1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
|
/* Generate code from machine description to recognize rtl as insns.
Copyright (C) 1987-2015 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* This program is used to produce insn-recog.c, which contains a
function called `recog' plus its subroutines. These functions
contain a decision tree that recognizes whether an rtx, the
argument given to recog, is a valid instruction.
recog returns -1 if the rtx is not valid. If the rtx is valid,
recog returns a nonnegative number which is the insn code number
for the pattern that matched. This is the same as the order in the
machine description of the entry that matched. This number can be
used as an index into various insn_* tables, such as insn_template,
insn_outfun, and insn_n_operands (found in insn-output.c).
The third argument to recog is an optional pointer to an int. If
present, recog will accept a pattern if it matches except for
missing CLOBBER expressions at the end. In that case, the value
pointed to by the optional pointer will be set to the number of
CLOBBERs that need to be added (it should be initialized to zero by
the caller). If it is set nonzero, the caller should allocate a
PARALLEL of the appropriate size, copy the initial entries, and
call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
This program also generates the function `split_insns', which
returns 0 if the rtl could not be split, or it returns the split
rtl as an INSN list.
This program also generates the function `peephole2_insns', which
returns 0 if the rtl could not be matched. If there was a match,
the new rtl is returned in an INSN list, and LAST_INSN will point
to the last recognized insn in the old sequence.
At a high level, the algorithm used in this file is as follows:
1. Build up a decision tree for each routine, using the following
approach to matching an rtx:
- First determine the "shape" of the rtx, based on GET_CODE,
XVECLEN and XINT. This phase examines SET_SRCs before SET_DESTs
since SET_SRCs tend to be more distinctive. It examines other
operands in numerical order, since the canonicalization rules
prefer putting complex operands of commutative operators first.
- Next check modes and predicates. This phase examines all
operands in numerical order, even for SETs, since the mode of a
SET_DEST is exact while the mode of a SET_SRC can be VOIDmode
for constant integers.
- Next check match_dups.
- Finally check the C condition and (where appropriate) pnum_clobbers.
2. Try to optimize the tree by removing redundant tests, CSEing tests,
folding tests together, etc.
3. Look for common subtrees and split them out into "pattern" routines.
These common subtrees can be identical or they can differ in mode,
code, or integer (usually an UNSPEC or UNSPEC_VOLATILE code).
In the latter case the users of the pattern routine pass the
appropriate mode, etc., as argument. For example, if two patterns
contain:
(plus:SI (match_operand:SI 1 "register_operand")
(match_operand:SI 2 "register_operand"))
we can split the associated matching code out into a subroutine.
If a pattern contains:
(minus:DI (match_operand:DI 1 "register_operand")
(match_operand:DI 2 "register_operand"))
then we can consider using the same matching routine for both
the plus and minus expressions, passing PLUS and SImode in the
former case and MINUS and DImode in the latter case.
The main aim of this phase is to reduce the compile time of the
insn-recog.c code and to reduce the amount of object code in
insn-recog.o.
4. Split the matching trees into functions, trying to limit the
size of each function to a sensible amount.
Again, the main aim of this phase is to reduce the compile time
of insn-recog.c. (It doesn't help with the size of insn-recog.o.)
5. Write out C++ code for each function. */
#include "bconfig.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "errors.h"
#include "read-md.h"
#include "gensupport.h"
#include <algorithm>
#undef GENERATOR_FILE
enum true_rtx_doe {
#define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) TRUE_##ENUM,
#include "rtl.def"
#undef DEF_RTL_EXPR
FIRST_GENERATOR_RTX_CODE
};
#define NUM_TRUE_RTX_CODE ((int) FIRST_GENERATOR_RTX_CODE)
#define GENERATOR_FILE 1
/* Debugging variables to control which optimizations are performed.
Note that disabling merge_states_p leads to very large output. */
static const bool merge_states_p = true;
static const bool collapse_optional_decisions_p = true;
static const bool cse_tests_p = true;
static const bool simplify_tests_p = true;
static const bool use_operand_variables_p = true;
static const bool use_subroutines_p = true;
static const bool use_pattern_routines_p = true;
/* Whether to add comments for optional tests that we decided to keep.
Can be useful when debugging the generator itself but is noise when
debugging the generated code. */
static const bool mark_optional_transitions_p = false;
/* Whether pattern routines should calculate positions relative to their
rtx parameter rather than use absolute positions. This e.g. allows
a pattern routine to be shared between a plain SET and a PARALLEL
that includes a SET.
In principle it sounds like this should be useful, especially for
recog_for_combine, where the plain SET form is generated automatically
from a PARALLEL of a single SET and some CLOBBERs. In practice it doesn't
seem to help much and leads to slightly bigger object files. */
static const bool relative_patterns_p = false;
/* Whether pattern routines should be allowed to test whether pnum_clobbers
is null. This requires passing pnum_clobbers around as a parameter. */
static const bool pattern_have_num_clobbers_p = true;
/* Whether pattern routines should be allowed to test .md file C conditions.
This requires passing insn around as a parameter, in case the C
condition refers to it. In practice this tends to lead to bigger
object files. */
static const bool pattern_c_test_p = false;
/* Whether to require each parameter passed to a pattern routine to be
unique. Disabling this check for example allows unary operators with
matching modes (like NEG) and unary operators with mismatched modes
(like ZERO_EXTEND) to be matched by a single pattern. However, we then
often have cases where the same value is passed too many times. */
static const bool force_unique_params_p = true;
/* The maximum (approximate) depth of block nesting that an individual
routine or subroutine should have. This limit is about keeping the
output readable rather than reducing compile time. */
static const unsigned int MAX_DEPTH = 6;
/* The minimum number of pseudo-statements that a state must have before
we split it out into a subroutine. */
static const unsigned int MIN_NUM_STATEMENTS = 5;
/* The number of pseudo-statements a state can have before we consider
splitting out substates into subroutines. This limit is about avoiding
compile-time problems with very big functions (and also about keeping
functions within --param optimization limits, etc.). */
static const unsigned int MAX_NUM_STATEMENTS = 200;
/* The minimum number of pseudo-statements that can be used in a pattern
routine. */
static const unsigned int MIN_COMBINE_COST = 4;
/* The maximum number of arguments that a pattern routine can have.
The idea is to prevent one pattern getting a ridiculous number of
arguments when it would be more beneficial to have a separate pattern
routine instead. */
static const unsigned int MAX_PATTERN_PARAMS = 5;
/* The maximum operand number plus one. */
int num_operands;
/* Ways of obtaining an rtx to be tested. */
enum position_type {
/* PATTERN (peep2_next_insn (ARG)). */
POS_PEEP2_INSN,
/* XEXP (BASE, ARG). */
POS_XEXP,
/* XVECEXP (BASE, 0, ARG). */
POS_XVECEXP0
};
/* The position of an rtx relative to X0. Each useful position is
represented by exactly one instance of this structure. */
struct position
{
/* The parent rtx. This is the root position for POS_PEEP2_INSNs. */
struct position *base;
/* A position with the same BASE and TYPE, but with the next value
of ARG. */
struct position *next;
/* A list of all POS_XEXP positions that use this one as their base,
chained by NEXT fields. The first entry represents XEXP (this, 0),
the second represents XEXP (this, 1), and so on. */
struct position *xexps;
/* A list of POS_XVECEXP0 positions that use this one as their base,
chained by NEXT fields. The first entry represents XVECEXP (this, 0, 0),
the second represents XVECEXP (this, 0, 1), and so on. */
struct position *xvecexp0s;
/* The type of position. */
enum position_type type;
/* The argument to TYPE (shown as ARG in the position_type comments). */
int arg;
/* The instruction to which the position belongs. */
unsigned int insn_id;
/* The depth of this position relative to the instruction pattern.
E.g. if the instruction pattern is a SET, the SET itself has a
depth of 0 while the SET_DEST and SET_SRC have depths of 1. */
unsigned int depth;
/* A unique identifier for this position. */
unsigned int id;
};
enum routine_type {
SUBPATTERN, RECOG, SPLIT, PEEPHOLE2
};
/* Next number to use as an insn_code. */
static int next_insn_code;
/* The line number of the start of the pattern currently being processed. */
static int pattern_lineno;
/* The root position (x0). */
static struct position root_pos;
/* The number of positions created. Also one higher than the maximum
position id. */
static unsigned int num_positions = 1;
/* A list of all POS_PEEP2_INSNs. The entry for insn 0 is the root position,
since we are given that instruction's pattern as x0. */
static struct position *peep2_insn_pos_list = &root_pos;
/* Return a position with the given BASE, TYPE and ARG. NEXT_PTR
points to where the unique object that represents the position
should be stored. Create the object if it doesn't already exist,
otherwise reuse the object that is already there. */
static struct position *
next_position (struct position **next_ptr, struct position *base,
enum position_type type, int arg)
{
struct position *pos;
pos = *next_ptr;
if (!pos)
{
pos = XCNEW (struct position);
pos->type = type;
pos->arg = arg;
if (type == POS_PEEP2_INSN)
{
pos->base = 0;
pos->insn_id = arg;
pos->depth = base->depth;
}
else
{
pos->base = base;
pos->insn_id = base->insn_id;
pos->depth = base->depth + 1;
}
pos->id = num_positions++;
*next_ptr = pos;
}
return pos;
}
/* Compare positions POS1 and POS2 lexicographically. */
static int
compare_positions (struct position *pos1, struct position *pos2)
{
int diff;
diff = pos1->depth - pos2->depth;
if (diff < 0)
do
pos2 = pos2->base;
while (pos1->depth != pos2->depth);
else if (diff > 0)
do
pos1 = pos1->base;
while (pos1->depth != pos2->depth);
while (pos1 != pos2)
{
diff = (int) pos1->type - (int) pos2->type;
if (diff == 0)
diff = pos1->arg - pos2->arg;
pos1 = pos1->base;
pos2 = pos2->base;
}
return diff;
}
/* Return the most deeply-nested position that is common to both
POS1 and POS2. If the positions are from different instructions,
return the one with the lowest insn_id. */
static struct position *
common_position (struct position *pos1, struct position *pos2)
{
if (pos1->insn_id != pos2->insn_id)
return pos1->insn_id < pos2->insn_id ? pos1 : pos2;
if (pos1->depth > pos2->depth)
std::swap (pos1, pos2);
while (pos1->depth != pos2->depth)
pos2 = pos2->base;
while (pos1 != pos2)
{
pos1 = pos1->base;
pos2 = pos2->base;
}
return pos1;
}
/* Search for and return operand N, stop when reaching node STOP. */
static rtx
find_operand (rtx pattern, int n, rtx stop)
{
const char *fmt;
RTX_CODE code;
int i, j, len;
rtx r;
if (pattern == stop)
return stop;
code = GET_CODE (pattern);
if ((code == MATCH_SCRATCH
|| code == MATCH_OPERAND
|| code == MATCH_OPERATOR
|| code == MATCH_PARALLEL)
&& XINT (pattern, 0) == n)
return pattern;
fmt = GET_RTX_FORMAT (code);
len = GET_RTX_LENGTH (code);
for (i = 0; i < len; i++)
{
switch (fmt[i])
{
case 'e': case 'u':
if ((r = find_operand (XEXP (pattern, i), n, stop)) != NULL_RTX)
return r;
break;
case 'V':
if (! XVEC (pattern, i))
break;
/* Fall through. */
case 'E':
for (j = 0; j < XVECLEN (pattern, i); j++)
if ((r = find_operand (XVECEXP (pattern, i, j), n, stop))
!= NULL_RTX)
return r;
break;
case 'i': case 'r': case 'w': case '0': case 's':
break;
default:
gcc_unreachable ();
}
}
return NULL;
}
/* Search for and return operand M, such that it has a matching
constraint for operand N. */
static rtx
find_matching_operand (rtx pattern, int n)
{
const char *fmt;
RTX_CODE code;
int i, j, len;
rtx r;
code = GET_CODE (pattern);
if (code == MATCH_OPERAND
&& (XSTR (pattern, 2)[0] == '0' + n
|| (XSTR (pattern, 2)[0] == '%'
&& XSTR (pattern, 2)[1] == '0' + n)))
return pattern;
fmt = GET_RTX_FORMAT (code);
len = GET_RTX_LENGTH (code);
for (i = 0; i < len; i++)
{
switch (fmt[i])
{
case 'e': case 'u':
if ((r = find_matching_operand (XEXP (pattern, i), n)))
return r;
break;
case 'V':
if (! XVEC (pattern, i))
break;
/* Fall through. */
case 'E':
for (j = 0; j < XVECLEN (pattern, i); j++)
if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
return r;
break;
case 'i': case 'r': case 'w': case '0': case 's':
break;
default:
gcc_unreachable ();
}
}
return NULL;
}
/* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
don't use the MATCH_OPERAND constraint, only the predicate.
This is confusing to folks doing new ports, so help them
not make the mistake. */
static bool
constraints_supported_in_insn_p (rtx insn)
{
return !(GET_CODE (insn) == DEFINE_EXPAND
|| GET_CODE (insn) == DEFINE_SPLIT
|| GET_CODE (insn) == DEFINE_PEEPHOLE2);
}
/* Check for various errors in patterns. SET is nonnull for a destination,
and is the complete set pattern. SET_CODE is '=' for normal sets, and
'+' within a context that requires in-out constraints. */
static void
validate_pattern (rtx pattern, rtx insn, rtx set, int set_code)
{
const char *fmt;
RTX_CODE code;
size_t i, len;
int j;
code = GET_CODE (pattern);
switch (code)
{
case MATCH_SCRATCH:
{
const char constraints0 = XSTR (pattern, 1)[0];
if (!constraints_supported_in_insn_p (insn))
{
if (constraints0)
{
error_with_line (pattern_lineno,
"constraints not supported in %s",
rtx_name[GET_CODE (insn)]);
}
return;
}
/* If a MATCH_SCRATCH is used in a context requiring an write-only
or read/write register, validate that. */
if (set_code == '='
&& constraints0
&& constraints0 != '='
&& constraints0 != '+')
{
error_with_line (pattern_lineno,
"operand %d missing output reload",
XINT (pattern, 0));
}
return;
}
case MATCH_DUP:
case MATCH_OP_DUP:
case MATCH_PAR_DUP:
if (find_operand (insn, XINT (pattern, 0), pattern) == pattern)
error_with_line (pattern_lineno,
"operand %i duplicated before defined",
XINT (pattern, 0));
break;
case MATCH_OPERAND:
case MATCH_OPERATOR:
{
const char *pred_name = XSTR (pattern, 1);
const struct pred_data *pred;
const char *c_test;
if (GET_CODE (insn) == DEFINE_INSN)
c_test = XSTR (insn, 2);
else
c_test = XSTR (insn, 1);
if (pred_name[0] != 0)
{
pred = lookup_predicate (pred_name);
if (!pred)
error_with_line (pattern_lineno, "unknown predicate '%s'",
pred_name);
}
else
pred = 0;
if (code == MATCH_OPERAND)
{
const char *constraints = XSTR (pattern, 2);
const char constraints0 = constraints[0];
if (!constraints_supported_in_insn_p (insn))
{
if (constraints0)
{
error_with_line (pattern_lineno,
"constraints not supported in %s",
rtx_name[GET_CODE (insn)]);
}
}
/* A MATCH_OPERAND that is a SET should have an output reload. */
else if (set && constraints0)
{
if (set_code == '+')
{
if (constraints0 == '+')
;
/* If we've only got an output reload for this operand,
we'd better have a matching input operand. */
else if (constraints0 == '='
&& find_matching_operand (insn, XINT (pattern, 0)))
;
else
error_with_line (pattern_lineno,
"operand %d missing in-out reload",
XINT (pattern, 0));
}
else if (constraints0 != '=' && constraints0 != '+')
error_with_line (pattern_lineno,
"operand %d missing output reload",
XINT (pattern, 0));
}
/* For matching constraint in MATCH_OPERAND, the digit must be a
smaller number than the number of the operand that uses it in the
constraint. */
while (1)
{
while (constraints[0]
&& (constraints[0] == ' ' || constraints[0] == ','))
constraints++;
if (!constraints[0])
break;
if (constraints[0] >= '0' && constraints[0] <= '9')
{
int val;
sscanf (constraints, "%d", &val);
if (val >= XINT (pattern, 0))
error_with_line (pattern_lineno,
"constraint digit %d is not smaller than"
" operand %d",
val, XINT (pattern, 0));
}
while (constraints[0] && constraints[0] != ',')
constraints++;
}
}
/* Allowing non-lvalues in destinations -- particularly CONST_INT --
while not likely to occur at runtime, results in less efficient
code from insn-recog.c. */
if (set && pred && pred->allows_non_lvalue)
error_with_line (pattern_lineno,
"destination operand %d allows non-lvalue",
XINT (pattern, 0));
/* A modeless MATCH_OPERAND can be handy when we can check for
multiple modes in the c_test. In most other cases, it is a
mistake. Only DEFINE_INSN is eligible, since SPLIT and
PEEP2 can FAIL within the output pattern. Exclude special
predicates, which check the mode themselves. Also exclude
predicates that allow only constants. Exclude the SET_DEST
of a call instruction, as that is a common idiom. */
if (GET_MODE (pattern) == VOIDmode
&& code == MATCH_OPERAND
&& GET_CODE (insn) == DEFINE_INSN
&& pred
&& !pred->special
&& pred->allows_non_const
&& strstr (c_test, "operands") == NULL
&& ! (set
&& GET_CODE (set) == SET
&& GET_CODE (SET_SRC (set)) == CALL))
message_with_line (pattern_lineno,
"warning: operand %d missing mode?",
XINT (pattern, 0));
return;
}
case SET:
{
machine_mode dmode, smode;
rtx dest, src;
dest = SET_DEST (pattern);
src = SET_SRC (pattern);
/* STRICT_LOW_PART is a wrapper. Its argument is the real
destination, and it's mode should match the source. */
if (GET_CODE (dest) == STRICT_LOW_PART)
dest = XEXP (dest, 0);
/* Find the referent for a DUP. */
if (GET_CODE (dest) == MATCH_DUP
|| GET_CODE (dest) == MATCH_OP_DUP
|| GET_CODE (dest) == MATCH_PAR_DUP)
dest = find_operand (insn, XINT (dest, 0), NULL);
if (GET_CODE (src) == MATCH_DUP
|| GET_CODE (src) == MATCH_OP_DUP
|| GET_CODE (src) == MATCH_PAR_DUP)
src = find_operand (insn, XINT (src, 0), NULL);
dmode = GET_MODE (dest);
smode = GET_MODE (src);
/* The mode of an ADDRESS_OPERAND is the mode of the memory
reference, not the mode of the address. */
if (GET_CODE (src) == MATCH_OPERAND
&& ! strcmp (XSTR (src, 1), "address_operand"))
;
/* The operands of a SET must have the same mode unless one
is VOIDmode. */
else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
error_with_line (pattern_lineno,
"mode mismatch in set: %smode vs %smode",
GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
/* If only one of the operands is VOIDmode, and PC or CC0 is
not involved, it's probably a mistake. */
else if (dmode != smode
&& GET_CODE (dest) != PC
&& GET_CODE (dest) != CC0
&& GET_CODE (src) != PC
&& GET_CODE (src) != CC0
&& !CONST_INT_P (src)
&& !CONST_WIDE_INT_P (src)
&& GET_CODE (src) != CALL)
{
const char *which;
which = (dmode == VOIDmode ? "destination" : "source");
message_with_line (pattern_lineno,
"warning: %s missing a mode?", which);
}
if (dest != SET_DEST (pattern))
validate_pattern (dest, insn, pattern, '=');
validate_pattern (SET_DEST (pattern), insn, pattern, '=');
validate_pattern (SET_SRC (pattern), insn, NULL_RTX, 0);
return;
}
case CLOBBER:
validate_pattern (SET_DEST (pattern), insn, pattern, '=');
return;
case ZERO_EXTRACT:
validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
validate_pattern (XEXP (pattern, 1), insn, NULL_RTX, 0);
validate_pattern (XEXP (pattern, 2), insn, NULL_RTX, 0);
return;
case STRICT_LOW_PART:
validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
return;
case LABEL_REF:
if (GET_MODE (LABEL_REF_LABEL (pattern)) != VOIDmode)
error_with_line (pattern_lineno,
"operand to label_ref %smode not VOIDmode",
GET_MODE_NAME (GET_MODE (LABEL_REF_LABEL (pattern))));
break;
default:
break;
}
fmt = GET_RTX_FORMAT (code);
len = GET_RTX_LENGTH (code);
for (i = 0; i < len; i++)
{
switch (fmt[i])
{
case 'e': case 'u':
validate_pattern (XEXP (pattern, i), insn, NULL_RTX, 0);
break;
case 'E':
for (j = 0; j < XVECLEN (pattern, i); j++)
validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX, 0);
break;
case 'i': case 'r': case 'w': case '0': case 's':
break;
default:
gcc_unreachable ();
}
}
}
/* Simple list structure for items of type T, for use when being part
of a list is an inherent property of T. T must have members equivalent
to "T *prev, *next;" and a function "void set_parent (list_head <T> *)"
to set the parent list. */
template <typename T>
struct list_head
{
/* A range of linked items. */
struct range
{
range (T *);
range (T *, T *);
T *start, *end;
void set_parent (list_head *);
};
list_head ();
range release ();
void push_back (range);
range remove (range);
void replace (range, range);
T *singleton () const;
T *first, *last;
};
/* Create a range [START_IN, START_IN]. */
template <typename T>
list_head <T>::range::range (T *start_in) : start (start_in), end (start_in) {}
/* Create a range [START_IN, END_IN], linked by next and prev fields. */
template <typename T>
list_head <T>::range::range (T *start_in, T *end_in)
: start (start_in), end (end_in) {}
template <typename T>
void
list_head <T>::range::set_parent (list_head <T> *owner)
{
for (T *item = start; item != end; item = item->next)
item->set_parent (owner);
end->set_parent (owner);
}
template <typename T>
list_head <T>::list_head () : first (0), last (0) {}
/* Add R to the end of the list. */
template <typename T>
void
list_head <T>::push_back (range r)
{
if (last)
last->next = r.start;
else
first = r.start;
r.start->prev = last;
last = r.end;
r.set_parent (this);
}
/* Remove R from the list. R remains valid and can be inserted into
other lists. */
template <typename T>
typename list_head <T>::range
list_head <T>::remove (range r)
{
if (r.start->prev)
r.start->prev->next = r.end->next;
else
first = r.end->next;
if (r.end->next)
r.end->next->prev = r.start->prev;
else
last = r.start->prev;
r.start->prev = 0;
r.end->next = 0;
r.set_parent (0);
return r;
}
/* Replace OLDR with NEWR. OLDR remains valid and can be inserted into
other lists. */
template <typename T>
void
list_head <T>::replace (range oldr, range newr)
{
newr.start->prev = oldr.start->prev;
newr.end->next = oldr.end->next;
oldr.start->prev = 0;
oldr.end->next = 0;
oldr.set_parent (0);
if (newr.start->prev)
newr.start->prev->next = newr.start;
else
first = newr.start;
if (newr.end->next)
newr.end->next->prev = newr.end;
else
last = newr.end;
newr.set_parent (this);
}
/* Empty the list and return the previous contents as a range that can
be inserted into other lists. */
template <typename T>
typename list_head <T>::range
list_head <T>::release ()
{
range r (first, last);
first = 0;
last = 0;
r.set_parent (0);
return r;
}
/* If the list contains a single item, return that item, otherwise return
null. */
template <typename T>
T *
list_head <T>::singleton () const
{
return first == last ? first : 0;
}
struct state;
/* Describes a possible successful return from a routine. */
struct acceptance_type
{
/* The type of routine we're returning from. */
routine_type type : 16;
/* True if this structure only really represents a partial match,
and if we must call a subroutine of type TYPE to complete the match.
In this case we'll call the subroutine and, if it succeeds, return
whatever the subroutine returned.
False if this structure presents a full match. */
unsigned int partial_p : 1;
union
{
/* If PARTIAL_P, this is the number of the subroutine to call. */
int subroutine_id;
/* Valid if !PARTIAL_P. */
struct
{
/* The identifier of the matching pattern. For SUBPATTERNs this
value belongs to an ad-hoc routine-specific enum. For the
others it's the number of an .md file pattern. */
int code;
union
{
/* For RECOG, the number of clobbers that must be added to the
pattern in order for it to match CODE. */
int num_clobbers;
/* For PEEPHOLE2, the number of additional instructions that were
included in the optimization. */
int match_len;
} u;
} full;
} u;
};
bool
operator == (const acceptance_type &a, const acceptance_type &b)
{
if (a.partial_p != b.partial_p)
return false;
if (a.partial_p)
return a.u.subroutine_id == b.u.subroutine_id;
else
return a.u.full.code == b.u.full.code;
}
bool
operator != (const acceptance_type &a, const acceptance_type &b)
{
return !operator == (a, b);
}
/* Represents a parameter to a pattern routine. */
struct parameter
{
/* The C type of parameter. */
enum type_enum {
/* Represents an invalid parameter. */
UNSET,
/* A machine_mode parameter. */
MODE,
/* An rtx_code parameter. */
CODE,
/* An int parameter. */
INT,
/* An unsigned int parameter. */
UINT,
/* A HOST_WIDE_INT parameter. */
WIDE_INT
};
parameter ();
parameter (type_enum, bool, uint64_t);
/* The type of the parameter. */
type_enum type;
/* True if the value passed is variable, false if it is constant. */
bool is_param;
/* If IS_PARAM, this is the number of the variable passed, for an "i%d"
format string. If !IS_PARAM, this is the constant value passed. */
uint64_t value;
};
parameter::parameter ()
: type (UNSET), is_param (false), value (0) {}
parameter::parameter (type_enum type_in, bool is_param_in, uint64_t value_in)
: type (type_in), is_param (is_param_in), value (value_in) {}
bool
operator == (const parameter ¶m1, const parameter ¶m2)
{
return (param1.type == param2.type
&& param1.is_param == param2.is_param
&& param1.value == param2.value);
}
bool
operator != (const parameter ¶m1, const parameter ¶m2)
{
return !operator == (param1, param2);
}
/* Represents a routine that matches a partial rtx pattern, returning
an ad-hoc enum value on success and -1 on failure. The routine can
be used by any subroutine type. The match can be parameterized by
things like mode, code and UNSPEC number. */
struct pattern_routine
{
/* The state that implements the pattern. */
state *s;
/* The deepest root position from which S can access all the rtxes it needs.
This is NULL if the pattern doesn't need an rtx input, usually because
all matching is done on operands[] instead. */
position *pos;
/* A unique identifier for the routine. */
unsigned int pattern_id;
/* True if the routine takes pnum_clobbers as argument. */
bool pnum_clobbers_p;
/* True if the routine takes the enclosing instruction as argument. */
bool insn_p;
/* The types of the other parameters to the routine, if any. */
auto_vec <parameter::type_enum, MAX_PATTERN_PARAMS> param_types;
};
/* All defined patterns. */
static vec <pattern_routine *> patterns;
/* Represents one use of a pattern routine. */
struct pattern_use
{
/* The pattern routine to use. */
pattern_routine *routine;
/* The values to pass as parameters. This vector has the same length
as ROUTINE->PARAM_TYPES. */
auto_vec <parameter, MAX_PATTERN_PARAMS> params;
};
/* Represents a test performed by a decision. */
struct rtx_test
{
rtx_test ();
/* The types of test that can be performed. Most of them take as input
an rtx X. Some also take as input a transition label LABEL; the others
are booleans for which the transition label is always "true".
The order of the enum isn't important. */
enum kind_enum {
/* Check GET_CODE (X) == LABEL. */
CODE,
/* Check GET_MODE (X) == LABEL. */
MODE,
/* Check REGNO (X) == LABEL. */
REGNO_FIELD,
/* Check XINT (X, u.opno) == LABEL. */
INT_FIELD,
/* Check XWINT (X, u.opno) == LABEL. */
WIDE_INT_FIELD,
/* Check XVECLEN (X, 0) == LABEL. */
VECLEN,
/* Check peep2_current_count >= u.min_len. */
PEEP2_COUNT,
/* Check XVECLEN (X, 0) >= u.min_len. */
VECLEN_GE,
/* Check whether X is a cached const_int with value u.integer. */
SAVED_CONST_INT,
/* Check u.predicate.data (X, u.predicate.mode). */
PREDICATE,
/* Check rtx_equal_p (X, operands[u.opno]). */
DUPLICATE,
/* Check whether X matches pattern u.pattern. */
PATTERN,
/* Check whether pnum_clobbers is nonnull (RECOG only). */
HAVE_NUM_CLOBBERS,
/* Check whether general C test u.string holds. In general the condition
needs access to "insn" and the full operand list. */
C_TEST,
/* Execute operands[u.opno] = X. (Always succeeds.) */
SET_OP,
/* Accept u.acceptance. Always succeeds for SUBPATTERN, RECOG and SPLIT.
May fail for PEEPHOLE2 if the define_peephole2 C code executes FAIL. */
ACCEPT
};
/* The position of rtx X in the above description, relative to the
incoming instruction "insn". The position is null if the test
doesn't take an X as input. */
position *pos;
/* Which element of operands[] already contains POS, or -1 if no element
is known to hold POS. */
int pos_operand;
/* The type of test and its parameters, as described above. */
kind_enum kind;
union
{
int opno;
int min_len;
struct
{
bool is_param;
int value;
} integer;
struct
{
const struct pred_data *data;
/* True if the mode is taken from a machine_mode parameter
to the routine rather than a constant machine_mode. If true,
MODE is the number of the parameter (for an "i%d" format string),
otherwise it is the mode itself. */
bool mode_is_param;
unsigned int mode;
} predicate;
pattern_use *pattern;
const char *string;
acceptance_type acceptance;
} u;
static rtx_test code (position *);
static rtx_test mode (position *);
static rtx_test regno_field (position *);
static rtx_test int_field (position *, int);
static rtx_test wide_int_field (position *, int);
static rtx_test veclen (position *);
static rtx_test peep2_count (int);
static rtx_test veclen_ge (position *, int);
static rtx_test predicate (position *, const pred_data *, machine_mode);
static rtx_test duplicate (position *, int);
static rtx_test pattern (position *, pattern_use *);
static rtx_test have_num_clobbers ();
static rtx_test c_test (const char *);
static rtx_test set_op (position *, int);
static rtx_test accept (const acceptance_type &);
bool terminal_p () const;
bool single_outcome_p () const;
private:
rtx_test (position *, kind_enum);
};
rtx_test::rtx_test () {}
rtx_test::rtx_test (position *pos_in, kind_enum kind_in)
: pos (pos_in), pos_operand (-1), kind (kind_in) {}
rtx_test
rtx_test::code (position *pos)
{
return rtx_test (pos, rtx_test::CODE);
}
rtx_test
rtx_test::mode (position *pos)
{
return rtx_test (pos, rtx_test::MODE);
}
rtx_test
rtx_test::regno_field (position *pos)
{
rtx_test res (pos, rtx_test::REGNO_FIELD);
return res;
}
rtx_test
rtx_test::int_field (position *pos, int opno)
{
rtx_test res (pos, rtx_test::INT_FIELD);
res.u.opno = opno;
return res;
}
rtx_test
rtx_test::wide_int_field (position *pos, int opno)
{
rtx_test res (pos, rtx_test::WIDE_INT_FIELD);
res.u.opno = opno;
return res;
}
rtx_test
rtx_test::veclen (position *pos)
{
return rtx_test (pos, rtx_test::VECLEN);
}
rtx_test
rtx_test::peep2_count (int min_len)
{
rtx_test res (0, rtx_test::PEEP2_COUNT);
res.u.min_len = min_len;
return res;
}
rtx_test
rtx_test::veclen_ge (position *pos, int min_len)
{
rtx_test res (pos, rtx_test::VECLEN_GE);
res.u.min_len = min_len;
return res;
}
rtx_test
rtx_test::predicate (position *pos, const struct pred_data *data,
machine_mode mode)
{
rtx_test res (pos, rtx_test::PREDICATE);
res.u.predicate.data = data;
res.u.predicate.mode_is_param = false;
res.u.predicate.mode = mode;
return res;
}
rtx_test
rtx_test::duplicate (position *pos, int opno)
{
rtx_test res (pos, rtx_test::DUPLICATE);
res.u.opno = opno;
return res;
}
rtx_test
rtx_test::pattern (position *pos, pattern_use *pattern)
{
rtx_test res (pos, rtx_test::PATTERN);
res.u.pattern = pattern;
return res;
}
rtx_test
rtx_test::have_num_clobbers ()
{
return rtx_test (0, rtx_test::HAVE_NUM_CLOBBERS);
}
rtx_test
rtx_test::c_test (const char *string)
{
rtx_test res (0, rtx_test::C_TEST);
res.u.string = string;
return res;
}
rtx_test
rtx_test::set_op (position *pos, int opno)
{
rtx_test res (pos, rtx_test::SET_OP);
res.u.opno = opno;
return res;
}
rtx_test
rtx_test::accept (const acceptance_type &acceptance)
{
rtx_test res (0, rtx_test::ACCEPT);
res.u.acceptance = acceptance;
return res;
}
/* Return true if the test represents an unconditionally successful match. */
bool
rtx_test::terminal_p () const
{
return kind == rtx_test::ACCEPT && u.acceptance.type != PEEPHOLE2;
}
/* Return true if the test is a boolean that is always true. */
bool
rtx_test::single_outcome_p () const
{
return terminal_p () || kind == rtx_test::SET_OP;
}
bool
operator == (const rtx_test &a, const rtx_test &b)
{
if (a.pos != b.pos || a.kind != b.kind)
return false;
switch (a.kind)
{
case rtx_test::CODE:
case rtx_test::MODE:
case rtx_test::REGNO_FIELD:
case rtx_test::VECLEN:
case rtx_test::HAVE_NUM_CLOBBERS:
return true;
case rtx_test::PEEP2_COUNT:
case rtx_test::VECLEN_GE:
return a.u.min_len == b.u.min_len;
case rtx_test::INT_FIELD:
case rtx_test::WIDE_INT_FIELD:
case rtx_test::DUPLICATE:
case rtx_test::SET_OP:
return a.u.opno == b.u.opno;
case rtx_test::SAVED_CONST_INT:
return (a.u.integer.is_param == b.u.integer.is_param
&& a.u.integer.value == b.u.integer.value);
case rtx_test::PREDICATE:
return (a.u.predicate.data == b.u.predicate.data
&& a.u.predicate.mode_is_param == b.u.predicate.mode_is_param
&& a.u.predicate.mode == b.u.predicate.mode);
case rtx_test::PATTERN:
return (a.u.pattern->routine == b.u.pattern->routine
&& a.u.pattern->params == b.u.pattern->params);
case rtx_test::C_TEST:
return strcmp (a.u.string, b.u.string) == 0;
case rtx_test::ACCEPT:
return a.u.acceptance == b.u.acceptance;
}
gcc_unreachable ();
}
bool
operator != (const rtx_test &a, const rtx_test &b)
{
return !operator == (a, b);
}
/* A simple set of transition labels. Most transitions have a singleton
label, so try to make that case as efficient as possible. */
struct int_set : public auto_vec <uint64_t, 1>
{
typedef uint64_t *iterator;
int_set ();
int_set (uint64_t);
int_set (const int_set &);
int_set &operator = (const int_set &);
iterator begin ();
iterator end ();
};
int_set::int_set () {}
int_set::int_set (uint64_t label)
{
safe_push (label);
}
int_set::int_set (const int_set &other)
{
safe_splice (other);
}
int_set &
int_set::operator = (const int_set &other)
{
truncate (0);
safe_splice (other);
return *this;
}
int_set::iterator
int_set::begin ()
{
return address ();
}
int_set::iterator
int_set::end ()
{
return address () + length ();
}
bool
operator == (const int_set &a, const int_set &b)
{
if (a.length () != b.length ())
return false;
for (unsigned int i = 0; i < a.length (); ++i)
if (a[i] != b[i])
return false;
return true;
}
bool
operator != (const int_set &a, const int_set &b)
{
return !operator == (a, b);
}
struct decision;
/* Represents a transition between states, dependent on the result of
a test T. */
struct transition
{
transition (const int_set &, state *, bool);
void set_parent (list_head <transition> *);
/* Links to other transitions for T. Always null for boolean tests. */
transition *prev, *next;
/* The transition should be taken when T has one of these values.
E.g. for rtx_test::CODE this is a set of codes, while for booleans like
rtx_test::PREDICATE it is always a singleton "true". The labels are
sorted in ascending order. */
int_set labels;
/* The source decision. */
decision *from;
/* The target state. */
state *to;
/* True if TO would function correctly even if TEST wasn't performed.
E.g. it isn't necessary to check whether GET_MODE (x1) is SImode
before calling register_operand (x1, SImode), since register_operand
performs its own mode check. However, checking GET_MODE can be a cheap
way of disambiguating SImode and DImode register operands. */
bool optional;
/* True if LABELS contains parameter numbers rather than constants.
E.g. if this is true for a rtx_test::CODE, the label is the number
of an rtx_code parameter rather than an rtx_code itself.
LABELS is always a singleton when this variable is true. */
bool is_param;
};
/* Represents a test and the action that should be taken on the result.
If a transition exists for the test outcome, the machine switches
to the transition's target state. If no suitable transition exists,
the machine either falls through to the next decision or, if there are no
more decisions to try, fails the match. */
struct decision : list_head <transition>
{
decision (const rtx_test &);
void set_parent (list_head <decision> *s);
bool if_statement_p (uint64_t * = 0) const;
/* The state to which this decision belongs. */
state *s;
/* Links to other decisions in the same state. */
decision *prev, *next;
/* The test to perform. */
rtx_test test;
};
/* Represents one machine state. For each state the machine tries a list
of decisions, in order, and acts on the first match. It fails without
further backtracking if no decisions match. */
struct state : list_head <decision>
{
void set_parent (list_head <state> *) {}
};
transition::transition (const int_set &labels_in, state *to_in,
bool optional_in)
: prev (0), next (0), labels (labels_in), from (0), to (to_in),
optional (optional_in), is_param (false) {}
/* Set the source decision of the transition. */
void
transition::set_parent (list_head <transition> *from_in)
{
from = static_cast <decision *> (from_in);
}
decision::decision (const rtx_test &test_in)
: prev (0), next (0), test (test_in) {}
/* Set the state to which this decision belongs. */
void
decision::set_parent (list_head <decision> *s_in)
{
s = static_cast <state *> (s_in);
}
/* Return true if the decision has a single transition with a single label.
If so, return the label in *LABEL if nonnull. */
inline bool
decision::if_statement_p (uint64_t *label) const
{
if (singleton () && first->labels.length () == 1)
{
if (label)
*label = first->labels[0];
return true;
}
return false;
}
/* Add to FROM a decision that performs TEST and has a single transition
TRANS. */
static void
add_decision (state *from, const rtx_test &test, transition *trans)
{
decision *d = new decision (test);
from->push_back (d);
d->push_back (trans);
}
/* Add a transition from FROM to a new, empty state that is taken
when TEST == LABELS. OPTIONAL says whether the new transition
should be optional. Return the new state. */
static state *
add_decision (state *from, const rtx_test &test, int_set labels, bool optional)
{
state *to = new state;
add_decision (from, test, new transition (labels, to, optional));
return to;
}
/* Insert a decision before decisions R to make them dependent on
TEST == LABELS. OPTIONAL says whether the new transition should be
optional. */
static decision *
insert_decision_before (state::range r, const rtx_test &test,
const int_set &labels, bool optional)
{
decision *newd = new decision (test);
state *news = new state;
newd->push_back (new transition (labels, news, optional));
r.start->s->replace (r, newd);
news->push_back (r);
return newd;
}
/* Remove any optional transitions from S that turned out not to be useful. */
static void
collapse_optional_decisions (state *s)
{
decision *d = s->first;
while (d)
{
decision *next = d->next;
for (transition *trans = d->first; trans; trans = trans->next)
collapse_optional_decisions (trans->to);
/* A decision with a single optional transition doesn't help
partition the potential matches and so is unlikely to be
worthwhile. In particular, if the decision that performs the
test is the last in the state, the best it could do is reject
an invalid pattern slightly earlier. If instead the decision
is not the last in the state, the condition it tests could hold
even for the later decisions in the state. The best it can do
is save work in some cases where only the later decisions can
succeed.
In both cases the optional transition would add extra work to
successful matches when the tested condition holds. */
if (transition *trans = d->singleton ())
if (trans->optional)
s->replace (d, trans->to->release ());
d = next;
}
}
/* Try to squash several separate tests into simpler ones. */
static void
simplify_tests (state *s)
{
for (decision *d = s->first; d; d = d->next)
{
uint64_t label;
/* Convert checks for GET_CODE (x) == CONST_INT and XWINT (x, 0) == N
into checks for const_int_rtx[N'], if N is suitably small. */
if (d->test.kind == rtx_test::CODE
&& d->if_statement_p (&label)
&& label == CONST_INT)
if (decision *second = d->first->to->singleton ())
if (d->test.pos == second->test.pos
&& second->test.kind == rtx_test::WIDE_INT_FIELD
&& second->test.u.opno == 0
&& second->if_statement_p (&label)
&& IN_RANGE (int64_t (label),
-MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT))
{
d->test.kind = rtx_test::SAVED_CONST_INT;
d->test.u.integer.is_param = false;
d->test.u.integer.value = label;
d->replace (d->first, second->release ());
d->first->labels[0] = true;
}
/* If we have a CODE test followed by a PREDICATE test, rely on
the predicate to test the code.
This case exists for match_operators. We initially treat the
CODE test for a match_operator as non-optional so that we can
safely move down to its operands. It may turn out that all
paths that reach that code test require the same predicate
to be true. cse_tests will then put the predicate test in
series with the code test. */
if (d->test.kind == rtx_test::CODE)
if (transition *trans = d->singleton ())
{
state *s = trans->to;
while (decision *d2 = s->singleton ())
{
if (d->test.pos != d2->test.pos)
break;
transition *trans2 = d2->singleton ();
if (!trans2)
break;
if (d2->test.kind == rtx_test::PREDICATE)
{
d->test = d2->test;
trans->labels = int_set (true);
s->replace (d2, trans2->to->release ());
break;
}
s = trans2->to;
}
}
for (transition *trans = d->first; trans; trans = trans->next)
simplify_tests (trans->to);
}
}
/* Return true if all successful returns passing through D require the
condition tested by COMMON to be true.
When returning true, add all transitions like COMMON in D to WHERE.
WHERE may contain a partial result on failure. */
static bool
common_test_p (decision *d, transition *common, vec <transition *> *where)
{
if (d->test.kind == rtx_test::ACCEPT)
/* We found a successful return that didn't require COMMON. */
return false;
if (d->test == common->from->test)
{
transition *trans = d->singleton ();
if (!trans
|| trans->optional != common->optional
|| trans->labels != common->labels)
return false;
where->safe_push (trans);
return true;
}
for (transition *trans = d->first; trans; trans = trans->next)
for (decision *subd = trans->to->first; subd; subd = subd->next)
if (!common_test_p (subd, common, where))
return false;
return true;
}
/* Indicates that we have tested GET_CODE (X) for a particular rtx X. */
const unsigned char TESTED_CODE = 1;
/* Indicates that we have tested XVECLEN (X, 0) for a particular rtx X. */
const unsigned char TESTED_VECLEN = 2;
/* Represents a set of conditions that are known to hold. */
struct known_conditions
{
/* A mask of TESTED_ values for each position, indexed by the position's
id field. */
auto_vec <unsigned char> position_tests;
/* Index N says whether operands[N] has been set. */
auto_vec <bool> set_operands;
/* A guranteed lower bound on the value of peep2_current_count. */
int peep2_count;
};
/* Return true if TEST can safely be performed at D, where
the conditions in KC hold. TEST is known to occur along the
first path from D (i.e. always following the first transition
of the first decision). Any intervening tests can be used as
negative proof that hoisting isn't safe, but only KC can be used
as positive proof. */
static bool
safe_to_hoist_p (decision *d, const rtx_test &test, known_conditions *kc)
{
switch (test.kind)
{
case rtx_test::C_TEST:
/* In general, C tests require everything else to have been
verified and all operands to have been set up. */
return false;
case rtx_test::ACCEPT:
/* Don't accept something before all conditions have been tested. */
return false;
case rtx_test::PREDICATE:
/* Don't move a predicate over a test for VECLEN_GE, since the
predicate used in a match_parallel can legitimately expect the
length to be checked first. */
for (decision *subd = d;
subd->test != test;
subd = subd->first->to->first)
if (subd->test.pos == test.pos
&& subd->test.kind == rtx_test::VECLEN_GE)
return false;
goto any_rtx;
case rtx_test::DUPLICATE:
/* Don't test for a match_dup until the associated operand has
been set. */
if (!kc->set_operands[test.u.opno])
return false;
goto any_rtx;
case rtx_test::CODE:
case rtx_test::MODE:
case rtx_test::SAVED_CONST_INT:
case rtx_test::SET_OP:
any_rtx:
/* Check whether it is safe to access the rtx under test. */
switch (test.pos->type)
{
case POS_PEEP2_INSN:
return test.pos->arg < kc->peep2_count;
case POS_XEXP:
return kc->position_tests[test.pos->base->id] & TESTED_CODE;
case POS_XVECEXP0:
return kc->position_tests[test.pos->base->id] & TESTED_VECLEN;
}
gcc_unreachable ();
case rtx_test::REGNO_FIELD:
case rtx_test::INT_FIELD:
case rtx_test::WIDE_INT_FIELD:
case rtx_test::VECLEN:
case rtx_test::VECLEN_GE:
/* These tests access a specific part of an rtx, so are only safe
once we know what the rtx is. */
return kc->position_tests[test.pos->id] & TESTED_CODE;
case rtx_test::PEEP2_COUNT:
case rtx_test::HAVE_NUM_CLOBBERS:
/* These tests can be performed anywhere. */
return true;
case rtx_test::PATTERN:
gcc_unreachable ();
}
gcc_unreachable ();
}
/* Look for a transition that is taken by all successful returns from a range
of decisions starting at OUTER and that would be better performed by
OUTER's state instead. On success, store all instances of that transition
in WHERE and return the last decision in the range. The range could
just be OUTER, or it could include later decisions as well.
WITH_POSITION_P is true if only tests with position POS should be tried,
false if any test should be tried. WORTHWHILE_SINGLE_P is true if the
result is useful even when the range contains just a single decision
with a single transition. KC are the conditions that are known to
hold at OUTER. */
static decision *
find_common_test (decision *outer, bool with_position_p,
position *pos, bool worthwhile_single_p,
known_conditions *kc, vec <transition *> *where)
{
/* After this, WORTHWHILE_SINGLE_P indicates whether a range that contains
just a single decision is useful, regardless of the number of
transitions it has. */
if (!outer->singleton ())
worthwhile_single_p = true;
/* Quick exit if we don't have enough decisions to form a worthwhile
range. */
if (!worthwhile_single_p && !outer->next)
return 0;
/* Follow the first chain down, as one example of a path that needs
to contain the common test. */
for (decision *d = outer; d; d = d->first->to->first)
{
transition *trans = d->singleton ();
if (trans
&& (!with_position_p || d->test.pos == pos)
&& safe_to_hoist_p (outer, d->test, kc))
{
if (common_test_p (outer, trans, where))
{
if (!outer->next)
/* We checked above whether the move is worthwhile. */
return outer;
/* See how many decisions in OUTER's chain could reuse
the same test. */
decision *outer_end = outer;
do
{
unsigned int length = where->length ();
if (!common_test_p (outer_end->next, trans, where))
{
where->truncate (length);
break;
}
outer_end = outer_end->next;
}
while (outer_end->next);
/* It is worth moving TRANS if it can be shared by more than
one decision. */
if (outer_end != outer || worthwhile_single_p)
return outer_end;
}
where->truncate (0);
}
}
return 0;
}
/* Try to promote common subtests in S to a single, shared decision.
Also try to bunch tests for the same position together. POS is the
position of the rtx tested before reaching S. KC are the conditions
that are known to hold on entry to S. */
static void
cse_tests (position *pos, state *s, known_conditions *kc)
{
for (decision *d = s->first; d; d = d->next)
{
auto_vec <transition *, 16> where;
if (d->test.pos)
{
/* Try to find conditions that don't depend on a particular rtx,
such as pnum_clobbers != NULL or peep2_current_count >= X.
It's usually better to check these conditions as soon as
possible, so the change is worthwhile even if there is
only one copy of the test. */
decision *endd = find_common_test (d, true, 0, true, kc, &where);
if (!endd && d->test.pos != pos)
/* Try to find other conditions related to position POS
before moving to the new position. Again, this is
worthwhile even if there is only one copy of the test,
since it means that fewer position variables are live
at a given time. */
endd = find_common_test (d, true, pos, true, kc, &where);
if (!endd)
/* Try to find any condition that is used more than once. */
endd = find_common_test (d, false, 0, false, kc, &where);
if (endd)
{
transition *common = where[0];
/* Replace [D, ENDD] with a test like COMMON. We'll recurse
on the common test and see the original D again next time. */
d = insert_decision_before (state::range (d, endd),
common->from->test,
common->labels,
common->optional);
/* Remove the old tests. */
while (!where.is_empty ())
{
transition *trans = where.pop ();
trans->from->s->replace (trans->from, trans->to->release ());
}
}
}
/* Make sure that safe_to_hoist_p isn't being overly conservative.
It should realize that D's test is safe in the current
environment. */
gcc_assert (d->test.kind == rtx_test::C_TEST
|| d->test.kind == rtx_test::ACCEPT
|| safe_to_hoist_p (d, d->test, kc));
/* D won't be changed any further by the current optimization.
Recurse with the state temporarily updated to include D. */
int prev = 0;
switch (d->test.kind)
{
case rtx_test::CODE:
prev = kc->position_tests[d->test.pos->id];
kc->position_tests[d->test.pos->id] |= TESTED_CODE;
break;
case rtx_test::VECLEN:
case rtx_test::VECLEN_GE:
prev = kc->position_tests[d->test.pos->id];
kc->position_tests[d->test.pos->id] |= TESTED_VECLEN;
break;
case rtx_test::SET_OP:
prev = kc->set_operands[d->test.u.opno];
gcc_assert (!prev);
kc->set_operands[d->test.u.opno] = true;
break;
case rtx_test::PEEP2_COUNT:
prev = kc->peep2_count;
kc->peep2_count = MAX (prev, d->test.u.min_len);
break;
default:
break;
}
for (transition *trans = d->first; trans; trans = trans->next)
cse_tests (d->test.pos ? d->test.pos : pos, trans->to, kc);
switch (d->test.kind)
{
case rtx_test::CODE:
case rtx_test::VECLEN:
case rtx_test::VECLEN_GE:
kc->position_tests[d->test.pos->id] = prev;
break;
case rtx_test::SET_OP:
kc->set_operands[d->test.u.opno] = prev;
break;
case rtx_test::PEEP2_COUNT:
kc->peep2_count = prev;
break;
default:
break;
}
}
}
/* Return the type of value that can be used to parameterize test KIND,
or parameter::UNSET if none. */
parameter::type_enum
transition_parameter_type (rtx_test::kind_enum kind)
{
switch (kind)
{
case rtx_test::CODE:
return parameter::CODE;
case rtx_test::MODE:
return parameter::MODE;
case rtx_test::REGNO_FIELD:
return parameter::UINT;
case rtx_test::INT_FIELD:
case rtx_test::VECLEN:
case rtx_test::PATTERN:
return parameter::INT;
case rtx_test::WIDE_INT_FIELD:
return parameter::WIDE_INT;
case rtx_test::PEEP2_COUNT:
case rtx_test::VECLEN_GE:
case rtx_test::SAVED_CONST_INT:
case rtx_test::PREDICATE:
case rtx_test::DUPLICATE:
case rtx_test::HAVE_NUM_CLOBBERS:
case rtx_test::C_TEST:
case rtx_test::SET_OP:
case rtx_test::ACCEPT:
return parameter::UNSET;
}
gcc_unreachable ();
}
/* Initialize the pos_operand fields of each state reachable from S.
If OPERAND_POS[ID] >= 0, the position with id ID is stored in
operands[OPERAND_POS[ID]] on entry to S. */
static void
find_operand_positions (state *s, vec <int> &operand_pos)
{
for (decision *d = s->first; d; d = d->next)
{
int this_operand = (d->test.pos ? operand_pos[d->test.pos->id] : -1);
if (this_operand >= 0)
d->test.pos_operand = this_operand;
if (d->test.kind == rtx_test::SET_OP)
operand_pos[d->test.pos->id] = d->test.u.opno;
for (transition *trans = d->first; trans; trans = trans->next)
find_operand_positions (trans->to, operand_pos);
if (d->test.kind == rtx_test::SET_OP)
operand_pos[d->test.pos->id] = this_operand;
}
}
/* Statistics about a matching routine. */
struct stats
{
stats ();
/* The total number of decisions in the routine, excluding trivial
ones that never fail. */
unsigned int num_decisions;
/* The number of non-trivial decisions on the longest path through
the routine, and the return value that contributes most to that
long path. */
unsigned int longest_path;
int longest_path_code;
/* The maximum number of times that a single call to the routine
can backtrack, and the value returned at the end of that path.
"Backtracking" here means failing one decision in state and
going onto to the next. */
unsigned int longest_backtrack;
int longest_backtrack_code;
};
stats::stats ()
: num_decisions (0), longest_path (0), longest_path_code (-1),
longest_backtrack (0), longest_backtrack_code (-1) {}
/* Return statistics about S. */
static stats
get_stats (state *s)
{
stats for_s;
unsigned int longest_path = 0;
for (decision *d = s->first; d; d = d->next)
{
/* Work out the statistics for D. */
stats for_d;
for (transition *trans = d->first; trans; trans = trans->next)
{
stats for_trans = get_stats (trans->to);
for_d.num_decisions += for_trans.num_decisions;
/* Each transition is mutually-exclusive, so just pick the
longest of the individual paths. */
if (for_d.longest_path <= for_trans.longest_path)
{
for_d.longest_path = for_trans.longest_path;
for_d.longest_path_code = for_trans.longest_path_code;
}
/* Likewise for backtracking. */
if (for_d.longest_backtrack <= for_trans.longest_backtrack)
{
for_d.longest_backtrack = for_trans.longest_backtrack;
for_d.longest_backtrack_code = for_trans.longest_backtrack_code;
}
}
/* Account for D's test in its statistics. */
if (!d->test.single_outcome_p ())
{
for_d.num_decisions += 1;
for_d.longest_path += 1;
}
if (d->test.kind == rtx_test::ACCEPT)
{
for_d.longest_path_code = d->test.u.acceptance.u.full.code;
for_d.longest_backtrack_code = d->test.u.acceptance.u.full.code;
}
/* Keep a running count of the number of backtracks. */
if (d->prev)
for_s.longest_backtrack += 1;
/* Accumulate D's statistics into S's. */
for_s.num_decisions += for_d.num_decisions;
for_s.longest_path += for_d.longest_path;
for_s.longest_backtrack += for_d.longest_backtrack;
/* Use the code from the decision with the longest individual path,
since that's more likely to be useful if trying to make the
path shorter. In the event of a tie, pick the later decision,
since that's closer to the end of the path. */
if (longest_path <= for_d.longest_path)
{
longest_path = for_d.longest_path;
for_s.longest_path_code = for_d.longest_path_code;
}
/* Later decisions in a state are necessarily in a longer backtrack
than earlier decisions. */
for_s.longest_backtrack_code = for_d.longest_backtrack_code;
}
return for_s;
}
/* Optimize ROOT. Use TYPE to describe ROOT in status messages. */
static void
optimize_subroutine_group (const char *type, state *root)
{
/* Remove optional transitions that turned out not to be worthwhile. */
if (collapse_optional_decisions_p)
collapse_optional_decisions (root);
/* Try to remove duplicated tests and to rearrange tests into a more
logical order. */
if (cse_tests_p)
{
known_conditions kc;
kc.position_tests.safe_grow_cleared (num_positions);
kc.set_operands.safe_grow_cleared (num_operands);
kc.peep2_count = 1;
cse_tests (&root_pos, root, &kc);
}
/* Try to simplify two or more tests into one. */
if (simplify_tests_p)
simplify_tests (root);
/* Try to use operands[] instead of xN variables. */
if (use_operand_variables_p)
{
auto_vec <int> operand_pos (num_positions);
for (unsigned int i = 0; i < num_positions; ++i)
operand_pos.quick_push (-1);
find_operand_positions (root, operand_pos);
}
/* Print a summary of the new state. */
stats st = get_stats (root);
fprintf (stderr, "Statistics for %s:\n", type);
fprintf (stderr, " Number of decisions: %6d\n", st.num_decisions);
fprintf (stderr, " longest path: %6d (code: %6d)\n",
st.longest_path, st.longest_path_code);
fprintf (stderr, " longest backtrack: %6d (code: %6d)\n",
st.longest_backtrack, st.longest_backtrack_code);
}
struct merge_pattern_info;
/* Represents a transition from one pattern to another. */
struct merge_pattern_transition
{
merge_pattern_transition (merge_pattern_info *);
/* The target pattern. */
merge_pattern_info *to;
/* The parameters that the source pattern passes to the target pattern.
"parameter (TYPE, true, I)" represents parameter I of the source
pattern. */
auto_vec <parameter, MAX_PATTERN_PARAMS> params;
};
merge_pattern_transition::merge_pattern_transition (merge_pattern_info *to_in)
: to (to_in)
{
}
/* Represents a pattern that can might match several states. The pattern
may replace parts of the test with a parameter value. It may also
replace transition labels with parameters. */
struct merge_pattern_info
{
merge_pattern_info (unsigned int);
/* If PARAM_TEST_P, the state's singleton test should be generalized
to use the runtime value of PARAMS[PARAM_TEST]. */
unsigned int param_test : 8;
/* If PARAM_TRANSITION_P, the state's single transition label should
be replaced by the runtime value of PARAMS[PARAM_TRANSITION]. */
unsigned int param_transition : 8;
/* True if we have decided to generalize the root decision's test,
as per PARAM_TEST. */
unsigned int param_test_p : 1;
/* Likewise for the root decision's transition, as per PARAM_TRANSITION. */
unsigned int param_transition_p : 1;
/* True if the contents of the structure are completely filled in. */
unsigned int complete_p : 1;
/* The number of pseudo-statements in the pattern. Used to decide
whether it's big enough to break out into a subroutine. */
unsigned int num_statements;
/* The number of states that use this pattern. */
unsigned int num_users;
/* The number of distinct success values that the pattern returns. */
unsigned int num_results;
/* This array has one element for each runtime parameter to the pattern.
PARAMS[I] gives the default value of parameter I, which is always
constant.
These default parameters are used in cases where we match the
pattern against some state S1, then add more parameters while
matching against some state S2. S1 is then left passing fewer
parameters than S2. The array gives us enough informatino to
construct a full parameter list for S1 (see update_parameters).
If we decide to create a subroutine for this pattern,
PARAMS[I].type determines the C type of parameter I. */
auto_vec <parameter, MAX_PATTERN_PARAMS> params;
/* All states that match this pattern must have the same number of
transitions. TRANSITIONS[I] describes the subpattern for transition
number I; it is null if transition I represents a successful return
from the pattern. */
auto_vec <merge_pattern_transition *, 1> transitions;
/* The routine associated with the pattern, or null if we haven't generated
one yet. */
pattern_routine *routine;
};
merge_pattern_info::merge_pattern_info (unsigned int num_transitions)
: param_test (0),
param_transition (0),
param_test_p (false),
param_transition_p (false),
complete_p (false),
num_statements (0),
num_users (0),
num_results (0),
routine (0)
{
transitions.safe_grow_cleared (num_transitions);
}
/* Describes one way of matching a particular state to a particular
pattern. */
struct merge_state_result
{
merge_state_result (merge_pattern_info *, position *, merge_state_result *);
/* A pattern that matches the state. */
merge_pattern_info *pattern;
/* If we decide to use this match and create a subroutine for PATTERN,
the state should pass the rtx at position ROOT to the pattern's
rtx parameter. A null root means that the pattern doesn't need
an rtx parameter; all the rtxes it matches come from elsewhere. */
position *root;
/* The parameters that should be passed to PATTERN for this state.
If the array is shorter than PATTERN->params, the missing entries
should be taken from the corresponding element of PATTERN->params. */
auto_vec <parameter, MAX_PATTERN_PARAMS> params;
/* An earlier match for the same state, or null if none. Patterns
matched by earlier entries are smaller than PATTERN. */
merge_state_result *prev;
};
merge_state_result::merge_state_result (merge_pattern_info *pattern_in,
position *root_in,
merge_state_result *prev_in)
: pattern (pattern_in), root (root_in), prev (prev_in)
{}
/* Information about a state, used while trying to match it against
a pattern. */
struct merge_state_info
{
merge_state_info (state *);
/* The state itself. */
state *s;
/* Index I gives information about the target of transition I. */
merge_state_info *to_states;
/* The number of transitions in S. */
unsigned int num_transitions;
/* True if the state has been deleted in favor of a call to a
pattern routine. */
bool merged_p;
/* The previous state that might be a merge candidate for S, or null
if no previous states could be merged with S. */
merge_state_info *prev_same_test;
/* A list of pattern matches for this state. */
merge_state_result *res;
};
merge_state_info::merge_state_info (state *s_in)
: s (s_in),
to_states (0),
num_transitions (0),
merged_p (false),
prev_same_test (0),
res (0) {}
/* True if PAT would be useful as a subroutine. */
static bool
useful_pattern_p (merge_pattern_info *pat)
{
return pat->num_statements >= MIN_COMBINE_COST;
}
/* PAT2 is a subpattern of PAT1. Return true if PAT2 should be inlined
into PAT1's C routine. */
static bool
same_pattern_p (merge_pattern_info *pat1, merge_pattern_info *pat2)
{
return pat1->num_users == pat2->num_users || !useful_pattern_p (pat2);
}
/* PAT was previously matched against SINFO based on tentative matches
for the target states of SINFO's state. Return true if the match
still holds; that is, if the target states of SINFO's state still
match the corresponding transitions of PAT. */
static bool
valid_result_p (merge_pattern_info *pat, merge_state_info *sinfo)
{
for (unsigned int j = 0; j < sinfo->num_transitions; ++j)
if (merge_pattern_transition *ptrans = pat->transitions[j])
{
merge_state_result *to_res = sinfo->to_states[j].res;
if (!to_res || to_res->pattern != ptrans->to)
return false;
}
return true;
}
/* Remove any matches that are no longer valid from the head of SINFO's
list of matches. */
static void
prune_invalid_results (merge_state_info *sinfo)
{
while (sinfo->res && !valid_result_p (sinfo->res->pattern, sinfo))
{
sinfo->res = sinfo->res->prev;
gcc_assert (sinfo->res);
}
}
/* Return true if PAT represents the biggest posssible match for SINFO;
that is, if the next action of SINFO's state on return from PAT will
be something that cannot be merged with any other state. */
static bool
complete_result_p (merge_pattern_info *pat, merge_state_info *sinfo)
{
for (unsigned int j = 0; j < sinfo->num_transitions; ++j)
if (sinfo->to_states[j].res && !pat->transitions[j])
return false;
return true;
}
/* Update TO for any parameters that have been added to FROM since TO
was last set. The extra parameters in FROM will be constants or
instructions to duplicate earlier parameters. */
static void
update_parameters (vec <parameter> &to, const vec <parameter> &from)
{
for (unsigned int i = to.length (); i < from.length (); ++i)
to.quick_push (from[i]);
}
/* Return true if A and B can be tested by a single test. If the test
can be parameterised, store the parameter value for A in *PARAMA and
the parameter value for B in *PARAMB, otherwise leave PARAMA and
PARAMB alone. */
static bool
compatible_tests_p (const rtx_test &a, const rtx_test &b,
parameter *parama, parameter *paramb)
{
if (a.kind != b.kind)
return false;
switch (a.kind)
{
case rtx_test::PREDICATE:
if (a.u.predicate.data != b.u.predicate.data)
return false;
*parama = parameter (parameter::MODE, false, a.u.predicate.mode);
*paramb = parameter (parameter::MODE, false, b.u.predicate.mode);
return true;
case rtx_test::SAVED_CONST_INT:
*parama = parameter (parameter::INT, false, a.u.integer.value);
*paramb = parameter (parameter::INT, false, b.u.integer.value);
return true;
default:
return a == b;
}
}
/* PARAMS is an array of the parameters that a state is going to pass
to a pattern routine. It is still incomplete; index I has a kind of
parameter::UNSET if we don't yet know what the state will pass
as parameter I. Try to make parameter ID equal VALUE, returning
true on success. */
static bool
set_parameter (vec <parameter> ¶ms, unsigned int id,
const parameter &value)
{
if (params[id].type == parameter::UNSET)
{
if (force_unique_params_p)
for (unsigned int i = 0; i < params.length (); ++i)
if (params[i] == value)
return false;
params[id] = value;
return true;
}
return params[id] == value;
}
/* PARAMS2 is the "params" array for a pattern and PARAMS1 is the
set of parameters that a particular state is going to pass to
that pattern.
Try to extend PARAMS1 and PARAMS2 so that there is a parameter
that is equal to PARAM1 for the state and has a default value of
PARAM2. Parameters beginning at START were added as part of the
same match and so may be reused. */
static bool
add_parameter (vec <parameter> ¶ms1, vec <parameter> ¶ms2,
const parameter ¶m1, const parameter ¶m2,
unsigned int start, unsigned int *res)
{
gcc_assert (params1.length () == params2.length ());
gcc_assert (!param1.is_param && !param2.is_param);
for (unsigned int i = start; i < params2.length (); ++i)
if (params1[i] == param1 && params2[i] == param2)
{
*res = i;
return true;
}
if (force_unique_params_p)
for (unsigned int i = 0; i < params2.length (); ++i)
if (params1[i] == param1 || params2[i] == param2)
return false;
if (params2.length () >= MAX_PATTERN_PARAMS)
return false;
*res = params2.length ();
params1.quick_push (param1);
params2.quick_push (param2);
return true;
}
/* If *ROOTA is nonnull, return true if the same sequence of steps are
required to reach A from *ROOTA as to reach B from ROOTB. If *ROOTA
is null, update it if necessary in order to make the condition hold. */
static bool
merge_relative_positions (position **roota, position *a,
position *rootb, position *b)
{
if (!relative_patterns_p)
{
if (a != b)
return false;
if (!*roota)
{
*roota = rootb;
return true;
}
return *roota == rootb;
}
/* If B does not belong to the same instruction as ROOTB, we don't
start with ROOTB but instead start with a call to peep2_next_insn.
In that case the sequences for B and A are identical iff B and A
are themselves identical. */
if (rootb->insn_id != b->insn_id)
return a == b;
while (rootb != b)
{
if (!a || b->type != a->type || b->arg != a->arg)
return false;
b = b->base;
a = a->base;
}
if (!*roota)
*roota = a;
return *roota == a;
}
/* A hasher of states that treats two states as "equal" if they might be
merged (but trying to be more discriminating than "return true"). */
struct test_pattern_hasher : nofree_ptr_hash <merge_state_info>
{
static inline hashval_t hash (const value_type &);
static inline bool equal (const value_type &, const compare_type &);
};
hashval_t
test_pattern_hasher::hash (merge_state_info *const &sinfo)
{
inchash::hash h;
decision *d = sinfo->s->singleton ();
h.add_int (d->test.pos_operand + 1);
if (!relative_patterns_p)
h.add_int (d->test.pos ? d->test.pos->id + 1 : 0);
h.add_int (d->test.kind);
h.add_int (sinfo->num_transitions);
return h.end ();
}
bool
test_pattern_hasher::equal (merge_state_info *const &sinfo1,
merge_state_info *const &sinfo2)
{
decision *d1 = sinfo1->s->singleton ();
decision *d2 = sinfo2->s->singleton ();
gcc_assert (d1 && d2);
parameter new_param1, new_param2;
return (d1->test.pos_operand == d2->test.pos_operand
&& (relative_patterns_p || d1->test.pos == d2->test.pos)
&& compatible_tests_p (d1->test, d2->test, &new_param1, &new_param2)
&& sinfo1->num_transitions == sinfo2->num_transitions);
}
/* Try to make the state described by SINFO1 use the same pattern as the
state described by SINFO2. Return true on success.
SINFO1 and SINFO2 are known to have the same hash value. */
static bool
merge_patterns (merge_state_info *sinfo1, merge_state_info *sinfo2)
{
merge_state_result *res2 = sinfo2->res;
merge_pattern_info *pat = res2->pattern;
/* Write to temporary arrays while matching, in case we have to abort
half way through. */
auto_vec <parameter, MAX_PATTERN_PARAMS> params1;
auto_vec <parameter, MAX_PATTERN_PARAMS> params2;
params1.quick_grow_cleared (pat->params.length ());
params2.splice (pat->params);
unsigned int start_param = params2.length ();
/* An array for recording changes to PAT->transitions[?].params.
All changes involve replacing a constant parameter with some
PAT->params[N], where N is the second element of the pending_param. */
typedef std::pair <parameter *, unsigned int> pending_param;
auto_vec <pending_param, 32> pending_params;
decision *d1 = sinfo1->s->singleton ();
decision *d2 = sinfo2->s->singleton ();
gcc_assert (d1 && d2);
/* If D2 tests a position, SINFO1's root relative to D1 is the same
as SINFO2's root relative to D2. */
position *root1 = 0;
position *root2 = res2->root;
if (d2->test.pos_operand < 0
&& d1->test.pos
&& !merge_relative_positions (&root1, d1->test.pos,
root2, d2->test.pos))
return false;
/* Check whether the patterns have the same shape. */
unsigned int num_transitions = sinfo1->num_transitions;
gcc_assert (num_transitions == sinfo2->num_transitions);
for (unsigned int i = 0; i < num_transitions; ++i)
if (merge_pattern_transition *ptrans = pat->transitions[i])
{
merge_state_result *to1_res = sinfo1->to_states[i].res;
merge_state_result *to2_res = sinfo2->to_states[i].res;
merge_pattern_info *to_pat = ptrans->to;
gcc_assert (to2_res && to2_res->pattern == to_pat);
if (!to1_res || to1_res->pattern != to_pat)
return false;
if (to2_res->root
&& !merge_relative_positions (&root1, to1_res->root,
root2, to2_res->root))
return false;
/* Match the parameters that TO1_RES passes to TO_PAT with the
parameters that PAT passes to TO_PAT. */
update_parameters (to1_res->params, to_pat->params);
for (unsigned int j = 0; j < to1_res->params.length (); ++j)
{
const parameter ¶m1 = to1_res->params[j];
const parameter ¶m2 = ptrans->params[j];
gcc_assert (!param1.is_param);
if (param2.is_param)
{
if (!set_parameter (params1, param2.value, param1))
return false;
}
else if (param1 != param2)
{
unsigned int id;
if (!add_parameter (params1, params2,
param1, param2, start_param, &id))
return false;
/* Record that PAT should now pass parameter ID to TO_PAT,
instead of the current contents of *PARAM2. We only
make the change if the rest of the match succeeds. */
pending_params.safe_push
(pending_param (&ptrans->params[j], id));
}
}
}
unsigned int param_test = pat->param_test;
unsigned int param_transition = pat->param_transition;
bool param_test_p = pat->param_test_p;
bool param_transition_p = pat->param_transition_p;
/* If the tests don't match exactly, try to parameterize them. */
parameter new_param1, new_param2;
if (!compatible_tests_p (d1->test, d2->test, &new_param1, &new_param2))
gcc_unreachable ();
if (new_param1.type != parameter::UNSET)
{
/* If the test has not already been parameterized, all existing
matches use constant NEW_PARAM2. */
if (param_test_p)
{
if (!set_parameter (params1, param_test, new_param1))
return false;
}
else if (new_param1 != new_param2)
{
if (!add_parameter (params1, params2, new_param1, new_param2,
start_param, ¶m_test))
return false;
param_test_p = true;
}
}
/* Match the transitions. */
transition *trans1 = d1->first;
transition *trans2 = d2->first;
for (unsigned int i = 0; i < num_transitions; ++i)
{
if (param_transition_p || trans1->labels != trans2->labels)
{
/* We can only generalize a single transition with a single
label. */
if (num_transitions != 1
|| trans1->labels.length () != 1
|| trans2->labels.length () != 1)
return false;
/* Although we can match wide-int fields, in practice it leads
to some odd results for const_vectors. We end up
parameterizing the first N const_ints of the vector
and then (once we reach the maximum number of parameters)
we go on to match the other elements exactly. */
if (d1->test.kind == rtx_test::WIDE_INT_FIELD)
return false;
/* See whether the label has a generalizable type. */
parameter::type_enum param_type
= transition_parameter_type (d1->test.kind);
if (param_type == parameter::UNSET)
return false;
/* Match the labels using parameters. */
new_param1 = parameter (param_type, false, trans1->labels[0]);
if (param_transition_p)
{
if (!set_parameter (params1, param_transition, new_param1))
return false;
}
else
{
new_param2 = parameter (param_type, false, trans2->labels[0]);
if (!add_parameter (params1, params2, new_param1, new_param2,
start_param, ¶m_transition))
return false;
param_transition_p = true;
}
}
trans1 = trans1->next;
trans2 = trans2->next;
}
/* Set any unset parameters to their default values. This occurs if some
other state needed something to be parameterized in order to match SINFO2,
but SINFO1 on its own does not. */
for (unsigned int i = 0; i < params1.length (); ++i)
if (params1[i].type == parameter::UNSET)
params1[i] = params2[i];
/* The match was successful. Commit all pending changes to PAT. */
update_parameters (pat->params, params2);
{
pending_param *pp;
unsigned int i;
FOR_EACH_VEC_ELT (pending_params, i, pp)
*pp->first = parameter (pp->first->type, true, pp->second);
}
pat->param_test = param_test;
pat->param_transition = param_transition;
pat->param_test_p = param_test_p;
pat->param_transition_p = param_transition_p;
/* Record the match of SINFO1. */
merge_state_result *new_res1 = new merge_state_result (pat, root1,
sinfo1->res);
new_res1->params.splice (params1);
sinfo1->res = new_res1;
return true;
}
/* The number of states that were removed by calling pattern routines. */
static unsigned int pattern_use_states;
/* The number of states used while defining pattern routines. */
static unsigned int pattern_def_states;
/* Information used while constructing a use or definition of a pattern
routine. */
struct create_pattern_info
{
/* The routine itself. */
pattern_routine *routine;
/* The first unclaimed return value for this particular use or definition.
We walk the substates of uses and definitions in the same order
so each return value always refers to the same position within
the pattern. */
unsigned int next_result;
};
static void populate_pattern_routine (create_pattern_info *,
merge_state_info *, state *,
const vec <parameter> &);
/* SINFO matches a pattern for which we've decided to create a C routine.
Return a decision that performs a call to the pattern routine,
but leave the caller to add the transitions to it. Initialize CPI
for this purpose. Also create a definition for the pattern routine,
if it doesn't already have one.
PARAMS are the parameters that SINFO passes to its pattern. */
static decision *
init_pattern_use (create_pattern_info *cpi, merge_state_info *sinfo,
const vec <parameter> ¶ms)
{
state *s = sinfo->s;
merge_state_result *res = sinfo->res;
merge_pattern_info *pat = res->pattern;
cpi->routine = pat->routine;
if (!cpi->routine)
{
/* We haven't defined the pattern routine yet, so create
a definition now. */
pattern_routine *routine = new pattern_routine;
pat->routine = routine;
cpi->routine = routine;
routine->s = new state;
routine->insn_p = false;
routine->pnum_clobbers_p = false;
/* Create an "idempotent" mapping of parameter I to parameter I.
Also record the C type of each parameter to the routine. */
auto_vec <parameter, MAX_PATTERN_PARAMS> def_params;
for (unsigned int i = 0; i < pat->params.length (); ++i)
{
def_params.quick_push (parameter (pat->params[i].type, true, i));
routine->param_types.quick_push (pat->params[i].type);
}
/* Any of the states that match the pattern could be used to
create the routine definition. We might as well use SINFO
since it's already to hand. This means that all positions
in the definition will be relative to RES->root. */
routine->pos = res->root;
cpi->next_result = 0;
populate_pattern_routine (cpi, sinfo, routine->s, def_params);
gcc_assert (cpi->next_result == pat->num_results);
/* Add the routine to the global list, after the subroutines
that it calls. */
routine->pattern_id = patterns.length ();
patterns.safe_push (routine);
}
/* Create a decision to call the routine, passing PARAMS to it. */
pattern_use *use = new pattern_use;
use->routine = pat->routine;
use->params.splice (params);
decision *d = new decision (rtx_test::pattern (res->root, use));
/* If the original decision could use an element of operands[] instead
of an rtx variable, try to transfer it to the new decision. */
if (s->first->test.pos && res->root == s->first->test.pos)
d->test.pos_operand = s->first->test.pos_operand;
cpi->next_result = 0;
return d;
}
/* Make S return the next unclaimed pattern routine result for CPI. */
static void
add_pattern_acceptance (create_pattern_info *cpi, state *s)
{
acceptance_type acceptance;
acceptance.type = SUBPATTERN;
acceptance.partial_p = false;
acceptance.u.full.code = cpi->next_result;
add_decision (s, rtx_test::accept (acceptance), true, false);
cpi->next_result += 1;
}
/* Initialize new empty state NEWS so that it implements SINFO's pattern
(here referred to as "P"). P may be the top level of a pattern routine
or a subpattern that should be inlined into its parent pattern's routine
(as per same_pattern_p). The choice of SINFO for a top-level pattern is
arbitrary; it could be any of the states that use P. The choice for
subpatterns follows the choice for the parent pattern.
PARAMS gives the value of each parameter to P in terms of the parameters
to the top-level pattern. If P itself is the top level pattern, PARAMS[I]
is always "parameter (TYPE, true, I)". */
static void
populate_pattern_routine (create_pattern_info *cpi, merge_state_info *sinfo,
state *news, const vec <parameter> ¶ms)
{
pattern_def_states += 1;
decision *d = sinfo->s->singleton ();
merge_pattern_info *pat = sinfo->res->pattern;
pattern_routine *routine = cpi->routine;
/* Create a copy of D's test for the pattern routine and generalize it
as appropriate. */
decision *newd = new decision (d->test);
gcc_assert (newd->test.pos_operand >= 0
|| !newd->test.pos
|| common_position (newd->test.pos,
routine->pos) == routine->pos);
if (pat->param_test_p)
{
const parameter ¶m = params[pat->param_test];
switch (newd->test.kind)
{
case rtx_test::PREDICATE:
newd->test.u.predicate.mode_is_param = param.is_param;
newd->test.u.predicate.mode = param.value;
break;
case rtx_test::SAVED_CONST_INT:
newd->test.u.integer.is_param = param.is_param;
newd->test.u.integer.value = param.value;
break;
default:
gcc_unreachable ();
break;
}
}
if (d->test.kind == rtx_test::C_TEST)
routine->insn_p = true;
else if (d->test.kind == rtx_test::HAVE_NUM_CLOBBERS)
routine->pnum_clobbers_p = true;
news->push_back (newd);
/* Fill in the transitions of NEWD. */
unsigned int i = 0;
for (transition *trans = d->first; trans; trans = trans->next)
{
/* Create a new state to act as the target of the new transition. */
state *to_news = new state;
if (merge_pattern_transition *ptrans = pat->transitions[i])
{
/* The pattern hasn't finished matching yet. Get the target
pattern and the corresponding target state of SINFO. */
merge_pattern_info *to_pat = ptrans->to;
merge_state_info *to = sinfo->to_states + i;
gcc_assert (to->res->pattern == to_pat);
gcc_assert (ptrans->params.length () == to_pat->params.length ());
/* Express the parameters to TO_PAT in terms of the parameters
to the top-level pattern. */
auto_vec <parameter, MAX_PATTERN_PARAMS> to_params;
for (unsigned int j = 0; j < ptrans->params.length (); ++j)
{
const parameter ¶m = ptrans->params[j];
to_params.quick_push (param.is_param
? params[param.value]
: param);
}
if (same_pattern_p (pat, to_pat))
/* TO_PAT is part of the current routine, so just recurse. */
populate_pattern_routine (cpi, to, to_news, to_params);
else
{
/* TO_PAT should be matched by calling a separate routine. */
create_pattern_info sub_cpi;
decision *subd = init_pattern_use (&sub_cpi, to, to_params);
routine->insn_p |= sub_cpi.routine->insn_p;
routine->pnum_clobbers_p |= sub_cpi.routine->pnum_clobbers_p;
/* Add the pattern routine call to the new target state. */
to_news->push_back (subd);
/* Add a transition for each successful call result. */
for (unsigned int j = 0; j < to_pat->num_results; ++j)
{
state *res = new state;
add_pattern_acceptance (cpi, res);
subd->push_back (new transition (j, res, false));
}
}
}
else
/* This transition corresponds to a successful match. */
add_pattern_acceptance (cpi, to_news);
/* Create the transition itself, generalizing as necessary. */
transition *new_trans = new transition (trans->labels, to_news,
trans->optional);
if (pat->param_transition_p)
{
const parameter ¶m = params[pat->param_transition];
new_trans->is_param = param.is_param;
new_trans->labels[0] = param.value;
}
newd->push_back (new_trans);
i += 1;
}
}
/* USE is a decision that calls a pattern routine and SINFO is part of the
original state tree that the call is supposed to replace. Add the
transitions for SINFO and its substates to USE. */
static void
populate_pattern_use (create_pattern_info *cpi, decision *use,
merge_state_info *sinfo)
{
pattern_use_states += 1;
gcc_assert (!sinfo->merged_p);
sinfo->merged_p = true;
merge_state_result *res = sinfo->res;
merge_pattern_info *pat = res->pattern;
decision *d = sinfo->s->singleton ();
unsigned int i = 0;
for (transition *trans = d->first; trans; trans = trans->next)
{
if (pat->transitions[i])
/* The target state is also part of the pattern. */
populate_pattern_use (cpi, use, sinfo->to_states + i);
else
{
/* The transition corresponds to a successful return from the
pattern routine. */
use->push_back (new transition (cpi->next_result, trans->to, false));
cpi->next_result += 1;
}
i += 1;
}
}
/* We have decided to replace SINFO's state with a call to a pattern
routine. Make the change, creating a definition of the pattern routine
if it doesn't have one already. */
static void
use_pattern (merge_state_info *sinfo)
{
merge_state_result *res = sinfo->res;
merge_pattern_info *pat = res->pattern;
state *s = sinfo->s;
/* The pattern may have acquired new parameters after it was matched
against SINFO. Update the parameters that SINFO passes accordingly. */
update_parameters (res->params, pat->params);
create_pattern_info cpi;
decision *d = init_pattern_use (&cpi, sinfo, res->params);
populate_pattern_use (&cpi, d, sinfo);
s->release ();
s->push_back (d);
}
/* Look through the state trees in STATES for common patterns and
split them into subroutines. */
static void
split_out_patterns (vec <merge_state_info> &states)
{
unsigned int first_transition = states.length ();
hash_table <test_pattern_hasher> hashtab (128);
/* Stage 1: Create an order in which parent states come before their child
states and in which sibling states are at consecutive locations.
Having consecutive sibling states allows merge_state_info to have
a single to_states pointer. */
for (unsigned int i = 0; i < states.length (); ++i)
for (decision *d = states[i].s->first; d; d = d->next)
for (transition *trans = d->first; trans; trans = trans->next)
{
states.safe_push (trans->to);
states[i].num_transitions += 1;
}
/* Stage 2: Now that the addresses are stable, set up the to_states
pointers. Look for states that might be merged and enter them
into the hash table. */
for (unsigned int i = 0; i < states.length (); ++i)
{
merge_state_info *sinfo = &states[i];
if (sinfo->num_transitions)
{
sinfo->to_states = &states[first_transition];
first_transition += sinfo->num_transitions;
}
/* For simplicity, we only try to merge states that have a single
decision. This is in any case the best we can do for peephole2,
since whether a peephole2 ACCEPT succeeds or not depends on the
specific peephole2 pattern (which is unique to each ACCEPT
and so couldn't be shared between states). */
if (decision *d = sinfo->s->singleton ())
/* ACCEPT states are unique, so don't even try to merge them. */
if (d->test.kind != rtx_test::ACCEPT
&& (pattern_have_num_clobbers_p
|| d->test.kind != rtx_test::HAVE_NUM_CLOBBERS)
&& (pattern_c_test_p
|| d->test.kind != rtx_test::C_TEST))
{
merge_state_info **slot = hashtab.find_slot (sinfo, INSERT);
sinfo->prev_same_test = *slot;
*slot = sinfo;
}
}
/* Stage 3: Walk backwards through the list of states and try to merge
them. This is a greedy, bottom-up match; parent nodes can only start
a new leaf pattern if they fail to match when combined with all child
nodes that have matching patterns.
For each state we keep a list of potential matches, with each
potential match being larger (and deeper) than the next match in
the list. The final element in the list is a leaf pattern that
matches just a single state.
Each candidate pattern created in this loop is unique -- it won't
have been seen by an earlier iteration. We try to match each pattern
with every state that appears earlier in STATES.
Because the patterns created in the loop are unique, any state
that already has a match must have a final potential match that
is different from any new leaf pattern. Therefore, when matching
leaf patterns, we need only consider states whose list of matches
is empty.
The non-leaf patterns that we try are as deep as possible
and are an extension of the state's previous best candidate match (PB).
We need only consider states whose current potential match is also PB;
any states that don't match as much as PB cannnot match the new pattern,
while any states that already match more than PB must be different from
the new pattern. */
for (unsigned int i2 = states.length (); i2-- > 0; )
{
merge_state_info *sinfo2 = &states[i2];
/* Enforce the bottom-upness of the match: remove matches with later
states if SINFO2's child states ended up finding a better match. */
prune_invalid_results (sinfo2);
/* Do nothing if the state doesn't match a later one and if there are
no earlier states it could match. */
if (!sinfo2->res && !sinfo2->prev_same_test)
continue;
merge_state_result *res2 = sinfo2->res;
decision *d2 = sinfo2->s->singleton ();
position *root2 = (d2->test.pos_operand < 0 ? d2->test.pos : 0);
unsigned int num_transitions = sinfo2->num_transitions;
/* If RES2 is null then SINFO2's test in isolation has not been seen
before. First try matching that on its own. */
if (!res2)
{
merge_pattern_info *new_pat
= new merge_pattern_info (num_transitions);
merge_state_result *new_res2
= new merge_state_result (new_pat, root2, res2);
sinfo2->res = new_res2;
new_pat->num_statements = !d2->test.single_outcome_p ();
new_pat->num_results = num_transitions;
bool matched_p = false;
/* Look for states that don't currently match anything but
can be made to match SINFO2 on its own. */
for (merge_state_info *sinfo1 = sinfo2->prev_same_test; sinfo1;
sinfo1 = sinfo1->prev_same_test)
if (!sinfo1->res && merge_patterns (sinfo1, sinfo2))
matched_p = true;
if (!matched_p)
{
/* No other states match. */
sinfo2->res = res2;
delete new_pat;
delete new_res2;
continue;
}
else
res2 = new_res2;
}
/* Keep the existing pattern if it's as good as anything we'd
create for SINFO2. */
if (complete_result_p (res2->pattern, sinfo2))
{
res2->pattern->num_users += 1;
continue;
}
/* Create a new pattern for SINFO2. */
merge_pattern_info *new_pat = new merge_pattern_info (num_transitions);
merge_state_result *new_res2
= new merge_state_result (new_pat, root2, res2);
sinfo2->res = new_res2;
/* Fill in details about the pattern. */
new_pat->num_statements = !d2->test.single_outcome_p ();
new_pat->num_results = 0;
for (unsigned int j = 0; j < num_transitions; ++j)
if (merge_state_result *to_res = sinfo2->to_states[j].res)
{
/* Count the target state as part of this pattern.
First update the root position so that it can reach
the target state's root. */
if (to_res->root)
{
if (new_res2->root)
new_res2->root = common_position (new_res2->root,
to_res->root);
else
new_res2->root = to_res->root;
}
merge_pattern_info *to_pat = to_res->pattern;
merge_pattern_transition *ptrans
= new merge_pattern_transition (to_pat);
/* TO_PAT may have acquired more parameters when matching
states earlier in STATES than TO_RES's, but the list is
now final. Make sure that TO_RES is up to date. */
update_parameters (to_res->params, to_pat->params);
/* Start out by assuming that every user of NEW_PAT will
want to pass the same (constant) parameters as TO_RES. */
update_parameters (ptrans->params, to_res->params);
new_pat->transitions[j] = ptrans;
new_pat->num_statements += to_pat->num_statements;
new_pat->num_results += to_pat->num_results;
}
else
/* The target state doesn't match anything and so is not part
of the pattern. */
new_pat->num_results += 1;
/* See if any earlier states that match RES2's pattern also match
NEW_PAT. */
bool matched_p = false;
for (merge_state_info *sinfo1 = sinfo2->prev_same_test; sinfo1;
sinfo1 = sinfo1->prev_same_test)
{
prune_invalid_results (sinfo1);
if (sinfo1->res
&& sinfo1->res->pattern == res2->pattern
&& merge_patterns (sinfo1, sinfo2))
matched_p = true;
}
if (!matched_p)
{
/* Nothing else matches NEW_PAT, so go back to the previous
pattern (possibly just a single-state one). */
sinfo2->res = res2;
delete new_pat;
delete new_res2;
}
/* Assume that SINFO2 will use RES. At this point we don't know
whether earlier states that match the same pattern will use
that match or a different one. */
sinfo2->res->pattern->num_users += 1;
}
/* Step 4: Finalize the choice of pattern for each state, ignoring
patterns that were only used once. Update each pattern's size
so that it doesn't include subpatterns that are going to be split
out into subroutines. */
for (unsigned int i = 0; i < states.length (); ++i)
{
merge_state_info *sinfo = &states[i];
merge_state_result *res = sinfo->res;
/* Wind past patterns that are only used by SINFO. */
while (res && res->pattern->num_users == 1)
{
res = res->prev;
sinfo->res = res;
if (res)
res->pattern->num_users += 1;
}
if (!res)
continue;
/* We have a shared pattern and are now committed to the match. */
merge_pattern_info *pat = res->pattern;
gcc_assert (valid_result_p (pat, sinfo));
if (!pat->complete_p)
{
/* Look for subpatterns that are going to be split out and remove
them from the number of statements. */
for (unsigned int j = 0; j < sinfo->num_transitions; ++j)
if (merge_pattern_transition *ptrans = pat->transitions[j])
{
merge_pattern_info *to_pat = ptrans->to;
if (!same_pattern_p (pat, to_pat))
pat->num_statements -= to_pat->num_statements;
}
pat->complete_p = true;
}
}
/* Step 5: Split out the patterns. */
for (unsigned int i = 0; i < states.length (); ++i)
{
merge_state_info *sinfo = &states[i];
merge_state_result *res = sinfo->res;
if (!sinfo->merged_p && res && useful_pattern_p (res->pattern))
use_pattern (sinfo);
}
fprintf (stderr, "Shared %d out of %d states by creating %d new states,"
" saving %d\n",
pattern_use_states, states.length (), pattern_def_states,
pattern_use_states - pattern_def_states);
}
/* Information about a state tree that we're considering splitting into a
subroutine. */
struct state_size
{
/* The number of pseudo-statements in the state tree. */
unsigned int num_statements;
/* The approximate number of nested "if" and "switch" statements that
would be required if control could fall through to a later state. */
unsigned int depth;
};
/* Pairs a transition with information about its target state. */
typedef std::pair <transition *, state_size> subroutine_candidate;
/* Sort two subroutine_candidates so that the one with the largest
number of statements comes last. */
static int
subroutine_candidate_cmp (const void *a, const void *b)
{
return int (((const subroutine_candidate *) a)->second.num_statements
- ((const subroutine_candidate *) b)->second.num_statements);
}
/* Turn S into a subroutine of type TYPE and add it to PROCS. Return a new
state that performs a subroutine call to S. */
static state *
create_subroutine (routine_type type, state *s, vec <state *> &procs)
{
procs.safe_push (s);
acceptance_type acceptance;
acceptance.type = type;
acceptance.partial_p = true;
acceptance.u.subroutine_id = procs.length ();
state *news = new state;
add_decision (news, rtx_test::accept (acceptance), true, false);
return news;
}
/* Walk state tree S, of type TYPE, and look for subtrees that would be
better split into subroutines. Accumulate all such subroutines in PROCS.
Return the size of the new state tree (excluding subroutines). */
static state_size
find_subroutines (routine_type type, state *s, vec <state *> &procs)
{
auto_vec <subroutine_candidate, 16> candidates;
state_size size;
size.num_statements = 0;
size.depth = 0;
for (decision *d = s->first; d; d = d->next)
{
if (!d->test.single_outcome_p ())
size.num_statements += 1;
for (transition *trans = d->first; trans; trans = trans->next)
{
/* Keep chains of simple decisions together if we know that no
change of position is required. We'll output this chain as a
single "if" statement, so it counts as a single nesting level. */
if (d->test.pos && d->if_statement_p ())
for (;;)
{
decision *newd = trans->to->singleton ();
if (!newd
|| (newd->test.pos
&& newd->test.pos_operand < 0
&& newd->test.pos != d->test.pos)
|| !newd->if_statement_p ())
break;
if (!newd->test.single_outcome_p ())
size.num_statements += 1;
trans = newd->singleton ();
if (newd->test.kind == rtx_test::SET_OP
|| newd->test.kind == rtx_test::ACCEPT)
break;
}
/* The target of TRANS is a subroutine candidate. First recurse
on it to see how big it is after subroutines have been
split out. */
state_size to_size = find_subroutines (type, trans->to, procs);
if (d->next && to_size.depth > MAX_DEPTH)
/* Keeping the target state in the same routine would lead
to an excessive nesting of "if" and "switch" statements.
Split it out into a subroutine so that it can use
inverted tests that return early on failure. */
trans->to = create_subroutine (type, trans->to, procs);
else
{
size.num_statements += to_size.num_statements;
if (to_size.num_statements < MIN_NUM_STATEMENTS)
/* The target state is too small to be worth splitting.
Keep it in the same routine as S. */
size.depth = MAX (size.depth, to_size.depth);
else
/* Assume for now that we'll keep the target state in the
same routine as S, but record it as a subroutine candidate
if S grows too big. */
candidates.safe_push (subroutine_candidate (trans, to_size));
}
}
}
if (size.num_statements > MAX_NUM_STATEMENTS)
{
/* S is too big. Sort the subroutine candidates so that bigger ones
are nearer the end. */
candidates.qsort (subroutine_candidate_cmp);
while (!candidates.is_empty ()
&& size.num_statements > MAX_NUM_STATEMENTS)
{
/* Peel off a candidate and force it into a subroutine. */
subroutine_candidate cand = candidates.pop ();
size.num_statements -= cand.second.num_statements;
cand.first->to = create_subroutine (type, cand.first->to, procs);
}
}
/* Update the depth for subroutine candidates that we decided not to
split out. */
for (unsigned int i = 0; i < candidates.length (); ++i)
size.depth = MAX (size.depth, candidates[i].second.depth);
size.depth += 1;
return size;
}
/* Return true if, for all X, PRED (X, MODE) implies that X has mode MODE. */
static bool
safe_predicate_mode (const struct pred_data *pred, machine_mode mode)
{
/* Scalar integer constants have VOIDmode. */
if (GET_MODE_CLASS (mode) == MODE_INT
&& (pred->codes[CONST_INT]
|| pred->codes[CONST_DOUBLE]
|| pred->codes[CONST_WIDE_INT]))
return false;
return !pred->special && mode != VOIDmode;
}
/* Fill CODES with the set of codes that could be matched by PRED. */
static void
get_predicate_codes (const struct pred_data *pred, int_set *codes)
{
for (int i = 0; i < NUM_TRUE_RTX_CODE; ++i)
if (!pred || pred->codes[i])
codes->safe_push (i);
}
/* Return true if the first path through D1 tests the same thing as D2. */
static bool
has_same_test_p (decision *d1, decision *d2)
{
do
{
if (d1->test == d2->test)
return true;
d1 = d1->first->to->first;
}
while (d1);
return false;
}
/* Return true if D1 and D2 cannot match the same rtx. All states reachable
from D2 have single decisions and all those decisions have single
transitions. */
static bool
mutually_exclusive_p (decision *d1, decision *d2)
{
/* If one path through D1 fails to test the same thing as D2, assume
that D2's test could be true for D1 and look for a later, more useful,
test. This isn't as expensive as it looks in practice. */
while (!has_same_test_p (d1, d2))
{
d2 = d2->singleton ()->to->singleton ();
if (!d2)
return false;
}
if (d1->test == d2->test)
{
/* Look for any transitions from D1 that have the same labels as
the transition from D2. */
transition *trans2 = d2->singleton ();
for (transition *trans1 = d1->first; trans1; trans1 = trans1->next)
{
int_set::iterator i1 = trans1->labels.begin ();
int_set::iterator end1 = trans1->labels.end ();
int_set::iterator i2 = trans2->labels.begin ();
int_set::iterator end2 = trans2->labels.end ();
while (i1 != end1 && i2 != end2)
if (*i1 < *i2)
++i1;
else if (*i2 < *i1)
++i2;
else
{
/* TRANS1 has some labels in common with TRANS2. Assume
that D1 and D2 could match the same rtx if the target
of TRANS1 could match the same rtx as D2. */
for (decision *subd1 = trans1->to->first;
subd1; subd1 = subd1->next)
if (!mutually_exclusive_p (subd1, d2))
return false;
break;
}
}
return true;
}
for (transition *trans1 = d1->first; trans1; trans1 = trans1->next)
for (decision *subd1 = trans1->to->first; subd1; subd1 = subd1->next)
if (!mutually_exclusive_p (subd1, d2))
return false;
return true;
}
/* Try to merge S2's decision into D1, given that they have the same test.
Fail only if EXCLUDE is nonnull and the new transition would have the
same labels as *EXCLUDE. When returning true, set *NEXT_S1, *NEXT_S2
and *NEXT_EXCLUDE as for merge_into_state_1, or set *NEXT_S2 to null
if the merge is complete. */
static bool
merge_into_decision (decision *d1, state *s2, const int_set *exclude,
state **next_s1, state **next_s2,
const int_set **next_exclude)
{
decision *d2 = s2->singleton ();
transition *trans2 = d2->singleton ();
/* Get a list of the transitions that intersect TRANS2. */
auto_vec <transition *, 32> intersecting;
for (transition *trans1 = d1->first; trans1; trans1 = trans1->next)
{
int_set::iterator i1 = trans1->labels.begin ();
int_set::iterator end1 = trans1->labels.end ();
int_set::iterator i2 = trans2->labels.begin ();
int_set::iterator end2 = trans2->labels.end ();
bool trans1_is_subset = true;
bool trans2_is_subset = true;
bool intersect_p = false;
while (i1 != end1 && i2 != end2)
if (*i1 < *i2)
{
trans1_is_subset = false;
++i1;
}
else if (*i2 < *i1)
{
trans2_is_subset = false;
++i2;
}
else
{
intersect_p = true;
++i1;
++i2;
}
if (i1 != end1)
trans1_is_subset = false;
if (i2 != end2)
trans2_is_subset = false;
if (trans1_is_subset && trans2_is_subset)
{
/* There's already a transition that matches exactly.
Merge the target states. */
trans1->optional &= trans2->optional;
*next_s1 = trans1->to;
*next_s2 = trans2->to;
*next_exclude = 0;
return true;
}
if (trans2_is_subset)
{
/* TRANS1 has all the labels that TRANS2 needs. Merge S2 into
the target of TRANS1, but (to avoid infinite recursion)
make sure that we don't end up creating another transition
like TRANS1. */
*next_s1 = trans1->to;
*next_s2 = s2;
*next_exclude = &trans1->labels;
return true;
}
if (intersect_p)
intersecting.safe_push (trans1);
}
if (intersecting.is_empty ())
{
/* No existing labels intersect the new ones. We can just add
TRANS2 itself. */
d1->push_back (d2->release ());
*next_s1 = 0;
*next_s2 = 0;
*next_exclude = 0;
return true;
}
/* Take the union of the labels in INTERSECTING and TRANS2. Store the
result in COMBINED and use NEXT as a temporary. */
int_set tmp1 = trans2->labels, tmp2;
int_set *combined = &tmp1, *next = &tmp2;
for (unsigned int i = 0; i < intersecting.length (); ++i)
{
transition *trans1 = intersecting[i];
next->truncate (0);
next->safe_grow (trans1->labels.length () + combined->length ());
int_set::iterator end
= std::set_union (trans1->labels.begin (), trans1->labels.end (),
combined->begin (), combined->end (),
next->begin ());
next->truncate (end - next->begin ());
std::swap (next, combined);
}
/* Stop now if we've been told not to create a transition with these
labels. */
if (exclude && *combined == *exclude)
return false;
/* Get the transition that should carry the new labels. */
transition *new_trans = intersecting[0];
if (intersecting.length () == 1)
{
/* We're merging with one existing transition whose labels are a
subset of those required. If both transitions are optional,
we can just expand the set of labels so that it's suitable
for both transitions. It isn't worth preserving the original
transitions since we know that they can't be merged; we would
need to backtrack to S2 if TRANS1->to fails. In contrast,
we might be able to merge the targets of the transitions
without any backtracking.
If instead the existing transition is not optional, ensure that
all target decisions are suitably protected. Some decisions
might already have a more specific requirement than NEW_TRANS,
in which case there's no point testing NEW_TRANS as well. E.g. this
would have happened if a test for an (eq ...) rtx had been
added to a decision that tested whether the code is suitable
for comparison_operator. The original comparison_operator
transition would have been non-optional and the (eq ...) test
would be performed by a second decision in the target of that
transition.
The remaining case -- keeping the original optional transition
when adding a non-optional TRANS2 -- is a wash. Preserving
the optional transition only helps if we later merge another
state S3 that is mutually exclusive with S2 and whose labels
belong to *COMBINED - TRANS1->labels. We can then test the
original NEW_TRANS and S3 in the same decision. We keep the
optional transition around for that case, but it occurs very
rarely. */
gcc_assert (new_trans->labels != *combined);
if (!new_trans->optional || !trans2->optional)
{
decision *start = 0;
for (decision *end = new_trans->to->first; end; end = end->next)
{
if (!start && end->test != d1->test)
/* END belongs to a range of decisions that need to be
protected by NEW_TRANS. */
start = end;
if (start && (!end->next || end->next->test == d1->test))
{
/* Protect [START, END] with NEW_TRANS. The decisions
move to NEW_S and NEW_D becomes part of NEW_TRANS->to. */
state *new_s = new state;
decision *new_d = new decision (d1->test);
new_d->push_back (new transition (new_trans->labels, new_s,
new_trans->optional));
state::range r (start, end);
new_trans->to->replace (r, new_d);
new_s->push_back (r);
/* Continue with an empty range. */
start = 0;
/* Continue from the decision after NEW_D. */
end = new_d;
}
}
}
new_trans->optional = true;
new_trans->labels = *combined;
}
else
{
/* We're merging more than one existing transition together.
Those transitions are successfully dividing the matching space
and so we want to preserve them, even if they're optional.
Create a new transition with the union set of labels and make
it go to a state that has the original transitions. */
decision *new_d = new decision (d1->test);
for (unsigned int i = 0; i < intersecting.length (); ++i)
new_d->push_back (d1->remove (intersecting[i]));
state *new_s = new state;
new_s->push_back (new_d);
new_trans = new transition (*combined, new_s, true);
d1->push_back (new_trans);
}
/* We now have an optional transition with labels *COMBINED. Decide
whether we can use it as TRANS2 or whether we need to merge S2
into the target of NEW_TRANS. */
gcc_assert (new_trans->optional);
if (new_trans->labels == trans2->labels)
{
/* NEW_TRANS matches TRANS2. Just merge the target states. */
new_trans->optional = trans2->optional;
*next_s1 = new_trans->to;
*next_s2 = trans2->to;
*next_exclude = 0;
}
else
{
/* Try to merge TRANS2 into the target of the overlapping transition,
but (to prevent infinite recursion or excessive redundancy) without
creating another transition of the same type. */
*next_s1 = new_trans->to;
*next_s2 = s2;
*next_exclude = &new_trans->labels;
}
return true;
}
/* Make progress in merging S2 into S1, given that each state in S2
has a single decision. If EXCLUDE is nonnull, avoid creating a new
transition with the same test as S2's decision and with the labels
in *EXCLUDE.
Return true if there is still work to do. When returning true,
set *NEXT_S1, *NEXT_S2 and *NEXT_EXCLUDE to the values that
S1, S2 and EXCLUDE should have next time round.
If S1 and S2 both match a particular rtx, give priority to S1. */
static bool
merge_into_state_1 (state *s1, state *s2, const int_set *exclude,
state **next_s1, state **next_s2,
const int_set **next_exclude)
{
decision *d2 = s2->singleton ();
if (decision *d1 = s1->last)
{
if (d1->test.terminal_p ())
/* D1 is an unconditional return, so S2 can never match. This can
sometimes be a bug in the .md description, but might also happen
if genconditions forces some conditions to true for certain
configurations. */
return false;
/* Go backwards through the decisions in S1, stopping once we find one
that could match the same thing as S2. */
while (d1->prev && mutually_exclusive_p (d1, d2))
d1 = d1->prev;
/* Search forwards from that point, merging D2 into the first
decision we can. */
for (; d1; d1 = d1->next)
{
/* If S2 performs some optional tests before testing the same thing
as D1, those tests do not help to distinguish D1 and S2, so it's
better to drop them. Search through such optional decisions
until we find something that tests the same thing as D1. */
state *sub_s2 = s2;
for (;;)
{
decision *sub_d2 = sub_s2->singleton ();
if (d1->test == sub_d2->test)
{
/* Only apply EXCLUDE if we're testing the same thing
as D2. */
const int_set *sub_exclude = (d2 == sub_d2 ? exclude : 0);
/* Try to merge SUB_S2 into D1. This can only fail if
it would involve creating a new transition with
labels SUB_EXCLUDE. */
if (merge_into_decision (d1, sub_s2, sub_exclude,
next_s1, next_s2, next_exclude))
return *next_s2 != 0;
/* Can't merge with D1; try a later decision. */
break;
}
transition *sub_trans2 = sub_d2->singleton ();
if (!sub_trans2->optional)
/* Can't merge with D1; try a later decision. */
break;
sub_s2 = sub_trans2->to;
}
}
}
/* We can't merge D2 with any existing decision. Just add it to the end. */
s1->push_back (s2->release ());
return false;
}
/* Merge S2 into S1. If they both match a particular rtx, give
priority to S1. Each state in S2 has a single decision. */
static void
merge_into_state (state *s1, state *s2)
{
const int_set *exclude = 0;
while (s2 && merge_into_state_1 (s1, s2, exclude, &s1, &s2, &exclude))
continue;
}
/* Pairs a pattern that needs to be matched with the rtx position at
which the pattern should occur. */
struct pattern_pos {
pattern_pos () {}
pattern_pos (rtx, position *);
rtx pattern;
position *pos;
};
pattern_pos::pattern_pos (rtx pattern_in, position *pos_in)
: pattern (pattern_in), pos (pos_in)
{}
/* Compare entries according to their depth-first order. There shouldn't
be two entries at the same position. */
bool
operator < (const pattern_pos &e1, const pattern_pos &e2)
{
int diff = compare_positions (e1.pos, e2.pos);
gcc_assert (diff != 0 || e1.pattern == e2.pattern);
return diff < 0;
}
/* Return the name of the predicate matched by MATCH_RTX. */
static const char *
predicate_name (rtx match_rtx)
{
if (GET_CODE (match_rtx) == MATCH_SCRATCH)
return "scratch_operand";
else
return XSTR (match_rtx, 1);
}
/* Add new decisions to S that check whether the rtx at position POS
matches PATTERN. Return the state that is reached in that case.
TOP_PATTERN is the overall pattern, as passed to match_pattern_1. */
static state *
match_pattern_2 (state *s, rtx top_pattern, position *pos, rtx pattern)
{
auto_vec <pattern_pos, 32> worklist;
auto_vec <pattern_pos, 32> pred_and_mode_tests;
auto_vec <pattern_pos, 32> dup_tests;
worklist.safe_push (pattern_pos (pattern, pos));
while (!worklist.is_empty ())
{
pattern_pos next = worklist.pop ();
pattern = next.pattern;
pos = next.pos;
unsigned int reverse_s = worklist.length ();
enum rtx_code code = GET_CODE (pattern);
switch (code)
{
case MATCH_OP_DUP:
case MATCH_DUP:
case MATCH_PAR_DUP:
/* Add a test that the rtx matches the earlier one, but only
after the structure and predicates have been checked. */
dup_tests.safe_push (pattern_pos (pattern, pos));
/* Use the same code check as the original operand. */
pattern = find_operand (top_pattern, XINT (pattern, 0), NULL_RTX);
/* Fall through. */
case MATCH_PARALLEL:
case MATCH_OPERAND:
case MATCH_SCRATCH:
case MATCH_OPERATOR:
{
const char *pred_name = predicate_name (pattern);
const struct pred_data *pred = 0;
if (pred_name[0] != 0)
{
pred = lookup_predicate (pred_name);
/* Only report errors once per rtx. */
if (code == GET_CODE (pattern))
{
if (!pred)
error_with_line (pattern_lineno,
"unknown predicate '%s'"
" in '%s' expression",
pred_name, GET_RTX_NAME (code));
else if (code == MATCH_PARALLEL
&& pred->singleton != PARALLEL)
error_with_line (pattern_lineno,
"predicate '%s' used in match_parallel"
" does not allow only PARALLEL",
pred->name);
}
}
if (code == MATCH_PARALLEL || code == MATCH_PAR_DUP)
{
/* Check that we have a parallel with enough elements. */
s = add_decision (s, rtx_test::code (pos), PARALLEL, false);
int min_len = XVECLEN (pattern, 2);
s = add_decision (s, rtx_test::veclen_ge (pos, min_len),
true, false);
}
else
{
/* Check that the rtx has one of codes accepted by the
predicate. This is necessary when matching suboperands
of a MATCH_OPERATOR or MATCH_OP_DUP, since we can't
call XEXP (X, N) without checking that X has at least
N+1 operands. */
int_set codes;
get_predicate_codes (pred, &codes);
bool need_codes = (pred
&& (code == MATCH_OPERATOR
|| code == MATCH_OP_DUP));
s = add_decision (s, rtx_test::code (pos), codes, !need_codes);
}
/* Postpone the predicate check until we've checked the rest
of the rtx structure. */
if (code == GET_CODE (pattern))
pred_and_mode_tests.safe_push (pattern_pos (pattern, pos));
/* If we need to match suboperands, add them to the worklist. */
if (code == MATCH_OPERATOR || code == MATCH_PARALLEL)
{
position **subpos_ptr;
enum position_type pos_type;
int i;
if (code == MATCH_OPERATOR || code == MATCH_OP_DUP)
{
pos_type = POS_XEXP;
subpos_ptr = &pos->xexps;
i = (code == MATCH_OPERATOR ? 2 : 1);
}
else
{
pos_type = POS_XVECEXP0;
subpos_ptr = &pos->xvecexp0s;
i = 2;
}
for (int j = 0; j < XVECLEN (pattern, i); ++j)
{
position *subpos = next_position (subpos_ptr, pos,
pos_type, j);
worklist.safe_push (pattern_pos (XVECEXP (pattern, i, j),
subpos));
subpos_ptr = &subpos->next;
}
}
break;
}
default:
{
/* Check that the rtx has the right code. */
s = add_decision (s, rtx_test::code (pos), code, false);
/* Queue a test for the mode if one is specified. */
if (GET_MODE (pattern) != VOIDmode)
pred_and_mode_tests.safe_push (pattern_pos (pattern, pos));
/* Push subrtxes onto the worklist. Match nonrtx operands now. */
const char *fmt = GET_RTX_FORMAT (code);
position **subpos_ptr = &pos->xexps;
for (size_t i = 0; fmt[i]; ++i)
{
position *subpos = next_position (subpos_ptr, pos,
POS_XEXP, i);
switch (fmt[i])
{
case 'e': case 'u':
worklist.safe_push (pattern_pos (XEXP (pattern, i),
subpos));
break;
case 'E':
{
/* Make sure the vector has the right number of
elements. */
int length = XVECLEN (pattern, i);
s = add_decision (s, rtx_test::veclen (pos),
length, false);
position **subpos2_ptr = &pos->xvecexp0s;
for (int j = 0; j < length; j++)
{
position *subpos2 = next_position (subpos2_ptr, pos,
POS_XVECEXP0, j);
rtx x = XVECEXP (pattern, i, j);
worklist.safe_push (pattern_pos (x, subpos2));
subpos2_ptr = &subpos2->next;
}
break;
}
case 'i':
/* Make sure that XINT (X, I) has the right value. */
s = add_decision (s, rtx_test::int_field (pos, i),
XINT (pattern, i), false);
break;
case 'r':
/* Make sure that REGNO (X) has the right value. */
gcc_assert (i == 0);
s = add_decision (s, rtx_test::regno_field (pos),
REGNO (pattern), false);
break;
case 'w':
/* Make sure that XWINT (X, I) has the right value. */
s = add_decision (s, rtx_test::wide_int_field (pos, i),
XWINT (pattern, 0), false);
break;
case '0':
break;
default:
gcc_unreachable ();
}
subpos_ptr = &subpos->next;
}
}
break;
}
/* Operands are pushed onto the worklist so that later indices are
nearer the top. That's what we want for SETs, since a SET_SRC
is a better discriminator than a SET_DEST. In other cases it's
usually better to match earlier indices first. This is especially
true of PARALLELs, where the first element tends to be the most
individual. It's also true for commutative operators, where the
canonicalization rules say that the more complex operand should
come first. */
if (code != SET && worklist.length () > reverse_s)
std::reverse (&worklist[0] + reverse_s,
&worklist[0] + worklist.length ());
}
/* Sort the predicate and mode tests so that they're in depth-first order.
The main goal of this is to put SET_SRC match_operands after SET_DEST
match_operands and after mode checks for the enclosing SET_SRC operators
(such as the mode of a PLUS in an addition instruction). The latter
two types of test can determine the mode exactly, whereas a SET_SRC
match_operand often has to cope with the possibility of the operand
being a modeless constant integer. E.g. something that matches
register_operand (x, SImode) never matches register_operand (x, DImode),
but a const_int that matches immediate_operand (x, SImode) also matches
immediate_operand (x, DImode). The register_operand cases can therefore
be distinguished by a switch on the mode, but the immediate_operand
cases can't. */
if (pred_and_mode_tests.length () > 1)
std::sort (&pred_and_mode_tests[0],
&pred_and_mode_tests[0] + pred_and_mode_tests.length ());
/* Add the mode and predicate tests. */
pattern_pos *e;
unsigned int i;
FOR_EACH_VEC_ELT (pred_and_mode_tests, i, e)
{
switch (GET_CODE (e->pattern))
{
case MATCH_PARALLEL:
case MATCH_OPERAND:
case MATCH_SCRATCH:
case MATCH_OPERATOR:
{
int opno = XINT (e->pattern, 0);
num_operands = MAX (num_operands, opno + 1);
const char *pred_name = predicate_name (e->pattern);
if (pred_name[0])
{
const struct pred_data *pred = lookup_predicate (pred_name);
/* Check the mode first, to distinguish things like SImode
and DImode register_operands, as described above. */
machine_mode mode = GET_MODE (e->pattern);
if (safe_predicate_mode (pred, mode))
s = add_decision (s, rtx_test::mode (e->pos), mode, true);
/* Assign to operands[] first, so that the rtx usually doesn't
need to be live across the call to the predicate.
This shouldn't cause a problem with dirtying the page,
since we fully expect to assign to operands[] at some point,
and since the caller usually writes to other parts of
recog_data anyway. */
s = add_decision (s, rtx_test::set_op (e->pos, opno),
true, false);
s = add_decision (s, rtx_test::predicate (e->pos, pred, mode),
true, false);
}
else
/* Historically we've ignored the mode when there's no
predicate. Just set up operands[] unconditionally. */
s = add_decision (s, rtx_test::set_op (e->pos, opno),
true, false);
break;
}
default:
s = add_decision (s, rtx_test::mode (e->pos),
GET_MODE (e->pattern), false);
break;
}
}
/* Finally add rtx_equal_p checks for duplicated operands. */
FOR_EACH_VEC_ELT (dup_tests, i, e)
s = add_decision (s, rtx_test::duplicate (e->pos, XINT (e->pattern, 0)),
true, false);
return s;
}
/* Add new decisions to S that make it return ACCEPTANCE if:
(1) the rtx doesn't match anything already matched by S
(2) the rtx matches TOP_PATTERN and
(3) C_TEST is true.
For peephole2, TOP_PATTERN is a SEQUENCE of the instruction patterns
to match, otherwise it is a single instruction pattern. */
static void
match_pattern_1 (state *s, rtx top_pattern, const char *c_test,
acceptance_type acceptance)
{
if (acceptance.type == PEEPHOLE2)
{
/* Match each individual instruction. */
position **subpos_ptr = &peep2_insn_pos_list;
int count = 0;
for (int i = 0; i < XVECLEN (top_pattern, 0); ++i)
{
rtx x = XVECEXP (top_pattern, 0, i);
position *subpos = next_position (subpos_ptr, &root_pos,
POS_PEEP2_INSN, count);
if (count > 0)
s = add_decision (s, rtx_test::peep2_count (count + 1),
true, false);
s = match_pattern_2 (s, top_pattern, subpos, x);
subpos_ptr = &subpos->next;
count += 1;
}
acceptance.u.full.u.match_len = count - 1;
}
else
{
/* Make the rtx itself. */
s = match_pattern_2 (s, top_pattern, &root_pos, top_pattern);
/* If the match is only valid when extra clobbers are added,
make sure we're able to pass that information to the caller. */
if (acceptance.type == RECOG && acceptance.u.full.u.num_clobbers)
s = add_decision (s, rtx_test::have_num_clobbers (), true, false);
}
/* Make sure that the C test is true. */
if (maybe_eval_c_test (c_test) != 1)
s = add_decision (s, rtx_test::c_test (c_test), true, false);
/* Accept the pattern. */
add_decision (s, rtx_test::accept (acceptance), true, false);
}
/* Like match_pattern_1, but (if merge_states_p) try to merge the
decisions with what's already in S, to reduce the amount of
backtracking. */
static void
match_pattern (state *s, rtx top_pattern, const char *c_test,
acceptance_type acceptance)
{
if (merge_states_p)
{
state root;
/* Add the decisions to a fresh state and then merge the full tree
into the existing one. */
match_pattern_1 (&root, top_pattern, c_test, acceptance);
merge_into_state (s, &root);
}
else
match_pattern_1 (s, top_pattern, c_test, acceptance);
}
/* Begin the output file. */
static void
write_header (void)
{
puts ("\
/* Generated automatically by the program `genrecog' from the target\n\
machine description file. */\n\
\n\
#include \"config.h\"\n\
#include \"system.h\"\n\
#include \"coretypes.h\"\n\
#include \"tm.h\"\n\
#include \"rtl.h\"\n\
#include \"tm_p.h\"\n\
#include \"hashtab.h\"\n\
#include \"hash-set.h\"\n\
#include \"vec.h\"\n\
#include \"machmode.h\"\n\
#include \"hard-reg-set.h\"\n\
#include \"input.h\"\n\
#include \"function.h\"\n\
#include \"emit-rtl.h\"\n\
#include \"insn-config.h\"\n\
#include \"recog.h\"\n\
#include \"output.h\"\n\
#include \"flags.h\"\n\
#include \"hard-reg-set.h\"\n\
#include \"predict.h\"\n\
#include \"basic-block.h\"\n\
#include \"resource.h\"\n\
#include \"diagnostic-core.h\"\n\
#include \"reload.h\"\n\
#include \"regs.h\"\n\
#include \"tm-constrs.h\"\n\
#include \"predict.h\"\n\
\n");
puts ("\n\
/* `recog' contains a decision tree that recognizes whether the rtx\n\
X0 is a valid instruction.\n\
\n\
recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
returns a nonnegative number which is the insn code number for the\n\
pattern that matched. This is the same as the order in the machine\n\
description of the entry that matched. This number can be used as an\n\
index into `insn_data' and other tables.\n");
puts ("\
The third parameter to recog is an optional pointer to an int. If\n\
present, recog will accept a pattern if it matches except for missing\n\
CLOBBER expressions at the end. In that case, the value pointed to by\n\
the optional pointer will be set to the number of CLOBBERs that need\n\
to be added (it should be initialized to zero by the caller). If it");
puts ("\
is set nonzero, the caller should allocate a PARALLEL of the\n\
appropriate size, copy the initial entries, and call add_clobbers\n\
(found in insn-emit.c) to fill in the CLOBBERs.\n\
");
puts ("\n\
The function split_insns returns 0 if the rtl could not\n\
be split or the split rtl as an INSN list if it can be.\n\
\n\
The function peephole2_insns returns 0 if the rtl could not\n\
be matched. If there was a match, the new rtl is returned in an INSN list,\n\
and LAST_INSN will point to the last recognized insn in the old sequence.\n\
*/\n\n");
}
/* Return the C type of a parameter with type TYPE. */
static const char *
parameter_type_string (parameter::type_enum type)
{
switch (type)
{
case parameter::UNSET:
break;
case parameter::CODE:
return "rtx_code";
case parameter::MODE:
return "machine_mode";
case parameter::INT:
return "int";
case parameter::UINT:
return "unsigned int";
case parameter::WIDE_INT:
return "HOST_WIDE_INT";
}
gcc_unreachable ();
}
/* Return true if ACCEPTANCE requires only a single C statement even in
a backtracking context. */
static bool
single_statement_p (const acceptance_type &acceptance)
{
if (acceptance.partial_p)
/* We need to handle failures of the subroutine. */
return false;
switch (acceptance.type)
{
case SUBPATTERN:
case SPLIT:
return true;
case RECOG:
/* False if we need to assign to pnum_clobbers. */
return acceptance.u.full.u.num_clobbers == 0;
case PEEPHOLE2:
/* We need to assign to pmatch_len_ and handle null returns from the
peephole2 routine. */
return false;
}
gcc_unreachable ();
}
/* Return the C failure value for a routine of type TYPE. */
static const char *
get_failure_return (routine_type type)
{
switch (type)
{
case SUBPATTERN:
case RECOG:
return "-1";
case SPLIT:
case PEEPHOLE2:
return "NULL";
}
gcc_unreachable ();
}
/* Indicates whether a block of code always returns or whether it can fall
through. */
enum exit_state {
ES_RETURNED,
ES_FALLTHROUGH
};
/* Information used while writing out code. */
struct output_state
{
/* The type of routine that we're generating. */
routine_type type;
/* Maps position ids to xN variable numbers. The entry is only valid if
it is less than the length of VAR_TO_ID, but this holds for every position
tested by a state when writing out that state. */
auto_vec <unsigned int> id_to_var;
/* Maps xN variable numbers to position ids. */
auto_vec <unsigned int> var_to_id;
/* Index N is true if variable xN has already been set. */
auto_vec <bool> seen_vars;
};
/* Return true if D is a call to a pattern routine and if there is some X
such that the transition for pattern result N goes to a successful return
with code X+N. When returning true, set *BASE_OUT to this X and *COUNT_OUT
to the number of return values. (We know that every PATTERN decision has
a transition for every successful return.) */
static bool
terminal_pattern_p (decision *d, unsigned int *base_out,
unsigned int *count_out)
{
if (d->test.kind != rtx_test::PATTERN)
return false;
unsigned int base = 0;
unsigned int count = 0;
for (transition *trans = d->first; trans; trans = trans->next)
{
if (trans->is_param || trans->labels.length () != 1)
return false;
decision *subd = trans->to->singleton ();
if (!subd || subd->test.kind != rtx_test::ACCEPT)
return false;
unsigned int this_base = (subd->test.u.acceptance.u.full.code
- trans->labels[0]);
if (trans == d->first)
base = this_base;
else if (base != this_base)
return false;
count += 1;
}
*base_out = base;
*count_out = count;
return true;
}
/* Return true if TEST doesn't test an rtx or if the rtx it tests is
already available in state OS. */
static bool
test_position_available_p (output_state *os, const rtx_test &test)
{
return (!test.pos
|| test.pos_operand >= 0
|| os->seen_vars[os->id_to_var[test.pos->id]]);
}
/* Like printf, but print INDENT spaces at the beginning. */
static void ATTRIBUTE_PRINTF_2
printf_indent (unsigned int indent, const char *format, ...)
{
va_list ap;
va_start (ap, format);
printf ("%*s", indent, "");
vprintf (format, ap);
va_end (ap);
}
/* Emit code to initialize the variable associated with POS, if it isn't
already valid in state OS. Indent each line by INDENT spaces. Update
OS with the new state. */
static void
change_state (output_state *os, position *pos, unsigned int indent)
{
unsigned int var = os->id_to_var[pos->id];
gcc_assert (var < os->var_to_id.length () && os->var_to_id[var] == pos->id);
if (os->seen_vars[var])
return;
switch (pos->type)
{
case POS_PEEP2_INSN:
printf_indent (indent, "x%d = PATTERN (peep2_next_insn (%d));\n",
var, pos->arg);
break;
case POS_XEXP:
change_state (os, pos->base, indent);
printf_indent (indent, "x%d = XEXP (x%d, %d);\n",
var, os->id_to_var[pos->base->id], pos->arg);
break;
case POS_XVECEXP0:
change_state (os, pos->base, indent);
printf_indent (indent, "x%d = XVECEXP (x%d, 0, %d);\n",
var, os->id_to_var[pos->base->id], pos->arg);
break;
}
os->seen_vars[var] = true;
}
/* Print the enumerator constant for CODE -- the upcase version of
the name. */
static void
print_code (enum rtx_code code)
{
const char *p;
for (p = GET_RTX_NAME (code); *p; p++)
putchar (TOUPPER (*p));
}
/* Emit a uint64_t as an integer constant expression. We need to take
special care to avoid "decimal constant is so large that it is unsigned"
warnings in the resulting code. */
static void
print_host_wide_int (uint64_t val)
{
uint64_t min = uint64_t (1) << (HOST_BITS_PER_WIDE_INT - 1);
if (val == min)
printf ("(" HOST_WIDE_INT_PRINT_DEC_C " - 1)", val + 1);
else
printf (HOST_WIDE_INT_PRINT_DEC_C, val);
}
/* Print the C expression for actual parameter PARAM. */
static void
print_parameter_value (const parameter ¶m)
{
if (param.is_param)
printf ("i%d", (int) param.value + 1);
else
switch (param.type)
{
case parameter::UNSET:
gcc_unreachable ();
break;
case parameter::CODE:
print_code ((enum rtx_code) param.value);
break;
case parameter::MODE:
printf ("%smode", GET_MODE_NAME ((machine_mode) param.value));
break;
case parameter::INT:
printf ("%d", (int) param.value);
break;
case parameter::UINT:
printf ("%u", (unsigned int) param.value);
break;
case parameter::WIDE_INT:
print_host_wide_int (param.value);
break;
}
}
/* Print the C expression for the rtx tested by TEST. */
static void
print_test_rtx (output_state *os, const rtx_test &test)
{
if (test.pos_operand >= 0)
printf ("operands[%d]", test.pos_operand);
else
printf ("x%d", os->id_to_var[test.pos->id]);
}
/* Print the C expression for non-boolean test TEST. */
static void
print_nonbool_test (output_state *os, const rtx_test &test)
{
switch (test.kind)
{
case rtx_test::CODE:
printf ("GET_CODE (");
print_test_rtx (os, test);
printf (")");
break;
case rtx_test::MODE:
printf ("GET_MODE (");
print_test_rtx (os, test);
printf (")");
break;
case rtx_test::VECLEN:
printf ("XVECLEN (");
print_test_rtx (os, test);
printf (", 0)");
break;
case rtx_test::INT_FIELD:
printf ("XINT (");
print_test_rtx (os, test);
printf (", %d)", test.u.opno);
break;
case rtx_test::REGNO_FIELD:
printf ("REGNO (");
print_test_rtx (os, test);
printf (")");
break;
case rtx_test::WIDE_INT_FIELD:
printf ("XWINT (");
print_test_rtx (os, test);
printf (", %d)", test.u.opno);
break;
case rtx_test::PATTERN:
{
pattern_routine *routine = test.u.pattern->routine;
printf ("pattern%d (", routine->pattern_id);
const char *sep = "";
if (test.pos)
{
print_test_rtx (os, test);
sep = ", ";
}
if (routine->insn_p)
{
printf ("%sinsn", sep);
sep = ", ";
}
if (routine->pnum_clobbers_p)
{
printf ("%spnum_clobbers", sep);
sep = ", ";
}
for (unsigned int i = 0; i < test.u.pattern->params.length (); ++i)
{
fputs (sep, stdout);
print_parameter_value (test.u.pattern->params[i]);
sep = ", ";
}
printf (")");
break;
}
case rtx_test::PEEP2_COUNT:
case rtx_test::VECLEN_GE:
case rtx_test::SAVED_CONST_INT:
case rtx_test::DUPLICATE:
case rtx_test::PREDICATE:
case rtx_test::SET_OP:
case rtx_test::HAVE_NUM_CLOBBERS:
case rtx_test::C_TEST:
case rtx_test::ACCEPT:
gcc_unreachable ();
}
}
/* IS_PARAM and LABEL are taken from a transition whose source
decision performs TEST. Print the C code for the label. */
static void
print_label_value (const rtx_test &test, bool is_param, uint64_t value)
{
print_parameter_value (parameter (transition_parameter_type (test.kind),
is_param, value));
}
/* If IS_PARAM, print code to compare TEST with the C variable i<VALUE+1>.
If !IS_PARAM, print code to compare TEST with the C constant VALUE.
Test for inequality if INVERT_P, otherwise test for equality. */
static void
print_test (output_state *os, const rtx_test &test, bool is_param,
uint64_t value, bool invert_p)
{
switch (test.kind)
{
/* Handle the non-boolean TESTs. */
case rtx_test::CODE:
case rtx_test::MODE:
case rtx_test::VECLEN:
case rtx_test::REGNO_FIELD:
case rtx_test::INT_FIELD:
case rtx_test::WIDE_INT_FIELD:
case rtx_test::PATTERN:
print_nonbool_test (os, test);
printf (" %s ", invert_p ? "!=" : "==");
print_label_value (test, is_param, value);
break;
case rtx_test::SAVED_CONST_INT:
gcc_assert (!is_param && value == 1);
print_test_rtx (os, test);
printf (" %s const_int_rtx[MAX_SAVED_CONST_INT + ",
invert_p ? "!=" : "==");
print_parameter_value (parameter (parameter::INT,
test.u.integer.is_param,
test.u.integer.value));
printf ("]");
break;
case rtx_test::PEEP2_COUNT:
gcc_assert (!is_param && value == 1);
printf ("peep2_current_count %s %d", invert_p ? "<" : ">=",
test.u.min_len);
break;
case rtx_test::VECLEN_GE:
gcc_assert (!is_param && value == 1);
printf ("XVECLEN (");
print_test_rtx (os, test);
printf (", 0) %s %d", invert_p ? "<" : ">=", test.u.min_len);
break;
case rtx_test::PREDICATE:
gcc_assert (!is_param && value == 1);
printf ("%s%s (", invert_p ? "!" : "", test.u.predicate.data->name);
print_test_rtx (os, test);
printf (", ");
print_parameter_value (parameter (parameter::MODE,
test.u.predicate.mode_is_param,
test.u.predicate.mode));
printf (")");
break;
case rtx_test::DUPLICATE:
gcc_assert (!is_param && value == 1);
printf ("%srtx_equal_p (", invert_p ? "!" : "");
print_test_rtx (os, test);
printf (", operands[%d])", test.u.opno);
break;
case rtx_test::HAVE_NUM_CLOBBERS:
gcc_assert (!is_param && value == 1);
printf ("pnum_clobbers %s NULL", invert_p ? "==" : "!=");
break;
case rtx_test::C_TEST:
gcc_assert (!is_param && value == 1);
if (invert_p)
printf ("!");
print_c_condition (test.u.string);
break;
case rtx_test::ACCEPT:
case rtx_test::SET_OP:
gcc_unreachable ();
}
}
static exit_state print_decision (output_state *, decision *,
unsigned int, bool);
/* Print code to perform S, indent each line by INDENT spaces.
IS_FINAL is true if there are no fallback decisions to test on failure;
if the state fails then the entire routine fails. */
static exit_state
print_state (output_state *os, state *s, unsigned int indent, bool is_final)
{
exit_state es = ES_FALLTHROUGH;
for (decision *d = s->first; d; d = d->next)
es = print_decision (os, d, indent, is_final && !d->next);
if (es != ES_RETURNED && is_final)
{
printf_indent (indent, "return %s;\n", get_failure_return (os->type));
es = ES_RETURNED;
}
return es;
}
/* Print the code for subroutine call ACCEPTANCE (for which partial_p
is known to be true). Return the C condition that indicates a successful
match. */
static const char *
print_subroutine_call (const acceptance_type &acceptance)
{
switch (acceptance.type)
{
case SUBPATTERN:
gcc_unreachable ();
case RECOG:
printf ("recog_%d (x1, insn, pnum_clobbers)",
acceptance.u.subroutine_id);
return ">= 0";
case SPLIT:
printf ("split_%d (x1, insn)", acceptance.u.subroutine_id);
return "!= NULL_RTX";
case PEEPHOLE2:
printf ("peephole2_%d (x1, insn, pmatch_len_)",
acceptance.u.subroutine_id);
return "!= NULL_RTX";
}
gcc_unreachable ();
}
/* Print code for the successful match described by ACCEPTANCE.
INDENT and IS_FINAL are as for print_state. */
static exit_state
print_acceptance (const acceptance_type &acceptance, unsigned int indent,
bool is_final)
{
if (acceptance.partial_p)
{
/* Defer the rest of the match to a subroutine. */
if (is_final)
{
printf_indent (indent, "return ");
print_subroutine_call (acceptance);
printf (";\n");
return ES_RETURNED;
}
else
{
printf_indent (indent, "res = ");
const char *res_test = print_subroutine_call (acceptance);
printf (";\n");
printf_indent (indent, "if (res %s)\n", res_test);
printf_indent (indent + 2, "return res;\n");
return ES_FALLTHROUGH;
}
}
switch (acceptance.type)
{
case SUBPATTERN:
printf_indent (indent, "return %d;\n", acceptance.u.full.code);
return ES_RETURNED;
case RECOG:
if (acceptance.u.full.u.num_clobbers != 0)
printf_indent (indent, "*pnum_clobbers = %d;\n",
acceptance.u.full.u.num_clobbers);
printf_indent (indent, "return %d; /* %s */\n", acceptance.u.full.code,
get_insn_name (acceptance.u.full.code));
return ES_RETURNED;
case SPLIT:
printf_indent (indent, "return gen_split_%d (insn, operands);\n",
acceptance.u.full.code);
return ES_RETURNED;
case PEEPHOLE2:
printf_indent (indent, "*pmatch_len_ = %d;\n",
acceptance.u.full.u.match_len);
if (is_final)
{
printf_indent (indent, "return gen_peephole2_%d (insn, operands);\n",
acceptance.u.full.code);
return ES_RETURNED;
}
else
{
printf_indent (indent, "res = gen_peephole2_%d (insn, operands);\n",
acceptance.u.full.code);
printf_indent (indent, "if (res != NULL_RTX)\n");
printf_indent (indent + 2, "return res;\n");
return ES_FALLTHROUGH;
}
}
gcc_unreachable ();
}
/* Print code to perform D. INDENT and IS_FINAL are as for print_state. */
static exit_state
print_decision (output_state *os, decision *d, unsigned int indent,
bool is_final)
{
uint64_t label;
unsigned int base, count;
/* Make sure the rtx under test is available either in operands[] or
in an xN variable. */
if (d->test.pos && d->test.pos_operand < 0)
change_state (os, d->test.pos, indent);
/* Look for cases where a pattern routine P1 calls another pattern routine
P2 and where P1 returns X + BASE whenever P2 returns X. If IS_FINAL
is true and BASE is zero we can simply use:
return patternN (...);
Otherwise we can use:
res = patternN (...);
if (res >= 0)
return res + BASE;
However, if BASE is nonzero and patternN only returns 0 or -1,
the usual "return BASE;" is better than "return res + BASE;".
If BASE is zero, "return res;" should be better than "return 0;",
since no assignment to the return register is required. */
if (os->type == SUBPATTERN
&& terminal_pattern_p (d, &base, &count)
&& (base == 0 || count > 1))
{
if (is_final && base == 0)
{
printf_indent (indent, "return ");
print_nonbool_test (os, d->test);
printf ("; /* [-1, %d] */\n", count - 1);
return ES_RETURNED;
}
else
{
printf_indent (indent, "res = ");
print_nonbool_test (os, d->test);
printf (";\n");
printf_indent (indent, "if (res >= 0)\n");
printf_indent (indent + 2, "return res");
if (base != 0)
printf (" + %d", base);
printf ("; /* [%d, %d] */\n", base, base + count - 1);
return ES_FALLTHROUGH;
}
}
else if (d->test.kind == rtx_test::ACCEPT)
return print_acceptance (d->test.u.acceptance, indent, is_final);
else if (d->test.kind == rtx_test::SET_OP)
{
printf_indent (indent, "operands[%d] = ", d->test.u.opno);
print_test_rtx (os, d->test);
printf (";\n");
return print_state (os, d->singleton ()->to, indent, is_final);
}
/* Handle decisions with a single transition and a single transition
label. */
else if (d->if_statement_p (&label))
{
transition *trans = d->singleton ();
if (mark_optional_transitions_p && trans->optional)
printf_indent (indent, "/* OPTIONAL IF */\n");
/* Print the condition associated with TRANS. Invert it if IS_FINAL,
so that we return immediately on failure and fall through on
success. */
printf_indent (indent, "if (");
print_test (os, d->test, trans->is_param, label, is_final);
/* Look for following states that would be handled by this code
on recursion. If they don't need any preparatory statements,
include them in the current "if" statement rather than creating
a new one. */
for (;;)
{
d = trans->to->singleton ();
if (!d
|| d->test.kind == rtx_test::ACCEPT
|| d->test.kind == rtx_test::SET_OP
|| !d->if_statement_p (&label)
|| !test_position_available_p (os, d->test))
break;
trans = d->first;
printf ("\n");
if (mark_optional_transitions_p && trans->optional)
printf_indent (indent + 4, "/* OPTIONAL IF */\n");
printf_indent (indent + 4, "%s ", is_final ? "||" : "&&");
print_test (os, d->test, trans->is_param, label, is_final);
}
printf (")\n");
/* Print the conditional code with INDENT + 2 and the fallthrough
code with indent INDENT. */
state *to = trans->to;
if (is_final)
{
/* We inverted the condition above, so return failure in the
"if" body and fall through to the target of the transition. */
printf_indent (indent + 2, "return %s;\n",
get_failure_return (os->type));
return print_state (os, to, indent, is_final);
}
else if (to->singleton ()
&& to->first->test.kind == rtx_test::ACCEPT
&& single_statement_p (to->first->test.u.acceptance))
{
/* The target of the transition is a simple "return" statement.
It doesn't need any braces and doesn't fall through. */
if (print_acceptance (to->first->test.u.acceptance,
indent + 2, true) != ES_RETURNED)
gcc_unreachable ();
return ES_FALLTHROUGH;
}
else
{
/* The general case. Output code for the target of the transition
in braces. This will not invalidate any of the xN variables
that are already valid, but we mustn't rely on any that are
set by the "if" body. */
auto_vec <bool, 32> old_seen;
old_seen.safe_splice (os->seen_vars);
printf_indent (indent + 2, "{\n");
print_state (os, trans->to, indent + 4, is_final);
printf_indent (indent + 2, "}\n");
os->seen_vars.truncate (0);
os->seen_vars.splice (old_seen);
return ES_FALLTHROUGH;
}
}
else
{
/* Output the decision as a switch statement. */
printf_indent (indent, "switch (");
print_nonbool_test (os, d->test);
printf (")\n");
/* Each case statement starts with the same set of valid variables.
These are also the only variables will be valid on fallthrough. */
auto_vec <bool, 32> old_seen;
old_seen.safe_splice (os->seen_vars);
printf_indent (indent + 2, "{\n");
for (transition *trans = d->first; trans; trans = trans->next)
{
gcc_assert (!trans->is_param);
if (mark_optional_transitions_p && trans->optional)
printf_indent (indent + 2, "/* OPTIONAL CASE */\n");
for (int_set::iterator j = trans->labels.begin ();
j != trans->labels.end (); ++j)
{
printf_indent (indent + 2, "case ");
print_label_value (d->test, trans->is_param, *j);
printf (":\n");
}
if (print_state (os, trans->to, indent + 4, is_final))
{
/* The state can fall through. Add an explicit break. */
gcc_assert (!is_final);
printf_indent (indent + 4, "break;\n");
}
printf ("\n");
/* Restore the original set of valid variables. */
os->seen_vars.truncate (0);
os->seen_vars.splice (old_seen);
}
/* Add a default case. */
printf_indent (indent + 2, "default:\n");
if (is_final)
printf_indent (indent + 4, "return %s;\n",
get_failure_return (os->type));
else
printf_indent (indent + 4, "break;\n");
printf_indent (indent + 2, "}\n");
return is_final ? ES_RETURNED : ES_FALLTHROUGH;
}
}
/* Make sure that OS has a position variable for POS. ROOT_P is true if
POS is the root position for the routine. */
static void
assign_position_var (output_state *os, position *pos, bool root_p)
{
unsigned int idx = os->id_to_var[pos->id];
if (idx < os->var_to_id.length () && os->var_to_id[idx] == pos->id)
return;
if (!root_p && pos->type != POS_PEEP2_INSN)
assign_position_var (os, pos->base, false);
os->id_to_var[pos->id] = os->var_to_id.length ();
os->var_to_id.safe_push (pos->id);
}
/* Make sure that OS has the position variables required by S. */
static void
assign_position_vars (output_state *os, state *s)
{
for (decision *d = s->first; d; d = d->next)
{
/* Positions associated with operands can be read from the
operands[] array. */
if (d->test.pos && d->test.pos_operand < 0)
assign_position_var (os, d->test.pos, false);
for (transition *trans = d->first; trans; trans = trans->next)
assign_position_vars (os, trans->to);
}
}
/* Print the open brace and variable definitions for a routine that
implements S. ROOT is the deepest rtx from which S can access all
relevant parts of the first instruction it matches. Initialize OS
so that every relevant position has an rtx variable xN and so that
only ROOT's variable has a valid value. */
static void
print_subroutine_start (output_state *os, state *s, position *root)
{
printf ("{\n rtx * const operands ATTRIBUTE_UNUSED"
" = &recog_data.operand[0];\n");
os->var_to_id.truncate (0);
os->seen_vars.truncate (0);
if (root)
{
/* Create a fake entry for position 0 so that an id_to_var of 0
is always invalid. This also makes the xN variables naturally
1-based rather than 0-based. */
os->var_to_id.safe_push (num_positions);
/* Associate ROOT with x1. */
assign_position_var (os, root, true);
/* Assign xN variables to all other relevant positions. */
assign_position_vars (os, s);
/* Output the variable declarations (except for ROOT's, which is
passed in as a parameter). */
unsigned int num_vars = os->var_to_id.length ();
if (num_vars > 2)
{
for (unsigned int i = 2; i < num_vars; ++i)
/* Print 8 rtx variables to a line. */
printf ("%s x%d",
i == 2 ? " rtx" : (i - 2) % 8 == 0 ? ";\n rtx" : ",", i);
printf (";\n");
}
/* Say that x1 is valid and the rest aren't. */
os->seen_vars.safe_grow_cleared (num_vars);
os->seen_vars[1] = true;
}
if (os->type == SUBPATTERN || os->type == RECOG)
printf (" int res ATTRIBUTE_UNUSED;\n");
else
printf (" rtx_insn *res ATTRIBUTE_UNUSED;\n");
}
/* Output the definition of pattern routine ROUTINE. */
static void
print_pattern (output_state *os, pattern_routine *routine)
{
printf ("\nstatic int\npattern%d (", routine->pattern_id);
const char *sep = "";
/* Add the top-level rtx parameter, if any. */
if (routine->pos)
{
printf ("%srtx x1", sep);
sep = ", ";
}
/* Add the optional parameters. */
if (routine->insn_p)
{
/* We can't easily tell whether a C condition actually reads INSN,
so add an ATTRIBUTE_UNUSED just in case. */
printf ("%srtx_insn *insn ATTRIBUTE_UNUSED", sep);
sep = ", ";
}
if (routine->pnum_clobbers_p)
{
printf ("%sint *pnum_clobbers", sep);
sep = ", ";
}
/* Add the "i" parameters. */
for (unsigned int i = 0; i < routine->param_types.length (); ++i)
{
printf ("%s%s i%d", sep,
parameter_type_string (routine->param_types[i]), i + 1);
sep = ", ";
}
printf (")\n");
os->type = SUBPATTERN;
print_subroutine_start (os, routine->s, routine->pos);
print_state (os, routine->s, 2, true);
printf ("}\n");
}
/* Output a routine of type TYPE that implements S. PROC_ID is the
number of the subroutine associated with S, or 0 if S is the main
routine. */
static void
print_subroutine (output_state *os, state *s, int proc_id)
{
/* For now, the top-level "recog" takes a plain "rtx", and performs a
checked cast to "rtx_insn *" for use throughout the rest of the
function and the code it calls. */
const char *insn_param
= proc_id > 0 ? "rtx_insn *insn" : "rtx uncast_insn";
printf ("\n");
switch (os->type)
{
case SUBPATTERN:
gcc_unreachable ();
case RECOG:
if (proc_id)
printf ("static int\nrecog_%d", proc_id);
else
printf ("int\nrecog");
printf (" (rtx x1 ATTRIBUTE_UNUSED,\n"
"\t%s ATTRIBUTE_UNUSED,\n"
"\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", insn_param);
break;
case SPLIT:
if (proc_id)
printf ("static rtx_insn *\nsplit_%d", proc_id);
else
printf ("rtx_insn *\nsplit_insns");
printf (" (rtx x1 ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED)\n");
break;
case PEEPHOLE2:
if (proc_id)
printf ("static rtx_insn *\npeephole2_%d", proc_id);
else
printf ("rtx_insn *\npeephole2_insns");
printf (" (rtx x1 ATTRIBUTE_UNUSED,\n"
"\trtx_insn *insn ATTRIBUTE_UNUSED,\n"
"\tint *pmatch_len_ ATTRIBUTE_UNUSED)\n");
break;
}
print_subroutine_start (os, s, &root_pos);
if (proc_id == 0)
{
printf (" recog_data.insn = NULL;\n");
if (os->type == RECOG)
{
printf (" rtx_insn *insn ATTRIBUTE_UNUSED;\n");
printf (" insn = safe_as_a <rtx_insn *> (uncast_insn);\n");
}
}
print_state (os, s, 2, true);
printf ("}\n");
}
/* Print out a routine of type TYPE that performs ROOT. */
static void
print_subroutine_group (output_state *os, routine_type type, state *root)
{
os->type = type;
if (use_subroutines_p)
{
/* Split ROOT up into smaller pieces, both for readability and to
help the compiler. */
auto_vec <state *> subroutines;
find_subroutines (type, root, subroutines);
/* Output the subroutines (but not ROOT itself). */
unsigned int i;
state *s;
FOR_EACH_VEC_ELT (subroutines, i, s)
print_subroutine (os, s, i + 1);
}
/* Output the main routine. */
print_subroutine (os, root, 0);
}
/* Return the rtx pattern for the list of rtxes in a define_peephole2. */
static rtx
get_peephole2_pattern (rtvec vec)
{
int i, j;
rtx pattern = rtx_alloc (SEQUENCE);
XVEC (pattern, 0) = rtvec_alloc (GET_NUM_ELEM (vec));
for (i = j = 0; i < GET_NUM_ELEM (vec); i++)
{
rtx x = RTVEC_ELT (vec, i);
/* Ignore scratch register requirements. */
if (GET_CODE (x) != MATCH_SCRATCH && GET_CODE (x) != MATCH_DUP)
{
XVECEXP (pattern, 0, j) = x;
j++;
}
}
XVECLEN (pattern, 0) = j;
if (j == 0)
error_with_line (pattern_lineno, "empty define_peephole2");
return pattern;
}
/* Return true if *PATTERN_PTR is a PARALLEL in which at least one trailing
rtx can be added automatically by add_clobbers. If so, update
*ACCEPTANCE_PTR so that its num_clobbers field contains the number
of such trailing rtxes and update *PATTERN_PTR so that it contains
the pattern without those rtxes. */
static bool
remove_clobbers (acceptance_type *acceptance_ptr, rtx *pattern_ptr)
{
int i;
rtx new_pattern;
/* Find the last non-clobber in the parallel. */
rtx pattern = *pattern_ptr;
for (i = XVECLEN (pattern, 0); i > 0; i--)
{
rtx x = XVECEXP (pattern, 0, i - 1);
if (GET_CODE (x) != CLOBBER
|| (!REG_P (XEXP (x, 0))
&& GET_CODE (XEXP (x, 0)) != MATCH_SCRATCH))
break;
}
if (i == XVECLEN (pattern, 0))
return false;
/* Build a similar insn without the clobbers. */
if (i == 1)
new_pattern = XVECEXP (pattern, 0, 0);
else
{
new_pattern = rtx_alloc (PARALLEL);
XVEC (new_pattern, 0) = rtvec_alloc (i);
for (int j = 0; j < i; ++j)
XVECEXP (new_pattern, 0, j) = XVECEXP (pattern, 0, j);
}
/* Recognize it. */
acceptance_ptr->u.full.u.num_clobbers = XVECLEN (pattern, 0) - i;
*pattern_ptr = new_pattern;
return true;
}
int
main (int argc, char **argv)
{
rtx desc;
state insn_root, split_root, peephole2_root;
progname = "genrecog";
if (!init_rtx_reader_args (argc, argv))
return (FATAL_EXIT_CODE);
next_insn_code = 0;
write_header ();
/* Read the machine description. */
while (1)
{
desc = read_md_rtx (&pattern_lineno, &next_insn_code);
if (desc == NULL)
break;
acceptance_type acceptance;
acceptance.partial_p = false;
acceptance.u.full.code = next_insn_code;
rtx pattern;
switch (GET_CODE (desc))
{
case DEFINE_INSN:
{
/* Match the instruction in the original .md form. */
acceptance.type = RECOG;
acceptance.u.full.u.num_clobbers = 0;
pattern = add_implicit_parallel (XVEC (desc, 1));
validate_pattern (pattern, desc, NULL_RTX, 0);
match_pattern (&insn_root, pattern, XSTR (desc, 2), acceptance);
/* If the pattern is a PARALLEL with trailing CLOBBERs,
allow recog_for_combine to match without the clobbers. */
if (GET_CODE (pattern) == PARALLEL
&& remove_clobbers (&acceptance, &pattern))
match_pattern (&insn_root, pattern, XSTR (desc, 2), acceptance);
break;
}
case DEFINE_SPLIT:
acceptance.type = SPLIT;
pattern = add_implicit_parallel (XVEC (desc, 0));
validate_pattern (pattern, desc, NULL_RTX, 0);
match_pattern (&split_root, pattern, XSTR (desc, 1), acceptance);
/* Declare the gen_split routine that we'll call if the
pattern matches. The definition comes from insn-emit.c. */
printf ("extern rtx_insn *gen_split_%d (rtx_insn *, rtx *);\n",
next_insn_code);
break;
case DEFINE_PEEPHOLE2:
acceptance.type = PEEPHOLE2;
pattern = get_peephole2_pattern (XVEC (desc, 0));
validate_pattern (pattern, desc, NULL_RTX, 0);
match_pattern (&peephole2_root, pattern, XSTR (desc, 1), acceptance);
/* Declare the gen_peephole2 routine that we'll call if the
pattern matches. The definition comes from insn-emit.c. */
printf ("extern rtx_insn *gen_peephole2_%d (rtx_insn *, rtx *);\n",
next_insn_code);
break;
default:
/* do nothing */;
}
}
if (have_error)
return FATAL_EXIT_CODE;
puts ("\n\n");
/* Optimize each routine in turn. */
optimize_subroutine_group ("recog", &insn_root);
optimize_subroutine_group ("split_insns", &split_root);
optimize_subroutine_group ("peephole2_insns", &peephole2_root);
output_state os;
os.id_to_var.safe_grow_cleared (num_positions);
if (use_pattern_routines_p)
{
/* Look for common patterns and split them out into subroutines. */
auto_vec <merge_state_info> states;
states.safe_push (&insn_root);
states.safe_push (&split_root);
states.safe_push (&peephole2_root);
split_out_patterns (states);
/* Print out the routines that we just created. */
unsigned int i;
pattern_routine *routine;
FOR_EACH_VEC_ELT (patterns, i, routine)
print_pattern (&os, routine);
}
/* Print out the matching routines. */
print_subroutine_group (&os, RECOG, &insn_root);
print_subroutine_group (&os, SPLIT, &split_root);
print_subroutine_group (&os, PEEPHOLE2, &peephole2_root);
fflush (stdout);
return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
}
|