow _1 = load; _2 = ~1; _3 = ~_2; which should have
been optimized earlier, but if allowed here, would confuse the
multiple uses counting. */
if (op->bit_not_p)
return false;
op->bit_not_p = !op->bit_not_p;
return true;
}
return false;
}
if (gimple_vuse (stmt)
&& gimple_assign_load_p (stmt)
&& !stmt_can_throw_internal (stmt)
&& !gimple_has_volatile_ops (stmt))
{
tree mem = gimple_assign_rhs1 (stmt);
op->base_addr
= mem_valid_for_store_merging (mem, &op->bitsize, &op->bitpos,
&op->bitregion_start,
&op->bitregion_end);
if (op->base_addr != NULL_TREE
&& known_eq (op->bitsize, bitsize)
&& multiple_p (op->bitpos - bitpos, BITS_PER_UNIT)
&& known_ge (op->bitpos - op->bitregion_start,
bitpos - bitregion_start)
&& known_ge (op->bitregion_end - op->bitpos,
bitregion_end - bitpos))
{
op->stmt = stmt;
op->val = mem;
op->bit_not_p = false;
return true;
}
}
return false;
}
/* Record the store STMT for store merging optimization if it can be
optimized. */
void
pass_store_merging::process_store (gimple *stmt)
{
tree lhs = gimple_assign_lhs (stmt);
tree rhs = gimple_assign_rhs1 (stmt);
poly_uint64 bitsize, bitpos;
poly_uint64 bitregion_start, bitregion_end;
tree base_addr
= mem_valid_for_store_merging (lhs, &bitsize, &bitpos,
&bitregion_start, &bitregion_end);
if (known_eq (bitsize, 0U))
return;
bool invalid = (base_addr == NULL_TREE
|| (maybe_gt (bitsize,
(unsigned int) MAX_BITSIZE_MODE_ANY_INT)
&& (TREE_CODE (rhs) != INTEGER_CST)));
enum tree_code rhs_code = ERROR_MARK;
bool bit_not_p = false;
struct symbolic_number n;
gimple *ins_stmt = NULL;
store_operand_info ops[2];
if (invalid)
;
else if (rhs_valid_for_store_merging_p (rhs))
{
rhs_code = INTEGER_CST;
ops[0].val = rhs;
}
else if (TREE_CODE (rhs) != SSA_NAME)
invalid = true;
else
{
gimple *def_stmt = SSA_NAME_DEF_STMT (rhs), *def_stmt1, *def_stmt2;
if (!is_gimple_assign (def_stmt))
invalid = true;
else if (handled_load (def_stmt, &ops[0], bitsize, bitpos,
bitregion_start, bitregion_end))
rhs_code = MEM_REF;
else if (gimple_assign_rhs_code (def_stmt) == BIT_NOT_EXPR)
{
tree rhs1 = gimple_assign_rhs1 (def_stmt);
if (TREE_CODE (rhs1) == SSA_NAME
&& is_gimple_assign (SSA_NAME_DEF_STMT (rhs1)))
{
bit_not_p = true;
def_stmt = SSA_NAME_DEF_STMT (rhs1);
}
}
if (rhs_code == ERROR_MARK && !invalid)
switch ((rhs_code = gimple_assign_rhs_code (def_stmt)))
{
case BIT_AND_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
tree rhs1, rhs2;
rhs1 = gimple_assign_rhs1 (def_stmt);
rhs2 = gimple_assign_rhs2 (def_stmt);
invalid = true;
if (TREE_CODE (rhs1) != SSA_NAME)
break;
def_stmt1 = SSA_NAME_DEF_STMT (rhs1);
if (!is_gimple_assign (def_stmt1)
|| !handled_load (def_stmt1, &ops[0], bitsize, bitpos,
bitregion_start, bitregion_end))
break;
if (rhs_valid_for_store_merging_p (rhs2))
ops[1].val = rhs2;
else if (TREE_CODE (rhs2) != SSA_NAME)
break;
else
{
def_stmt2 = SSA_NAME_DEF_STMT (rhs2);
if (!is_gimple_assign (def_stmt2))
break;
else if (!handled_load (def_stmt2, &ops[1], bitsize, bitpos,
bitregion_start, bitregion_end))
break;
}
invalid = false;
break;
default:
invalid = true;
break;
}
unsigned HOST_WIDE_INT const_bitsize;
if (bitsize.is_constant (&const_bitsize)
&& (const_bitsize % BITS_PER_UNIT) == 0
&& const_bitsize <= 64
&& multiple_p (bitpos, BITS_PER_UNIT))
{
ins_stmt = find_bswap_or_nop_1 (def_stmt, &n, 12);
if (ins_stmt)
{
uint64_t nn = n.n;
for (unsigned HOST_WIDE_INT i = 0;
i < const_bitsize;
i += BITS_PER_UNIT, nn >>= BITS_PER_MARKER)
if ((nn & MARKER_MASK) == 0
|| (nn & MARKER_MASK) == MARKER_BYTE_UNKNOWN)
{
ins_stmt = NULL;
break;
}
if (ins_stmt)
{
if (invalid)
{
rhs_code = LROTATE_EXPR;
ops[0].base_addr = NULL_TREE;
ops[1].base_addr = NULL_TREE;
}
invalid = false;
}
}
}
if (invalid
&& bitsize.is_constant (&const_bitsize)
&& ((const_bitsize % BITS_PER_UNIT) != 0
|| !multiple_p (bitpos, BITS_PER_UNIT))
&& const_bitsize <= 64)
{
/* Bypass a conversion to the bit-field type. */
if (!bit_not_p
&& is_gimple_assign (def_stmt)
&& CONVERT_EXPR_CODE_P (rhs_code))
{
tree rhs1 = gimple_assign_rhs1 (def_stmt);
if (TREE_CODE (rhs1) == SSA_NAME
&& INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
rhs = rhs1;
}
rhs_code = BIT_INSERT_EXPR;
bit_not_p = false;
ops[0].val = rhs;
ops[0].base_addr = NULL_TREE;
ops[1].base_addr = NULL_TREE;
invalid = false;
}
}
unsigned HOST_WIDE_INT const_bitsize, const_bitpos;
unsigned HOST_WIDE_INT const_bitregion_start, const_bitregion_end;
if (invalid
|| !bitsize.is_constant (&const_bitsize)
|| !bitpos.is_constant (&const_bitpos)
|| !bitregion_start.is_constant (&const_bitregion_start)
|| !bitregion_end.is_constant (&const_bitregion_end))
{
terminate_all_aliasing_chains (NULL, stmt);
return;
}
if (!ins_stmt)
memset (&n, 0, sizeof (n));
struct imm_store_chain_info **chain_info = NULL;
if (base_addr)
chain_info = m_stores.get (base_addr);
store_immediate_info *info;
if (chain_info)
{
unsigned int ord = (*chain_info)->m_store_info.length ();
info = new store_immediate_info (const_bitsize, const_bitpos,
const_bitregion_start,
const_bitregion_end,
stmt, ord, rhs_code, n, ins_stmt,
bit_not_p, ops[0], ops[1]);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Recording immediate store from stmt:\n");
print_gimple_stmt (dump_file, stmt, 0);
}
(*chain_info)->m_store_info.safe_push (info);
terminate_all_aliasing_chains (chain_info, stmt);
/* If we reach the limit of stores to merge in a chain terminate and
process the chain now. */
if ((*chain_info)->m_store_info.length ()
== (unsigned int) PARAM_VALUE (PARAM_MAX_STORES_TO_MERGE))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Reached maximum number of statements to merge:\n");
terminate_and_release_chain (*chain_info);
}
return;
}
/* Store aliases any existing chain? */
terminate_all_aliasing_chains (NULL, stmt);
/* Start a new chain. */
struct imm_store_chain_info *new_chain
= new imm_store_chain_info (m_stores_head, base_addr);
info = new store_immediate_info (const_bitsize, const_bitpos,
const_bitregion_start,
const_bitregion_end,
stmt, 0, rhs_code, n, ins_stmt,
bit_not_p, ops[0], ops[1]);
new_chain->m_store_info.safe_push (info);
m_stores.put (base_addr, new_chain);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Starting new chain with statement:\n");
print_gimple_stmt (dump_file, stmt, 0);
fprintf (dump_file, "The base object is:\n");
print_generic_expr (dump_file, base_addr);
fprintf (dump_file, "\n");
}
}
/* Entry point for the pass. Go over each basic block recording chains of
immediate stores. Upon encountering a terminating statement (as defined
by stmt_terminates_chain_p) process the recorded stores and emit the widened
variants. */
unsigned int
pass_store_merging::execute (function *fun)
{
basic_block bb;
hash_set<gimple *> orig_stmts;
calculate_dominance_info (CDI_DOMINATORS);
FOR_EACH_BB_FN (bb, fun)
{
gimple_stmt_iterator gsi;
unsigned HOST_WIDE_INT num_statements = 0;
/* Record the original statements so that we can keep track of
statements emitted in this pass and not re-process new
statements. */
for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
if (is_gimple_debug (gsi_stmt (gsi)))
continue;
if (++num_statements >= 2)
break;
}
if (num_statements < 2)
continue;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Processing basic block <%d>:\n", bb->index);
for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
if (is_gimple_debug (stmt))
continue;
if (gimple_has_volatile_ops (stmt))
{
/* Terminate all chains. */
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Volatile access terminates "
"all chains\n");
terminate_and_process_all_chains ();
continue;
}
if (gimple_assign_single_p (stmt) && gimple_vdef (stmt)
&& !stmt_can_throw_internal (stmt)
&& lhs_valid_for_store_merging_p (gimple_assign_lhs (stmt)))
process_store (stmt);
else
terminate_all_aliasing_chains (NULL, stmt);
}
terminate_and_process_all_chains ();
}
return 0;
}
} // anon namespace
/* Construct and return a store merging pass object. */
gimple_opt_pass *
make_pass_store_merging (gcc::context *ctxt)
{
return new pass_store_merging (ctxt);
}
#if CHECKING_P
namespace selftest {
/* Selftests for store merging helpers. */
/* Assert that all elements of the byte arrays X and Y, both of length N
are equal. */
static void
verify_array_eq (unsigned char *x, unsigned char *y, unsigned int n)
{
for (unsigned int i = 0; i < n; i++)
{
if (x[i] != y[i])
{
fprintf (stderr, "Arrays do not match. X:\n");
dump_char_array (stderr, x, n);
fprintf (stderr, "Y:\n");
dump_char_array (stderr, y, n);
}
ASSERT_EQ (x[i], y[i]);
}
}
/* Test shift_bytes_in_array and that it carries bits across between
bytes correctly. */
static void
verify_shift_bytes_in_array (void)
{
/* byte 1 | byte 0
00011111 | 11100000. */
unsigned char orig[2] = { 0xe0, 0x1f };
unsigned char in[2];
memcpy (in, orig, sizeof orig);
unsigned char expected[2] = { 0x80, 0x7f };
shift_bytes_in_array (in, sizeof (in), 2);
verify_array_eq (in, expected, sizeof (in));
memcpy (in, orig, sizeof orig);
memcpy (expected, orig, sizeof orig);
/* Check that shifting by zero doesn't change anything. */
shift_bytes_in_array (in, sizeof (in), 0);
verify_array_eq (in, expected, sizeof (in));
}
/* Test shift_bytes_in_array_right and that it carries bits across between
bytes correctly. */
static void
verify_shift_bytes_in_array_right (void)
{
/* byte 1 | byte 0
00011111 | 11100000. */
unsigned char orig[2] = { 0x1f, 0xe0};
unsigned char in[2];
memcpy (in, orig, sizeof orig);
unsigned char expected[2] = { 0x07, 0xf8};
shift_bytes_in_array_right (in, sizeof (in), 2);
verify_array_eq (in, expected, sizeof (in));
memcpy (in, orig, sizeof orig);
memcpy (expected, orig, sizeof orig);
/* Check that shifting by zero doesn't change anything. */
shift_bytes_in_array_right (in, sizeof (in), 0);
verify_array_eq (in, expected, sizeof (in));
}
/* Test clear_bit_region that it clears exactly the bits asked and
nothing more. */
static void
verify_clear_bit_region (void)
{
/* Start with all bits set and test clearing various patterns in them. */
unsigned char orig[3] = { 0xff, 0xff, 0xff};
unsigned char in[3];
unsigned char expected[3];
memcpy (in, orig, sizeof in);
/* Check zeroing out all the bits. */
clear_bit_region (in, 0, 3 * BITS_PER_UNIT);
expected[0] = expected[1] = expected[2] = 0;
verify_array_eq (in, expected, sizeof in);
memcpy (in, orig, sizeof in);
/* Leave the first and last bits intact. */
clear_bit_region (in, 1, 3 * BITS_PER_UNIT - 2);
expected[0] = 0x1;
expected[1] = 0;
expected[2] = 0x80;
verify_array_eq (in, expected, sizeof in);
}
/* Test verify_clear_bit_region_be that it clears exactly the bits asked and
nothing more. */
static void
verify_clear_bit_region_be (void)
{
/* Start with all bits set and test clearing various patterns in them. */
unsigned char orig[3] = { 0xff, 0xff, 0xff};
unsigned char in[3];
unsigned char expected[3];
memcpy (in, orig, sizeof in);
/* Check zeroing out all the bits. */
clear_bit_region_be (in, BITS_PER_UNIT - 1, 3 * BITS_PER_UNIT);
expected[0] = expected[1] = expected[2] = 0;
verify_array_eq (in, expected, sizeof in);
memcpy (in, orig, sizeof in);
/* Leave the first and last bits intact. */
clear_bit_region_be (in, BITS_PER_UNIT - 2, 3 * BITS_PER_UNIT - 2);
expected[0] = 0x80;
expected[1] = 0;
expected[2] = 0x1;
verify_array_eq (in, expected, sizeof in);
}
/* Run all of the selftests within this file. */
void
store_merging_c_tests (void)
{
verify_shift_bytes_in_array ();
verify_shift_bytes_in_array_right ();
verify_clear_bit_region ();
verify_clear_bit_region_be ();
}
} // namespace selftest
#endif /* CHECKING_P. */
|