summaryrefslogtreecommitdiff
path: root/gcc/gcse.c
blob: 8adbc38bc0bffb1350f562217620e2e691dac8e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
/* Partial redundancy elimination / Hoisting for RTL.
   Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
   2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* TODO
   - reordering of memory allocation and freeing to be more space efficient
   - do rough calc of how many regs are needed in each block, and a rough
     calc of how many regs are available in each class and use that to
     throttle back the code in cases where RTX_COST is minimal.
   - a store to the same address as a load does not kill the load if the
     source of the store is also the destination of the load.  Handling this
     allows more load motion, particularly out of loops.

*/

/* References searched while implementing this.

   Compilers Principles, Techniques and Tools
   Aho, Sethi, Ullman
   Addison-Wesley, 1988

   Global Optimization by Suppression of Partial Redundancies
   E. Morel, C. Renvoise
   communications of the acm, Vol. 22, Num. 2, Feb. 1979

   A Portable Machine-Independent Global Optimizer - Design and Measurements
   Frederick Chow
   Stanford Ph.D. thesis, Dec. 1983

   A Fast Algorithm for Code Movement Optimization
   D.M. Dhamdhere
   SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988

   A Solution to a Problem with Morel and Renvoise's
   Global Optimization by Suppression of Partial Redundancies
   K-H Drechsler, M.P. Stadel
   ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988

   Practical Adaptation of the Global Optimization
   Algorithm of Morel and Renvoise
   D.M. Dhamdhere
   ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991

   Efficiently Computing Static Single Assignment Form and the Control
   Dependence Graph
   R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
   ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991

   Lazy Code Motion
   J. Knoop, O. Ruthing, B. Steffen
   ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI

   What's In a Region?  Or Computing Control Dependence Regions in Near-Linear
   Time for Reducible Flow Control
   Thomas Ball
   ACM Letters on Programming Languages and Systems,
   Vol. 2, Num. 1-4, Mar-Dec 1993

   An Efficient Representation for Sparse Sets
   Preston Briggs, Linda Torczon
   ACM Letters on Programming Languages and Systems,
   Vol. 2, Num. 1-4, Mar-Dec 1993

   A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
   K-H Drechsler, M.P. Stadel
   ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993

   Partial Dead Code Elimination
   J. Knoop, O. Ruthing, B. Steffen
   ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994

   Effective Partial Redundancy Elimination
   P. Briggs, K.D. Cooper
   ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994

   The Program Structure Tree: Computing Control Regions in Linear Time
   R. Johnson, D. Pearson, K. Pingali
   ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994

   Optimal Code Motion: Theory and Practice
   J. Knoop, O. Ruthing, B. Steffen
   ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994

   The power of assignment motion
   J. Knoop, O. Ruthing, B. Steffen
   ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI

   Global code motion / global value numbering
   C. Click
   ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI

   Value Driven Redundancy Elimination
   L.T. Simpson
   Rice University Ph.D. thesis, Apr. 1996

   Value Numbering
   L.T. Simpson
   Massively Scalar Compiler Project, Rice University, Sep. 1996

   High Performance Compilers for Parallel Computing
   Michael Wolfe
   Addison-Wesley, 1996

   Advanced Compiler Design and Implementation
   Steven Muchnick
   Morgan Kaufmann, 1997

   Building an Optimizing Compiler
   Robert Morgan
   Digital Press, 1998

   People wishing to speed up the code here should read:
     Elimination Algorithms for Data Flow Analysis
     B.G. Ryder, M.C. Paull
     ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986

     How to Analyze Large Programs Efficiently and Informatively
     D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
     ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI

   People wishing to do something different can find various possibilities
   in the above papers and elsewhere.
*/

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "diagnostic-core.h"
#include "toplev.h"

#include "rtl.h"
#include "tree.h"
#include "tm_p.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "insn-config.h"
#include "recog.h"
#include "basic-block.h"
#include "output.h"
#include "function.h"
#include "expr.h"
#include "except.h"
#include "ggc.h"
#include "params.h"
#include "cselib.h"
#include "intl.h"
#include "obstack.h"
#include "timevar.h"
#include "tree-pass.h"
#include "hashtab.h"
#include "df.h"
#include "dbgcnt.h"
#include "target.h"
#include "gcse.h"

/* We support GCSE via Partial Redundancy Elimination.  PRE optimizations
   are a superset of those done by classic GCSE.

   Two passes of copy/constant propagation are done around PRE or hoisting
   because the first one enables more GCSE and the second one helps to clean
   up the copies that PRE and HOIST create.  This is needed more for PRE than
   for HOIST because code hoisting will try to use an existing register
   containing the common subexpression rather than create a new one.  This is
   harder to do for PRE because of the code motion (which HOIST doesn't do).

   Expressions we are interested in GCSE-ing are of the form
   (set (pseudo-reg) (expression)).
   Function want_to_gcse_p says what these are.

   In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
   This allows PRE to hoist expressions that are expressed in multiple insns,
   such as complex address calculations (e.g. for PIC code, or loads with a
   high part and a low part).

   PRE handles moving invariant expressions out of loops (by treating them as
   partially redundant).

   **********************

   We used to support multiple passes but there are diminishing returns in
   doing so.  The first pass usually makes 90% of the changes that are doable.
   A second pass can make a few more changes made possible by the first pass.
   Experiments show any further passes don't make enough changes to justify
   the expense.

   A study of spec92 using an unlimited number of passes:
   [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
   [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
   [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1

   It was found doing copy propagation between each pass enables further
   substitutions.

   This study was done before expressions in REG_EQUAL notes were added as
   candidate expressions for optimization, and before the GIMPLE optimizers
   were added.  Probably, multiple passes is even less efficient now than
   at the time when the study was conducted.

   PRE is quite expensive in complicated functions because the DFA can take
   a while to converge.  Hence we only perform one pass.

   **********************

   The steps for PRE are:

   1) Build the hash table of expressions we wish to GCSE (expr_hash_table).

   2) Perform the data flow analysis for PRE.

   3) Delete the redundant instructions

   4) Insert the required copies [if any] that make the partially
      redundant instructions fully redundant.

   5) For other reaching expressions, insert an instruction to copy the value
      to a newly created pseudo that will reach the redundant instruction.

   The deletion is done first so that when we do insertions we
   know which pseudo reg to use.

   Various papers have argued that PRE DFA is expensive (O(n^2)) and others
   argue it is not.  The number of iterations for the algorithm to converge
   is typically 2-4 so I don't view it as that expensive (relatively speaking).

   PRE GCSE depends heavily on the second CPROP pass to clean up the copies
   we create.  To make an expression reach the place where it's redundant,
   the result of the expression is copied to a new register, and the redundant
   expression is deleted by replacing it with this new register.  Classic GCSE
   doesn't have this problem as much as it computes the reaching defs of
   each register in each block and thus can try to use an existing
   register.  */

/* GCSE global vars.  */

struct target_gcse default_target_gcse;
#if SWITCHABLE_TARGET
struct target_gcse *this_target_gcse = &default_target_gcse;
#endif

/* Set to non-zero if CSE should run after all GCSE optimizations are done.  */
int flag_rerun_cse_after_global_opts;

/* An obstack for our working variables.  */
static struct obstack gcse_obstack;

struct reg_use {rtx reg_rtx; };

/* Hash table of expressions.  */

struct expr
{
  /* The expression (SET_SRC for expressions, PATTERN for assignments).  */
  rtx expr;
  /* Index in the available expression bitmaps.  */
  int bitmap_index;
  /* Next entry with the same hash.  */
  struct expr *next_same_hash;
  /* List of anticipatable occurrences in basic blocks in the function.
     An "anticipatable occurrence" is one that is the first occurrence in the
     basic block, the operands are not modified in the basic block prior
     to the occurrence and the output is not used between the start of
     the block and the occurrence.  */
  struct occr *antic_occr;
  /* List of available occurrence in basic blocks in the function.
     An "available occurrence" is one that is the last occurrence in the
     basic block and the operands are not modified by following statements in
     the basic block [including this insn].  */
  struct occr *avail_occr;
  /* Non-null if the computation is PRE redundant.
     The value is the newly created pseudo-reg to record a copy of the
     expression in all the places that reach the redundant copy.  */
  rtx reaching_reg;
  /* Maximum distance in instructions this expression can travel.
     We avoid moving simple expressions for more than a few instructions
     to keep register pressure under control.
     A value of "0" removes restrictions on how far the expression can
     travel.  */
  int max_distance;
};

/* Occurrence of an expression.
   There is one per basic block.  If a pattern appears more than once the
   last appearance is used [or first for anticipatable expressions].  */

struct occr
{
  /* Next occurrence of this expression.  */
  struct occr *next;
  /* The insn that computes the expression.  */
  rtx insn;
  /* Nonzero if this [anticipatable] occurrence has been deleted.  */
  char deleted_p;
  /* Nonzero if this [available] occurrence has been copied to
     reaching_reg.  */
  /* ??? This is mutually exclusive with deleted_p, so they could share
     the same byte.  */
  char copied_p;
};

typedef struct occr *occr_t;
DEF_VEC_P (occr_t);
DEF_VEC_ALLOC_P (occr_t, heap);

/* Expression hash tables.
   Each hash table is an array of buckets.
   ??? It is known that if it were an array of entries, structure elements
   `next_same_hash' and `bitmap_index' wouldn't be necessary.  However, it is
   not clear whether in the final analysis a sufficient amount of memory would
   be saved as the size of the available expression bitmaps would be larger
   [one could build a mapping table without holes afterwards though].
   Someday I'll perform the computation and figure it out.  */

struct hash_table_d
{
  /* The table itself.
     This is an array of `expr_hash_table_size' elements.  */
  struct expr **table;

  /* Size of the hash table, in elements.  */
  unsigned int size;

  /* Number of hash table elements.  */
  unsigned int n_elems;
};

/* Expression hash table.  */
static struct hash_table_d expr_hash_table;

/* This is a list of expressions which are MEMs and will be used by load
   or store motion.
   Load motion tracks MEMs which aren't killed by
   anything except itself. (i.e., loads and stores to a single location).
   We can then allow movement of these MEM refs with a little special
   allowance. (all stores copy the same value to the reaching reg used
   for the loads).  This means all values used to store into memory must have
   no side effects so we can re-issue the setter value.
   Store Motion uses this structure as an expression table to track stores
   which look interesting, and might be moveable towards the exit block.  */

struct ls_expr
{
  struct expr * expr;		/* Gcse expression reference for LM.  */
  rtx pattern;			/* Pattern of this mem.  */
  rtx pattern_regs;		/* List of registers mentioned by the mem.  */
  rtx loads;			/* INSN list of loads seen.  */
  rtx stores;			/* INSN list of stores seen.  */
  struct ls_expr * next;	/* Next in the list.  */
  int invalid;			/* Invalid for some reason.  */
  int index;			/* If it maps to a bitmap index.  */
  unsigned int hash_index;	/* Index when in a hash table.  */
  rtx reaching_reg;		/* Register to use when re-writing.  */
};

/* Head of the list of load/store memory refs.  */
static struct ls_expr * pre_ldst_mems = NULL;

/* Hashtable for the load/store memory refs.  */
static htab_t pre_ldst_table = NULL;

/* Bitmap containing one bit for each register in the program.
   Used when performing GCSE to track which registers have been set since
   the start of the basic block.  */
static regset reg_set_bitmap;

/* Array, indexed by basic block number for a list of insns which modify
   memory within that block.  */
static VEC (rtx,heap) **modify_mem_list;
static bitmap modify_mem_list_set;

typedef struct modify_pair_s
{
  rtx dest;			/* A MEM.  */
  rtx dest_addr;		/* The canonical address of `dest'.  */
} modify_pair;

DEF_VEC_O(modify_pair);
DEF_VEC_ALLOC_O(modify_pair,heap);

/* This array parallels modify_mem_list, except that it stores MEMs
   being set and their canonicalized memory addresses.  */
static VEC (modify_pair,heap) **canon_modify_mem_list;

/* Bitmap indexed by block numbers to record which blocks contain
   function calls.  */
static bitmap blocks_with_calls;

/* Various variables for statistics gathering.  */

/* Memory used in a pass.
   This isn't intended to be absolutely precise.  Its intent is only
   to keep an eye on memory usage.  */
static int bytes_used;

/* GCSE substitutions made.  */
static int gcse_subst_count;
/* Number of copy instructions created.  */
static int gcse_create_count;

/* Doing code hoisting.  */
static bool doing_code_hoisting_p = false;

/* For available exprs */
static sbitmap *ae_kill;

static void compute_can_copy (void);
static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
static void *gcse_alloc (unsigned long);
static void alloc_gcse_mem (void);
static void free_gcse_mem (void);
static void hash_scan_insn (rtx, struct hash_table_d *);
static void hash_scan_set (rtx, rtx, struct hash_table_d *);
static void hash_scan_clobber (rtx, rtx, struct hash_table_d *);
static void hash_scan_call (rtx, rtx, struct hash_table_d *);
static int want_to_gcse_p (rtx, int *);
static int oprs_unchanged_p (const_rtx, const_rtx, int);
static int oprs_anticipatable_p (const_rtx, const_rtx);
static int oprs_available_p (const_rtx, const_rtx);
static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int, int,
				  struct hash_table_d *);
static unsigned int hash_expr (const_rtx, enum machine_mode, int *, int);
static int expr_equiv_p (const_rtx, const_rtx);
static void record_last_reg_set_info (rtx, int);
static void record_last_mem_set_info (rtx);
static void record_last_set_info (rtx, const_rtx, void *);
static void compute_hash_table (struct hash_table_d *);
static void alloc_hash_table (struct hash_table_d *);
static void free_hash_table (struct hash_table_d *);
static void compute_hash_table_work (struct hash_table_d *);
static void dump_hash_table (FILE *, const char *, struct hash_table_d *);
static void compute_transp (const_rtx, int, sbitmap *);
static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
				      struct hash_table_d *);
static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
static void canon_list_insert (rtx, const_rtx, void *);
static void alloc_pre_mem (int, int);
static void free_pre_mem (void);
static void compute_pre_data (void);
static int pre_expr_reaches_here_p (basic_block, struct expr *,
				    basic_block);
static void insert_insn_end_basic_block (struct expr *, basic_block);
static void pre_insert_copy_insn (struct expr *, rtx);
static void pre_insert_copies (void);
static int pre_delete (void);
static int pre_gcse (void);
static int one_pre_gcse_pass (void);
static void add_label_notes (rtx, rtx);
static void alloc_code_hoist_mem (int, int);
static void free_code_hoist_mem (void);
static void compute_code_hoist_vbeinout (void);
static void compute_code_hoist_data (void);
static int hoist_expr_reaches_here_p (basic_block, int, basic_block, char *,
				      int, int *);
static int hoist_code (void);
static int one_code_hoisting_pass (void);
static rtx process_insert_insn (struct expr *);
static int pre_edge_insert (struct edge_list *, struct expr **);
static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
					 basic_block, char *);
static struct ls_expr * ldst_entry (rtx);
static void free_ldst_entry (struct ls_expr *);
static void free_ldst_mems (void);
static void print_ldst_list (FILE *);
static struct ls_expr * find_rtx_in_ldst (rtx);
static inline struct ls_expr * first_ls_expr (void);
static inline struct ls_expr * next_ls_expr (struct ls_expr *);
static int simple_mem (const_rtx);
static void invalidate_any_buried_refs (rtx);
static void compute_ld_motion_mems (void);
static void trim_ld_motion_mems (void);
static void update_ld_motion_stores (struct expr *);
static void clear_modify_mem_tables (void);
static void free_modify_mem_tables (void);
static rtx gcse_emit_move_after (rtx, rtx, rtx);
static bool is_too_expensive (const char *);

#define GNEW(T)			((T *) gmalloc (sizeof (T)))
#define GCNEW(T)		((T *) gcalloc (1, sizeof (T)))

#define GNEWVEC(T, N)		((T *) gmalloc (sizeof (T) * (N)))
#define GCNEWVEC(T, N)		((T *) gcalloc ((N), sizeof (T)))

#define GNEWVAR(T, S)		((T *) gmalloc ((S)))
#define GCNEWVAR(T, S)		((T *) gcalloc (1, (S)))

#define GOBNEW(T)		((T *) gcse_alloc (sizeof (T)))
#define GOBNEWVAR(T, S)		((T *) gcse_alloc ((S)))

/* Misc. utilities.  */

#define can_copy \
  (this_target_gcse->x_can_copy)
#define can_copy_init_p \
  (this_target_gcse->x_can_copy_init_p)

/* Compute which modes support reg/reg copy operations.  */

static void
compute_can_copy (void)
{
  int i;
#ifndef AVOID_CCMODE_COPIES
  rtx reg, insn;
#endif
  memset (can_copy, 0, NUM_MACHINE_MODES);

  start_sequence ();
  for (i = 0; i < NUM_MACHINE_MODES; i++)
    if (GET_MODE_CLASS (i) == MODE_CC)
      {
#ifdef AVOID_CCMODE_COPIES
	can_copy[i] = 0;
#else
	reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
	insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
	if (recog (PATTERN (insn), insn, NULL) >= 0)
	  can_copy[i] = 1;
#endif
      }
    else
      can_copy[i] = 1;

  end_sequence ();
}

/* Returns whether the mode supports reg/reg copy operations.  */

bool
can_copy_p (enum machine_mode mode)
{
  if (! can_copy_init_p)
    {
      compute_can_copy ();
      can_copy_init_p = true;
    }

  return can_copy[mode] != 0;
}


/* Cover function to xmalloc to record bytes allocated.  */

static void *
gmalloc (size_t size)
{
  bytes_used += size;
  return xmalloc (size);
}

/* Cover function to xcalloc to record bytes allocated.  */

static void *
gcalloc (size_t nelem, size_t elsize)
{
  bytes_used += nelem * elsize;
  return xcalloc (nelem, elsize);
}

/* Cover function to obstack_alloc.  */

static void *
gcse_alloc (unsigned long size)
{
  bytes_used += size;
  return obstack_alloc (&gcse_obstack, size);
}

/* Allocate memory for the reg/memory set tracking tables.
   This is called at the start of each pass.  */

static void
alloc_gcse_mem (void)
{
  /* Allocate vars to track sets of regs.  */
  reg_set_bitmap = ALLOC_REG_SET (NULL);

  /* Allocate array to keep a list of insns which modify memory in each
     basic block.  */
  modify_mem_list = GCNEWVEC (VEC (rtx,heap) *, last_basic_block);
  canon_modify_mem_list = GCNEWVEC (VEC (modify_pair,heap) *,
				    last_basic_block);
  modify_mem_list_set = BITMAP_ALLOC (NULL);
  blocks_with_calls = BITMAP_ALLOC (NULL);
}

/* Free memory allocated by alloc_gcse_mem.  */

static void
free_gcse_mem (void)
{
  FREE_REG_SET (reg_set_bitmap);

  free_modify_mem_tables ();
  BITMAP_FREE (modify_mem_list_set);
  BITMAP_FREE (blocks_with_calls);
}

/* Compute the local properties of each recorded expression.

   Local properties are those that are defined by the block, irrespective of
   other blocks.

   An expression is transparent in a block if its operands are not modified
   in the block.

   An expression is computed (locally available) in a block if it is computed
   at least once and expression would contain the same value if the
   computation was moved to the end of the block.

   An expression is locally anticipatable in a block if it is computed at
   least once and expression would contain the same value if the computation
   was moved to the beginning of the block.

   We call this routine for pre and code hoisting.  They all compute
   basically the same information and thus can easily share this code.

   TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
   properties.  If NULL, then it is not necessary to compute or record that
   particular property.

   TABLE controls which hash table to look at.  */

static void
compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
			  struct hash_table_d *table)
{
  unsigned int i;

  /* Initialize any bitmaps that were passed in.  */
  if (transp)
    {
      sbitmap_vector_ones (transp, last_basic_block);
    }

  if (comp)
    sbitmap_vector_zero (comp, last_basic_block);
  if (antloc)
    sbitmap_vector_zero (antloc, last_basic_block);

  for (i = 0; i < table->size; i++)
    {
      struct expr *expr;

      for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
	{
	  int indx = expr->bitmap_index;
	  struct occr *occr;

	  /* The expression is transparent in this block if it is not killed.
	     We start by assuming all are transparent [none are killed], and
	     then reset the bits for those that are.  */
	  if (transp)
	    compute_transp (expr->expr, indx, transp);

	  /* The occurrences recorded in antic_occr are exactly those that
	     we want to set to nonzero in ANTLOC.  */
	  if (antloc)
	    for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
	      {
		SET_BIT (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);

		/* While we're scanning the table, this is a good place to
		   initialize this.  */
		occr->deleted_p = 0;
	      }

	  /* The occurrences recorded in avail_occr are exactly those that
	     we want to set to nonzero in COMP.  */
	  if (comp)
	    for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
	      {
		SET_BIT (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);

		/* While we're scanning the table, this is a good place to
		   initialize this.  */
		occr->copied_p = 0;
	      }

	  /* While we're scanning the table, this is a good place to
	     initialize this.  */
	  expr->reaching_reg = 0;
	}
    }
}

/* Hash table support.  */

struct reg_avail_info
{
  basic_block last_bb;
  int first_set;
  int last_set;
};

static struct reg_avail_info *reg_avail_info;
static basic_block current_bb;


/* See whether X, the source of a set, is something we want to consider for
   GCSE.  */

static int
want_to_gcse_p (rtx x, int *max_distance_ptr)
{
#ifdef STACK_REGS
  /* On register stack architectures, don't GCSE constants from the
     constant pool, as the benefits are often swamped by the overhead
     of shuffling the register stack between basic blocks.  */
  if (IS_STACK_MODE (GET_MODE (x)))
    x = avoid_constant_pool_reference (x);
#endif

  /* GCSE'ing constants:

     We do not specifically distinguish between constant and non-constant
     expressions in PRE and Hoist.  We use set_src_cost below to limit
     the maximum distance simple expressions can travel.

     Nevertheless, constants are much easier to GCSE, and, hence,
     it is easy to overdo the optimizations.  Usually, excessive PRE and
     Hoisting of constant leads to increased register pressure.

     RA can deal with this by rematerialing some of the constants.
     Therefore, it is important that the back-end generates sets of constants
     in a way that allows reload rematerialize them under high register
     pressure, i.e., a pseudo register with REG_EQUAL to constant
     is set only once.  Failing to do so will result in IRA/reload
     spilling such constants under high register pressure instead of
     rematerializing them.  */

  switch (GET_CODE (x))
    {
    case REG:
    case SUBREG:
    case CALL:
      return 0;

    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_FIXED:
    case CONST_VECTOR:
      if (!doing_code_hoisting_p)
	/* Do not PRE constants.  */
	return 0;

      /* FALLTHRU */

    default:
      if (doing_code_hoisting_p)
	/* PRE doesn't implement max_distance restriction.  */
	{
	  int cost;
	  int max_distance;

	  gcc_assert (!optimize_function_for_speed_p (cfun)
		      && optimize_function_for_size_p (cfun));
	  cost = set_src_cost (x, 0);

	  if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
	    {
	      max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
	      if (max_distance == 0)
		return 0;

	      gcc_assert (max_distance > 0);
	    }
	  else
	    max_distance = 0;

	  if (max_distance_ptr)
	    *max_distance_ptr = max_distance;
	}

      return can_assign_to_reg_without_clobbers_p (x);
    }
}

/* Used internally by can_assign_to_reg_without_clobbers_p.  */

static GTY(()) rtx test_insn;

/* Return true if we can assign X to a pseudo register such that the
   resulting insn does not result in clobbering a hard register as a
   side-effect.

   Additionally, if the target requires it, check that the resulting insn
   can be copied.  If it cannot, this means that X is special and probably
   has hidden side-effects we don't want to mess with.

   This function is typically used by code motion passes, to verify
   that it is safe to insert an insn without worrying about clobbering
   maybe live hard regs.  */

bool
can_assign_to_reg_without_clobbers_p (rtx x)
{
  int num_clobbers = 0;
  int icode;

  /* If this is a valid operand, we are OK.  If it's VOIDmode, we aren't.  */
  if (general_operand (x, GET_MODE (x)))
    return 1;
  else if (GET_MODE (x) == VOIDmode)
    return 0;

  /* Otherwise, check if we can make a valid insn from it.  First initialize
     our test insn if we haven't already.  */
  if (test_insn == 0)
    {
      test_insn
	= make_insn_raw (gen_rtx_SET (VOIDmode,
				      gen_rtx_REG (word_mode,
						   FIRST_PSEUDO_REGISTER * 2),
				      const0_rtx));
      NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
    }

  /* Now make an insn like the one we would make when GCSE'ing and see if
     valid.  */
  PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
  SET_SRC (PATTERN (test_insn)) = x;

  icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
  if (icode < 0)
    return false;

  if (num_clobbers > 0 && added_clobbers_hard_reg_p (icode))
    return false;

  if (targetm.cannot_copy_insn_p && targetm.cannot_copy_insn_p (test_insn))
    return false;

  return true;
}

/* Return nonzero if the operands of expression X are unchanged from the
   start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
   or from INSN to the end of INSN's basic block (if AVAIL_P != 0).  */

static int
oprs_unchanged_p (const_rtx x, const_rtx insn, int avail_p)
{
  int i, j;
  enum rtx_code code;
  const char *fmt;

  if (x == 0)
    return 1;

  code = GET_CODE (x);
  switch (code)
    {
    case REG:
      {
	struct reg_avail_info *info = &reg_avail_info[REGNO (x)];

	if (info->last_bb != current_bb)
	  return 1;
	if (avail_p)
	  return info->last_set < DF_INSN_LUID (insn);
	else
	  return info->first_set >= DF_INSN_LUID (insn);
      }

    case MEM:
      if (load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
				  x, avail_p))
	return 0;
      else
	return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);

    case PRE_DEC:
    case PRE_INC:
    case POST_DEC:
    case POST_INC:
    case PRE_MODIFY:
    case POST_MODIFY:
      return 0;

    case PC:
    case CC0: /*FIXME*/
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_FIXED:
    case CONST_VECTOR:
    case SYMBOL_REF:
    case LABEL_REF:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
      return 1;

    default:
      break;
    }

  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  /* If we are about to do the last recursive call needed at this
	     level, change it into iteration.  This function is called enough
	     to be worth it.  */
	  if (i == 0)
	    return oprs_unchanged_p (XEXP (x, i), insn, avail_p);

	  else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
	    return 0;
	}
      else if (fmt[i] == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
	    return 0;
    }

  return 1;
}

/* Used for communication between mems_conflict_for_gcse_p and
   load_killed_in_block_p.  Nonzero if mems_conflict_for_gcse_p finds a
   conflict between two memory references.  */
static int gcse_mems_conflict_p;

/* Used for communication between mems_conflict_for_gcse_p and
   load_killed_in_block_p.  A memory reference for a load instruction,
   mems_conflict_for_gcse_p will see if a memory store conflicts with
   this memory load.  */
static const_rtx gcse_mem_operand;

/* DEST is the output of an instruction.  If it is a memory reference, and
   possibly conflicts with the load found in gcse_mem_operand, then set
   gcse_mems_conflict_p to a nonzero value.  */

static void
mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
			  void *data ATTRIBUTE_UNUSED)
{
  while (GET_CODE (dest) == SUBREG
	 || GET_CODE (dest) == ZERO_EXTRACT
	 || GET_CODE (dest) == STRICT_LOW_PART)
    dest = XEXP (dest, 0);

  /* If DEST is not a MEM, then it will not conflict with the load.  Note
     that function calls are assumed to clobber memory, but are handled
     elsewhere.  */
  if (! MEM_P (dest))
    return;

  /* If we are setting a MEM in our list of specially recognized MEMs,
     don't mark as killed this time.  */

  if (expr_equiv_p (dest, gcse_mem_operand) && pre_ldst_mems != NULL)
    {
      if (!find_rtx_in_ldst (dest))
	gcse_mems_conflict_p = 1;
      return;
    }

  if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
		       rtx_addr_varies_p))
    gcse_mems_conflict_p = 1;
}

/* Return nonzero if the expression in X (a memory reference) is killed
   in block BB before or after the insn with the LUID in UID_LIMIT.
   AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
   before UID_LIMIT.

   To check the entire block, set UID_LIMIT to max_uid + 1 and
   AVAIL_P to 0.  */

static int
load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x, int avail_p)
{
  VEC (rtx,heap) *list = modify_mem_list[bb->index];
  rtx setter;
  unsigned ix;

  /* If this is a readonly then we aren't going to be changing it.  */
  if (MEM_READONLY_P (x))
    return 0;

  FOR_EACH_VEC_ELT_REVERSE (rtx, list, ix, setter)
    {
      /* Ignore entries in the list that do not apply.  */
      if ((avail_p
	   && DF_INSN_LUID (setter) < uid_limit)
	  || (! avail_p
	      && DF_INSN_LUID (setter) > uid_limit))
	continue;

      /* If SETTER is a call everything is clobbered.  Note that calls
	 to pure functions are never put on the list, so we need not
	 worry about them.  */
      if (CALL_P (setter))
	return 1;

      /* SETTER must be an INSN of some kind that sets memory.  Call
	 note_stores to examine each hunk of memory that is modified.

	 The note_stores interface is pretty limited, so we have to
	 communicate via global variables.  Yuk.  */
      gcse_mem_operand = x;
      gcse_mems_conflict_p = 0;
      note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
      if (gcse_mems_conflict_p)
	return 1;
    }
  return 0;
}

/* Return nonzero if the operands of expression X are unchanged from
   the start of INSN's basic block up to but not including INSN.  */

static int
oprs_anticipatable_p (const_rtx x, const_rtx insn)
{
  return oprs_unchanged_p (x, insn, 0);
}

/* Return nonzero if the operands of expression X are unchanged from
   INSN to the end of INSN's basic block.  */

static int
oprs_available_p (const_rtx x, const_rtx insn)
{
  return oprs_unchanged_p (x, insn, 1);
}

/* Hash expression X.

   MODE is only used if X is a CONST_INT.  DO_NOT_RECORD_P is a boolean
   indicating if a volatile operand is found or if the expression contains
   something we don't want to insert in the table.  HASH_TABLE_SIZE is
   the current size of the hash table to be probed.  */

static unsigned int
hash_expr (const_rtx x, enum machine_mode mode, int *do_not_record_p,
	   int hash_table_size)
{
  unsigned int hash;

  *do_not_record_p = 0;

  hash = hash_rtx (x, mode, do_not_record_p,
		   NULL,  /*have_reg_qty=*/false);
  return hash % hash_table_size;
}

/* Return nonzero if exp1 is equivalent to exp2.  */

static int
expr_equiv_p (const_rtx x, const_rtx y)
{
  return exp_equiv_p (x, y, 0, true);
}

/* Insert expression X in INSN in the hash TABLE.
   If it is already present, record it as the last occurrence in INSN's
   basic block.

   MODE is the mode of the value X is being stored into.
   It is only used if X is a CONST_INT.

   ANTIC_P is nonzero if X is an anticipatable expression.
   AVAIL_P is nonzero if X is an available expression.

   MAX_DISTANCE is the maximum distance in instructions this expression can
   be moved.  */

static void
insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
		      int avail_p, int max_distance, struct hash_table_d *table)
{
  int found, do_not_record_p;
  unsigned int hash;
  struct expr *cur_expr, *last_expr = NULL;
  struct occr *antic_occr, *avail_occr;

  hash = hash_expr (x, mode, &do_not_record_p, table->size);

  /* Do not insert expression in table if it contains volatile operands,
     or if hash_expr determines the expression is something we don't want
     to or can't handle.  */
  if (do_not_record_p)
    return;

  cur_expr = table->table[hash];
  found = 0;

  while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
    {
      /* If the expression isn't found, save a pointer to the end of
	 the list.  */
      last_expr = cur_expr;
      cur_expr = cur_expr->next_same_hash;
    }

  if (! found)
    {
      cur_expr = GOBNEW (struct expr);
      bytes_used += sizeof (struct expr);
      if (table->table[hash] == NULL)
	/* This is the first pattern that hashed to this index.  */
	table->table[hash] = cur_expr;
      else
	/* Add EXPR to end of this hash chain.  */
	last_expr->next_same_hash = cur_expr;

      /* Set the fields of the expr element.  */
      cur_expr->expr = x;
      cur_expr->bitmap_index = table->n_elems++;
      cur_expr->next_same_hash = NULL;
      cur_expr->antic_occr = NULL;
      cur_expr->avail_occr = NULL;
      gcc_assert (max_distance >= 0);
      cur_expr->max_distance = max_distance;
    }
  else
    gcc_assert (cur_expr->max_distance == max_distance);

  /* Now record the occurrence(s).  */
  if (antic_p)
    {
      antic_occr = cur_expr->antic_occr;

      if (antic_occr
	  && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
	antic_occr = NULL;

      if (antic_occr)
	/* Found another instance of the expression in the same basic block.
	   Prefer the currently recorded one.  We want the first one in the
	   block and the block is scanned from start to end.  */
	; /* nothing to do */
      else
	{
	  /* First occurrence of this expression in this basic block.  */
	  antic_occr = GOBNEW (struct occr);
	  bytes_used += sizeof (struct occr);
	  antic_occr->insn = insn;
	  antic_occr->next = cur_expr->antic_occr;
	  antic_occr->deleted_p = 0;
	  cur_expr->antic_occr = antic_occr;
	}
    }

  if (avail_p)
    {
      avail_occr = cur_expr->avail_occr;

      if (avail_occr
	  && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
	{
	  /* Found another instance of the expression in the same basic block.
	     Prefer this occurrence to the currently recorded one.  We want
	     the last one in the block and the block is scanned from start
	     to end.  */
	  avail_occr->insn = insn;
	}
      else
	{
	  /* First occurrence of this expression in this basic block.  */
	  avail_occr = GOBNEW (struct occr);
	  bytes_used += sizeof (struct occr);
	  avail_occr->insn = insn;
	  avail_occr->next = cur_expr->avail_occr;
	  avail_occr->deleted_p = 0;
	  cur_expr->avail_occr = avail_occr;
	}
    }
}

/* Scan pattern PAT of INSN and add an entry to the hash TABLE.  */

static void
hash_scan_set (rtx pat, rtx insn, struct hash_table_d *table)
{
  rtx src = SET_SRC (pat);
  rtx dest = SET_DEST (pat);
  rtx note;

  if (GET_CODE (src) == CALL)
    hash_scan_call (src, insn, table);

  else if (REG_P (dest))
    {
      unsigned int regno = REGNO (dest);
      int max_distance = 0;

      /* See if a REG_EQUAL note shows this equivalent to a simpler expression.

	 This allows us to do a single GCSE pass and still eliminate
	 redundant constants, addresses or other expressions that are
	 constructed with multiple instructions.

	 However, keep the original SRC if INSN is a simple reg-reg move.
	 In this case, there will almost always be a REG_EQUAL note on the
	 insn that sets SRC.  By recording the REG_EQUAL value here as SRC
	 for INSN, we miss copy propagation opportunities and we perform the
	 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
	 do more than one PRE GCSE pass.

	 Note that this does not impede profitable constant propagations.  We
	 "look through" reg-reg sets in lookup_avail_set.  */
      note = find_reg_equal_equiv_note (insn);
      if (note != 0
	  && REG_NOTE_KIND (note) == REG_EQUAL
	  && !REG_P (src)
	  && want_to_gcse_p (XEXP (note, 0), NULL))
	src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);

      /* Only record sets of pseudo-regs in the hash table.  */
      if (regno >= FIRST_PSEUDO_REGISTER
	  /* Don't GCSE something if we can't do a reg/reg copy.  */
	  && can_copy_p (GET_MODE (dest))
	  /* GCSE commonly inserts instruction after the insn.  We can't
	     do that easily for EH edges so disable GCSE on these for now.  */
	  /* ??? We can now easily create new EH landing pads at the
	     gimple level, for splitting edges; there's no reason we
	     can't do the same thing at the rtl level.  */
	  && !can_throw_internal (insn)
	  /* Is SET_SRC something we want to gcse?  */
	  && want_to_gcse_p (src, &max_distance)
	  /* Don't CSE a nop.  */
	  && ! set_noop_p (pat)
	  /* Don't GCSE if it has attached REG_EQUIV note.
	     At this point this only function parameters should have
	     REG_EQUIV notes and if the argument slot is used somewhere
	     explicitly, it means address of parameter has been taken,
	     so we should not extend the lifetime of the pseudo.  */
	  && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
	{
	  /* An expression is not anticipatable if its operands are
	     modified before this insn or if this is not the only SET in
	     this insn.  The latter condition does not have to mean that
	     SRC itself is not anticipatable, but we just will not be
	     able to handle code motion of insns with multiple sets.  */
	  int antic_p = oprs_anticipatable_p (src, insn)
			&& !multiple_sets (insn);
	  /* An expression is not available if its operands are
	     subsequently modified, including this insn.  It's also not
	     available if this is a branch, because we can't insert
	     a set after the branch.  */
	  int avail_p = (oprs_available_p (src, insn)
			 && ! JUMP_P (insn));

	  insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
				max_distance, table);
	}
    }
  /* In case of store we want to consider the memory value as available in
     the REG stored in that memory. This makes it possible to remove
     redundant loads from due to stores to the same location.  */
  else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
      {
        unsigned int regno = REGNO (src);
	int max_distance = 0;

	/* Only record sets of pseudo-regs in the hash table.  */
        if (regno >= FIRST_PSEUDO_REGISTER
	   /* Don't GCSE something if we can't do a reg/reg copy.  */
	   && can_copy_p (GET_MODE (src))
	   /* GCSE commonly inserts instruction after the insn.  We can't
	      do that easily for EH edges so disable GCSE on these for now.  */
	   && !can_throw_internal (insn)
	   /* Is SET_DEST something we want to gcse?  */
	   && want_to_gcse_p (dest, &max_distance)
	   /* Don't CSE a nop.  */
	   && ! set_noop_p (pat)
	   /* Don't GCSE if it has attached REG_EQUIV note.
	      At this point this only function parameters should have
	      REG_EQUIV notes and if the argument slot is used somewhere
	      explicitly, it means address of parameter has been taken,
	      so we should not extend the lifetime of the pseudo.  */
	   && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
	       || ! MEM_P (XEXP (note, 0))))
             {
               /* Stores are never anticipatable.  */
               int antic_p = 0;
	       /* An expression is not available if its operands are
	          subsequently modified, including this insn.  It's also not
	          available if this is a branch, because we can't insert
	          a set after the branch.  */
               int avail_p = oprs_available_p (dest, insn)
			     && ! JUMP_P (insn);

	       /* Record the memory expression (DEST) in the hash table.  */
	       insert_expr_in_table (dest, GET_MODE (dest), insn,
				     antic_p, avail_p, max_distance, table);
             }
      }
}

static void
hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
		   struct hash_table_d *table ATTRIBUTE_UNUSED)
{
  /* Currently nothing to do.  */
}

static void
hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
		struct hash_table_d *table ATTRIBUTE_UNUSED)
{
  /* Currently nothing to do.  */
}

/* Process INSN and add hash table entries as appropriate.

   Only available expressions that set a single pseudo-reg are recorded.

   Single sets in a PARALLEL could be handled, but it's an extra complication
   that isn't dealt with right now.  The trick is handling the CLOBBERs that
   are also in the PARALLEL.  Later.

   If SET_P is nonzero, this is for the assignment hash table,
   otherwise it is for the expression hash table.  */

static void
hash_scan_insn (rtx insn, struct hash_table_d *table)
{
  rtx pat = PATTERN (insn);
  int i;

  /* Pick out the sets of INSN and for other forms of instructions record
     what's been modified.  */

  if (GET_CODE (pat) == SET)
    hash_scan_set (pat, insn, table);
  else if (GET_CODE (pat) == PARALLEL)
    for (i = 0; i < XVECLEN (pat, 0); i++)
      {
	rtx x = XVECEXP (pat, 0, i);

	if (GET_CODE (x) == SET)
	  hash_scan_set (x, insn, table);
	else if (GET_CODE (x) == CLOBBER)
	  hash_scan_clobber (x, insn, table);
	else if (GET_CODE (x) == CALL)
	  hash_scan_call (x, insn, table);
      }

  else if (GET_CODE (pat) == CLOBBER)
    hash_scan_clobber (pat, insn, table);
  else if (GET_CODE (pat) == CALL)
    hash_scan_call (pat, insn, table);
}

static void
dump_hash_table (FILE *file, const char *name, struct hash_table_d *table)
{
  int i;
  /* Flattened out table, so it's printed in proper order.  */
  struct expr **flat_table;
  unsigned int *hash_val;
  struct expr *expr;

  flat_table = XCNEWVEC (struct expr *, table->n_elems);
  hash_val = XNEWVEC (unsigned int, table->n_elems);

  for (i = 0; i < (int) table->size; i++)
    for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
      {
	flat_table[expr->bitmap_index] = expr;
	hash_val[expr->bitmap_index] = i;
      }

  fprintf (file, "%s hash table (%d buckets, %d entries)\n",
	   name, table->size, table->n_elems);

  for (i = 0; i < (int) table->n_elems; i++)
    if (flat_table[i] != 0)
      {
	expr = flat_table[i];
	fprintf (file, "Index %d (hash value %d; max distance %d)\n  ",
		 expr->bitmap_index, hash_val[i], expr->max_distance);
	print_rtl (file, expr->expr);
	fprintf (file, "\n");
      }

  fprintf (file, "\n");

  free (flat_table);
  free (hash_val);
}

/* Record register first/last/block set information for REGNO in INSN.

   first_set records the first place in the block where the register
   is set and is used to compute "anticipatability".

   last_set records the last place in the block where the register
   is set and is used to compute "availability".

   last_bb records the block for which first_set and last_set are
   valid, as a quick test to invalidate them.  */

static void
record_last_reg_set_info (rtx insn, int regno)
{
  struct reg_avail_info *info = &reg_avail_info[regno];
  int luid = DF_INSN_LUID (insn);

  info->last_set = luid;
  if (info->last_bb != current_bb)
    {
      info->last_bb = current_bb;
      info->first_set = luid;
    }
}


/* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
   Note we store a pair of elements in the list, so they have to be
   taken off pairwise.  */

static void
canon_list_insert (rtx dest ATTRIBUTE_UNUSED, const_rtx unused1 ATTRIBUTE_UNUSED,
		   void * v_insn)
{
  rtx dest_addr, insn;
  int bb;
  modify_pair *pair;

  while (GET_CODE (dest) == SUBREG
      || GET_CODE (dest) == ZERO_EXTRACT
      || GET_CODE (dest) == STRICT_LOW_PART)
    dest = XEXP (dest, 0);

  /* If DEST is not a MEM, then it will not conflict with a load.  Note
     that function calls are assumed to clobber memory, but are handled
     elsewhere.  */

  if (! MEM_P (dest))
    return;

  dest_addr = get_addr (XEXP (dest, 0));
  dest_addr = canon_rtx (dest_addr);
  insn = (rtx) v_insn;
  bb = BLOCK_FOR_INSN (insn)->index;

  pair = VEC_safe_push (modify_pair, heap, canon_modify_mem_list[bb], NULL);
  pair->dest = dest;
  pair->dest_addr = dest_addr;
}

/* Record memory modification information for INSN.  We do not actually care
   about the memory location(s) that are set, or even how they are set (consider
   a CALL_INSN).  We merely need to record which insns modify memory.  */

static void
record_last_mem_set_info (rtx insn)
{
  int bb = BLOCK_FOR_INSN (insn)->index;

  /* load_killed_in_block_p will handle the case of calls clobbering
     everything.  */
  VEC_safe_push (rtx, heap, modify_mem_list[bb], insn);
  bitmap_set_bit (modify_mem_list_set, bb);

  if (CALL_P (insn))
    bitmap_set_bit (blocks_with_calls, bb);
  else
    note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
}

/* Called from compute_hash_table via note_stores to handle one
   SET or CLOBBER in an insn.  DATA is really the instruction in which
   the SET is taking place.  */

static void
record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
{
  rtx last_set_insn = (rtx) data;

  if (GET_CODE (dest) == SUBREG)
    dest = SUBREG_REG (dest);

  if (REG_P (dest))
    record_last_reg_set_info (last_set_insn, REGNO (dest));
  else if (MEM_P (dest)
	   /* Ignore pushes, they clobber nothing.  */
	   && ! push_operand (dest, GET_MODE (dest)))
    record_last_mem_set_info (last_set_insn);
}

/* Top level function to create an expression hash table.

   Expression entries are placed in the hash table if
   - they are of the form (set (pseudo-reg) src),
   - src is something we want to perform GCSE on,
   - none of the operands are subsequently modified in the block

   Currently src must be a pseudo-reg or a const_int.

   TABLE is the table computed.  */

static void
compute_hash_table_work (struct hash_table_d *table)
{
  int i;

  /* re-Cache any INSN_LIST nodes we have allocated.  */
  clear_modify_mem_tables ();
  /* Some working arrays used to track first and last set in each block.  */
  reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());

  for (i = 0; i < max_reg_num (); ++i)
    reg_avail_info[i].last_bb = NULL;

  FOR_EACH_BB (current_bb)
    {
      rtx insn;
      unsigned int regno;

      /* First pass over the instructions records information used to
	 determine when registers and memory are first and last set.  */
      FOR_BB_INSNS (current_bb, insn)
	{
	  if (!NONDEBUG_INSN_P (insn))
	    continue;

	  if (CALL_P (insn))
	    {
	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
		if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
		  record_last_reg_set_info (insn, regno);

	      if (! RTL_CONST_OR_PURE_CALL_P (insn))
		record_last_mem_set_info (insn);
	    }

	  note_stores (PATTERN (insn), record_last_set_info, insn);
	}

      /* The next pass builds the hash table.  */
      FOR_BB_INSNS (current_bb, insn)
	if (NONDEBUG_INSN_P (insn))
	  hash_scan_insn (insn, table);
    }

  free (reg_avail_info);
  reg_avail_info = NULL;
}

/* Allocate space for the set/expr hash TABLE.
   It is used to determine the number of buckets to use.  */

static void
alloc_hash_table (struct hash_table_d *table)
{
  int n;

  n = get_max_insn_count ();

  table->size = n / 4;
  if (table->size < 11)
    table->size = 11;

  /* Attempt to maintain efficient use of hash table.
     Making it an odd number is simplest for now.
     ??? Later take some measurements.  */
  table->size |= 1;
  n = table->size * sizeof (struct expr *);
  table->table = GNEWVAR (struct expr *, n);
}

/* Free things allocated by alloc_hash_table.  */

static void
free_hash_table (struct hash_table_d *table)
{
  free (table->table);
}

/* Compute the expression hash table TABLE.  */

static void
compute_hash_table (struct hash_table_d *table)
{
  /* Initialize count of number of entries in hash table.  */
  table->n_elems = 0;
  memset (table->table, 0, table->size * sizeof (struct expr *));

  compute_hash_table_work (table);
}

/* Expression tracking support.  */

/* Clear canon_modify_mem_list and modify_mem_list tables.  */
static void
clear_modify_mem_tables (void)
{
  unsigned i;
  bitmap_iterator bi;

  EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
    {
      VEC_free (rtx, heap, modify_mem_list[i]);
      VEC_free (modify_pair, heap, canon_modify_mem_list[i]);
    }
  bitmap_clear (modify_mem_list_set);
  bitmap_clear (blocks_with_calls);
}

/* Release memory used by modify_mem_list_set.  */

static void
free_modify_mem_tables (void)
{
  clear_modify_mem_tables ();
  free (modify_mem_list);
  free (canon_modify_mem_list);
  modify_mem_list = 0;
  canon_modify_mem_list = 0;
}


/* For each block, compute whether X is transparent.  X is either an
   expression or an assignment [though we don't care which, for this context
   an assignment is treated as an expression].  For each block where an
   element of X is modified, reset the INDX bit in BMAP.  */

static void
compute_transp (const_rtx x, int indx, sbitmap *bmap)
{
  int i, j;
  enum rtx_code code;
  const char *fmt;

  /* repeat is used to turn tail-recursion into iteration since GCC
     can't do it when there's no return value.  */
 repeat:

  if (x == 0)
    return;

  code = GET_CODE (x);
  switch (code)
    {
    case REG:
	{
	  df_ref def;
	  for (def = DF_REG_DEF_CHAIN (REGNO (x));
	       def;
	       def = DF_REF_NEXT_REG (def))
	    RESET_BIT (bmap[DF_REF_BB (def)->index], indx);
	}

      return;

    case MEM:
      if (! MEM_READONLY_P (x))
	{
	  bitmap_iterator bi;
	  unsigned bb_index;

	  /* First handle all the blocks with calls.  We don't need to
	     do any list walking for them.  */
	  EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
	    {
	      RESET_BIT (bmap[bb_index], indx);
	    }

	    /* Now iterate over the blocks which have memory modifications
	       but which do not have any calls.  */
	    EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
					    blocks_with_calls,
					    0, bb_index, bi)
	      {
		VEC (modify_pair,heap) *list
		  = canon_modify_mem_list[bb_index];
		modify_pair *pair;
		unsigned ix;

		FOR_EACH_VEC_ELT_REVERSE (modify_pair, list, ix, pair)
		  {
		    rtx dest = pair->dest;
		    rtx dest_addr = pair->dest_addr;

		    if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
					       x, NULL_RTX, rtx_addr_varies_p))
		      RESET_BIT (bmap[bb_index], indx);
	          }
	      }
	}

      x = XEXP (x, 0);
      goto repeat;

    case PC:
    case CC0: /*FIXME*/
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_FIXED:
    case CONST_VECTOR:
    case SYMBOL_REF:
    case LABEL_REF:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
      return;

    default:
      break;
    }

  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  /* If we are about to do the last recursive call
	     needed at this level, change it into iteration.
	     This function is called enough to be worth it.  */
	  if (i == 0)
	    {
	      x = XEXP (x, i);
	      goto repeat;
	    }

	  compute_transp (XEXP (x, i), indx, bmap);
	}
      else if (fmt[i] == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  compute_transp (XVECEXP (x, i, j), indx, bmap);
    }
}


/* Compute PRE+LCM working variables.  */

/* Local properties of expressions.  */
/* Nonzero for expressions that are transparent in the block.  */
static sbitmap *transp;

/* Nonzero for expressions that are computed (available) in the block.  */
static sbitmap *comp;

/* Nonzero for expressions that are locally anticipatable in the block.  */
static sbitmap *antloc;

/* Nonzero for expressions where this block is an optimal computation
   point.  */
static sbitmap *pre_optimal;

/* Nonzero for expressions which are redundant in a particular block.  */
static sbitmap *pre_redundant;

/* Nonzero for expressions which should be inserted on a specific edge.  */
static sbitmap *pre_insert_map;

/* Nonzero for expressions which should be deleted in a specific block.  */
static sbitmap *pre_delete_map;

/* Contains the edge_list returned by pre_edge_lcm.  */
static struct edge_list *edge_list;

/* Allocate vars used for PRE analysis.  */

static void
alloc_pre_mem (int n_blocks, int n_exprs)
{
  transp = sbitmap_vector_alloc (n_blocks, n_exprs);
  comp = sbitmap_vector_alloc (n_blocks, n_exprs);
  antloc = sbitmap_vector_alloc (n_blocks, n_exprs);

  pre_optimal = NULL;
  pre_redundant = NULL;
  pre_insert_map = NULL;
  pre_delete_map = NULL;
  ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);

  /* pre_insert and pre_delete are allocated later.  */
}

/* Free vars used for PRE analysis.  */

static void
free_pre_mem (void)
{
  sbitmap_vector_free (transp);
  sbitmap_vector_free (comp);

  /* ANTLOC and AE_KILL are freed just after pre_lcm finishes.  */

  if (pre_optimal)
    sbitmap_vector_free (pre_optimal);
  if (pre_redundant)
    sbitmap_vector_free (pre_redundant);
  if (pre_insert_map)
    sbitmap_vector_free (pre_insert_map);
  if (pre_delete_map)
    sbitmap_vector_free (pre_delete_map);

  transp = comp = NULL;
  pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
}

/* Remove certain expressions from anticipatable and transparent
   sets of basic blocks that have incoming abnormal edge.
   For PRE remove potentially trapping expressions to avoid placing
   them on abnormal edges.  For hoisting remove memory references that
   can be clobbered by calls.  */

static void
prune_expressions (bool pre_p)
{
  sbitmap prune_exprs;
  unsigned int ui;
  basic_block bb;

  prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
  sbitmap_zero (prune_exprs);
  for (ui = 0; ui < expr_hash_table.size; ui++)
    {
      struct expr *e;
      for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
	{
	  /* Note potentially trapping expressions.  */
	  if (may_trap_p (e->expr))
	    {
	      SET_BIT (prune_exprs, e->bitmap_index);
	      continue;
	    }

	  if (!pre_p && MEM_P (e->expr))
	    /* Note memory references that can be clobbered by a call.
	       We do not split abnormal edges in hoisting, so would
	       a memory reference get hoisted along an abnormal edge,
	       it would be placed /before/ the call.  Therefore, only
	       constant memory references can be hoisted along abnormal
	       edges.  */
	    {
	      if (GET_CODE (XEXP (e->expr, 0)) == SYMBOL_REF
		  && CONSTANT_POOL_ADDRESS_P (XEXP (e->expr, 0)))
		continue;

	      if (MEM_READONLY_P (e->expr)
		  && !MEM_VOLATILE_P (e->expr)
		  && MEM_NOTRAP_P (e->expr))
		/* Constant memory reference, e.g., a PIC address.  */
		continue;

	      /* ??? Optimally, we would use interprocedural alias
		 analysis to determine if this mem is actually killed
		 by this call.  */

	      SET_BIT (prune_exprs, e->bitmap_index);
	    }
	}
    }

  FOR_EACH_BB (bb)
    {
      edge e;
      edge_iterator ei;

      /* If the current block is the destination of an abnormal edge, we
	 kill all trapping (for PRE) and memory (for hoist) expressions
	 because we won't be able to properly place the instruction on
	 the edge.  So make them neither anticipatable nor transparent.
	 This is fairly conservative.

	 ??? For hoisting it may be necessary to check for set-and-jump
	 instructions here, not just for abnormal edges.  The general problem
	 is that when an expression cannot not be placed right at the end of
	 a basic block we should account for any side-effects of a subsequent
	 jump instructions that could clobber the expression.  It would
	 be best to implement this check along the lines of
	 hoist_expr_reaches_here_p where the target block is already known
	 and, hence, there's no need to conservatively prune expressions on
	 "intermediate" set-and-jump instructions.  */
      FOR_EACH_EDGE (e, ei, bb->preds)
	if ((e->flags & EDGE_ABNORMAL)
	    && (pre_p || CALL_P (BB_END (e->src))))
	  {
	    sbitmap_difference (antloc[bb->index],
				antloc[bb->index], prune_exprs);
	    sbitmap_difference (transp[bb->index],
				transp[bb->index], prune_exprs);
	    break;
	  }
    }

  sbitmap_free (prune_exprs);
}

/* It may be necessary to insert a large number of insns on edges to
   make the existing occurrences of expressions fully redundant.  This
   routine examines the set of insertions and deletions and if the ratio
   of insertions to deletions is too high for a particular expression, then
   the expression is removed from the insertion/deletion sets. 

   N_ELEMS is the number of elements in the hash table.  */

static void
prune_insertions_deletions (int n_elems)
{
  sbitmap_iterator sbi;
  sbitmap prune_exprs;

  /* We always use I to iterate over blocks/edges and J to iterate over
     expressions.  */
  unsigned int i, j;

  /* Counts for the number of times an expression needs to be inserted and
     number of times an expression can be removed as a result.  */
  int *insertions = GCNEWVEC (int, n_elems);
  int *deletions = GCNEWVEC (int, n_elems);

  /* Set of expressions which require too many insertions relative to
     the number of deletions achieved.  We will prune these out of the
     insertion/deletion sets.  */
  prune_exprs = sbitmap_alloc (n_elems);
  sbitmap_zero (prune_exprs);

  /* Iterate over the edges counting the number of times each expression
     needs to be inserted.  */
  for (i = 0; i < (unsigned) n_edges; i++)
    {
      EXECUTE_IF_SET_IN_SBITMAP (pre_insert_map[i], 0, j, sbi)
	insertions[j]++;
    }

  /* Similarly for deletions, but those occur in blocks rather than on
     edges.  */
  for (i = 0; i < (unsigned) last_basic_block; i++)
    {
      EXECUTE_IF_SET_IN_SBITMAP (pre_delete_map[i], 0, j, sbi)
	deletions[j]++;
    }

  /* Now that we have accurate counts, iterate over the elements in the
     hash table and see if any need too many insertions relative to the
     number of evaluations that can be removed.  If so, mark them in
     PRUNE_EXPRS.  */
  for (j = 0; j < (unsigned) n_elems; j++)
    if (deletions[j]
	&& ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
      SET_BIT (prune_exprs, j);

  /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS.  */
  EXECUTE_IF_SET_IN_SBITMAP (prune_exprs, 0, j, sbi)
    {
      for (i = 0; i < (unsigned) n_edges; i++)
	RESET_BIT (pre_insert_map[i], j);

      for (i = 0; i < (unsigned) last_basic_block; i++)
	RESET_BIT (pre_delete_map[i], j);
    }

  sbitmap_free (prune_exprs);
  free (insertions);
  free (deletions);
}

/* Top level routine to do the dataflow analysis needed by PRE.  */

static void
compute_pre_data (void)
{
  basic_block bb;

  compute_local_properties (transp, comp, antloc, &expr_hash_table);
  prune_expressions (true);
  sbitmap_vector_zero (ae_kill, last_basic_block);

  /* Compute ae_kill for each basic block using:

     ~(TRANSP | COMP)
  */

  FOR_EACH_BB (bb)
    {
      sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
      sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
    }

  edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
			    ae_kill, &pre_insert_map, &pre_delete_map);
  sbitmap_vector_free (antloc);
  antloc = NULL;
  sbitmap_vector_free (ae_kill);
  ae_kill = NULL;

  prune_insertions_deletions (expr_hash_table.n_elems);
}

/* PRE utilities */

/* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
   block BB.

   VISITED is a pointer to a working buffer for tracking which BB's have
   been visited.  It is NULL for the top-level call.

   We treat reaching expressions that go through blocks containing the same
   reaching expression as "not reaching".  E.g. if EXPR is generated in blocks
   2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
   2 as not reaching.  The intent is to improve the probability of finding
   only one reaching expression and to reduce register lifetimes by picking
   the closest such expression.  */

static int
pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr, basic_block bb, char *visited)
{
  edge pred;
  edge_iterator ei;

  FOR_EACH_EDGE (pred, ei, bb->preds)
    {
      basic_block pred_bb = pred->src;

      if (pred->src == ENTRY_BLOCK_PTR
	  /* Has predecessor has already been visited?  */
	  || visited[pred_bb->index])
	;/* Nothing to do.  */

      /* Does this predecessor generate this expression?  */
      else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
	{
	  /* Is this the occurrence we're looking for?
	     Note that there's only one generating occurrence per block
	     so we just need to check the block number.  */
	  if (occr_bb == pred_bb)
	    return 1;

	  visited[pred_bb->index] = 1;
	}
      /* Ignore this predecessor if it kills the expression.  */
      else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
	visited[pred_bb->index] = 1;

      /* Neither gen nor kill.  */
      else
	{
	  visited[pred_bb->index] = 1;
	  if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
	    return 1;
	}
    }

  /* All paths have been checked.  */
  return 0;
}

/* The wrapper for pre_expr_reaches_here_work that ensures that any
   memory allocated for that function is returned.  */

static int
pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
{
  int rval;
  char *visited = XCNEWVEC (char, last_basic_block);

  rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);

  free (visited);
  return rval;
}


/* Given an expr, generate RTL which we can insert at the end of a BB,
   or on an edge.  Set the block number of any insns generated to
   the value of BB.  */

static rtx
process_insert_insn (struct expr *expr)
{
  rtx reg = expr->reaching_reg;
  rtx exp = copy_rtx (expr->expr);
  rtx pat;

  start_sequence ();

  /* If the expression is something that's an operand, like a constant,
     just copy it to a register.  */
  if (general_operand (exp, GET_MODE (reg)))
    emit_move_insn (reg, exp);

  /* Otherwise, make a new insn to compute this expression and make sure the
     insn will be recognized (this also adds any needed CLOBBERs).  Copy the
     expression to make sure we don't have any sharing issues.  */
  else
    {
      rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));

      if (insn_invalid_p (insn))
	gcc_unreachable ();
    }


  pat = get_insns ();
  end_sequence ();

  return pat;
}

/* Add EXPR to the end of basic block BB.

   This is used by both the PRE and code hoisting.  */

static void
insert_insn_end_basic_block (struct expr *expr, basic_block bb)
{
  rtx insn = BB_END (bb);
  rtx new_insn;
  rtx reg = expr->reaching_reg;
  int regno = REGNO (reg);
  rtx pat, pat_end;

  pat = process_insert_insn (expr);
  gcc_assert (pat && INSN_P (pat));

  pat_end = pat;
  while (NEXT_INSN (pat_end) != NULL_RTX)
    pat_end = NEXT_INSN (pat_end);

  /* If the last insn is a jump, insert EXPR in front [taking care to
     handle cc0, etc. properly].  Similarly we need to care trapping
     instructions in presence of non-call exceptions.  */

  if (JUMP_P (insn)
      || (NONJUMP_INSN_P (insn)
	  && (!single_succ_p (bb)
	      || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
    {
#ifdef HAVE_cc0
      rtx note;
#endif

      /* If this is a jump table, then we can't insert stuff here.  Since
	 we know the previous real insn must be the tablejump, we insert
	 the new instruction just before the tablejump.  */
      if (GET_CODE (PATTERN (insn)) == ADDR_VEC
	  || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
	insn = prev_active_insn (insn);

#ifdef HAVE_cc0
      /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
	 if cc0 isn't set.  */
      note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
      if (note)
	insn = XEXP (note, 0);
      else
	{
	  rtx maybe_cc0_setter = prev_nonnote_insn (insn);
	  if (maybe_cc0_setter
	      && INSN_P (maybe_cc0_setter)
	      && sets_cc0_p (PATTERN (maybe_cc0_setter)))
	    insn = maybe_cc0_setter;
	}
#endif
      /* FIXME: What if something in cc0/jump uses value set in new insn?  */
      new_insn = emit_insn_before_noloc (pat, insn, bb);
    }

  /* Likewise if the last insn is a call, as will happen in the presence
     of exception handling.  */
  else if (CALL_P (insn)
	   && (!single_succ_p (bb)
	       || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
    {
      /* Keeping in mind targets with small register classes and parameters
         in registers, we search backward and place the instructions before
	 the first parameter is loaded.  Do this for everyone for consistency
	 and a presumption that we'll get better code elsewhere as well.  */

      /* Since different machines initialize their parameter registers
	 in different orders, assume nothing.  Collect the set of all
	 parameter registers.  */
      insn = find_first_parameter_load (insn, BB_HEAD (bb));

      /* If we found all the parameter loads, then we want to insert
	 before the first parameter load.

	 If we did not find all the parameter loads, then we might have
	 stopped on the head of the block, which could be a CODE_LABEL.
	 If we inserted before the CODE_LABEL, then we would be putting
	 the insn in the wrong basic block.  In that case, put the insn
	 after the CODE_LABEL.  Also, respect NOTE_INSN_BASIC_BLOCK.  */
      while (LABEL_P (insn)
	     || NOTE_INSN_BASIC_BLOCK_P (insn))
	insn = NEXT_INSN (insn);

      new_insn = emit_insn_before_noloc (pat, insn, bb);
    }
  else
    new_insn = emit_insn_after_noloc (pat, insn, bb);

  while (1)
    {
      if (INSN_P (pat))
	add_label_notes (PATTERN (pat), new_insn);
      if (pat == pat_end)
	break;
      pat = NEXT_INSN (pat);
    }

  gcse_create_count++;

  if (dump_file)
    {
      fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
	       bb->index, INSN_UID (new_insn));
      fprintf (dump_file, "copying expression %d to reg %d\n",
	       expr->bitmap_index, regno);
    }
}

/* Insert partially redundant expressions on edges in the CFG to make
   the expressions fully redundant.  */

static int
pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
{
  int e, i, j, num_edges, set_size, did_insert = 0;
  sbitmap *inserted;

  /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
     if it reaches any of the deleted expressions.  */

  set_size = pre_insert_map[0]->size;
  num_edges = NUM_EDGES (edge_list);
  inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
  sbitmap_vector_zero (inserted, num_edges);

  for (e = 0; e < num_edges; e++)
    {
      int indx;
      basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);

      for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
	{
	  SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];

	  for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
	    if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
	      {
		struct expr *expr = index_map[j];
		struct occr *occr;

		/* Now look at each deleted occurrence of this expression.  */
		for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
		  {
		    if (! occr->deleted_p)
		      continue;

		    /* Insert this expression on this edge if it would
		       reach the deleted occurrence in BB.  */
		    if (!TEST_BIT (inserted[e], j))
		      {
			rtx insn;
			edge eg = INDEX_EDGE (edge_list, e);

			/* We can't insert anything on an abnormal and
			   critical edge, so we insert the insn at the end of
			   the previous block. There are several alternatives
			   detailed in Morgans book P277 (sec 10.5) for
			   handling this situation.  This one is easiest for
			   now.  */

			if (eg->flags & EDGE_ABNORMAL)
			  insert_insn_end_basic_block (index_map[j], bb);
			else
			  {
			    insn = process_insert_insn (index_map[j]);
			    insert_insn_on_edge (insn, eg);
			  }

			if (dump_file)
			  {
			    fprintf (dump_file, "PRE: edge (%d,%d), ",
				     bb->index,
				     INDEX_EDGE_SUCC_BB (edge_list, e)->index);
			    fprintf (dump_file, "copy expression %d\n",
				     expr->bitmap_index);
			  }

			update_ld_motion_stores (expr);
			SET_BIT (inserted[e], j);
			did_insert = 1;
			gcse_create_count++;
		      }
		  }
	      }
	}
    }

  sbitmap_vector_free (inserted);
  return did_insert;
}

/* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
   Given "old_reg <- expr" (INSN), instead of adding after it
     reaching_reg <- old_reg
   it's better to do the following:
     reaching_reg <- expr
     old_reg      <- reaching_reg
   because this way copy propagation can discover additional PRE
   opportunities.  But if this fails, we try the old way.
   When "expr" is a store, i.e.
   given "MEM <- old_reg", instead of adding after it
     reaching_reg <- old_reg
   it's better to add it before as follows:
     reaching_reg <- old_reg
     MEM          <- reaching_reg.  */

static void
pre_insert_copy_insn (struct expr *expr, rtx insn)
{
  rtx reg = expr->reaching_reg;
  int regno = REGNO (reg);
  int indx = expr->bitmap_index;
  rtx pat = PATTERN (insn);
  rtx set, first_set, new_insn;
  rtx old_reg;
  int i;

  /* This block matches the logic in hash_scan_insn.  */
  switch (GET_CODE (pat))
    {
    case SET:
      set = pat;
      break;

    case PARALLEL:
      /* Search through the parallel looking for the set whose
	 source was the expression that we're interested in.  */
      first_set = NULL_RTX;
      set = NULL_RTX;
      for (i = 0; i < XVECLEN (pat, 0); i++)
	{
	  rtx x = XVECEXP (pat, 0, i);
	  if (GET_CODE (x) == SET)
	    {
	      /* If the source was a REG_EQUAL or REG_EQUIV note, we
		 may not find an equivalent expression, but in this
		 case the PARALLEL will have a single set.  */
	      if (first_set == NULL_RTX)
		first_set = x;
	      if (expr_equiv_p (SET_SRC (x), expr->expr))
	        {
	          set = x;
	          break;
	        }
	    }
	}

      gcc_assert (first_set);
      if (set == NULL_RTX)
        set = first_set;
      break;

    default:
      gcc_unreachable ();
    }

  if (REG_P (SET_DEST (set)))
    {
      old_reg = SET_DEST (set);
      /* Check if we can modify the set destination in the original insn.  */
      if (validate_change (insn, &SET_DEST (set), reg, 0))
        {
          new_insn = gen_move_insn (old_reg, reg);
          new_insn = emit_insn_after (new_insn, insn);
        }
      else
        {
          new_insn = gen_move_insn (reg, old_reg);
          new_insn = emit_insn_after (new_insn, insn);
        }
    }
  else /* This is possible only in case of a store to memory.  */
    {
      old_reg = SET_SRC (set);
      new_insn = gen_move_insn (reg, old_reg);

      /* Check if we can modify the set source in the original insn.  */
      if (validate_change (insn, &SET_SRC (set), reg, 0))
        new_insn = emit_insn_before (new_insn, insn);
      else
        new_insn = emit_insn_after (new_insn, insn);
    }

  gcse_create_count++;

  if (dump_file)
    fprintf (dump_file,
	     "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
	      BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
	      INSN_UID (insn), regno);
}

/* Copy available expressions that reach the redundant expression
   to `reaching_reg'.  */

static void
pre_insert_copies (void)
{
  unsigned int i, added_copy;
  struct expr *expr;
  struct occr *occr;
  struct occr *avail;

  /* For each available expression in the table, copy the result to
     `reaching_reg' if the expression reaches a deleted one.

     ??? The current algorithm is rather brute force.
     Need to do some profiling.  */

  for (i = 0; i < expr_hash_table.size; i++)
    for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
      {
	/* If the basic block isn't reachable, PPOUT will be TRUE.  However,
	   we don't want to insert a copy here because the expression may not
	   really be redundant.  So only insert an insn if the expression was
	   deleted.  This test also avoids further processing if the
	   expression wasn't deleted anywhere.  */
	if (expr->reaching_reg == NULL)
	  continue;

	/* Set when we add a copy for that expression.  */
	added_copy = 0;

	for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
	  {
	    if (! occr->deleted_p)
	      continue;

	    for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
	      {
		rtx insn = avail->insn;

		/* No need to handle this one if handled already.  */
		if (avail->copied_p)
		  continue;

		/* Don't handle this one if it's a redundant one.  */
		if (INSN_DELETED_P (insn))
		  continue;

		/* Or if the expression doesn't reach the deleted one.  */
		if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
					       expr,
					       BLOCK_FOR_INSN (occr->insn)))
		  continue;

                added_copy = 1;

		/* Copy the result of avail to reaching_reg.  */
		pre_insert_copy_insn (expr, insn);
		avail->copied_p = 1;
	      }
	  }

	  if (added_copy)
            update_ld_motion_stores (expr);
      }
}

/* Emit move from SRC to DEST noting the equivalence with expression computed
   in INSN.  */
static rtx
gcse_emit_move_after (rtx src, rtx dest, rtx insn)
{
  rtx new_rtx;
  rtx set = single_set (insn), set2;
  rtx note;
  rtx eqv;

  /* This should never fail since we're creating a reg->reg copy
     we've verified to be valid.  */

  new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);

  /* Note the equivalence for local CSE pass.  */
  set2 = single_set (new_rtx);
  if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
    return new_rtx;
  if ((note = find_reg_equal_equiv_note (insn)))
    eqv = XEXP (note, 0);
  else
    eqv = SET_SRC (set);

  set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));

  return new_rtx;
}

/* Delete redundant computations.
   Deletion is done by changing the insn to copy the `reaching_reg' of
   the expression into the result of the SET.  It is left to later passes
   (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.

   Returns nonzero if a change is made.  */

static int
pre_delete (void)
{
  unsigned int i;
  int changed;
  struct expr *expr;
  struct occr *occr;

  changed = 0;
  for (i = 0; i < expr_hash_table.size; i++)
    for (expr = expr_hash_table.table[i];
	 expr != NULL;
	 expr = expr->next_same_hash)
      {
	int indx = expr->bitmap_index;

	/* We only need to search antic_occr since we require
	   ANTLOC != 0.  */

	for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
	  {
	    rtx insn = occr->insn;
	    rtx set;
	    basic_block bb = BLOCK_FOR_INSN (insn);

	    /* We only delete insns that have a single_set.  */
	    if (TEST_BIT (pre_delete_map[bb->index], indx)
		&& (set = single_set (insn)) != 0
                && dbg_cnt (pre_insn))
	      {
		/* Create a pseudo-reg to store the result of reaching
		   expressions into.  Get the mode for the new pseudo from
		   the mode of the original destination pseudo.  */
		if (expr->reaching_reg == NULL)
		  expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));

		gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
		delete_insn (insn);
		occr->deleted_p = 1;
		changed = 1;
		gcse_subst_count++;

		if (dump_file)
		  {
		    fprintf (dump_file,
			     "PRE: redundant insn %d (expression %d) in ",
			       INSN_UID (insn), indx);
		    fprintf (dump_file, "bb %d, reaching reg is %d\n",
			     bb->index, REGNO (expr->reaching_reg));
		  }
	      }
	  }
      }

  return changed;
}

/* Perform GCSE optimizations using PRE.
   This is called by one_pre_gcse_pass after all the dataflow analysis
   has been done.

   This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
   lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
   Compiler Design and Implementation.

   ??? A new pseudo reg is created to hold the reaching expression.  The nice
   thing about the classical approach is that it would try to use an existing
   reg.  If the register can't be adequately optimized [i.e. we introduce
   reload problems], one could add a pass here to propagate the new register
   through the block.

   ??? We don't handle single sets in PARALLELs because we're [currently] not
   able to copy the rest of the parallel when we insert copies to create full
   redundancies from partial redundancies.  However, there's no reason why we
   can't handle PARALLELs in the cases where there are no partial
   redundancies.  */

static int
pre_gcse (void)
{
  unsigned int i;
  int did_insert, changed;
  struct expr **index_map;
  struct expr *expr;

  /* Compute a mapping from expression number (`bitmap_index') to
     hash table entry.  */

  index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
  for (i = 0; i < expr_hash_table.size; i++)
    for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
      index_map[expr->bitmap_index] = expr;

  /* Delete the redundant insns first so that
     - we know what register to use for the new insns and for the other
       ones with reaching expressions
     - we know which insns are redundant when we go to create copies  */

  changed = pre_delete ();
  did_insert = pre_edge_insert (edge_list, index_map);

  /* In other places with reaching expressions, copy the expression to the
     specially allocated pseudo-reg that reaches the redundant expr.  */
  pre_insert_copies ();
  if (did_insert)
    {
      commit_edge_insertions ();
      changed = 1;
    }

  free (index_map);
  return changed;
}

/* Top level routine to perform one PRE GCSE pass.

   Return nonzero if a change was made.  */

static int
one_pre_gcse_pass (void)
{
  int changed = 0;

  gcse_subst_count = 0;
  gcse_create_count = 0;

  /* Return if there's nothing to do, or it is too expensive.  */
  if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
      || is_too_expensive (_("PRE disabled")))
    return 0;

  /* We need alias.  */
  init_alias_analysis ();

  bytes_used = 0;
  gcc_obstack_init (&gcse_obstack);
  alloc_gcse_mem ();

  alloc_hash_table (&expr_hash_table);
  add_noreturn_fake_exit_edges ();
  if (flag_gcse_lm)
    compute_ld_motion_mems ();

  compute_hash_table (&expr_hash_table);
  trim_ld_motion_mems ();
  if (dump_file)
    dump_hash_table (dump_file, "Expression", &expr_hash_table);

  if (expr_hash_table.n_elems > 0)
    {
      alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
      compute_pre_data ();
      changed |= pre_gcse ();
      free_edge_list (edge_list);
      free_pre_mem ();
    }

  free_ldst_mems ();
  remove_fake_exit_edges ();
  free_hash_table (&expr_hash_table);

  free_gcse_mem ();
  obstack_free (&gcse_obstack, NULL);

  /* We are finished with alias.  */
  end_alias_analysis ();

  if (dump_file)
    {
      fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
	       current_function_name (), n_basic_blocks, bytes_used);
      fprintf (dump_file, "%d substs, %d insns created\n",
	       gcse_subst_count, gcse_create_count);
    }

  return changed;
}

/* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
   to INSN.  If such notes are added to an insn which references a
   CODE_LABEL, the LABEL_NUSES count is incremented.  We have to add
   that note, because the following loop optimization pass requires
   them.  */

/* ??? If there was a jump optimization pass after gcse and before loop,
   then we would not need to do this here, because jump would add the
   necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes.  */

static void
add_label_notes (rtx x, rtx insn)
{
  enum rtx_code code = GET_CODE (x);
  int i, j;
  const char *fmt;

  if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
    {
      /* This code used to ignore labels that referred to dispatch tables to
	 avoid flow generating (slightly) worse code.

	 We no longer ignore such label references (see LABEL_REF handling in
	 mark_jump_label for additional information).  */

      /* There's no reason for current users to emit jump-insns with
	 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
	 notes.  */
      gcc_assert (!JUMP_P (insn));
      add_reg_note (insn, REG_LABEL_OPERAND, XEXP (x, 0));

      if (LABEL_P (XEXP (x, 0)))
	LABEL_NUSES (XEXP (x, 0))++;

      return;
    }

  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
    {
      if (fmt[i] == 'e')
	add_label_notes (XEXP (x, i), insn);
      else if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  add_label_notes (XVECEXP (x, i, j), insn);
    }
}

/* Code Hoisting variables and subroutines.  */

/* Very busy expressions.  */
static sbitmap *hoist_vbein;
static sbitmap *hoist_vbeout;

/* ??? We could compute post dominators and run this algorithm in
   reverse to perform tail merging, doing so would probably be
   more effective than the tail merging code in jump.c.

   It's unclear if tail merging could be run in parallel with
   code hoisting.  It would be nice.  */

/* Allocate vars used for code hoisting analysis.  */

static void
alloc_code_hoist_mem (int n_blocks, int n_exprs)
{
  antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
  transp = sbitmap_vector_alloc (n_blocks, n_exprs);
  comp = sbitmap_vector_alloc (n_blocks, n_exprs);

  hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
  hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
}

/* Free vars used for code hoisting analysis.  */

static void
free_code_hoist_mem (void)
{
  sbitmap_vector_free (antloc);
  sbitmap_vector_free (transp);
  sbitmap_vector_free (comp);

  sbitmap_vector_free (hoist_vbein);
  sbitmap_vector_free (hoist_vbeout);

  free_dominance_info (CDI_DOMINATORS);
}

/* Compute the very busy expressions at entry/exit from each block.

   An expression is very busy if all paths from a given point
   compute the expression.  */

static void
compute_code_hoist_vbeinout (void)
{
  int changed, passes;
  basic_block bb;

  sbitmap_vector_zero (hoist_vbeout, last_basic_block);
  sbitmap_vector_zero (hoist_vbein, last_basic_block);

  passes = 0;
  changed = 1;

  while (changed)
    {
      changed = 0;

      /* We scan the blocks in the reverse order to speed up
	 the convergence.  */
      FOR_EACH_BB_REVERSE (bb)
	{
	  if (bb->next_bb != EXIT_BLOCK_PTR)
	    {
	      sbitmap_intersection_of_succs (hoist_vbeout[bb->index],
					     hoist_vbein, bb->index);

	      /* Include expressions in VBEout that are calculated
		 in BB and available at its end.  */
	      sbitmap_a_or_b (hoist_vbeout[bb->index],
			      hoist_vbeout[bb->index], comp[bb->index]);
	    }

	  changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index],
					      antloc[bb->index],
					      hoist_vbeout[bb->index],
					      transp[bb->index]);
	}

      passes++;
    }

  if (dump_file)
    {
      fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);

      FOR_EACH_BB (bb)
        {
	  fprintf (dump_file, "vbein (%d): ", bb->index);
	  dump_sbitmap_file (dump_file, hoist_vbein[bb->index]);
	  fprintf (dump_file, "vbeout(%d): ", bb->index);
	  dump_sbitmap_file (dump_file, hoist_vbeout[bb->index]);
	}
    }
}

/* Top level routine to do the dataflow analysis needed by code hoisting.  */

static void
compute_code_hoist_data (void)
{
  compute_local_properties (transp, comp, antloc, &expr_hash_table);
  prune_expressions (false);
  compute_code_hoist_vbeinout ();
  calculate_dominance_info (CDI_DOMINATORS);
  if (dump_file)
    fprintf (dump_file, "\n");
}

/* Determine if the expression identified by EXPR_INDEX would
   reach BB unimpared if it was placed at the end of EXPR_BB.
   Stop the search if the expression would need to be moved more
   than DISTANCE instructions.

   It's unclear exactly what Muchnick meant by "unimpared".  It seems
   to me that the expression must either be computed or transparent in
   *every* block in the path(s) from EXPR_BB to BB.  Any other definition
   would allow the expression to be hoisted out of loops, even if
   the expression wasn't a loop invariant.

   Contrast this to reachability for PRE where an expression is
   considered reachable if *any* path reaches instead of *all*
   paths.  */

static int
hoist_expr_reaches_here_p (basic_block expr_bb, int expr_index, basic_block bb,
			   char *visited, int distance, int *bb_size)
{
  edge pred;
  edge_iterator ei;
  int visited_allocated_locally = 0;

  /* Terminate the search if distance, for which EXPR is allowed to move,
     is exhausted.  */
  if (distance > 0)
    {
      distance -= bb_size[bb->index];

      if (distance <= 0)
	return 0;
    }
  else
    gcc_assert (distance == 0);

  if (visited == NULL)
    {
      visited_allocated_locally = 1;
      visited = XCNEWVEC (char, last_basic_block);
    }

  FOR_EACH_EDGE (pred, ei, bb->preds)
    {
      basic_block pred_bb = pred->src;

      if (pred->src == ENTRY_BLOCK_PTR)
	break;
      else if (pred_bb == expr_bb)
	continue;
      else if (visited[pred_bb->index])
	continue;

      else if (! TEST_BIT (transp[pred_bb->index], expr_index))
	break;

      /* Not killed.  */
      else
	{
	  visited[pred_bb->index] = 1;
	  if (! hoist_expr_reaches_here_p (expr_bb, expr_index, pred_bb,
					   visited, distance, bb_size))
	    break;
	}
    }
  if (visited_allocated_locally)
    free (visited);

  return (pred == NULL);
}

/* Find occurence in BB.  */
static struct occr *
find_occr_in_bb (struct occr *occr, basic_block bb)
{
  /* Find the right occurrence of this expression.  */
  while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
    occr = occr->next;

  return occr;
}

/* Actually perform code hoisting.  */

static int
hoist_code (void)
{
  basic_block bb, dominated;
  VEC (basic_block, heap) *dom_tree_walk;
  unsigned int dom_tree_walk_index;
  VEC (basic_block, heap) *domby;
  unsigned int i,j;
  struct expr **index_map;
  struct expr *expr;
  int *to_bb_head;
  int *bb_size;
  int changed = 0;

  /* Compute a mapping from expression number (`bitmap_index') to
     hash table entry.  */

  index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
  for (i = 0; i < expr_hash_table.size; i++)
    for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
      index_map[expr->bitmap_index] = expr;

  /* Calculate sizes of basic blocks and note how far
     each instruction is from the start of its block.  We then use this
     data to restrict distance an expression can travel.  */

  to_bb_head = XCNEWVEC (int, get_max_uid ());
  bb_size = XCNEWVEC (int, last_basic_block);

  FOR_EACH_BB (bb)
    {
      rtx insn;
      int to_head;

      to_head = 0;
      FOR_BB_INSNS (bb, insn)
	{
	  /* Don't count debug instructions to avoid them affecting
	     decision choices.  */
	  if (NONDEBUG_INSN_P (insn))
	    to_bb_head[INSN_UID (insn)] = to_head++;
	}

      bb_size[bb->index] = to_head;
    }

  gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR->succs) == 1
	      && (EDGE_SUCC (ENTRY_BLOCK_PTR, 0)->dest
		  == ENTRY_BLOCK_PTR->next_bb));

  dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
					    ENTRY_BLOCK_PTR->next_bb);

  /* Walk over each basic block looking for potentially hoistable
     expressions, nothing gets hoisted from the entry block.  */
  FOR_EACH_VEC_ELT (basic_block, dom_tree_walk, dom_tree_walk_index, bb)
    {
      domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);

      if (VEC_length (basic_block, domby) == 0)
	continue;

      /* Examine each expression that is very busy at the exit of this
	 block.  These are the potentially hoistable expressions.  */
      for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
	{
	  if (TEST_BIT (hoist_vbeout[bb->index], i))
	    {
	      /* Current expression.  */
	      struct expr *expr = index_map[i];
	      /* Number of occurences of EXPR that can be hoisted to BB.  */
	      int hoistable = 0;
	      /* Basic blocks that have occurences reachable from BB.  */
	      bitmap_head _from_bbs, *from_bbs = &_from_bbs;
	      /* Occurences reachable from BB.  */
	      VEC (occr_t, heap) *occrs_to_hoist = NULL;
	      /* We want to insert the expression into BB only once, so
		 note when we've inserted it.  */
	      int insn_inserted_p;
	      occr_t occr;

	      bitmap_initialize (from_bbs, 0);

	      /* If an expression is computed in BB and is available at end of
		 BB, hoist all occurences dominated by BB to BB.  */
	      if (TEST_BIT (comp[bb->index], i))
		{
		  occr = find_occr_in_bb (expr->antic_occr, bb);

		  if (occr)
		    {
		      /* An occurence might've been already deleted
			 while processing a dominator of BB.  */
		      if (!occr->deleted_p)
			{
			  gcc_assert (NONDEBUG_INSN_P (occr->insn));
			  hoistable++;
			}
		    }
		  else
		    hoistable++;
		}

	      /* We've found a potentially hoistable expression, now
		 we look at every block BB dominates to see if it
		 computes the expression.  */
	      FOR_EACH_VEC_ELT (basic_block, domby, j, dominated)
		{
		  int max_distance;

		  /* Ignore self dominance.  */
		  if (bb == dominated)
		    continue;
		  /* We've found a dominated block, now see if it computes
		     the busy expression and whether or not moving that
		     expression to the "beginning" of that block is safe.  */
		  if (!TEST_BIT (antloc[dominated->index], i))
		    continue;

		  occr = find_occr_in_bb (expr->antic_occr, dominated);
		  gcc_assert (occr);

		  /* An occurence might've been already deleted
		     while processing a dominator of BB.  */
		  if (occr->deleted_p)
		    continue;
		  gcc_assert (NONDEBUG_INSN_P (occr->insn));

		  max_distance = expr->max_distance;
		  if (max_distance > 0)
		    /* Adjust MAX_DISTANCE to account for the fact that
		       OCCR won't have to travel all of DOMINATED, but
		       only part of it.  */
		    max_distance += (bb_size[dominated->index]
				     - to_bb_head[INSN_UID (occr->insn)]);

		  /* Note if the expression would reach the dominated block
		     unimpared if it was placed at the end of BB.

		     Keep track of how many times this expression is hoistable
		     from a dominated block into BB.  */
		  if (hoist_expr_reaches_here_p (bb, i, dominated, NULL,
						 max_distance, bb_size))
		    {
		      hoistable++;
		      VEC_safe_push (occr_t, heap,
				     occrs_to_hoist, occr);
		      bitmap_set_bit (from_bbs, dominated->index);
		    }
		}

	      /* If we found more than one hoistable occurrence of this
		 expression, then note it in the vector of expressions to
		 hoist.  It makes no sense to hoist things which are computed
		 in only one BB, and doing so tends to pessimize register
		 allocation.  One could increase this value to try harder
		 to avoid any possible code expansion due to register
		 allocation issues; however experiments have shown that
		 the vast majority of hoistable expressions are only movable
		 from two successors, so raising this threshold is likely
		 to nullify any benefit we get from code hoisting.  */
	      if (hoistable > 1 && dbg_cnt (hoist_insn))
		{
		  /* If (hoistable != VEC_length), then there is
		     an occurence of EXPR in BB itself.  Don't waste
		     time looking for LCA in this case.  */
		  if ((unsigned) hoistable
		      == VEC_length (occr_t, occrs_to_hoist))
		    {
		      basic_block lca;

		      lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
							      from_bbs);
		      if (lca != bb)
			/* Punt, it's better to hoist these occurences to
			   LCA.  */
			VEC_free (occr_t, heap, occrs_to_hoist);
		    }
		}
	      else
		/* Punt, no point hoisting a single occurence.  */
		VEC_free (occr_t, heap, occrs_to_hoist);

	      insn_inserted_p = 0;

	      /* Walk through occurences of I'th expressions we want
		 to hoist to BB and make the transformations.  */
	      FOR_EACH_VEC_ELT (occr_t, occrs_to_hoist, j, occr)
		{
		  rtx insn;
		  rtx set;

		  gcc_assert (!occr->deleted_p);

		  insn = occr->insn;
		  set = single_set (insn);
		  gcc_assert (set);

		  /* Create a pseudo-reg to store the result of reaching
		     expressions into.  Get the mode for the new pseudo
		     from the mode of the original destination pseudo.

		     It is important to use new pseudos whenever we
		     emit a set.  This will allow reload to use
		     rematerialization for such registers.  */
		  if (!insn_inserted_p)
		    expr->reaching_reg
		      = gen_reg_rtx_and_attrs (SET_DEST (set));

		  gcse_emit_move_after (expr->reaching_reg, SET_DEST (set),
					insn);
		  delete_insn (insn);
		  occr->deleted_p = 1;
		  changed = 1;
		  gcse_subst_count++;

		  if (!insn_inserted_p)
		    {
		      insert_insn_end_basic_block (expr, bb);
		      insn_inserted_p = 1;
		    }
		}

	      VEC_free (occr_t, heap, occrs_to_hoist);
	      bitmap_clear (from_bbs);
	    }
	}
      VEC_free (basic_block, heap, domby);
    }

  VEC_free (basic_block, heap, dom_tree_walk);
  free (bb_size);
  free (to_bb_head);
  free (index_map);

  return changed;
}

/* Top level routine to perform one code hoisting (aka unification) pass

   Return nonzero if a change was made.  */

static int
one_code_hoisting_pass (void)
{
  int changed = 0;

  gcse_subst_count = 0;
  gcse_create_count = 0;

  /* Return if there's nothing to do, or it is too expensive.  */
  if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
      || is_too_expensive (_("GCSE disabled")))
    return 0;

  doing_code_hoisting_p = true;

  /* We need alias.  */
  init_alias_analysis ();

  bytes_used = 0;
  gcc_obstack_init (&gcse_obstack);
  alloc_gcse_mem ();

  alloc_hash_table (&expr_hash_table);
  compute_hash_table (&expr_hash_table);
  if (dump_file)
    dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);

  if (expr_hash_table.n_elems > 0)
    {
      alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
      compute_code_hoist_data ();
      changed = hoist_code ();
      free_code_hoist_mem ();
    }

  free_hash_table (&expr_hash_table);
  free_gcse_mem ();
  obstack_free (&gcse_obstack, NULL);

  /* We are finished with alias.  */
  end_alias_analysis ();

  if (dump_file)
    {
      fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
	       current_function_name (), n_basic_blocks, bytes_used);
      fprintf (dump_file, "%d substs, %d insns created\n",
	       gcse_subst_count, gcse_create_count);
    }

  doing_code_hoisting_p = false;

  return changed;
}

/*  Here we provide the things required to do store motion towards
    the exit. In order for this to be effective, gcse also needed to
    be taught how to move a load when it is kill only by a store to itself.

	    int i;
	    float a[10];

	    void foo(float scale)
	    {
	      for (i=0; i<10; i++)
		a[i] *= scale;
	    }

    'i' is both loaded and stored to in the loop. Normally, gcse cannot move
    the load out since its live around the loop, and stored at the bottom
    of the loop.

      The 'Load Motion' referred to and implemented in this file is
    an enhancement to gcse which when using edge based lcm, recognizes
    this situation and allows gcse to move the load out of the loop.

      Once gcse has hoisted the load, store motion can then push this
    load towards the exit, and we end up with no loads or stores of 'i'
    in the loop.  */

static hashval_t
pre_ldst_expr_hash (const void *p)
{
  int do_not_record_p = 0;
  const struct ls_expr *const x = (const struct ls_expr *) p;
  return hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
}

static int
pre_ldst_expr_eq (const void *p1, const void *p2)
{
  const struct ls_expr *const ptr1 = (const struct ls_expr *) p1,
    *const ptr2 = (const struct ls_expr *) p2;
  return expr_equiv_p (ptr1->pattern, ptr2->pattern);
}

/* This will search the ldst list for a matching expression. If it
   doesn't find one, we create one and initialize it.  */

static struct ls_expr *
ldst_entry (rtx x)
{
  int do_not_record_p = 0;
  struct ls_expr * ptr;
  unsigned int hash;
  void **slot;
  struct ls_expr e;

  hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
		   NULL,  /*have_reg_qty=*/false);

  e.pattern = x;
  slot = htab_find_slot_with_hash (pre_ldst_table, &e, hash, INSERT);
  if (*slot)
    return (struct ls_expr *)*slot;

  ptr = XNEW (struct ls_expr);

  ptr->next         = pre_ldst_mems;
  ptr->expr         = NULL;
  ptr->pattern      = x;
  ptr->pattern_regs = NULL_RTX;
  ptr->loads        = NULL_RTX;
  ptr->stores       = NULL_RTX;
  ptr->reaching_reg = NULL_RTX;
  ptr->invalid      = 0;
  ptr->index        = 0;
  ptr->hash_index   = hash;
  pre_ldst_mems     = ptr;
  *slot = ptr;

  return ptr;
}

/* Free up an individual ldst entry.  */

static void
free_ldst_entry (struct ls_expr * ptr)
{
  free_INSN_LIST_list (& ptr->loads);
  free_INSN_LIST_list (& ptr->stores);

  free (ptr);
}

/* Free up all memory associated with the ldst list.  */

static void
free_ldst_mems (void)
{
  if (pre_ldst_table)
    htab_delete (pre_ldst_table);
  pre_ldst_table = NULL;

  while (pre_ldst_mems)
    {
      struct ls_expr * tmp = pre_ldst_mems;

      pre_ldst_mems = pre_ldst_mems->next;

      free_ldst_entry (tmp);
    }

  pre_ldst_mems = NULL;
}

/* Dump debugging info about the ldst list.  */

static void
print_ldst_list (FILE * file)
{
  struct ls_expr * ptr;

  fprintf (file, "LDST list: \n");

  for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
    {
      fprintf (file, "  Pattern (%3d): ", ptr->index);

      print_rtl (file, ptr->pattern);

      fprintf (file, "\n	 Loads : ");

      if (ptr->loads)
	print_rtl (file, ptr->loads);
      else
	fprintf (file, "(nil)");

      fprintf (file, "\n	Stores : ");

      if (ptr->stores)
	print_rtl (file, ptr->stores);
      else
	fprintf (file, "(nil)");

      fprintf (file, "\n\n");
    }

  fprintf (file, "\n");
}

/* Returns 1 if X is in the list of ldst only expressions.  */

static struct ls_expr *
find_rtx_in_ldst (rtx x)
{
  struct ls_expr e;
  void **slot;
  if (!pre_ldst_table)
    return NULL;
  e.pattern = x;
  slot = htab_find_slot (pre_ldst_table, &e, NO_INSERT);
  if (!slot || ((struct ls_expr *)*slot)->invalid)
    return NULL;
  return (struct ls_expr *) *slot;
}

/* Return first item in the list.  */

static inline struct ls_expr *
first_ls_expr (void)
{
  return pre_ldst_mems;
}

/* Return the next item in the list after the specified one.  */

static inline struct ls_expr *
next_ls_expr (struct ls_expr * ptr)
{
  return ptr->next;
}

/* Load Motion for loads which only kill themselves.  */

/* Return true if x is a simple MEM operation, with no registers or
   side effects. These are the types of loads we consider for the
   ld_motion list, otherwise we let the usual aliasing take care of it.  */

static int
simple_mem (const_rtx x)
{
  if (! MEM_P (x))
    return 0;

  if (MEM_VOLATILE_P (x))
    return 0;

  if (GET_MODE (x) == BLKmode)
    return 0;

  /* If we are handling exceptions, we must be careful with memory references
     that may trap.  If we are not, the behavior is undefined, so we may just
     continue.  */
  if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
    return 0;

  if (side_effects_p (x))
    return 0;

  /* Do not consider function arguments passed on stack.  */
  if (reg_mentioned_p (stack_pointer_rtx, x))
    return 0;

  if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
    return 0;

  return 1;
}

/* Make sure there isn't a buried reference in this pattern anywhere.
   If there is, invalidate the entry for it since we're not capable
   of fixing it up just yet.. We have to be sure we know about ALL
   loads since the aliasing code will allow all entries in the
   ld_motion list to not-alias itself.  If we miss a load, we will get
   the wrong value since gcse might common it and we won't know to
   fix it up.  */

static void
invalidate_any_buried_refs (rtx x)
{
  const char * fmt;
  int i, j;
  struct ls_expr * ptr;

  /* Invalidate it in the list.  */
  if (MEM_P (x) && simple_mem (x))
    {
      ptr = ldst_entry (x);
      ptr->invalid = 1;
    }

  /* Recursively process the insn.  */
  fmt = GET_RTX_FORMAT (GET_CODE (x));

  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	invalidate_any_buried_refs (XEXP (x, i));
      else if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  invalidate_any_buried_refs (XVECEXP (x, i, j));
    }
}

/* Find all the 'simple' MEMs which are used in LOADs and STORES.  Simple
   being defined as MEM loads and stores to symbols, with no side effects
   and no registers in the expression.  For a MEM destination, we also
   check that the insn is still valid if we replace the destination with a
   REG, as is done in update_ld_motion_stores.  If there are any uses/defs
   which don't match this criteria, they are invalidated and trimmed out
   later.  */

static void
compute_ld_motion_mems (void)
{
  struct ls_expr * ptr;
  basic_block bb;
  rtx insn;

  pre_ldst_mems = NULL;
  pre_ldst_table = htab_create (13, pre_ldst_expr_hash,
				pre_ldst_expr_eq, NULL);

  FOR_EACH_BB (bb)
    {
      FOR_BB_INSNS (bb, insn)
	{
	  if (NONDEBUG_INSN_P (insn))
	    {
	      if (GET_CODE (PATTERN (insn)) == SET)
		{
		  rtx src = SET_SRC (PATTERN (insn));
		  rtx dest = SET_DEST (PATTERN (insn));

		  /* Check for a simple LOAD...  */
		  if (MEM_P (src) && simple_mem (src))
		    {
		      ptr = ldst_entry (src);
		      if (REG_P (dest))
			ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
		      else
			ptr->invalid = 1;
		    }
		  else
		    {
		      /* Make sure there isn't a buried load somewhere.  */
		      invalidate_any_buried_refs (src);
		    }

		  /* Check for stores. Don't worry about aliased ones, they
		     will block any movement we might do later. We only care
		     about this exact pattern since those are the only
		     circumstance that we will ignore the aliasing info.  */
		  if (MEM_P (dest) && simple_mem (dest))
		    {
		      ptr = ldst_entry (dest);

		      if (! MEM_P (src)
			  && GET_CODE (src) != ASM_OPERANDS
			  /* Check for REG manually since want_to_gcse_p
			     returns 0 for all REGs.  */
			  && can_assign_to_reg_without_clobbers_p (src))
			ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
		      else
			ptr->invalid = 1;
		    }
		}
	      else
		invalidate_any_buried_refs (PATTERN (insn));
	    }
	}
    }
}

/* Remove any references that have been either invalidated or are not in the
   expression list for pre gcse.  */

static void
trim_ld_motion_mems (void)
{
  struct ls_expr * * last = & pre_ldst_mems;
  struct ls_expr * ptr = pre_ldst_mems;

  while (ptr != NULL)
    {
      struct expr * expr;

      /* Delete if entry has been made invalid.  */
      if (! ptr->invalid)
	{
	  /* Delete if we cannot find this mem in the expression list.  */
	  unsigned int hash = ptr->hash_index % expr_hash_table.size;

	  for (expr = expr_hash_table.table[hash];
	       expr != NULL;
	       expr = expr->next_same_hash)
	    if (expr_equiv_p (expr->expr, ptr->pattern))
	      break;
	}
      else
	expr = (struct expr *) 0;

      if (expr)
	{
	  /* Set the expression field if we are keeping it.  */
	  ptr->expr = expr;
	  last = & ptr->next;
	  ptr = ptr->next;
	}
      else
	{
	  *last = ptr->next;
	  htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
	  free_ldst_entry (ptr);
	  ptr = * last;
	}
    }

  /* Show the world what we've found.  */
  if (dump_file && pre_ldst_mems != NULL)
    print_ldst_list (dump_file);
}

/* This routine will take an expression which we are replacing with
   a reaching register, and update any stores that are needed if
   that expression is in the ld_motion list.  Stores are updated by
   copying their SRC to the reaching register, and then storing
   the reaching register into the store location. These keeps the
   correct value in the reaching register for the loads.  */

static void
update_ld_motion_stores (struct expr * expr)
{
  struct ls_expr * mem_ptr;

  if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
    {
      /* We can try to find just the REACHED stores, but is shouldn't
	 matter to set the reaching reg everywhere...  some might be
	 dead and should be eliminated later.  */

      /* We replace (set mem expr) with (set reg expr) (set mem reg)
	 where reg is the reaching reg used in the load.  We checked in
	 compute_ld_motion_mems that we can replace (set mem expr) with
	 (set reg expr) in that insn.  */
      rtx list = mem_ptr->stores;

      for ( ; list != NULL_RTX; list = XEXP (list, 1))
	{
	  rtx insn = XEXP (list, 0);
	  rtx pat = PATTERN (insn);
	  rtx src = SET_SRC (pat);
	  rtx reg = expr->reaching_reg;
	  rtx copy;

	  /* If we've already copied it, continue.  */
	  if (expr->reaching_reg == src)
	    continue;

	  if (dump_file)
	    {
	      fprintf (dump_file, "PRE:  store updated with reaching reg ");
	      print_rtl (dump_file, expr->reaching_reg);
	      fprintf (dump_file, ":\n	");
	      print_inline_rtx (dump_file, insn, 8);
	      fprintf (dump_file, "\n");
	    }

	  copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
	  emit_insn_before (copy, insn);
	  SET_SRC (pat) = reg;
	  df_insn_rescan (insn);

	  /* un-recognize this pattern since it's probably different now.  */
	  INSN_CODE (insn) = -1;
	  gcse_create_count++;
	}
    }
}

/* Return true if the graph is too expensive to optimize. PASS is the
   optimization about to be performed.  */

static bool
is_too_expensive (const char *pass)
{
  /* Trying to perform global optimizations on flow graphs which have
     a high connectivity will take a long time and is unlikely to be
     particularly useful.

     In normal circumstances a cfg should have about twice as many
     edges as blocks.  But we do not want to punish small functions
     which have a couple switch statements.  Rather than simply
     threshold the number of blocks, uses something with a more
     graceful degradation.  */
  if (n_edges > 20000 + n_basic_blocks * 4)
    {
      warning (OPT_Wdisabled_optimization,
	       "%s: %d basic blocks and %d edges/basic block",
	       pass, n_basic_blocks, n_edges / n_basic_blocks);

      return true;
    }

  /* If allocating memory for the dataflow bitmaps would take up too much
     storage it's better just to disable the optimization.  */
  if ((n_basic_blocks
       * SBITMAP_SET_SIZE (max_reg_num ())
       * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
    {
      warning (OPT_Wdisabled_optimization,
	       "%s: %d basic blocks and %d registers",
	       pass, n_basic_blocks, max_reg_num ());

      return true;
    }

  return false;
}


/* All the passes implemented in this file.  Each pass has its
   own gate and execute function, and at the end of the file a
   pass definition for passes.c.

   We do not construct an accurate cfg in functions which call
   setjmp, so none of these passes runs if the function calls
   setjmp.
   FIXME: Should just handle setjmp via REG_SETJMP notes.  */

static bool
gate_rtl_pre (void)
{
  return optimize > 0 && flag_gcse
    && !cfun->calls_setjmp
    && optimize_function_for_speed_p (cfun)
    && dbg_cnt (pre);
}

static unsigned int
execute_rtl_pre (void)
{
  int changed;
  delete_unreachable_blocks ();
  df_analyze ();
  changed = one_pre_gcse_pass ();
  flag_rerun_cse_after_global_opts |= changed;
  if (changed)
    cleanup_cfg (0);
  return 0;
}

static bool
gate_rtl_hoist (void)
{
  return optimize > 0 && flag_gcse
    && !cfun->calls_setjmp
    /* It does not make sense to run code hoisting unless we are optimizing
       for code size -- it rarely makes programs faster, and can make then
       bigger if we did PRE (when optimizing for space, we don't run PRE).  */
    && optimize_function_for_size_p (cfun)
    && dbg_cnt (hoist);
}

static unsigned int
execute_rtl_hoist (void)
{
  int changed;
  delete_unreachable_blocks ();
  df_analyze ();
  changed = one_code_hoisting_pass ();
  flag_rerun_cse_after_global_opts |= changed;
  if (changed)
    cleanup_cfg (0);
  return 0;
}

struct rtl_opt_pass pass_rtl_pre =
{
 {
  RTL_PASS,
  "rtl pre",                            /* name */
  gate_rtl_pre,                         /* gate */
  execute_rtl_pre,    			/* execute */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  TV_PRE,                               /* tv_id */
  PROP_cfglayout,                       /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  TODO_df_finish | TODO_verify_rtl_sharing |
  TODO_verify_flow | TODO_ggc_collect   /* todo_flags_finish */
 }
};

struct rtl_opt_pass pass_rtl_hoist =
{
 {
  RTL_PASS,
  "hoist",                              /* name */
  gate_rtl_hoist,                       /* gate */
  execute_rtl_hoist,  			/* execute */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  TV_HOIST,                             /* tv_id */
  PROP_cfglayout,                       /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  TODO_df_finish | TODO_verify_rtl_sharing |
  TODO_verify_flow | TODO_ggc_collect   /* todo_flags_finish */
 }
};

#include "gt-gcse.h"