summaryrefslogtreecommitdiff
path: root/gcc/ggc-zone.c
blob: 1d6edfb707ec6cdd4979da1d44c21e59634d7212 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
/* "Bag-of-pages" zone garbage collector for the GNU compiler.
   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005
   Free Software Foundation, Inc.

   Contributed by Richard Henderson (rth@redhat.com) and Daniel Berlin
   (dberlin@dberlin.org).  Rewritten by Daniel Jacobowitz
   <dan@codesourcery.com>.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "tm_p.h"
#include "toplev.h"
#include "varray.h"
#include "flags.h"
#include "ggc.h"
#include "timevar.h"
#include "params.h"
#include "bitmap.h"

#ifdef ENABLE_VALGRIND_CHECKING
# ifdef HAVE_VALGRIND_MEMCHECK_H
#  include <valgrind/memcheck.h>
# elif defined HAVE_MEMCHECK_H
#  include <memcheck.h>
# else
#  include <valgrind.h>
# endif
#else
/* Avoid #ifdef:s when we can help it.  */
#define VALGRIND_DISCARD(x)
#define VALGRIND_MALLOCLIKE_BLOCK(w,x,y,z)
#define VALGRIND_FREELIKE_BLOCK(x,y)
#endif

/* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
   file open.  Prefer either to valloc.  */
#ifdef HAVE_MMAP_ANON
# undef HAVE_MMAP_DEV_ZERO

# include <sys/mman.h>
# ifndef MAP_FAILED
#  define MAP_FAILED -1
# endif
# if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
#  define MAP_ANONYMOUS MAP_ANON
# endif
# define USING_MMAP
#endif

#ifdef HAVE_MMAP_DEV_ZERO
# include <sys/mman.h>
# ifndef MAP_FAILED
#  define MAP_FAILED -1
# endif
# define USING_MMAP
#endif

#ifndef USING_MMAP
#error Zone collector requires mmap
#endif

#if (GCC_VERSION < 3001)
#define prefetch(X) ((void) X)
#define prefetchw(X) ((void) X)
#else
#define prefetch(X) __builtin_prefetch (X)
#define prefetchw(X) __builtin_prefetch (X, 1, 3)
#endif

/* FUTURE NOTES:

   If we track inter-zone pointers, we can mark single zones at a
   time.

   If we have a zone where we guarantee no inter-zone pointers, we
   could mark that zone separately.

   The garbage zone should not be marked, and we should return 1 in
   ggc_set_mark for any object in the garbage zone, which cuts off
   marking quickly.  */

/* Strategy:

   This garbage-collecting allocator segregates objects into zones.
   It also segregates objects into "large" and "small" bins.  Large
   objects are greater than page size.

   Pages for small objects are broken up into chunks.  The page has
   a bitmap which marks the start position of each chunk (whether
   allocated or free).  Free chunks are on one of the zone's free
   lists and contain a pointer to the next free chunk.  Chunks in
   most of the free lists have a fixed size determined by the
   free list.  Chunks in the "other" sized free list have their size
   stored right after their chain pointer.

   Empty pages (of all sizes) are kept on a single page cache list,
   and are considered first when new pages are required; they are
   deallocated at the start of the next collection if they haven't
   been recycled by then.  The free page list is currently per-zone.  */

/* Define GGC_DEBUG_LEVEL to print debugging information.
     0: No debugging output.
     1: GC statistics only.
     2: Page-entry allocations/deallocations as well.
     3: Object allocations as well.
     4: Object marks as well.  */
#define GGC_DEBUG_LEVEL (0)

#ifndef HOST_BITS_PER_PTR
#define HOST_BITS_PER_PTR  HOST_BITS_PER_LONG
#endif

/* This structure manages small free chunks.  The SIZE field is only
   initialized if the chunk is in the "other" sized free list.  Large
   chunks are allocated one at a time to their own page, and so don't
   come in here.  */

struct alloc_chunk {
  struct alloc_chunk *next_free;
  unsigned int size;
};

/* The size of the fixed-size portion of a small page descriptor.  */
#define PAGE_OVERHEAD   (offsetof (struct small_page_entry, alloc_bits))

/* The collector's idea of the page size.  This must be a power of two
   no larger than the system page size, because pages must be aligned
   to this amount and are tracked at this granularity in the page
   table.  We choose a size at compile time for efficiency.

   We could make a better guess at compile time if PAGE_SIZE is a
   constant in system headers, and PAGE_SHIFT is defined...  */
#define GGC_PAGE_SIZE	4096
#define GGC_PAGE_MASK	(GGC_PAGE_SIZE - 1)
#define GGC_PAGE_SHIFT	12

#if 0
/* Alternative definitions which use the runtime page size.  */
#define GGC_PAGE_SIZE	G.pagesize
#define GGC_PAGE_MASK	G.page_mask
#define GGC_PAGE_SHIFT	G.lg_pagesize
#endif

/* The size of a small page managed by the garbage collector.  This
   must currently be GGC_PAGE_SIZE, but with a few changes could
   be any multiple of it to reduce certain kinds of overhead.  */
#define SMALL_PAGE_SIZE GGC_PAGE_SIZE

/* Free bin information.  These numbers may be in need of re-tuning.
   In general, decreasing the number of free bins would seem to
   increase the time it takes to allocate... */

/* FIXME: We can't use anything but MAX_ALIGNMENT for the bin size
   today.  */

#define NUM_FREE_BINS		64
#define FREE_BIN_DELTA		MAX_ALIGNMENT
#define SIZE_BIN_DOWN(SIZE)	((SIZE) / FREE_BIN_DELTA)

/* Allocation and marking parameters.  */

/* The smallest allocatable unit to keep track of.  */
#define BYTES_PER_ALLOC_BIT	MAX_ALIGNMENT

/* The smallest markable unit.  If we require each allocated object
   to contain at least two allocatable units, we can use half as many
   bits for the mark bitmap.  But this adds considerable complexity
   to sweeping.  */
#define BYTES_PER_MARK_BIT	BYTES_PER_ALLOC_BIT

#define BYTES_PER_MARK_WORD	(8 * BYTES_PER_MARK_BIT * sizeof (mark_type))

/* We use this structure to determine the alignment required for
   allocations.

   There are several things wrong with this estimation of alignment.

   The maximum alignment for a structure is often less than the
   maximum alignment for a basic data type; for instance, on some
   targets long long must be aligned to sizeof (int) in a structure
   and sizeof (long long) in a variable.  i386-linux is one example;
   Darwin is another (sometimes, depending on the compiler in use).

   Also, long double is not included.  Nothing in GCC uses long
   double, so we assume that this is OK.  On powerpc-darwin, adding
   long double would bring the maximum alignment up to 16 bytes,
   and until we need long double (or to vectorize compiler operations)
   that's painfully wasteful.  This will need to change, some day.  */

struct max_alignment {
  char c;
  union {
    HOST_WIDEST_INT i;
    double d;
  } u;
};

/* The biggest alignment required.  */

#define MAX_ALIGNMENT (offsetof (struct max_alignment, u))

/* Compute the smallest multiple of F that is >= X.  */

#define ROUND_UP(x, f) (CEIL (x, f) * (f))

/* Types to use for the allocation and mark bitmaps.  It might be
   a good idea to add ffsl to libiberty and use unsigned long
   instead; that could speed us up where long is wider than int.  */

typedef unsigned int alloc_type;
typedef unsigned int mark_type;
#define alloc_ffs(x) ffs(x)

/* A page_entry records the status of an allocation page.  This is the
   common data between all three kinds of pages - small, large, and
   PCH.  */
typedef struct page_entry
{
  /* The address at which the memory is allocated.  */
  char *page;

  /* The zone that this page entry belongs to.  */
  struct alloc_zone *zone;

#ifdef GATHER_STATISTICS
  /* How many collections we've survived.  */
  size_t survived;
#endif

  /* Does this page contain small objects, or one large object?  */
  bool large_p;

  /* Is this page part of the loaded PCH?  */
  bool pch_p;
} page_entry;

/* Additional data needed for small pages.  */
struct small_page_entry
{
  struct page_entry common;

  /* The next small page entry, or NULL if this is the last.  */
  struct small_page_entry *next;

  /* If currently marking this zone, a pointer to the mark bits
     for this page.  If we aren't currently marking this zone,
     this pointer may be stale (pointing to freed memory).  */
  mark_type *mark_bits;

  /* The allocation bitmap.  This array extends far enough to have
     one bit for every BYTES_PER_ALLOC_BIT bytes in the page.  */
  alloc_type alloc_bits[1];
};

/* Additional data needed for large pages.  */
struct large_page_entry
{
  struct page_entry common;

  /* The next large page entry, or NULL if this is the last.  */
  struct large_page_entry *next;

  /* The number of bytes allocated, not including the page entry.  */
  size_t bytes;

  /* The previous page in the list, so that we can unlink this one.  */
  struct large_page_entry *prev;

  /* During marking, is this object marked?  */
  bool mark_p;
};

/* A two-level tree is used to look up the page-entry for a given
   pointer.  Two chunks of the pointer's bits are extracted to index
   the first and second levels of the tree, as follows:

				   HOST_PAGE_SIZE_BITS
			   32		|      |
       msb +----------------+----+------+------+ lsb
			    |    |      |
			 PAGE_L1_BITS   |
				 |      |
			       PAGE_L2_BITS

   The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
   pages are aligned on system page boundaries.  The next most
   significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
   index values in the lookup table, respectively.

   For 32-bit architectures and the settings below, there are no
   leftover bits.  For architectures with wider pointers, the lookup
   tree points to a list of pages, which must be scanned to find the
   correct one.  */

#define PAGE_L1_BITS	(8)
#define PAGE_L2_BITS	(32 - PAGE_L1_BITS - GGC_PAGE_SHIFT)
#define PAGE_L1_SIZE	((size_t) 1 << PAGE_L1_BITS)
#define PAGE_L2_SIZE	((size_t) 1 << PAGE_L2_BITS)

#define LOOKUP_L1(p) \
  (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))

#define LOOKUP_L2(p) \
  (((size_t) (p) >> GGC_PAGE_SHIFT) & ((1 << PAGE_L2_BITS) - 1))

#if HOST_BITS_PER_PTR <= 32

/* On 32-bit hosts, we use a two level page table, as pictured above.  */
typedef page_entry **page_table[PAGE_L1_SIZE];

#else

/* On 64-bit hosts, we use the same two level page tables plus a linked
   list that disambiguates the top 32-bits.  There will almost always be
   exactly one entry in the list.  */
typedef struct page_table_chain
{
  struct page_table_chain *next;
  size_t high_bits;
  page_entry **table[PAGE_L1_SIZE];
} *page_table;

#endif

/* The global variables.  */
static struct globals
{
  /* The linked list of zones.  */
  struct alloc_zone *zones;

  /* Lookup table for associating allocation pages with object addresses.  */
  page_table lookup;

  /* The system's page size, and related constants.  */
  size_t pagesize;
  size_t lg_pagesize;
  size_t page_mask;

  /* The size to allocate for a small page entry.  This includes
     the size of the structure and the size of the allocation
     bitmap.  */
  size_t small_page_overhead;

#if defined (HAVE_MMAP_DEV_ZERO)
  /* A file descriptor open to /dev/zero for reading.  */
  int dev_zero_fd;
#endif

  /* Allocate pages in chunks of this size, to throttle calls to memory
     allocation routines.  The first page is used, the rest go onto the
     free list.  */
  size_t quire_size;

  /* The file descriptor for debugging output.  */
  FILE *debug_file;
} G;

/* A zone allocation structure.  There is one of these for every
   distinct allocation zone.  */
struct alloc_zone
{
  /* The most recent free chunk is saved here, instead of in the linked
     free list, to decrease list manipulation.  It is most likely that we
     will want this one.  */
  char *cached_free;
  size_t cached_free_size;

  /* Linked lists of free storage.  Slots 1 ... NUM_FREE_BINS have chunks of size
     FREE_BIN_DELTA.  All other chunks are in slot 0.  */
  struct alloc_chunk *free_chunks[NUM_FREE_BINS + 1];

  /* The highest bin index which might be non-empty.  It may turn out
     to be empty, in which case we have to search downwards.  */
  size_t high_free_bin;

  /* Bytes currently allocated in this zone.  */
  size_t allocated;

  /* Linked list of the small pages in this zone.  */
  struct small_page_entry *pages;

  /* Doubly linked list of large pages in this zone.  */
  struct large_page_entry *large_pages;

  /* If we are currently marking this zone, a pointer to the mark bits.  */
  mark_type *mark_bits;

  /* Name of the zone.  */
  const char *name;

  /* The number of small pages currently allocated in this zone.  */
  size_t n_small_pages;

  /* Bytes allocated at the end of the last collection.  */
  size_t allocated_last_gc;

  /* Total amount of memory mapped.  */
  size_t bytes_mapped;

  /* A cache of free system pages.  */
  struct small_page_entry *free_pages;

  /* Next zone in the linked list of zones.  */
  struct alloc_zone *next_zone;

  /* True if this zone was collected during this collection.  */
  bool was_collected;

  /* True if this zone should be destroyed after the next collection.  */
  bool dead;

#ifdef GATHER_STATISTICS
  struct
  {
    /* Total memory allocated with ggc_alloc.  */
    unsigned long long total_allocated;
    /* Total overhead for memory to be allocated with ggc_alloc.  */
    unsigned long long total_overhead;

    /* Total allocations and overhead for sizes less than 32, 64 and 128.
       These sizes are interesting because they are typical cache line
       sizes.  */
   
    unsigned long long total_allocated_under32;
    unsigned long long total_overhead_under32;
  
    unsigned long long total_allocated_under64;
    unsigned long long total_overhead_under64;
  
    unsigned long long total_allocated_under128;
    unsigned long long total_overhead_under128;
  } stats;
#endif
} main_zone;

/* Some default zones.  */
struct alloc_zone rtl_zone;
struct alloc_zone tree_zone;
struct alloc_zone tree_id_zone;

/* The PCH zone does not need a normal zone structure, and it does
   not live on the linked list of zones.  */
struct pch_zone
{
  /* The start of the PCH zone.  NULL if there is none.  */
  char *page;

  /* The end of the PCH zone.  NULL if there is none.  */
  char *end;

  /* The size of the PCH zone.  0 if there is none.  */
  size_t bytes;

  /* The allocation bitmap for the PCH zone.  */
  alloc_type *alloc_bits;

  /* If we are currently marking, the mark bitmap for the PCH zone.
     When it is first read in, we could avoid marking the PCH,
     because it will not contain any pointers to GC memory outside
     of the PCH; however, the PCH is currently mapped as writable,
     so we must mark it in case new pointers are added.  */
  mark_type *mark_bits;
} pch_zone;

#ifdef USING_MMAP
static char *alloc_anon (char *, size_t, struct alloc_zone *);
#endif
static struct small_page_entry * alloc_small_page (struct alloc_zone *);
static struct large_page_entry * alloc_large_page (size_t, struct alloc_zone *);
static void free_chunk (char *, size_t, struct alloc_zone *);
static void free_small_page (struct small_page_entry *);
static void free_large_page (struct large_page_entry *);
static void release_pages (struct alloc_zone *);
static void sweep_pages (struct alloc_zone *);
static bool ggc_collect_1 (struct alloc_zone *, bool);
static void new_ggc_zone_1 (struct alloc_zone *, const char *);

/* Traverse the page table and find the entry for a page.
   Die (probably) if the object wasn't allocated via GC.  */

static inline page_entry *
lookup_page_table_entry (const void *p)
{
  page_entry ***base;
  size_t L1, L2;

#if HOST_BITS_PER_PTR <= 32
  base = &G.lookup[0];
#else
  page_table table = G.lookup;
  size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
  while (table->high_bits != high_bits)
    table = table->next;
  base = &table->table[0];
#endif

  /* Extract the level 1 and 2 indices.  */
  L1 = LOOKUP_L1 (p);
  L2 = LOOKUP_L2 (p);

  return base[L1][L2];
}

/* Set the page table entry for the page that starts at P.  If ENTRY
   is NULL, clear the entry.  */

static void
set_page_table_entry (void *p, page_entry *entry)
{
  page_entry ***base;
  size_t L1, L2;

#if HOST_BITS_PER_PTR <= 32
  base = &G.lookup[0];
#else
  page_table table;
  size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
  for (table = G.lookup; table; table = table->next)
    if (table->high_bits == high_bits)
      goto found;

  /* Not found -- allocate a new table.  */
  table = xcalloc (1, sizeof(*table));
  table->next = G.lookup;
  table->high_bits = high_bits;
  G.lookup = table;
found:
  base = &table->table[0];
#endif

  /* Extract the level 1 and 2 indices.  */
  L1 = LOOKUP_L1 (p);
  L2 = LOOKUP_L2 (p);

  if (base[L1] == NULL)
    base[L1] = xcalloc (PAGE_L2_SIZE, sizeof (page_entry *));

  base[L1][L2] = entry;
}

/* Find the page table entry associated with OBJECT.  */

static inline struct page_entry *
zone_get_object_page (const void *object)
{
  return lookup_page_table_entry (object);
}

/* Find which element of the alloc_bits array OBJECT should be
   recorded in.  */
static inline unsigned int
zone_get_object_alloc_word (const void *object)
{
  return (((size_t) object & (GGC_PAGE_SIZE - 1))
	  / (8 * sizeof (alloc_type) * BYTES_PER_ALLOC_BIT));
}

/* Find which bit of the appropriate word in the alloc_bits array
   OBJECT should be recorded in.  */
static inline unsigned int
zone_get_object_alloc_bit (const void *object)
{
  return (((size_t) object / BYTES_PER_ALLOC_BIT)
	  % (8 * sizeof (alloc_type)));
}

/* Find which element of the mark_bits array OBJECT should be recorded
   in.  */
static inline unsigned int
zone_get_object_mark_word (const void *object)
{
  return (((size_t) object & (GGC_PAGE_SIZE - 1))
	  / (8 * sizeof (mark_type) * BYTES_PER_MARK_BIT));
}

/* Find which bit of the appropriate word in the mark_bits array
   OBJECT should be recorded in.  */
static inline unsigned int
zone_get_object_mark_bit (const void *object)
{
  return (((size_t) object / BYTES_PER_MARK_BIT)
	  % (8 * sizeof (mark_type)));
}

/* Set the allocation bit corresponding to OBJECT in its page's
   bitmap.  Used to split this object from the preceding one.  */
static inline void
zone_set_object_alloc_bit (const void *object)
{
  struct small_page_entry *page
    = (struct small_page_entry *) zone_get_object_page (object);
  unsigned int start_word = zone_get_object_alloc_word (object);
  unsigned int start_bit = zone_get_object_alloc_bit (object);

  page->alloc_bits[start_word] |= 1L << start_bit;
}

/* Clear the allocation bit corresponding to OBJECT in PAGE's
   bitmap.  Used to coalesce this object with the preceding
   one.  */
static inline void
zone_clear_object_alloc_bit (struct small_page_entry *page,
			     const void *object)
{
  unsigned int start_word = zone_get_object_alloc_word (object);
  unsigned int start_bit = zone_get_object_alloc_bit (object);

  /* Would xor be quicker?  */
  page->alloc_bits[start_word] &= ~(1L << start_bit);
}

/* Find the size of the object which starts at START_WORD and
   START_BIT in ALLOC_BITS, which is at most MAX_SIZE bytes.
   Helper function for ggc_get_size and zone_find_object_size.  */

static inline size_t
zone_object_size_1 (alloc_type *alloc_bits,
		    size_t start_word, size_t start_bit,
		    size_t max_size)
{
  size_t size;
  alloc_type alloc_word;
  int indx;

  /* Load the first word.  */
  alloc_word = alloc_bits[start_word++];

  /* If that was the last bit in this word, we'll want to continue
     with the next word.  Otherwise, handle the rest of this word.  */
  if (start_bit)
    {
      indx = alloc_ffs (alloc_word >> start_bit);
      if (indx)
	/* indx is 1-based.  We started at the bit after the object's
	   start, but we also ended at the bit after the object's end.
	   It cancels out.  */
	return indx * BYTES_PER_ALLOC_BIT;

      /* The extra 1 accounts for the starting unit, before start_bit.  */
      size = (sizeof (alloc_type) * 8 - start_bit + 1) * BYTES_PER_ALLOC_BIT;

      if (size >= max_size)
	return max_size;

      alloc_word = alloc_bits[start_word++];
    }
  else
    size = BYTES_PER_ALLOC_BIT;

  while (alloc_word == 0)
    {
      size += sizeof (alloc_type) * 8 * BYTES_PER_ALLOC_BIT;
      if (size >= max_size)
	return max_size;
      alloc_word = alloc_bits[start_word++];
    }

  indx = alloc_ffs (alloc_word);
  return size + (indx - 1) * BYTES_PER_ALLOC_BIT;
}

/* Find the size of OBJECT on small page PAGE.  */

static inline size_t
zone_find_object_size (struct small_page_entry *page,
		       const void *object)
{
  const char *object_midptr = (const char *) object + BYTES_PER_ALLOC_BIT;
  unsigned int start_word = zone_get_object_alloc_word (object_midptr);
  unsigned int start_bit = zone_get_object_alloc_bit (object_midptr);
  size_t max_size = (page->common.page + SMALL_PAGE_SIZE
		     - (char *) object);

  return zone_object_size_1 (page->alloc_bits, start_word, start_bit,
			     max_size);
}

/* Allocate the mark bits for every zone, and set the pointers on each
   page.  */
static void
zone_allocate_marks (void)
{
  struct alloc_zone *zone;

  for (zone = G.zones; zone; zone = zone->next_zone)
    {
      struct small_page_entry *page;
      mark_type *cur_marks;
      size_t mark_words, mark_words_per_page;
#ifdef ENABLE_CHECKING
      size_t n = 0;
#endif

      mark_words_per_page
	= (GGC_PAGE_SIZE + BYTES_PER_MARK_WORD - 1) / BYTES_PER_MARK_WORD;
      mark_words = zone->n_small_pages * mark_words_per_page;
      zone->mark_bits = (mark_type *) xcalloc (sizeof (mark_type),
						   mark_words);
      cur_marks = zone->mark_bits;
      for (page = zone->pages; page; page = page->next)
	{
	  page->mark_bits = cur_marks;
	  cur_marks += mark_words_per_page;
#ifdef ENABLE_CHECKING
	  n++;
#endif
	}
#ifdef ENABLE_CHECKING
      gcc_assert (n == zone->n_small_pages);
#endif
    }

  /* We don't collect the PCH zone, but we do have to mark it
     (for now).  */
  if (pch_zone.bytes)
    pch_zone.mark_bits
      = (mark_type *) xcalloc (sizeof (mark_type),
			       CEIL (pch_zone.bytes, BYTES_PER_MARK_WORD));
}

/* After marking and sweeping, release the memory used for mark bits.  */
static void
zone_free_marks (void)
{
  struct alloc_zone *zone;

  for (zone = G.zones; zone; zone = zone->next_zone)
    if (zone->mark_bits)
      {
	free (zone->mark_bits);
	zone->mark_bits = NULL;
      }

  if (pch_zone.bytes)
    {
      free (pch_zone.mark_bits);
      pch_zone.mark_bits = NULL;
    }
}

#ifdef USING_MMAP
/* Allocate SIZE bytes of anonymous memory, preferably near PREF,
   (if non-null).  The ifdef structure here is intended to cause a
   compile error unless exactly one of the HAVE_* is defined.  */

static inline char *
alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size, struct alloc_zone *zone)
{
#ifdef HAVE_MMAP_ANON
  char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
			      MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
#endif
#ifdef HAVE_MMAP_DEV_ZERO
  char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
			      MAP_PRIVATE, G.dev_zero_fd, 0);
#endif

  if (page == (char *) MAP_FAILED)
    {
      perror ("virtual memory exhausted");
      exit (FATAL_EXIT_CODE);
    }

  /* Remember that we allocated this memory.  */
  zone->bytes_mapped += size;

  /* Pretend we don't have access to the allocated pages.  We'll enable
     access to smaller pieces of the area in ggc_alloc.  Discard the
     handle to avoid handle leak.  */
  VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (page, size));

  return page;
}
#endif

/* Allocate a new page for allocating small objects in ZONE, and
   return an entry for it.  */

static struct small_page_entry *
alloc_small_page (struct alloc_zone *zone)
{
  struct small_page_entry *entry;

  /* Check the list of free pages for one we can use.  */
  entry = zone->free_pages;
  if (entry != NULL)
    {
      /* Recycle the allocated memory from this page ...  */
      zone->free_pages = entry->next;
    }
  else
    {
      /* We want just one page.  Allocate a bunch of them and put the
	 extras on the freelist.  (Can only do this optimization with
	 mmap for backing store.)  */
      struct small_page_entry *e, *f = zone->free_pages;
      int i;
      char *page;

      page = alloc_anon (NULL, GGC_PAGE_SIZE * G.quire_size, zone);

      /* This loop counts down so that the chain will be in ascending
	 memory order.  */
      for (i = G.quire_size - 1; i >= 1; i--)
	{
	  e = xcalloc (1, G.small_page_overhead);
	  e->common.page = page + (i << GGC_PAGE_SHIFT);
	  e->common.zone = zone;
	  e->next = f;
	  f = e;
	  set_page_table_entry (e->common.page, &e->common);
	}

      zone->free_pages = f;

      entry = xcalloc (1, G.small_page_overhead);
      entry->common.page = page;
      entry->common.zone = zone;
      set_page_table_entry (page, &entry->common);
    }

  zone->n_small_pages++;

  if (GGC_DEBUG_LEVEL >= 2)
    fprintf (G.debug_file,
	     "Allocating %s page at %p, data %p-%p\n",
	     entry->common.zone->name, (PTR) entry, entry->common.page,
	     entry->common.page + SMALL_PAGE_SIZE - 1);

  return entry;
}

/* Allocate a large page of size SIZE in ZONE.  */

static struct large_page_entry *
alloc_large_page (size_t size, struct alloc_zone *zone)
{
  struct large_page_entry *entry;
  char *page;
  size_t needed_size;

  needed_size = size + sizeof (struct large_page_entry);
  page = xmalloc (needed_size);

  entry = (struct large_page_entry *) page;

  entry->next = NULL;
  entry->common.page = page + sizeof (struct large_page_entry);
  entry->common.large_p = true;
  entry->common.pch_p = false;
  entry->common.zone = zone;
#ifdef GATHER_STATISTICS
  entry->common.survived = 0;
#endif
  entry->mark_p = false;
  entry->bytes = size;
  entry->prev = NULL;

  set_page_table_entry (entry->common.page, &entry->common);

  if (GGC_DEBUG_LEVEL >= 2)
    fprintf (G.debug_file,
	     "Allocating %s large page at %p, data %p-%p\n",
	     entry->common.zone->name, (PTR) entry, entry->common.page,
	     entry->common.page + SMALL_PAGE_SIZE - 1);

  return entry;
}


/* For a page that is no longer needed, put it on the free page list.  */

static inline void
free_small_page (struct small_page_entry *entry)
{
  if (GGC_DEBUG_LEVEL >= 2)
    fprintf (G.debug_file,
	     "Deallocating %s page at %p, data %p-%p\n",
	     entry->common.zone->name, (PTR) entry,
	     entry->common.page, entry->common.page + SMALL_PAGE_SIZE - 1);

  gcc_assert (!entry->common.large_p);

  /* Mark the page as inaccessible.  Discard the handle to
     avoid handle leak.  */
  VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (entry->common.page,
					    SMALL_PAGE_SIZE));

  entry->next = entry->common.zone->free_pages;
  entry->common.zone->free_pages = entry;
  entry->common.zone->n_small_pages--;
}

/* Release a large page that is no longer needed.  */

static inline void
free_large_page (struct large_page_entry *entry)
{
  if (GGC_DEBUG_LEVEL >= 2)
    fprintf (G.debug_file,
	     "Deallocating %s page at %p, data %p-%p\n",
	     entry->common.zone->name, (PTR) entry,
	     entry->common.page, entry->common.page + SMALL_PAGE_SIZE - 1);

  gcc_assert (entry->common.large_p);

  set_page_table_entry (entry->common.page, NULL);
  free (entry);
}

/* Release the free page cache to the system.  */

static void
release_pages (struct alloc_zone *zone)
{
#ifdef USING_MMAP
  struct small_page_entry *p, *next;
  char *start;
  size_t len;

  /* Gather up adjacent pages so they are unmapped together.  */
  p = zone->free_pages;

  while (p)
    {
      start = p->common.page;
      next = p->next;
      len = SMALL_PAGE_SIZE;
      set_page_table_entry (p->common.page, NULL);
      p = next;

      while (p && p->common.page == start + len)
	{
	  next = p->next;
	  len += SMALL_PAGE_SIZE;
	  set_page_table_entry (p->common.page, NULL);
	  p = next;
	}

      munmap (start, len);
      zone->bytes_mapped -= len;
    }

  zone->free_pages = NULL;
#endif
}

/* Place the block at PTR of size SIZE on the free list for ZONE.  */

static inline void
free_chunk (char *ptr, size_t size, struct alloc_zone *zone)
{
  struct alloc_chunk *chunk = (struct alloc_chunk *) ptr;
  size_t bin = 0;

  bin = SIZE_BIN_DOWN (size);
  gcc_assert (bin != 0);
  if (bin > NUM_FREE_BINS)
    {
      bin = 0;
      VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (chunk, sizeof (struct alloc_chunk)));
      chunk->size = size;
      chunk->next_free = zone->free_chunks[bin];
      VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (ptr + sizeof (struct alloc_chunk),
						size - sizeof (struct alloc_chunk)));
    }
  else
    {
      VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (chunk, sizeof (struct alloc_chunk *)));
      chunk->next_free = zone->free_chunks[bin];
      VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (ptr + sizeof (struct alloc_chunk *),
						size - sizeof (struct alloc_chunk *)));
    }

  zone->free_chunks[bin] = chunk;
  if (bin > zone->high_free_bin)
    zone->high_free_bin = bin;
  if (GGC_DEBUG_LEVEL >= 3)
    fprintf (G.debug_file, "Deallocating object, chunk=%p\n", (void *)chunk);
}

/* Allocate a chunk of memory of at least ORIG_SIZE bytes, in ZONE.  */

void *
ggc_alloc_zone_stat (size_t orig_size, struct alloc_zone *zone
		     MEM_STAT_DECL)
{
  size_t bin;
  size_t csize;
  struct small_page_entry *entry;
  struct alloc_chunk *chunk, **pp;
  void *result;
  size_t size = orig_size;

  /* Make sure that zero-sized allocations get a unique and freeable
     pointer.  */
  if (size == 0)
    size = MAX_ALIGNMENT;
  else
    size = (size + MAX_ALIGNMENT - 1) & -MAX_ALIGNMENT;

  /* Try to allocate the object from several different sources.  Each
     of these cases is responsible for setting RESULT and SIZE to
     describe the allocated block, before jumping to FOUND.  If a
     chunk is split, the allocate bit for the new chunk should also be
     set.

     Large objects are handled specially.  However, they'll just fail
     the next couple of conditions, so we can wait to check for them
     below.  The large object case is relatively rare (< 1%), so this
     is a win.  */

  /* First try to split the last chunk we allocated.  For best
     fragmentation behavior it would be better to look for a
     free bin of the appropriate size for a small object.  However,
     we're unlikely (1% - 7%) to find one, and this gives better
     locality behavior anyway.  This case handles the lion's share
     of all calls to this function.  */
  if (size <= zone->cached_free_size)
    {
      result = zone->cached_free;

      zone->cached_free_size -= size;
      if (zone->cached_free_size)
	{
	  zone->cached_free += size;
	  zone_set_object_alloc_bit (zone->cached_free);
	}

      goto found;
    }

  /* Next, try to find a free bin of the exactly correct size.  */

  /* We want to round SIZE up, rather than down, but we know it's
     already aligned to at least FREE_BIN_DELTA, so we can just
     shift.  */
  bin = SIZE_BIN_DOWN (size);

  if (bin <= NUM_FREE_BINS
      && (chunk = zone->free_chunks[bin]) != NULL)
    {
      /* We have a chunk of the right size.  Pull it off the free list
	 and use it.  */

      zone->free_chunks[bin] = chunk->next_free;

      /* NOTE: SIZE is only guaranteed to be right if MAX_ALIGNMENT
	 == FREE_BIN_DELTA.  */
      result = chunk;

      /* The allocation bits are already set correctly.  HIGH_FREE_BIN
	 may now be wrong, if this was the last chunk in the high bin.
	 Rather than fixing it up now, wait until we need to search
	 the free bins.  */

      goto found;
    }

  /* Next, if there wasn't a chunk of the ideal size, look for a chunk
     to split.  We can find one in the too-big bin, or in the largest
     sized bin with a chunk in it.  Try the largest normal-sized bin
     first.  */

  if (zone->high_free_bin > bin)
    {
      /* Find the highest numbered free bin.  It will be at or below
	 the watermark.  */
      while (zone->high_free_bin > bin
	     && zone->free_chunks[zone->high_free_bin] == NULL)
	zone->high_free_bin--;

      if (zone->high_free_bin > bin)
	{
	  size_t tbin = zone->high_free_bin;
	  chunk = zone->free_chunks[tbin];

	  /* Remove the chunk from its previous bin.  */
	  zone->free_chunks[tbin] = chunk->next_free;

	  result = (char *) chunk;

	  /* Save the rest of the chunk for future allocation.  */
	  if (zone->cached_free_size)
	    free_chunk (zone->cached_free, zone->cached_free_size, zone);

	  chunk = (struct alloc_chunk *) ((char *) result + size);
	  zone->cached_free = (char *) chunk;
	  zone->cached_free_size = (tbin - bin) * FREE_BIN_DELTA;

	  /* Mark the new free chunk as an object, so that we can
	     find the size of the newly allocated object.  */
	  zone_set_object_alloc_bit (chunk);

	  /* HIGH_FREE_BIN may now be wrong, if this was the last
	     chunk in the high bin.  Rather than fixing it up now,
	     wait until we need to search the free bins.  */

	  goto found;
	}
    }

  /* Failing that, look through the "other" bucket for a chunk
     that is large enough.  */
  pp = &(zone->free_chunks[0]);
  chunk = *pp;
  while (chunk && chunk->size < size)
    {
      pp = &chunk->next_free;
      chunk = *pp;
    }

  if (chunk)
    {
      /* Remove the chunk from its previous bin.  */
      *pp = chunk->next_free;

      result = (char *) chunk;

      /* Save the rest of the chunk for future allocation, if there's any
	 left over.  */
      csize = chunk->size;
      if (csize > size)
	{
	  if (zone->cached_free_size)
	    free_chunk (zone->cached_free, zone->cached_free_size, zone);

	  chunk = (struct alloc_chunk *) ((char *) result + size);
	  zone->cached_free = (char *) chunk;
	  zone->cached_free_size = csize - size;

	  /* Mark the new free chunk as an object.  */
	  zone_set_object_alloc_bit (chunk);
	}

      goto found;
    }

  /* Handle large allocations.  We could choose any threshold between
     GGC_PAGE_SIZE - sizeof (struct large_page_entry) and
     GGC_PAGE_SIZE.  It can't be smaller, because then it wouldn't
     be guaranteed to have a unique entry in the lookup table.  Large
     allocations will always fall through to here.  */
  if (size > GGC_PAGE_SIZE)
    {
      struct large_page_entry *entry = alloc_large_page (size, zone);

#ifdef GATHER_STATISTICS
      entry->common.survived = 0;
#endif

      entry->next = zone->large_pages;
      if (zone->large_pages)
	zone->large_pages->prev = entry;
      zone->large_pages = entry;

      result = entry->common.page;

      goto found;
    }

  /* Failing everything above, allocate a new small page.  */

  entry = alloc_small_page (zone);
  entry->next = zone->pages;
  zone->pages = entry;

  /* Mark the first chunk in the new page.  */
  entry->alloc_bits[0] = 1;

  result = entry->common.page;
  if (size < SMALL_PAGE_SIZE)
    {
      if (zone->cached_free_size)
	free_chunk (zone->cached_free, zone->cached_free_size, zone);

      zone->cached_free = (char *) result + size;
      zone->cached_free_size = SMALL_PAGE_SIZE - size;

      /* Mark the new free chunk as an object.  */
      zone_set_object_alloc_bit (zone->cached_free);
    }

 found:

  /* We could save TYPE in the chunk, but we don't use that for
     anything yet.  If we wanted to, we could do it by adding it
     either before the beginning of the chunk or after its end,
     and adjusting the size and pointer appropriately.  */

  /* We'll probably write to this after we return.  */
  prefetchw (result);

#ifdef ENABLE_GC_CHECKING
  /* `Poison' the entire allocated object.  */
  VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, size));
  memset (result, 0xaf, size);
  VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (result + orig_size,
					    size - orig_size));
#endif

  /* Tell Valgrind that the memory is there, but its content isn't
     defined.  The bytes at the end of the object are still marked
     unaccessible.  */
  VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, orig_size));

  /* Keep track of how many bytes are being allocated.  This
     information is used in deciding when to collect.  */
  zone->allocated += size;
  
  timevar_ggc_mem_total += size;

#ifdef GATHER_STATISTICS
  ggc_record_overhead (orig_size, size - orig_size, result PASS_MEM_STAT);

  {
    size_t object_size = size;
    size_t overhead = object_size - orig_size;

    zone->stats.total_overhead += overhead;
    zone->stats.total_allocated += object_size;

    if (orig_size <= 32)
      {
	zone->stats.total_overhead_under32 += overhead;
	zone->stats.total_allocated_under32 += object_size;
      }
    if (orig_size <= 64)
      {
	zone->stats.total_overhead_under64 += overhead;
	zone->stats.total_allocated_under64 += object_size;
      }
    if (orig_size <= 128)
      {
	zone->stats.total_overhead_under128 += overhead;
	zone->stats.total_allocated_under128 += object_size;
      }
  }
#endif

  if (GGC_DEBUG_LEVEL >= 3)
    fprintf (G.debug_file, "Allocating object, size=%lu at %p\n",
	     (unsigned long) size, result);

  return result;
}

/* Allocate a SIZE of chunk memory of GTE type, into an appropriate zone
   for that type.  */

void *
ggc_alloc_typed_stat (enum gt_types_enum gte, size_t size
		      MEM_STAT_DECL)
{
  switch (gte)
    {
    case gt_ggc_e_14lang_tree_node:
      return ggc_alloc_zone_pass_stat (size, &tree_zone);

    case gt_ggc_e_7rtx_def:
      return ggc_alloc_zone_pass_stat (size, &rtl_zone);

    case gt_ggc_e_9rtvec_def:
      return ggc_alloc_zone_pass_stat (size, &rtl_zone);

    default:
      return ggc_alloc_zone_pass_stat (size, &main_zone);
    }
}

/* Normal ggc_alloc simply allocates into the main zone.  */

void *
ggc_alloc_stat (size_t size MEM_STAT_DECL)
{
  return ggc_alloc_zone_pass_stat (size, &main_zone);
}

/* Poison the chunk.  */
#ifdef ENABLE_GC_CHECKING
#define poison_region(PTR, SIZE) \
  memset ((PTR), 0xa5, (SIZE))
#else
#define poison_region(PTR, SIZE)
#endif

/* Free the object at P.  */

void
ggc_free (void *p)
{
  struct page_entry *page;

#ifdef GATHER_STATISTICS
  ggc_free_overhead (p);
#endif

  poison_region (p, ggc_get_size (p));

  page = zone_get_object_page (p);

  if (page->large_p)
    {
      struct large_page_entry *large_page
	= (struct large_page_entry *) page;

      /* Remove the page from the linked list.  */
      if (large_page->prev)
	large_page->prev->next = large_page->next;
      else
	{
	  gcc_assert (large_page->common.zone->large_pages == large_page);
	  large_page->common.zone->large_pages = large_page->next;
	}
      if (large_page->next)
	large_page->next->prev = large_page->prev;

      large_page->common.zone->allocated -= large_page->bytes;

      /* Release the memory associated with this object.  */
      free_large_page (large_page);
    }
  else if (page->pch_p)
    /* Don't do anything.  We won't allocate a new object from the
       PCH zone so there's no point in releasing anything.  */
    ;
  else
    {
      size_t size = ggc_get_size (p);

      page->zone->allocated -= size;

      /* Add the chunk to the free list.  We don't bother with coalescing,
	 since we are likely to want a chunk of this size again.  */
      free_chunk (p, size, page->zone);
    }
}

/* If P is not marked, mark it and return false.  Otherwise return true.
   P must have been allocated by the GC allocator; it mustn't point to
   static objects, stack variables, or memory allocated with malloc.  */

int
ggc_set_mark (const void *p)
{
  struct page_entry *page;
  const char *ptr = (const char *) p;

  page = zone_get_object_page (p);

  if (page->pch_p)
    {
      size_t mark_word, mark_bit, offset;
      offset = (ptr - pch_zone.page) / BYTES_PER_MARK_BIT;
      mark_word = offset / (8 * sizeof (mark_type));
      mark_bit = offset % (8 * sizeof (mark_type));
      
      if (pch_zone.mark_bits[mark_word] & (1 << mark_bit))
	return 1;
      pch_zone.mark_bits[mark_word] |= (1 << mark_bit);
    }
  else if (page->large_p)
    {
      struct large_page_entry *large_page
	= (struct large_page_entry *) page;

      if (large_page->mark_p)
	return 1;
      large_page->mark_p = true;
    }
  else
    {
      struct small_page_entry *small_page
	= (struct small_page_entry *) page;

      if (small_page->mark_bits[zone_get_object_mark_word (p)]
	  & (1 << zone_get_object_mark_bit (p)))
	return 1;
      small_page->mark_bits[zone_get_object_mark_word (p)]
	|= (1 << zone_get_object_mark_bit (p));
    }

  if (GGC_DEBUG_LEVEL >= 4)
    fprintf (G.debug_file, "Marking %p\n", p);

  return 0;
}

/* Return 1 if P has been marked, zero otherwise.
   P must have been allocated by the GC allocator; it mustn't point to
   static objects, stack variables, or memory allocated with malloc.  */

int
ggc_marked_p (const void *p)
{
  struct page_entry *page;
  const char *ptr = p;

  page = zone_get_object_page (p);

  if (page->pch_p)
    {
      size_t mark_word, mark_bit, offset;
      offset = (ptr - pch_zone.page) / BYTES_PER_MARK_BIT;
      mark_word = offset / (8 * sizeof (mark_type));
      mark_bit = offset % (8 * sizeof (mark_type));
      
      return (pch_zone.mark_bits[mark_word] & (1 << mark_bit)) != 0;
    }

  if (page->large_p)
    {
      struct large_page_entry *large_page
	= (struct large_page_entry *) page;

      return large_page->mark_p;
    }
  else
    {
      struct small_page_entry *small_page
	= (struct small_page_entry *) page;

      return 0 != (small_page->mark_bits[zone_get_object_mark_word (p)]
		   & (1 << zone_get_object_mark_bit (p)));
    }
}

/* Return the size of the gc-able object P.  */

size_t
ggc_get_size (const void *p)
{
  struct page_entry *page;
  const char *ptr = (const char *) p;

  page = zone_get_object_page (p);

  if (page->pch_p)
    {
      size_t alloc_word, alloc_bit, offset, max_size;
      offset = (ptr - pch_zone.page) / BYTES_PER_ALLOC_BIT + 1;
      alloc_word = offset / (8 * sizeof (alloc_type));
      alloc_bit = offset % (8 * sizeof (alloc_type));
      max_size = pch_zone.bytes - (ptr - pch_zone.page);
      return zone_object_size_1 (pch_zone.alloc_bits, alloc_word, alloc_bit,
				 max_size);
    }

  if (page->large_p)
    return ((struct large_page_entry *)page)->bytes;
  else
    return zone_find_object_size ((struct small_page_entry *) page, p);
}

/* Initialize the ggc-zone-mmap allocator.  */
void
init_ggc (void)
{
  /* The allocation size must be greater than BYTES_PER_MARK_BIT, and
     a multiple of both BYTES_PER_ALLOC_BIT and FREE_BIN_DELTA, for
     the current assumptions to hold.  */

  gcc_assert (FREE_BIN_DELTA == MAX_ALIGNMENT);

  /* Set up the main zone by hand.  */
  main_zone.name = "Main zone";
  G.zones = &main_zone;

  /* Allocate the default zones.  */
  new_ggc_zone_1 (&rtl_zone, "RTL zone");
  new_ggc_zone_1 (&tree_zone, "Tree zone");
  new_ggc_zone_1 (&tree_id_zone, "Tree identifier zone");

  G.pagesize = getpagesize();
  G.lg_pagesize = exact_log2 (G.pagesize);
  G.page_mask = ~(G.pagesize - 1);

  /* Require the system page size to be a multiple of GGC_PAGE_SIZE.  */
  gcc_assert ((G.pagesize & (GGC_PAGE_SIZE - 1)) == 0);

  /* Allocate 16 system pages at a time.  */
  G.quire_size = 16 * G.pagesize / GGC_PAGE_SIZE;

  /* Calculate the size of the allocation bitmap and other overhead.  */
  /* Right now we allocate bits for the page header and bitmap.  These
     are wasted, but a little tricky to eliminate.  */
  G.small_page_overhead
    = PAGE_OVERHEAD + (GGC_PAGE_SIZE / BYTES_PER_ALLOC_BIT / 8);
  /* G.small_page_overhead = ROUND_UP (G.small_page_overhead, MAX_ALIGNMENT); */

#ifdef HAVE_MMAP_DEV_ZERO
  G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
  gcc_assert (G.dev_zero_fd != -1);
#endif

#if 0
  G.debug_file = fopen ("ggc-mmap.debug", "w");
  setlinebuf (G.debug_file);
#else
  G.debug_file = stdout;
#endif

#ifdef USING_MMAP
  /* StunOS has an amazing off-by-one error for the first mmap allocation
     after fiddling with RLIMIT_STACK.  The result, as hard as it is to
     believe, is an unaligned page allocation, which would cause us to
     hork badly if we tried to use it.  */
  {
    char *p = alloc_anon (NULL, G.pagesize, &main_zone);
    struct small_page_entry *e;
    if ((size_t)p & (G.pagesize - 1))
      {
	/* How losing.  Discard this one and try another.  If we still
	   can't get something useful, give up.  */

	p = alloc_anon (NULL, G.pagesize, &main_zone);
	gcc_assert (!((size_t)p & (G.pagesize - 1)));
      }

    if (GGC_PAGE_SIZE == G.pagesize)
      {
	/* We have a good page, might as well hold onto it...  */
	e = xcalloc (1, G.small_page_overhead);
	e->common.page = p;
	e->common.zone = &main_zone;
	e->next = main_zone.free_pages;
	set_page_table_entry (e->common.page, &e->common);
	main_zone.free_pages = e;
      }
    else
      {
	munmap (p, G.pagesize);
      }
  }
#endif
}

/* Start a new GGC zone.  */

static void
new_ggc_zone_1 (struct alloc_zone *new_zone, const char * name)
{
  new_zone->name = name;
  new_zone->next_zone = G.zones->next_zone;
  G.zones->next_zone = new_zone;
}

struct alloc_zone *
new_ggc_zone (const char * name)
{
  struct alloc_zone *new_zone = xcalloc (1, sizeof (struct alloc_zone));
  new_ggc_zone_1 (new_zone, name);
  return new_zone;
}

/* Destroy a GGC zone.  */
void
destroy_ggc_zone (struct alloc_zone * dead_zone)
{
  struct alloc_zone *z;

  for (z = G.zones; z && z->next_zone != dead_zone; z = z->next_zone)
    /* Just find that zone.  */
    continue;

  /* We should have found the zone in the list.  Anything else is fatal.  */
  gcc_assert (z);

  /* z is dead, baby. z is dead.  */
  z->dead = true;
}

/* Free all empty pages and objects within a page for a given zone  */

static void
sweep_pages (struct alloc_zone *zone)
{
  struct large_page_entry **lpp, *lp, *lnext;
  struct small_page_entry **spp, *sp, *snext;
  char *last_free;
  size_t allocated = 0;
  bool nomarksinpage;

  /* First, reset the free_chunks lists, since we are going to
     re-free free chunks in hopes of coalescing them into large chunks.  */
  memset (zone->free_chunks, 0, sizeof (zone->free_chunks));
  zone->high_free_bin = 0;
  zone->cached_free = NULL;
  zone->cached_free_size = 0;

  /* Large pages are all or none affairs. Either they are completely
     empty, or they are completely full.  */
  lpp = &zone->large_pages;
  for (lp = zone->large_pages; lp != NULL; lp = lnext)
    {
      gcc_assert (lp->common.large_p);

      lnext = lp->next;

#ifdef GATHER_STATISTICS
      /* This page has now survived another collection.  */
      lp->common.survived++;
#endif

      if (lp->mark_p)
	{
	  lp->mark_p = false;
	  allocated += lp->bytes;
	  lpp = &lp->next;
	}
      else
	{
	  *lpp = lnext;
#ifdef ENABLE_GC_CHECKING
	  /* Poison the page.  */
	  memset (lp->common.page, 0xb5, SMALL_PAGE_SIZE);
#endif
	  if (lp->prev)
	    lp->prev->next = lp->next;
	  if (lp->next)
	    lp->next->prev = lp->prev;
	  free_large_page (lp);
	}
    }

  spp = &zone->pages;
  for (sp = zone->pages; sp != NULL; sp = snext)
    {
      char *object, *last_object;
      char *end;
      alloc_type *alloc_word_p;
      mark_type *mark_word_p;

      gcc_assert (!sp->common.large_p);

      snext = sp->next;

#ifdef GATHER_STATISTICS
      /* This page has now survived another collection.  */
      sp->common.survived++;
#endif

      /* Step through all chunks, consolidate those that are free and
	 insert them into the free lists.  Note that consolidation
	 slows down collection slightly.  */

      last_object = object = sp->common.page;
      end = sp->common.page + SMALL_PAGE_SIZE;
      last_free = NULL;
      nomarksinpage = true;
      mark_word_p = sp->mark_bits;
      alloc_word_p = sp->alloc_bits;

      gcc_assert (BYTES_PER_ALLOC_BIT == BYTES_PER_MARK_BIT);

      object = sp->common.page;
      do
	{
	  unsigned int i, n;
	  alloc_type alloc_word;
	  mark_type mark_word;

	  alloc_word = *alloc_word_p++;
	  mark_word = *mark_word_p++;

	  if (mark_word)
	    nomarksinpage = false;

	  /* There ought to be some way to do this without looping...  */
	  i = 0;
	  while ((n = alloc_ffs (alloc_word)) != 0)
	    {
	      /* Extend the current state for n - 1 bits.  We can't
		 shift alloc_word by n, even though it isn't used in the
		 loop, in case only the highest bit was set.  */
	      alloc_word >>= n - 1;
	      mark_word >>= n - 1;
	      object += BYTES_PER_MARK_BIT * (n - 1);

	      if (mark_word & 1)
		{
		  if (last_free)
		    {
		      VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (last_free,
								object
								- last_free));
		      poison_region (last_free, object - last_free);
		      free_chunk (last_free, object - last_free, zone);
		      last_free = NULL;
		    }
		  else
		    allocated += object - last_object;
		  last_object = object;
		}
	      else
		{
		  if (last_free == NULL)
		    {
		      last_free = object;
		      allocated += object - last_object;
		    }
		  else
		    zone_clear_object_alloc_bit (sp, object);
		}

	      /* Shift to just after the alloc bit we handled.  */
	      alloc_word >>= 1;
	      mark_word >>= 1;
	      object += BYTES_PER_MARK_BIT;

	      i += n;
	    }

	  object += BYTES_PER_MARK_BIT * (8 * sizeof (alloc_type) - i);
	}
      while (object < end);

      if (nomarksinpage)
	{
	  *spp = snext;
#ifdef ENABLE_GC_CHECKING
	  VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (sp->common.page, SMALL_PAGE_SIZE));
	  /* Poison the page.  */
	  memset (sp->common.page, 0xb5, SMALL_PAGE_SIZE);
#endif
	  free_small_page (sp);
	  continue;
	}
      else if (last_free)
	{
	  VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (last_free,
						    object - last_free));
	  poison_region (last_free, object - last_free);
	  free_chunk (last_free, object - last_free, zone);
	}
      else
	allocated += object - last_object;

      spp = &sp->next;
    }

  zone->allocated = allocated;
}

/* mark-and-sweep routine for collecting a single zone.  NEED_MARKING
   is true if we need to mark before sweeping, false if some other
   zone collection has already performed marking for us.  Returns true
   if we collected, false otherwise.  */

static bool
ggc_collect_1 (struct alloc_zone *zone, bool need_marking)
{
#if 0
  /* */
  {
    int i;
    for (i = 0; i < NUM_FREE_BINS + 1; i++)
      {
	struct alloc_chunk *chunk;
	int n, tot;

	n = 0;
	tot = 0;
	chunk = zone->free_chunks[i];
	while (chunk)
	  {
	    n++;
	    tot += chunk->size;
	    chunk = chunk->next_free;
	  }
	fprintf (stderr, "Bin %d: %d free chunks (%d bytes)\n",
		 i, n, tot);
      }
  }
  /* */
#endif

  if (!quiet_flag)
    fprintf (stderr, " {%s GC %luk -> ",
	     zone->name, (unsigned long) zone->allocated / 1024);

  /* Zero the total allocated bytes.  This will be recalculated in the
     sweep phase.  */
  zone->allocated = 0;

  /* Release the pages we freed the last time we collected, but didn't
     reuse in the interim.  */
  release_pages (zone);

  if (need_marking)
    {
      zone_allocate_marks ();
      ggc_mark_roots ();
#ifdef GATHER_STATISTICS
      ggc_prune_overhead_list ();
#endif
    }
  
  sweep_pages (zone);
  zone->was_collected = true;
  zone->allocated_last_gc = zone->allocated;

  if (!quiet_flag)
    fprintf (stderr, "%luk}", (unsigned long) zone->allocated / 1024);
  return true;
}

#ifdef GATHER_STATISTICS
/* Calculate the average page survival rate in terms of number of
   collections.  */

static float
calculate_average_page_survival (struct alloc_zone *zone)
{
  float count = 0.0;
  float survival = 0.0;
  struct small_page_entry *p;
  struct large_page_entry *lp;
  for (p = zone->pages; p; p = p->next)
    {
      count += 1.0;
      survival += p->common.survived;
    }
  for (lp = zone->large_pages; lp; lp = lp->next)
    {
      count += 1.0;
      survival += lp->common.survived;
    }
  return survival/count;
}
#endif

/* Top level collection routine.  */

void
ggc_collect (void)
{
  struct alloc_zone *zone;
  bool marked = false;

  timevar_push (TV_GC);

  if (!ggc_force_collect)
    {
      float allocated_last_gc = 0, allocated = 0, min_expand;

      for (zone = G.zones; zone; zone = zone->next_zone)
	{
	  allocated_last_gc += zone->allocated_last_gc;
	  allocated += zone->allocated;
	}

      allocated_last_gc =
	MAX (allocated_last_gc,
	     (size_t) PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
      min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;

      if (allocated < allocated_last_gc + min_expand)
	{
	  timevar_pop (TV_GC);
	  return;
	}
    }

  /* Start by possibly collecting the main zone.  */
  main_zone.was_collected = false;
  marked |= ggc_collect_1 (&main_zone, true);

  /* In order to keep the number of collections down, we don't
     collect other zones unless we are collecting the main zone.  This
     gives us roughly the same number of collections as we used to
     have with the old gc.  The number of collection is important
     because our main slowdown (according to profiling) is now in
     marking.  So if we mark twice as often as we used to, we'll be
     twice as slow.  Hopefully we'll avoid this cost when we mark
     zone-at-a-time.  */
  /* NOTE drow/2004-07-28: We now always collect the main zone, but
     keep this code in case the heuristics are further refined.  */

  if (main_zone.was_collected)
    {
      struct alloc_zone *zone;

      for (zone = main_zone.next_zone; zone; zone = zone->next_zone)
	{
	  zone->was_collected = false;
	  marked |= ggc_collect_1 (zone, !marked);
	}
    }

#ifdef GATHER_STATISTICS
  /* Print page survival stats, if someone wants them.  */
  if (GGC_DEBUG_LEVEL >= 2)
    {
      for (zone = G.zones; zone; zone = zone->next_zone)
	{
	  if (zone->was_collected)
	    {
	      float f = calculate_average_page_survival (zone);
	      printf ("Average page survival in zone `%s' is %f\n",
		      zone->name, f);
	    }
	}
    }
#endif

  if (marked)
    zone_free_marks ();

  /* Free dead zones.  */
  for (zone = G.zones; zone && zone->next_zone; zone = zone->next_zone)
    {
      if (zone->next_zone->dead)
	{
	  struct alloc_zone *dead_zone = zone->next_zone;

	  printf ("Zone `%s' is dead and will be freed.\n", dead_zone->name);

	  /* The zone must be empty.  */
	  gcc_assert (!dead_zone->allocated);

	  /* Unchain the dead zone, release all its pages and free it.  */
	  zone->next_zone = zone->next_zone->next_zone;
	  release_pages (dead_zone);
	  free (dead_zone);
	}
    }

  timevar_pop (TV_GC);
}

/* Print allocation statistics.  */
#define SCALE(x) ((unsigned long) ((x) < 1024*10 \
		  ? (x) \
		  : ((x) < 1024*1024*10 \
		     ? (x) / 1024 \
		     : (x) / (1024*1024))))
#define LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))

void
ggc_print_statistics (void)
{
  struct alloc_zone *zone;
  struct ggc_statistics stats;
  size_t total_overhead = 0, total_allocated = 0, total_bytes_mapped = 0;
  size_t pte_overhead, i;

  /* Clear the statistics.  */
  memset (&stats, 0, sizeof (stats));

  /* Make sure collection will really occur.  */
  ggc_force_collect = true;

  /* Collect and print the statistics common across collectors.  */
  ggc_print_common_statistics (stderr, &stats);

  ggc_force_collect = false;

  /* Release free pages so that we will not count the bytes allocated
     there as part of the total allocated memory.  */
  for (zone = G.zones; zone; zone = zone->next_zone)
    release_pages (zone);

  /* Collect some information about the various sizes of
     allocation.  */
  fprintf (stderr,
           "Memory still allocated at the end of the compilation process\n");

  fprintf (stderr, "%20s %10s  %10s  %10s\n",
	   "Zone", "Allocated", "Used", "Overhead");
  for (zone = G.zones; zone; zone = zone->next_zone)
    {
      struct large_page_entry *large_page;
      size_t overhead, allocated, in_use;

      /* Skip empty zones.  */
      if (!zone->pages && !zone->large_pages)
	continue;

      allocated = in_use = 0;

      overhead = sizeof (struct alloc_zone);

      for (large_page = zone->large_pages; large_page != NULL;
	   large_page = large_page->next)
	{
	  allocated += large_page->bytes;
	  in_use += large_page->bytes;
	  overhead += sizeof (struct large_page_entry);
	}

      /* There's no easy way to walk through the small pages finding
	 used and unused objects.  Instead, add all the pages, and
	 subtract out the free list.  */

      allocated += GGC_PAGE_SIZE * zone->n_small_pages;
      in_use += GGC_PAGE_SIZE * zone->n_small_pages;
      overhead += G.small_page_overhead * zone->n_small_pages;

      for (i = 0; i <= NUM_FREE_BINS; i++)
	{
	  struct alloc_chunk *chunk = zone->free_chunks[i];
	  while (chunk)
	    {
	      in_use -= ggc_get_size (chunk);
	      chunk = chunk->next_free;
	    }
	}
      
      fprintf (stderr, "%20s %10lu%c %10lu%c %10lu%c\n",
	       zone->name,
	       SCALE (allocated), LABEL (allocated),
	       SCALE (in_use), LABEL (in_use),
	       SCALE (overhead), LABEL (overhead));

      gcc_assert (in_use == zone->allocated);

      total_overhead += overhead;
      total_allocated += zone->allocated;
      total_bytes_mapped += zone->bytes_mapped;
    }

  /* Count the size of the page table as best we can.  */
#if HOST_BITS_PER_PTR <= 32
  pte_overhead = sizeof (G.lookup);
  for (i = 0; i < PAGE_L1_SIZE; i++)
    if (G.lookup[i])
      pte_overhead += PAGE_L2_SIZE * sizeof (struct page_entry *);
#else
  {
    page_table table = G.lookup;
    pte_overhead = 0;
    while (table)
      {
	pte_overhead += sizeof (*table);
	for (i = 0; i < PAGE_L1_SIZE; i++)
	  if (table->table[i])
	    pte_overhead += PAGE_L2_SIZE * sizeof (struct page_entry *);
	table = table->next;
      }
  }
#endif
  fprintf (stderr, "%20s %11s %11s %10lu%c\n", "Page Table",
	   "", "", SCALE (pte_overhead), LABEL (pte_overhead));
  total_overhead += pte_overhead;

  fprintf (stderr, "%20s %10lu%c %10lu%c %10lu%c\n", "Total",
	   SCALE (total_bytes_mapped), LABEL (total_bytes_mapped),
	   SCALE (total_allocated), LABEL(total_allocated),
	   SCALE (total_overhead), LABEL (total_overhead));

#ifdef GATHER_STATISTICS  
  {
    unsigned long long all_overhead = 0, all_allocated = 0;
    unsigned long long all_overhead_under32 = 0, all_allocated_under32 = 0;
    unsigned long long all_overhead_under64 = 0, all_allocated_under64 = 0;
    unsigned long long all_overhead_under128 = 0, all_allocated_under128 = 0;

    fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");

    for (zone = G.zones; zone; zone = zone->next_zone)
      {
	all_overhead += zone->stats.total_overhead;
	all_allocated += zone->stats.total_allocated;

	all_allocated_under32 += zone->stats.total_allocated_under32;
	all_overhead_under32 += zone->stats.total_overhead_under32;

	all_allocated_under64 += zone->stats.total_allocated_under64;
	all_overhead_under64 += zone->stats.total_overhead_under64;
	
	all_allocated_under128 += zone->stats.total_allocated_under128;
	all_overhead_under128 += zone->stats.total_overhead_under128;

	fprintf (stderr, "%20s:                  %10lld\n",
		 zone->name, zone->stats.total_allocated);
      }

    fprintf (stderr, "\n");

    fprintf (stderr, "Total Overhead:                        %10lld\n",
             all_overhead);
    fprintf (stderr, "Total Allocated:                       %10lld\n",
             all_allocated);

    fprintf (stderr, "Total Overhead  under  32B:            %10lld\n",
             all_overhead_under32);
    fprintf (stderr, "Total Allocated under  32B:            %10lld\n",
             all_allocated_under32);
    fprintf (stderr, "Total Overhead  under  64B:            %10lld\n",
             all_overhead_under64);
    fprintf (stderr, "Total Allocated under  64B:            %10lld\n",
             all_allocated_under64);
    fprintf (stderr, "Total Overhead  under 128B:            %10lld\n",
             all_overhead_under128);
    fprintf (stderr, "Total Allocated under 128B:            %10lld\n",
             all_allocated_under128);
  }
#endif
}

/* Precompiled header support.  */

/* For precompiled headers, we sort objects based on their type.  We
   also sort various objects into their own buckets; currently this
   covers strings and IDENTIFIER_NODE trees.  The choices of how
   to sort buckets have not yet been tuned.  */

#define NUM_PCH_BUCKETS		(gt_types_enum_last + 3)

#define OTHER_BUCKET		(gt_types_enum_last + 0)
#define IDENTIFIER_BUCKET	(gt_types_enum_last + 1)
#define STRING_BUCKET		(gt_types_enum_last + 2)

struct ggc_pch_ondisk
{
  size_t total;
  size_t type_totals[NUM_PCH_BUCKETS];
};

struct ggc_pch_data
{
  struct ggc_pch_ondisk d;
  size_t base;
  size_t orig_base;
  size_t alloc_size;
  alloc_type *alloc_bits;
  size_t type_bases[NUM_PCH_BUCKETS];
  size_t start_offset;
};

/* Initialize the PCH data structure.  */

struct ggc_pch_data *
init_ggc_pch (void)
{
  return xcalloc (sizeof (struct ggc_pch_data), 1);
}

/* Return which of the page-aligned buckets the object at X, with type
   TYPE, should be sorted into in the PCH.  Strings will have
   IS_STRING set and TYPE will be gt_types_enum_last.  Other objects
   of unknown type will also have TYPE equal to gt_types_enum_last.  */

static int
pch_bucket (void *x, enum gt_types_enum type,
	    bool is_string)
{
  /* Sort identifiers into their own bucket, to improve locality
     when searching the identifier hash table.  */
  if (type == gt_ggc_e_14lang_tree_node
      && TREE_CODE ((tree) x) == IDENTIFIER_NODE)
    return IDENTIFIER_BUCKET;
  else if (type == gt_types_enum_last)
    {
      if (is_string)
	return STRING_BUCKET;
      return OTHER_BUCKET;
    }
  return type;
}

/* Add the size of object X to the size of the PCH data.  */

void
ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
		      size_t size, bool is_string, enum gt_types_enum type)
{
  /* NOTE: Right now we don't need to align up the size of any objects.
     Strings can be unaligned, and everything else is allocated to a
     MAX_ALIGNMENT boundary already.  */

  d->d.type_totals[pch_bucket (x, type, is_string)] += size;
}

/* Return the total size of the PCH data.  */

size_t
ggc_pch_total_size (struct ggc_pch_data *d)
{
  enum gt_types_enum i;
  size_t alloc_size, total_size;

  total_size = 0;
  for (i = 0; i < NUM_PCH_BUCKETS; i++)
    {
      d->d.type_totals[i] = ROUND_UP (d->d.type_totals[i], GGC_PAGE_SIZE);
      total_size += d->d.type_totals[i];
    }
  d->d.total = total_size;

  /* Include the size of the allocation bitmap.  */
  alloc_size = CEIL (d->d.total, BYTES_PER_ALLOC_BIT * 8);
  alloc_size = ROUND_UP (alloc_size, MAX_ALIGNMENT);
  d->alloc_size = alloc_size;

  return d->d.total + alloc_size;
}

/* Set the base address for the objects in the PCH file.  */

void
ggc_pch_this_base (struct ggc_pch_data *d, void *base_)
{
  int i;
  size_t base = (size_t) base_;

  d->base = d->orig_base = base;
  for (i = 0; i < NUM_PCH_BUCKETS; i++)
    {
      d->type_bases[i] = base;
      base += d->d.type_totals[i];
    }

  if (d->alloc_bits == NULL)
    d->alloc_bits = xcalloc (1, d->alloc_size);
}

/* Allocate a place for object X of size SIZE in the PCH file.  */

char *
ggc_pch_alloc_object (struct ggc_pch_data *d, void *x,
		      size_t size, bool is_string,
		      enum gt_types_enum type)
{
  size_t alloc_word, alloc_bit;
  char *result;
  int bucket = pch_bucket (x, type, is_string);

  /* Record the start of the object in the allocation bitmap.  We
     can't assert that the allocation bit is previously clear, because
     strings may violate the invariant that they are at least
     BYTES_PER_ALLOC_BIT long.  This is harmless - ggc_get_size
     should not be called for strings.  */
  alloc_word = ((d->type_bases[bucket] - d->orig_base)
		/ (8 * sizeof (alloc_type) * BYTES_PER_ALLOC_BIT));
  alloc_bit = ((d->type_bases[bucket] - d->orig_base)
	       / BYTES_PER_ALLOC_BIT) % (8 * sizeof (alloc_type));
  d->alloc_bits[alloc_word] |= 1L << alloc_bit;

  /* Place the object at the current pointer for this bucket.  */
  result = (char *) d->type_bases[bucket];
  d->type_bases[bucket] += size;
  return result;
}

/* Prepare to write out the PCH data to file F.  */

void
ggc_pch_prepare_write (struct ggc_pch_data *d,
		       FILE *f)
{
  /* We seek around a lot while writing.  Record where the end
     of the padding in the PCH file is, so that we can
     locate each object's offset.  */
  d->start_offset = ftell (f);
}

/* Write out object X of SIZE to file F.  */

void
ggc_pch_write_object (struct ggc_pch_data *d,
		      FILE *f, void *x, void *newx,
		      size_t size, bool is_string ATTRIBUTE_UNUSED)
{
  if (fseek (f, (size_t) newx - d->orig_base + d->start_offset, SEEK_SET) != 0)
    fatal_error ("can't seek PCH file: %m");

  if (fwrite (x, size, 1, f) != 1)
    fatal_error ("can't write PCH file: %m");
}

void
ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
{
  /* Write out the allocation bitmap.  */
  if (fseek (f, d->start_offset + d->d.total, SEEK_SET) != 0)
    fatal_error ("can't seek PCH file: %m");

  if (fwrite (d->alloc_bits, d->alloc_size, 1, f) != 1)
    fatal_error ("can't write PCH fle: %m");

  /* Done with the PCH, so write out our footer.  */
  if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
    fatal_error ("can't write PCH file: %m");

  free (d->alloc_bits);
  free (d);
}

/* The PCH file from F has been mapped at ADDR.  Read in any
   additional data from the file and set up the GC state.  */

void
ggc_pch_read (FILE *f, void *addr)
{
  struct ggc_pch_ondisk d;
  size_t alloc_size;
  struct alloc_zone *zone;
  struct page_entry *pch_page;
  char *p;

  if (fread (&d, sizeof (d), 1, f) != 1)
    fatal_error ("can't read PCH file: %m");

  alloc_size = CEIL (d.total, BYTES_PER_ALLOC_BIT * 8);
  alloc_size = ROUND_UP (alloc_size, MAX_ALIGNMENT);

  pch_zone.bytes = d.total;
  pch_zone.alloc_bits = (alloc_type *) ((char *) addr + pch_zone.bytes);
  pch_zone.page = (char *) addr;
  pch_zone.end = (char *) pch_zone.alloc_bits;

  /* We've just read in a PCH file.  So, every object that used to be
     allocated is now free.  */
  for (zone = G.zones; zone; zone = zone->next_zone)
    {
      struct small_page_entry *page, *next_page;
      struct large_page_entry *large_page, *next_large_page;

      zone->allocated = 0;

      /* Clear the zone's free chunk list.  */
      memset (zone->free_chunks, 0, sizeof (zone->free_chunks));
      zone->high_free_bin = 0;
      zone->cached_free = NULL;
      zone->cached_free_size = 0;

      /* Move all the small pages onto the free list.  */
      for (page = zone->pages; page != NULL; page = next_page)
	{
	  next_page = page->next;
	  memset (page->alloc_bits, 0,
		  G.small_page_overhead - PAGE_OVERHEAD);
	  free_small_page (page);
	}

      /* Discard all the large pages.  */
      for (large_page = zone->large_pages; large_page != NULL;
	   large_page = next_large_page)
	{
	  next_large_page = large_page->next;
	  free_large_page (large_page);
	}

      zone->pages = NULL;
      zone->large_pages = NULL;
    }

  /* Allocate the dummy page entry for the PCH, and set all pages
     mapped into the PCH to reference it.  */
  pch_page = xcalloc (1, sizeof (struct page_entry));
  pch_page->page = pch_zone.page;
  pch_page->pch_p = true;

  for (p = pch_zone.page; p < pch_zone.end; p += GGC_PAGE_SIZE)
    set_page_table_entry (p, pch_page);
}